mfd: db8500-prcmu: Add ux500_wdt mfd_cell
[linux-2.6/btrfs-unstable.git] / drivers / mfd / db8500-prcmu.c
blobe42a417adc5ff60b9ded23bae32c5ee6965cac19
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
10 * U8500 PRCM Unit interface driver
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/cpufreq.h>
35 #include <linux/platform_data/ux500_wdt.h>
36 #include <asm/hardware/gic.h>
37 #include <mach/hardware.h>
38 #include <mach/irqs.h>
39 #include <mach/db8500-regs.h>
40 #include <mach/id.h>
41 #include "dbx500-prcmu-regs.h"
43 /* Offset for the firmware version within the TCPM */
44 #define PRCMU_FW_VERSION_OFFSET 0xA4
46 /* Index of different voltages to be used when accessing AVSData */
47 #define PRCM_AVS_BASE 0x2FC
48 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
49 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
50 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
51 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
52 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
53 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
54 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
55 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
56 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
57 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
58 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
59 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
60 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
62 #define PRCM_AVS_VOLTAGE 0
63 #define PRCM_AVS_VOLTAGE_MASK 0x3f
64 #define PRCM_AVS_ISSLOWSTARTUP 6
65 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
66 #define PRCM_AVS_ISMODEENABLE 7
67 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
69 #define PRCM_BOOT_STATUS 0xFFF
70 #define PRCM_ROMCODE_A2P 0xFFE
71 #define PRCM_ROMCODE_P2A 0xFFD
72 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
74 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
76 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
77 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
78 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
79 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
80 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
81 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
82 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
83 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
85 /* Req Mailboxes */
86 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
87 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
88 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
89 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
90 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
91 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
93 /* Ack Mailboxes */
94 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
95 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
96 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
97 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
98 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
99 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
101 /* Mailbox 0 headers */
102 #define MB0H_POWER_STATE_TRANS 0
103 #define MB0H_CONFIG_WAKEUPS_EXE 1
104 #define MB0H_READ_WAKEUP_ACK 3
105 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
107 #define MB0H_WAKEUP_EXE 2
108 #define MB0H_WAKEUP_SLEEP 5
110 /* Mailbox 0 REQs */
111 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
112 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
113 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
114 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
115 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
116 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
118 /* Mailbox 0 ACKs */
119 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
120 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
121 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
122 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
123 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
124 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
125 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
127 /* Mailbox 1 headers */
128 #define MB1H_ARM_APE_OPP 0x0
129 #define MB1H_RESET_MODEM 0x2
130 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
131 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
132 #define MB1H_RELEASE_USB_WAKEUP 0x5
133 #define MB1H_PLL_ON_OFF 0x6
135 /* Mailbox 1 Requests */
136 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
137 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
138 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
139 #define PLL_SOC0_OFF 0x1
140 #define PLL_SOC0_ON 0x2
141 #define PLL_SOC1_OFF 0x4
142 #define PLL_SOC1_ON 0x8
144 /* Mailbox 1 ACKs */
145 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
146 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
147 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
148 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
150 /* Mailbox 2 headers */
151 #define MB2H_DPS 0x0
152 #define MB2H_AUTO_PWR 0x1
154 /* Mailbox 2 REQs */
155 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
156 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
157 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
158 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
159 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
160 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
161 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
162 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
163 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
164 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
166 /* Mailbox 2 ACKs */
167 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
168 #define HWACC_PWR_ST_OK 0xFE
170 /* Mailbox 3 headers */
171 #define MB3H_ANC 0x0
172 #define MB3H_SIDETONE 0x1
173 #define MB3H_SYSCLK 0xE
175 /* Mailbox 3 Requests */
176 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
177 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
178 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
179 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
180 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
181 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
182 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
184 /* Mailbox 4 headers */
185 #define MB4H_DDR_INIT 0x0
186 #define MB4H_MEM_ST 0x1
187 #define MB4H_HOTDOG 0x12
188 #define MB4H_HOTMON 0x13
189 #define MB4H_HOT_PERIOD 0x14
190 #define MB4H_A9WDOG_CONF 0x16
191 #define MB4H_A9WDOG_EN 0x17
192 #define MB4H_A9WDOG_DIS 0x18
193 #define MB4H_A9WDOG_LOAD 0x19
194 #define MB4H_A9WDOG_KICK 0x20
196 /* Mailbox 4 Requests */
197 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
200 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
201 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
205 #define HOTMON_CONFIG_LOW BIT(0)
206 #define HOTMON_CONFIG_HIGH BIT(1)
207 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
208 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
209 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
210 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
211 #define A9WDOG_AUTO_OFF_EN BIT(7)
212 #define A9WDOG_AUTO_OFF_DIS 0
213 #define A9WDOG_ID_MASK 0xf
215 /* Mailbox 5 Requests */
216 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
217 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
218 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
219 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
220 #define PRCMU_I2C_WRITE(slave) \
221 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_READ(slave) \
223 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
224 #define PRCMU_I2C_STOP_EN BIT(3)
226 /* Mailbox 5 ACKs */
227 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
228 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
229 #define I2C_WR_OK 0x1
230 #define I2C_RD_OK 0x2
232 #define NUM_MB 8
233 #define MBOX_BIT BIT
234 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
237 * Wakeups/IRQs
240 #define WAKEUP_BIT_RTC BIT(0)
241 #define WAKEUP_BIT_RTT0 BIT(1)
242 #define WAKEUP_BIT_RTT1 BIT(2)
243 #define WAKEUP_BIT_HSI0 BIT(3)
244 #define WAKEUP_BIT_HSI1 BIT(4)
245 #define WAKEUP_BIT_CA_WAKE BIT(5)
246 #define WAKEUP_BIT_USB BIT(6)
247 #define WAKEUP_BIT_ABB BIT(7)
248 #define WAKEUP_BIT_ABB_FIFO BIT(8)
249 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
250 #define WAKEUP_BIT_CA_SLEEP BIT(10)
251 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
252 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
253 #define WAKEUP_BIT_ANC_OK BIT(13)
254 #define WAKEUP_BIT_SW_ERROR BIT(14)
255 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
256 #define WAKEUP_BIT_ARM BIT(17)
257 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
258 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
259 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
260 #define WAKEUP_BIT_GPIO0 BIT(23)
261 #define WAKEUP_BIT_GPIO1 BIT(24)
262 #define WAKEUP_BIT_GPIO2 BIT(25)
263 #define WAKEUP_BIT_GPIO3 BIT(26)
264 #define WAKEUP_BIT_GPIO4 BIT(27)
265 #define WAKEUP_BIT_GPIO5 BIT(28)
266 #define WAKEUP_BIT_GPIO6 BIT(29)
267 #define WAKEUP_BIT_GPIO7 BIT(30)
268 #define WAKEUP_BIT_GPIO8 BIT(31)
270 static struct {
271 bool valid;
272 struct prcmu_fw_version version;
273 } fw_info;
275 static struct irq_domain *db8500_irq_domain;
278 * This vector maps irq numbers to the bits in the bit field used in
279 * communication with the PRCMU firmware.
281 * The reason for having this is to keep the irq numbers contiguous even though
282 * the bits in the bit field are not. (The bits also have a tendency to move
283 * around, to further complicate matters.)
285 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
286 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
287 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
288 IRQ_ENTRY(RTC),
289 IRQ_ENTRY(RTT0),
290 IRQ_ENTRY(RTT1),
291 IRQ_ENTRY(HSI0),
292 IRQ_ENTRY(HSI1),
293 IRQ_ENTRY(CA_WAKE),
294 IRQ_ENTRY(USB),
295 IRQ_ENTRY(ABB),
296 IRQ_ENTRY(ABB_FIFO),
297 IRQ_ENTRY(CA_SLEEP),
298 IRQ_ENTRY(ARM),
299 IRQ_ENTRY(HOTMON_LOW),
300 IRQ_ENTRY(HOTMON_HIGH),
301 IRQ_ENTRY(MODEM_SW_RESET_REQ),
302 IRQ_ENTRY(GPIO0),
303 IRQ_ENTRY(GPIO1),
304 IRQ_ENTRY(GPIO2),
305 IRQ_ENTRY(GPIO3),
306 IRQ_ENTRY(GPIO4),
307 IRQ_ENTRY(GPIO5),
308 IRQ_ENTRY(GPIO6),
309 IRQ_ENTRY(GPIO7),
310 IRQ_ENTRY(GPIO8)
313 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
314 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
315 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
316 WAKEUP_ENTRY(RTC),
317 WAKEUP_ENTRY(RTT0),
318 WAKEUP_ENTRY(RTT1),
319 WAKEUP_ENTRY(HSI0),
320 WAKEUP_ENTRY(HSI1),
321 WAKEUP_ENTRY(USB),
322 WAKEUP_ENTRY(ABB),
323 WAKEUP_ENTRY(ABB_FIFO),
324 WAKEUP_ENTRY(ARM)
328 * mb0_transfer - state needed for mailbox 0 communication.
329 * @lock: The transaction lock.
330 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
331 * the request data.
332 * @mask_work: Work structure used for (un)masking wakeup interrupts.
333 * @req: Request data that need to persist between requests.
335 static struct {
336 spinlock_t lock;
337 spinlock_t dbb_irqs_lock;
338 struct work_struct mask_work;
339 struct mutex ac_wake_lock;
340 struct completion ac_wake_work;
341 struct {
342 u32 dbb_irqs;
343 u32 dbb_wakeups;
344 u32 abb_events;
345 } req;
346 } mb0_transfer;
349 * mb1_transfer - state needed for mailbox 1 communication.
350 * @lock: The transaction lock.
351 * @work: The transaction completion structure.
352 * @ape_opp: The current APE OPP.
353 * @ack: Reply ("acknowledge") data.
355 static struct {
356 struct mutex lock;
357 struct completion work;
358 u8 ape_opp;
359 struct {
360 u8 header;
361 u8 arm_opp;
362 u8 ape_opp;
363 u8 ape_voltage_status;
364 } ack;
365 } mb1_transfer;
368 * mb2_transfer - state needed for mailbox 2 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @auto_pm_lock: The autonomous power management configuration lock.
372 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
373 * @req: Request data that need to persist between requests.
374 * @ack: Reply ("acknowledge") data.
376 static struct {
377 struct mutex lock;
378 struct completion work;
379 spinlock_t auto_pm_lock;
380 bool auto_pm_enabled;
381 struct {
382 u8 status;
383 } ack;
384 } mb2_transfer;
387 * mb3_transfer - state needed for mailbox 3 communication.
388 * @lock: The request lock.
389 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
390 * @sysclk_work: Work structure used for sysclk requests.
392 static struct {
393 spinlock_t lock;
394 struct mutex sysclk_lock;
395 struct completion sysclk_work;
396 } mb3_transfer;
399 * mb4_transfer - state needed for mailbox 4 communication.
400 * @lock: The transaction lock.
401 * @work: The transaction completion structure.
403 static struct {
404 struct mutex lock;
405 struct completion work;
406 } mb4_transfer;
409 * mb5_transfer - state needed for mailbox 5 communication.
410 * @lock: The transaction lock.
411 * @work: The transaction completion structure.
412 * @ack: Reply ("acknowledge") data.
414 static struct {
415 struct mutex lock;
416 struct completion work;
417 struct {
418 u8 status;
419 u8 value;
420 } ack;
421 } mb5_transfer;
423 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
425 /* Spinlocks */
426 static DEFINE_SPINLOCK(prcmu_lock);
427 static DEFINE_SPINLOCK(clkout_lock);
429 /* Global var to runtime determine TCDM base for v2 or v1 */
430 static __iomem void *tcdm_base;
432 struct clk_mgt {
433 void __iomem *reg;
434 u32 pllsw;
435 int branch;
436 bool clk38div;
439 enum {
440 PLL_RAW,
441 PLL_FIX,
442 PLL_DIV
445 static DEFINE_SPINLOCK(clk_mgt_lock);
447 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
448 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
449 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
450 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
451 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
452 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
453 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
454 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
455 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
456 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
457 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
458 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
460 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
462 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
463 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
464 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
465 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
466 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
467 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
468 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
469 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
470 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
471 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
473 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
474 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
475 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
476 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
478 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
481 struct dsiclk {
482 u32 divsel_mask;
483 u32 divsel_shift;
484 u32 divsel;
487 static struct dsiclk dsiclk[2] = {
489 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
490 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
491 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
494 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
495 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
496 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
500 struct dsiescclk {
501 u32 en;
502 u32 div_mask;
503 u32 div_shift;
506 static struct dsiescclk dsiescclk[3] = {
508 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
509 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
510 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
513 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
514 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
515 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
518 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
519 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
520 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
526 * Used by MCDE to setup all necessary PRCMU registers
528 #define PRCMU_RESET_DSIPLL 0x00004000
529 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
531 #define PRCMU_CLK_PLL_DIV_SHIFT 0
532 #define PRCMU_CLK_PLL_SW_SHIFT 5
533 #define PRCMU_CLK_38 (1 << 9)
534 #define PRCMU_CLK_38_SRC (1 << 10)
535 #define PRCMU_CLK_38_DIV (1 << 11)
537 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
538 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
540 /* DPI 50000000 Hz */
541 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
542 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
543 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
545 /* D=101, N=1, R=4, SELDIV2=0 */
546 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
548 #define PRCMU_ENABLE_PLLDSI 0x00000001
549 #define PRCMU_DISABLE_PLLDSI 0x00000000
550 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
551 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
552 /* ESC clk, div0=1, div1=1, div2=3 */
553 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
554 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
555 #define PRCMU_DSI_RESET_SW 0x00000007
557 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
559 int db8500_prcmu_enable_dsipll(void)
561 int i;
563 /* Clear DSIPLL_RESETN */
564 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
565 /* Unclamp DSIPLL in/out */
566 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
568 /* Set DSI PLL FREQ */
569 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
570 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
571 /* Enable Escape clocks */
572 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
574 /* Start DSI PLL */
575 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
576 /* Reset DSI PLL */
577 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
578 for (i = 0; i < 10; i++) {
579 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
580 == PRCMU_PLLDSI_LOCKP_LOCKED)
581 break;
582 udelay(100);
584 /* Set DSIPLL_RESETN */
585 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
586 return 0;
589 int db8500_prcmu_disable_dsipll(void)
591 /* Disable dsi pll */
592 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
593 /* Disable escapeclock */
594 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
595 return 0;
598 int db8500_prcmu_set_display_clocks(void)
600 unsigned long flags;
602 spin_lock_irqsave(&clk_mgt_lock, flags);
604 /* Grab the HW semaphore. */
605 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
606 cpu_relax();
608 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
609 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
610 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
612 /* Release the HW semaphore. */
613 writel(0, PRCM_SEM);
615 spin_unlock_irqrestore(&clk_mgt_lock, flags);
617 return 0;
620 u32 db8500_prcmu_read(unsigned int reg)
622 return readl(_PRCMU_BASE + reg);
625 void db8500_prcmu_write(unsigned int reg, u32 value)
627 unsigned long flags;
629 spin_lock_irqsave(&prcmu_lock, flags);
630 writel(value, (_PRCMU_BASE + reg));
631 spin_unlock_irqrestore(&prcmu_lock, flags);
634 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
636 u32 val;
637 unsigned long flags;
639 spin_lock_irqsave(&prcmu_lock, flags);
640 val = readl(_PRCMU_BASE + reg);
641 val = ((val & ~mask) | (value & mask));
642 writel(val, (_PRCMU_BASE + reg));
643 spin_unlock_irqrestore(&prcmu_lock, flags);
646 struct prcmu_fw_version *prcmu_get_fw_version(void)
648 return fw_info.valid ? &fw_info.version : NULL;
651 bool prcmu_has_arm_maxopp(void)
653 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
654 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
658 * prcmu_get_boot_status - PRCMU boot status checking
659 * Returns: the current PRCMU boot status
661 int prcmu_get_boot_status(void)
663 return readb(tcdm_base + PRCM_BOOT_STATUS);
667 * prcmu_set_rc_a2p - This function is used to run few power state sequences
668 * @val: Value to be set, i.e. transition requested
669 * Returns: 0 on success, -EINVAL on invalid argument
671 * This function is used to run the following power state sequences -
672 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
674 int prcmu_set_rc_a2p(enum romcode_write val)
676 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
677 return -EINVAL;
678 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
679 return 0;
683 * prcmu_get_rc_p2a - This function is used to get power state sequences
684 * Returns: the power transition that has last happened
686 * This function can return the following transitions-
687 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
689 enum romcode_read prcmu_get_rc_p2a(void)
691 return readb(tcdm_base + PRCM_ROMCODE_P2A);
695 * prcmu_get_current_mode - Return the current XP70 power mode
696 * Returns: Returns the current AP(ARM) power mode: init,
697 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
699 enum ap_pwrst prcmu_get_xp70_current_state(void)
701 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
705 * prcmu_config_clkout - Configure one of the programmable clock outputs.
706 * @clkout: The CLKOUT number (0 or 1).
707 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
708 * @div: The divider to be applied.
710 * Configures one of the programmable clock outputs (CLKOUTs).
711 * @div should be in the range [1,63] to request a configuration, or 0 to
712 * inform that the configuration is no longer requested.
714 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
716 static int requests[2];
717 int r = 0;
718 unsigned long flags;
719 u32 val;
720 u32 bits;
721 u32 mask;
722 u32 div_mask;
724 BUG_ON(clkout > 1);
725 BUG_ON(div > 63);
726 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
728 if (!div && !requests[clkout])
729 return -EINVAL;
731 switch (clkout) {
732 case 0:
733 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
734 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
735 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
736 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
737 break;
738 case 1:
739 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
740 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
741 PRCM_CLKOCR_CLK1TYPE);
742 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
743 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
744 break;
746 bits &= mask;
748 spin_lock_irqsave(&clkout_lock, flags);
750 val = readl(PRCM_CLKOCR);
751 if (val & div_mask) {
752 if (div) {
753 if ((val & mask) != bits) {
754 r = -EBUSY;
755 goto unlock_and_return;
757 } else {
758 if ((val & mask & ~div_mask) != bits) {
759 r = -EINVAL;
760 goto unlock_and_return;
764 writel((bits | (val & ~mask)), PRCM_CLKOCR);
765 requests[clkout] += (div ? 1 : -1);
767 unlock_and_return:
768 spin_unlock_irqrestore(&clkout_lock, flags);
770 return r;
773 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
775 unsigned long flags;
777 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
779 spin_lock_irqsave(&mb0_transfer.lock, flags);
781 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
782 cpu_relax();
784 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
785 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
786 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
787 writeb((keep_ulp_clk ? 1 : 0),
788 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
789 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
790 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
792 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
794 return 0;
797 u8 db8500_prcmu_get_power_state_result(void)
799 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
802 /* This function decouple the gic from the prcmu */
803 int db8500_prcmu_gic_decouple(void)
805 u32 val = readl(PRCM_A9_MASK_REQ);
807 /* Set bit 0 register value to 1 */
808 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
809 PRCM_A9_MASK_REQ);
811 /* Make sure the register is updated */
812 readl(PRCM_A9_MASK_REQ);
814 /* Wait a few cycles for the gic mask completion */
815 udelay(1);
817 return 0;
820 /* This function recouple the gic with the prcmu */
821 int db8500_prcmu_gic_recouple(void)
823 u32 val = readl(PRCM_A9_MASK_REQ);
825 /* Set bit 0 register value to 0 */
826 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
828 return 0;
831 #define PRCMU_GIC_NUMBER_REGS 5
834 * This function checks if there are pending irq on the gic. It only
835 * makes sense if the gic has been decoupled before with the
836 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
837 * disables the forwarding of the interrupt to any CPU interface. It
838 * does not prevent the interrupt from changing state, for example
839 * becoming pending, or active and pending if it is already
840 * active. Hence, we have to check the interrupt is pending *and* is
841 * active.
843 bool db8500_prcmu_gic_pending_irq(void)
845 u32 pr; /* Pending register */
846 u32 er; /* Enable register */
847 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
848 int i;
850 /* 5 registers. STI & PPI not skipped */
851 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
853 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
854 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
856 if (pr & er)
857 return true; /* There is a pending interrupt */
860 return false;
864 * This function checks if there are pending interrupt on the
865 * prcmu which has been delegated to monitor the irqs with the
866 * db8500_prcmu_copy_gic_settings function.
868 bool db8500_prcmu_pending_irq(void)
870 u32 it, im;
871 int i;
873 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
874 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
875 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
876 if (it & im)
877 return true; /* There is a pending interrupt */
880 return false;
884 * This function checks if the specified cpu is in in WFI. It's usage
885 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
886 * function. Of course passing smp_processor_id() to this function will
887 * always return false...
889 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
891 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
892 PRCM_ARM_WFI_STANDBY_WFI0;
896 * This function copies the gic SPI settings to the prcmu in order to
897 * monitor them and abort/finish the retention/off sequence or state.
899 int db8500_prcmu_copy_gic_settings(void)
901 u32 er; /* Enable register */
902 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
903 int i;
905 /* We skip the STI and PPI */
906 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
907 er = readl_relaxed(dist_base +
908 GIC_DIST_ENABLE_SET + (i + 1) * 4);
909 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
912 return 0;
915 /* This function should only be called while mb0_transfer.lock is held. */
916 static void config_wakeups(void)
918 const u8 header[2] = {
919 MB0H_CONFIG_WAKEUPS_EXE,
920 MB0H_CONFIG_WAKEUPS_SLEEP
922 static u32 last_dbb_events;
923 static u32 last_abb_events;
924 u32 dbb_events;
925 u32 abb_events;
926 unsigned int i;
928 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
929 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
931 abb_events = mb0_transfer.req.abb_events;
933 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
934 return;
936 for (i = 0; i < 2; i++) {
937 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
938 cpu_relax();
939 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
940 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
941 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
942 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
944 last_dbb_events = dbb_events;
945 last_abb_events = abb_events;
948 void db8500_prcmu_enable_wakeups(u32 wakeups)
950 unsigned long flags;
951 u32 bits;
952 int i;
954 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
956 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
957 if (wakeups & BIT(i))
958 bits |= prcmu_wakeup_bit[i];
961 spin_lock_irqsave(&mb0_transfer.lock, flags);
963 mb0_transfer.req.dbb_wakeups = bits;
964 config_wakeups();
966 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
969 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
971 unsigned long flags;
973 spin_lock_irqsave(&mb0_transfer.lock, flags);
975 mb0_transfer.req.abb_events = abb_events;
976 config_wakeups();
978 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
981 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
983 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
984 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
985 else
986 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
990 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
991 * @opp: The new ARM operating point to which transition is to be made
992 * Returns: 0 on success, non-zero on failure
994 * This function sets the the operating point of the ARM.
996 int db8500_prcmu_set_arm_opp(u8 opp)
998 int r;
1000 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1001 return -EINVAL;
1003 r = 0;
1005 mutex_lock(&mb1_transfer.lock);
1007 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1008 cpu_relax();
1010 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1011 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1012 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1014 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1015 wait_for_completion(&mb1_transfer.work);
1017 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1018 (mb1_transfer.ack.arm_opp != opp))
1019 r = -EIO;
1021 mutex_unlock(&mb1_transfer.lock);
1023 return r;
1027 * db8500_prcmu_get_arm_opp - get the current ARM OPP
1029 * Returns: the current ARM OPP
1031 int db8500_prcmu_get_arm_opp(void)
1033 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1037 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1039 * Returns: the current DDR OPP
1041 int db8500_prcmu_get_ddr_opp(void)
1043 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1047 * db8500_set_ddr_opp - set the appropriate DDR OPP
1048 * @opp: The new DDR operating point to which transition is to be made
1049 * Returns: 0 on success, non-zero on failure
1051 * This function sets the operating point of the DDR.
1053 int db8500_prcmu_set_ddr_opp(u8 opp)
1055 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1056 return -EINVAL;
1057 /* Changing the DDR OPP can hang the hardware pre-v21 */
1058 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1059 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1061 return 0;
1064 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1065 static void request_even_slower_clocks(bool enable)
1067 void __iomem *clock_reg[] = {
1068 PRCM_ACLK_MGT,
1069 PRCM_DMACLK_MGT
1071 unsigned long flags;
1072 unsigned int i;
1074 spin_lock_irqsave(&clk_mgt_lock, flags);
1076 /* Grab the HW semaphore. */
1077 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1078 cpu_relax();
1080 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1081 u32 val;
1082 u32 div;
1084 val = readl(clock_reg[i]);
1085 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1086 if (enable) {
1087 if ((div <= 1) || (div > 15)) {
1088 pr_err("prcmu: Bad clock divider %d in %s\n",
1089 div, __func__);
1090 goto unlock_and_return;
1092 div <<= 1;
1093 } else {
1094 if (div <= 2)
1095 goto unlock_and_return;
1096 div >>= 1;
1098 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1099 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1100 writel(val, clock_reg[i]);
1103 unlock_and_return:
1104 /* Release the HW semaphore. */
1105 writel(0, PRCM_SEM);
1107 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1111 * db8500_set_ape_opp - set the appropriate APE OPP
1112 * @opp: The new APE operating point to which transition is to be made
1113 * Returns: 0 on success, non-zero on failure
1115 * This function sets the operating point of the APE.
1117 int db8500_prcmu_set_ape_opp(u8 opp)
1119 int r = 0;
1121 if (opp == mb1_transfer.ape_opp)
1122 return 0;
1124 mutex_lock(&mb1_transfer.lock);
1126 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1127 request_even_slower_clocks(false);
1129 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1130 goto skip_message;
1132 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1133 cpu_relax();
1135 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1136 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1137 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1138 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141 wait_for_completion(&mb1_transfer.work);
1143 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1144 (mb1_transfer.ack.ape_opp != opp))
1145 r = -EIO;
1147 skip_message:
1148 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1149 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1150 request_even_slower_clocks(true);
1151 if (!r)
1152 mb1_transfer.ape_opp = opp;
1154 mutex_unlock(&mb1_transfer.lock);
1156 return r;
1160 * db8500_prcmu_get_ape_opp - get the current APE OPP
1162 * Returns: the current APE OPP
1164 int db8500_prcmu_get_ape_opp(void)
1166 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1170 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1171 * @enable: true to request the higher voltage, false to drop a request.
1173 * Calls to this function to enable and disable requests must be balanced.
1175 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1177 int r = 0;
1178 u8 header;
1179 static unsigned int requests;
1181 mutex_lock(&mb1_transfer.lock);
1183 if (enable) {
1184 if (0 != requests++)
1185 goto unlock_and_return;
1186 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1187 } else {
1188 if (requests == 0) {
1189 r = -EIO;
1190 goto unlock_and_return;
1191 } else if (1 != requests--) {
1192 goto unlock_and_return;
1194 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1197 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1198 cpu_relax();
1200 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1202 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1203 wait_for_completion(&mb1_transfer.work);
1205 if ((mb1_transfer.ack.header != header) ||
1206 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1207 r = -EIO;
1209 unlock_and_return:
1210 mutex_unlock(&mb1_transfer.lock);
1212 return r;
1216 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1218 * This function releases the power state requirements of a USB wakeup.
1220 int prcmu_release_usb_wakeup_state(void)
1222 int r = 0;
1224 mutex_lock(&mb1_transfer.lock);
1226 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1227 cpu_relax();
1229 writeb(MB1H_RELEASE_USB_WAKEUP,
1230 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1232 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1233 wait_for_completion(&mb1_transfer.work);
1235 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1236 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1237 r = -EIO;
1239 mutex_unlock(&mb1_transfer.lock);
1241 return r;
1244 static int request_pll(u8 clock, bool enable)
1246 int r = 0;
1248 if (clock == PRCMU_PLLSOC0)
1249 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1250 else if (clock == PRCMU_PLLSOC1)
1251 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1252 else
1253 return -EINVAL;
1255 mutex_lock(&mb1_transfer.lock);
1257 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1258 cpu_relax();
1260 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1261 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1263 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1264 wait_for_completion(&mb1_transfer.work);
1266 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1267 r = -EIO;
1269 mutex_unlock(&mb1_transfer.lock);
1271 return r;
1275 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1276 * @epod_id: The EPOD to set
1277 * @epod_state: The new EPOD state
1279 * This function sets the state of a EPOD (power domain). It may not be called
1280 * from interrupt context.
1282 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1284 int r = 0;
1285 bool ram_retention = false;
1286 int i;
1288 /* check argument */
1289 BUG_ON(epod_id >= NUM_EPOD_ID);
1291 /* set flag if retention is possible */
1292 switch (epod_id) {
1293 case EPOD_ID_SVAMMDSP:
1294 case EPOD_ID_SIAMMDSP:
1295 case EPOD_ID_ESRAM12:
1296 case EPOD_ID_ESRAM34:
1297 ram_retention = true;
1298 break;
1301 /* check argument */
1302 BUG_ON(epod_state > EPOD_STATE_ON);
1303 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1305 /* get lock */
1306 mutex_lock(&mb2_transfer.lock);
1308 /* wait for mailbox */
1309 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1310 cpu_relax();
1312 /* fill in mailbox */
1313 for (i = 0; i < NUM_EPOD_ID; i++)
1314 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1315 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1317 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1319 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1322 * The current firmware version does not handle errors correctly,
1323 * and we cannot recover if there is an error.
1324 * This is expected to change when the firmware is updated.
1326 if (!wait_for_completion_timeout(&mb2_transfer.work,
1327 msecs_to_jiffies(20000))) {
1328 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1329 __func__);
1330 r = -EIO;
1331 goto unlock_and_return;
1334 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1335 r = -EIO;
1337 unlock_and_return:
1338 mutex_unlock(&mb2_transfer.lock);
1339 return r;
1343 * prcmu_configure_auto_pm - Configure autonomous power management.
1344 * @sleep: Configuration for ApSleep.
1345 * @idle: Configuration for ApIdle.
1347 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1348 struct prcmu_auto_pm_config *idle)
1350 u32 sleep_cfg;
1351 u32 idle_cfg;
1352 unsigned long flags;
1354 BUG_ON((sleep == NULL) || (idle == NULL));
1356 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1357 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1358 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1359 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1360 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1361 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1363 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1364 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1365 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1366 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1367 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1368 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1370 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1373 * The autonomous power management configuration is done through
1374 * fields in mailbox 2, but these fields are only used as shared
1375 * variables - i.e. there is no need to send a message.
1377 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1378 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1380 mb2_transfer.auto_pm_enabled =
1381 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1382 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1383 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1384 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1386 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1388 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1390 bool prcmu_is_auto_pm_enabled(void)
1392 return mb2_transfer.auto_pm_enabled;
1395 static int request_sysclk(bool enable)
1397 int r;
1398 unsigned long flags;
1400 r = 0;
1402 mutex_lock(&mb3_transfer.sysclk_lock);
1404 spin_lock_irqsave(&mb3_transfer.lock, flags);
1406 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1407 cpu_relax();
1409 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1411 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1412 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1414 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1417 * The firmware only sends an ACK if we want to enable the
1418 * SysClk, and it succeeds.
1420 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1421 msecs_to_jiffies(20000))) {
1422 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1423 __func__);
1424 r = -EIO;
1427 mutex_unlock(&mb3_transfer.sysclk_lock);
1429 return r;
1432 static int request_timclk(bool enable)
1434 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1436 if (!enable)
1437 val |= PRCM_TCR_STOP_TIMERS;
1438 writel(val, PRCM_TCR);
1440 return 0;
1443 static int request_clock(u8 clock, bool enable)
1445 u32 val;
1446 unsigned long flags;
1448 spin_lock_irqsave(&clk_mgt_lock, flags);
1450 /* Grab the HW semaphore. */
1451 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1452 cpu_relax();
1454 val = readl(clk_mgt[clock].reg);
1455 if (enable) {
1456 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1457 } else {
1458 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1459 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1461 writel(val, clk_mgt[clock].reg);
1463 /* Release the HW semaphore. */
1464 writel(0, PRCM_SEM);
1466 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1468 return 0;
1471 static int request_sga_clock(u8 clock, bool enable)
1473 u32 val;
1474 int ret;
1476 if (enable) {
1477 val = readl(PRCM_CGATING_BYPASS);
1478 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1481 ret = request_clock(clock, enable);
1483 if (!ret && !enable) {
1484 val = readl(PRCM_CGATING_BYPASS);
1485 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1488 return ret;
1491 static inline bool plldsi_locked(void)
1493 return (readl(PRCM_PLLDSI_LOCKP) &
1494 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1495 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1496 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1497 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1500 static int request_plldsi(bool enable)
1502 int r = 0;
1503 u32 val;
1505 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1506 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1507 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1509 val = readl(PRCM_PLLDSI_ENABLE);
1510 if (enable)
1511 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1512 else
1513 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1514 writel(val, PRCM_PLLDSI_ENABLE);
1516 if (enable) {
1517 unsigned int i;
1518 bool locked = plldsi_locked();
1520 for (i = 10; !locked && (i > 0); --i) {
1521 udelay(100);
1522 locked = plldsi_locked();
1524 if (locked) {
1525 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1526 PRCM_APE_RESETN_SET);
1527 } else {
1528 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1529 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1530 PRCM_MMIP_LS_CLAMP_SET);
1531 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1532 writel(val, PRCM_PLLDSI_ENABLE);
1533 r = -EAGAIN;
1535 } else {
1536 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1538 return r;
1541 static int request_dsiclk(u8 n, bool enable)
1543 u32 val;
1545 val = readl(PRCM_DSI_PLLOUT_SEL);
1546 val &= ~dsiclk[n].divsel_mask;
1547 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1548 dsiclk[n].divsel_shift);
1549 writel(val, PRCM_DSI_PLLOUT_SEL);
1550 return 0;
1553 static int request_dsiescclk(u8 n, bool enable)
1555 u32 val;
1557 val = readl(PRCM_DSITVCLK_DIV);
1558 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1559 writel(val, PRCM_DSITVCLK_DIV);
1560 return 0;
1564 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1565 * @clock: The clock for which the request is made.
1566 * @enable: Whether the clock should be enabled (true) or disabled (false).
1568 * This function should only be used by the clock implementation.
1569 * Do not use it from any other place!
1571 int db8500_prcmu_request_clock(u8 clock, bool enable)
1573 if (clock == PRCMU_SGACLK)
1574 return request_sga_clock(clock, enable);
1575 else if (clock < PRCMU_NUM_REG_CLOCKS)
1576 return request_clock(clock, enable);
1577 else if (clock == PRCMU_TIMCLK)
1578 return request_timclk(enable);
1579 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1580 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1581 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1582 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1583 else if (clock == PRCMU_PLLDSI)
1584 return request_plldsi(enable);
1585 else if (clock == PRCMU_SYSCLK)
1586 return request_sysclk(enable);
1587 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1588 return request_pll(clock, enable);
1589 else
1590 return -EINVAL;
1593 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1594 int branch)
1596 u64 rate;
1597 u32 val;
1598 u32 d;
1599 u32 div = 1;
1601 val = readl(reg);
1603 rate = src_rate;
1604 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1606 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1607 if (d > 1)
1608 div *= d;
1610 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1611 if (d > 1)
1612 div *= d;
1614 if (val & PRCM_PLL_FREQ_SELDIV2)
1615 div *= 2;
1617 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1618 (val & PRCM_PLL_FREQ_DIV2EN) &&
1619 ((reg == PRCM_PLLSOC0_FREQ) ||
1620 (reg == PRCM_PLLARM_FREQ) ||
1621 (reg == PRCM_PLLDDR_FREQ))))
1622 div *= 2;
1624 (void)do_div(rate, div);
1626 return (unsigned long)rate;
1629 #define ROOT_CLOCK_RATE 38400000
1631 static unsigned long clock_rate(u8 clock)
1633 u32 val;
1634 u32 pllsw;
1635 unsigned long rate = ROOT_CLOCK_RATE;
1637 val = readl(clk_mgt[clock].reg);
1639 if (val & PRCM_CLK_MGT_CLK38) {
1640 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1641 rate /= 2;
1642 return rate;
1645 val |= clk_mgt[clock].pllsw;
1646 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1648 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1649 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1650 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1651 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1652 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1653 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1654 else
1655 return 0;
1657 if ((clock == PRCMU_SGACLK) &&
1658 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1659 u64 r = (rate * 10);
1661 (void)do_div(r, 25);
1662 return (unsigned long)r;
1664 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1665 if (val)
1666 return rate / val;
1667 else
1668 return 0;
1671 static unsigned long armss_rate(void)
1673 u32 r;
1674 unsigned long rate;
1676 r = readl(PRCM_ARM_CHGCLKREQ);
1678 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1679 /* External ARMCLKFIX clock */
1681 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1683 /* Check PRCM_ARM_CHGCLKREQ divider */
1684 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1685 rate /= 2;
1687 /* Check PRCM_ARMCLKFIX_MGT divider */
1688 r = readl(PRCM_ARMCLKFIX_MGT);
1689 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1690 rate /= r;
1692 } else {/* ARM PLL */
1693 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1696 return rate;
1699 static unsigned long dsiclk_rate(u8 n)
1701 u32 divsel;
1702 u32 div = 1;
1704 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1705 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1707 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1708 divsel = dsiclk[n].divsel;
1710 switch (divsel) {
1711 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1712 div *= 2;
1713 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1714 div *= 2;
1715 case PRCM_DSI_PLLOUT_SEL_PHI:
1716 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1717 PLL_RAW) / div;
1718 default:
1719 return 0;
1723 static unsigned long dsiescclk_rate(u8 n)
1725 u32 div;
1727 div = readl(PRCM_DSITVCLK_DIV);
1728 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1729 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1732 unsigned long prcmu_clock_rate(u8 clock)
1734 if (clock < PRCMU_NUM_REG_CLOCKS)
1735 return clock_rate(clock);
1736 else if (clock == PRCMU_TIMCLK)
1737 return ROOT_CLOCK_RATE / 16;
1738 else if (clock == PRCMU_SYSCLK)
1739 return ROOT_CLOCK_RATE;
1740 else if (clock == PRCMU_PLLSOC0)
1741 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1742 else if (clock == PRCMU_PLLSOC1)
1743 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1744 else if (clock == PRCMU_ARMSS)
1745 return armss_rate();
1746 else if (clock == PRCMU_PLLDDR)
1747 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1748 else if (clock == PRCMU_PLLDSI)
1749 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1750 PLL_RAW);
1751 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1752 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1753 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1754 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1755 else
1756 return 0;
1759 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1761 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1762 return ROOT_CLOCK_RATE;
1763 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1764 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1765 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1766 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1767 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1768 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1769 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1770 else
1771 return 0;
1774 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1776 u32 div;
1778 div = (src_rate / rate);
1779 if (div == 0)
1780 return 1;
1781 if (rate < (src_rate / div))
1782 div++;
1783 return div;
1786 static long round_clock_rate(u8 clock, unsigned long rate)
1788 u32 val;
1789 u32 div;
1790 unsigned long src_rate;
1791 long rounded_rate;
1793 val = readl(clk_mgt[clock].reg);
1794 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1795 clk_mgt[clock].branch);
1796 div = clock_divider(src_rate, rate);
1797 if (val & PRCM_CLK_MGT_CLK38) {
1798 if (clk_mgt[clock].clk38div) {
1799 if (div > 2)
1800 div = 2;
1801 } else {
1802 div = 1;
1804 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1805 u64 r = (src_rate * 10);
1807 (void)do_div(r, 25);
1808 if (r <= rate)
1809 return (unsigned long)r;
1811 rounded_rate = (src_rate / min(div, (u32)31));
1813 return rounded_rate;
1816 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1817 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1818 { .frequency = 200000, .index = ARM_EXTCLK,},
1819 { .frequency = 400000, .index = ARM_50_OPP,},
1820 { .frequency = 800000, .index = ARM_100_OPP,},
1821 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1822 { .frequency = CPUFREQ_TABLE_END,},
1825 static long round_armss_rate(unsigned long rate)
1827 long freq = 0;
1828 int i = 0;
1830 /* cpufreq table frequencies is in KHz. */
1831 rate = rate / 1000;
1833 /* Find the corresponding arm opp from the cpufreq table. */
1834 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1835 freq = db8500_cpufreq_table[i].frequency;
1836 if (freq == rate)
1837 break;
1838 i++;
1841 /* Return the last valid value, even if a match was not found. */
1842 return freq * 1000;
1845 #define MIN_PLL_VCO_RATE 600000000ULL
1846 #define MAX_PLL_VCO_RATE 1680640000ULL
1848 static long round_plldsi_rate(unsigned long rate)
1850 long rounded_rate = 0;
1851 unsigned long src_rate;
1852 unsigned long rem;
1853 u32 r;
1855 src_rate = clock_rate(PRCMU_HDMICLK);
1856 rem = rate;
1858 for (r = 7; (rem > 0) && (r > 0); r--) {
1859 u64 d;
1861 d = (r * rate);
1862 (void)do_div(d, src_rate);
1863 if (d < 6)
1864 d = 6;
1865 else if (d > 255)
1866 d = 255;
1867 d *= src_rate;
1868 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1869 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1870 continue;
1871 (void)do_div(d, r);
1872 if (rate < d) {
1873 if (rounded_rate == 0)
1874 rounded_rate = (long)d;
1875 break;
1877 if ((rate - d) < rem) {
1878 rem = (rate - d);
1879 rounded_rate = (long)d;
1882 return rounded_rate;
1885 static long round_dsiclk_rate(unsigned long rate)
1887 u32 div;
1888 unsigned long src_rate;
1889 long rounded_rate;
1891 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1892 PLL_RAW);
1893 div = clock_divider(src_rate, rate);
1894 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1896 return rounded_rate;
1899 static long round_dsiescclk_rate(unsigned long rate)
1901 u32 div;
1902 unsigned long src_rate;
1903 long rounded_rate;
1905 src_rate = clock_rate(PRCMU_TVCLK);
1906 div = clock_divider(src_rate, rate);
1907 rounded_rate = (src_rate / min(div, (u32)255));
1909 return rounded_rate;
1912 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1914 if (clock < PRCMU_NUM_REG_CLOCKS)
1915 return round_clock_rate(clock, rate);
1916 else if (clock == PRCMU_ARMSS)
1917 return round_armss_rate(rate);
1918 else if (clock == PRCMU_PLLDSI)
1919 return round_plldsi_rate(rate);
1920 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1921 return round_dsiclk_rate(rate);
1922 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1923 return round_dsiescclk_rate(rate);
1924 else
1925 return (long)prcmu_clock_rate(clock);
1928 static void set_clock_rate(u8 clock, unsigned long rate)
1930 u32 val;
1931 u32 div;
1932 unsigned long src_rate;
1933 unsigned long flags;
1935 spin_lock_irqsave(&clk_mgt_lock, flags);
1937 /* Grab the HW semaphore. */
1938 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1939 cpu_relax();
1941 val = readl(clk_mgt[clock].reg);
1942 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1943 clk_mgt[clock].branch);
1944 div = clock_divider(src_rate, rate);
1945 if (val & PRCM_CLK_MGT_CLK38) {
1946 if (clk_mgt[clock].clk38div) {
1947 if (div > 1)
1948 val |= PRCM_CLK_MGT_CLK38DIV;
1949 else
1950 val &= ~PRCM_CLK_MGT_CLK38DIV;
1952 } else if (clock == PRCMU_SGACLK) {
1953 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1954 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1955 if (div == 3) {
1956 u64 r = (src_rate * 10);
1958 (void)do_div(r, 25);
1959 if (r <= rate) {
1960 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1961 div = 0;
1964 val |= min(div, (u32)31);
1965 } else {
1966 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1967 val |= min(div, (u32)31);
1969 writel(val, clk_mgt[clock].reg);
1971 /* Release the HW semaphore. */
1972 writel(0, PRCM_SEM);
1974 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1977 static int set_armss_rate(unsigned long rate)
1979 int i = 0;
1981 /* cpufreq table frequencies is in KHz. */
1982 rate = rate / 1000;
1984 /* Find the corresponding arm opp from the cpufreq table. */
1985 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1986 if (db8500_cpufreq_table[i].frequency == rate)
1987 break;
1988 i++;
1991 if (db8500_cpufreq_table[i].frequency != rate)
1992 return -EINVAL;
1994 /* Set the new arm opp. */
1995 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1998 static int set_plldsi_rate(unsigned long rate)
2000 unsigned long src_rate;
2001 unsigned long rem;
2002 u32 pll_freq = 0;
2003 u32 r;
2005 src_rate = clock_rate(PRCMU_HDMICLK);
2006 rem = rate;
2008 for (r = 7; (rem > 0) && (r > 0); r--) {
2009 u64 d;
2010 u64 hwrate;
2012 d = (r * rate);
2013 (void)do_div(d, src_rate);
2014 if (d < 6)
2015 d = 6;
2016 else if (d > 255)
2017 d = 255;
2018 hwrate = (d * src_rate);
2019 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2020 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2021 continue;
2022 (void)do_div(hwrate, r);
2023 if (rate < hwrate) {
2024 if (pll_freq == 0)
2025 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2026 (r << PRCM_PLL_FREQ_R_SHIFT));
2027 break;
2029 if ((rate - hwrate) < rem) {
2030 rem = (rate - hwrate);
2031 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2032 (r << PRCM_PLL_FREQ_R_SHIFT));
2035 if (pll_freq == 0)
2036 return -EINVAL;
2038 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2039 writel(pll_freq, PRCM_PLLDSI_FREQ);
2041 return 0;
2044 static void set_dsiclk_rate(u8 n, unsigned long rate)
2046 u32 val;
2047 u32 div;
2049 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2050 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2052 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2053 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2054 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2056 val = readl(PRCM_DSI_PLLOUT_SEL);
2057 val &= ~dsiclk[n].divsel_mask;
2058 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2059 writel(val, PRCM_DSI_PLLOUT_SEL);
2062 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2064 u32 val;
2065 u32 div;
2067 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2068 val = readl(PRCM_DSITVCLK_DIV);
2069 val &= ~dsiescclk[n].div_mask;
2070 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2071 writel(val, PRCM_DSITVCLK_DIV);
2074 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2076 if (clock < PRCMU_NUM_REG_CLOCKS)
2077 set_clock_rate(clock, rate);
2078 else if (clock == PRCMU_ARMSS)
2079 return set_armss_rate(rate);
2080 else if (clock == PRCMU_PLLDSI)
2081 return set_plldsi_rate(rate);
2082 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2083 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2084 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2085 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2086 return 0;
2089 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2091 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2092 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2093 return -EINVAL;
2095 mutex_lock(&mb4_transfer.lock);
2097 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2098 cpu_relax();
2100 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2101 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2102 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2103 writeb(DDR_PWR_STATE_ON,
2104 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2105 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2107 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2108 wait_for_completion(&mb4_transfer.work);
2110 mutex_unlock(&mb4_transfer.lock);
2112 return 0;
2115 int db8500_prcmu_config_hotdog(u8 threshold)
2117 mutex_lock(&mb4_transfer.lock);
2119 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2120 cpu_relax();
2122 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2123 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2125 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2126 wait_for_completion(&mb4_transfer.work);
2128 mutex_unlock(&mb4_transfer.lock);
2130 return 0;
2133 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2135 mutex_lock(&mb4_transfer.lock);
2137 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2138 cpu_relax();
2140 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2141 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2142 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2143 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2144 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2146 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2147 wait_for_completion(&mb4_transfer.work);
2149 mutex_unlock(&mb4_transfer.lock);
2151 return 0;
2154 static int config_hot_period(u16 val)
2156 mutex_lock(&mb4_transfer.lock);
2158 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2159 cpu_relax();
2161 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2162 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2164 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2165 wait_for_completion(&mb4_transfer.work);
2167 mutex_unlock(&mb4_transfer.lock);
2169 return 0;
2172 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2174 if (cycles32k == 0xFFFF)
2175 return -EINVAL;
2177 return config_hot_period(cycles32k);
2180 int db8500_prcmu_stop_temp_sense(void)
2182 return config_hot_period(0xFFFF);
2185 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2188 mutex_lock(&mb4_transfer.lock);
2190 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2191 cpu_relax();
2193 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2194 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2195 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2196 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2198 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2200 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2201 wait_for_completion(&mb4_transfer.work);
2203 mutex_unlock(&mb4_transfer.lock);
2205 return 0;
2209 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2211 BUG_ON(num == 0 || num > 0xf);
2212 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2213 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2214 A9WDOG_AUTO_OFF_DIS);
2216 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2218 int db8500_prcmu_enable_a9wdog(u8 id)
2220 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2222 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2224 int db8500_prcmu_disable_a9wdog(u8 id)
2226 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2228 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2230 int db8500_prcmu_kick_a9wdog(u8 id)
2232 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2234 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2237 * timeout is 28 bit, in ms.
2239 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2241 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2242 (id & A9WDOG_ID_MASK) |
2244 * Put the lowest 28 bits of timeout at
2245 * offset 4. Four first bits are used for id.
2247 (u8)((timeout << 4) & 0xf0),
2248 (u8)((timeout >> 4) & 0xff),
2249 (u8)((timeout >> 12) & 0xff),
2250 (u8)((timeout >> 20) & 0xff));
2252 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2255 * prcmu_abb_read() - Read register value(s) from the ABB.
2256 * @slave: The I2C slave address.
2257 * @reg: The (start) register address.
2258 * @value: The read out value(s).
2259 * @size: The number of registers to read.
2261 * Reads register value(s) from the ABB.
2262 * @size has to be 1 for the current firmware version.
2264 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2266 int r;
2268 if (size != 1)
2269 return -EINVAL;
2271 mutex_lock(&mb5_transfer.lock);
2273 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2274 cpu_relax();
2276 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2277 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2278 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2279 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2280 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2282 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2284 if (!wait_for_completion_timeout(&mb5_transfer.work,
2285 msecs_to_jiffies(20000))) {
2286 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2287 __func__);
2288 r = -EIO;
2289 } else {
2290 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2293 if (!r)
2294 *value = mb5_transfer.ack.value;
2296 mutex_unlock(&mb5_transfer.lock);
2298 return r;
2302 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2303 * @slave: The I2C slave address.
2304 * @reg: The (start) register address.
2305 * @value: The value(s) to write.
2306 * @mask: The mask(s) to use.
2307 * @size: The number of registers to write.
2309 * Writes masked register value(s) to the ABB.
2310 * For each @value, only the bits set to 1 in the corresponding @mask
2311 * will be written. The other bits are not changed.
2312 * @size has to be 1 for the current firmware version.
2314 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2316 int r;
2318 if (size != 1)
2319 return -EINVAL;
2321 mutex_lock(&mb5_transfer.lock);
2323 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2324 cpu_relax();
2326 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2327 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2328 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2329 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2330 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2332 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2334 if (!wait_for_completion_timeout(&mb5_transfer.work,
2335 msecs_to_jiffies(20000))) {
2336 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2337 __func__);
2338 r = -EIO;
2339 } else {
2340 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2343 mutex_unlock(&mb5_transfer.lock);
2345 return r;
2349 * prcmu_abb_write() - Write register value(s) to the ABB.
2350 * @slave: The I2C slave address.
2351 * @reg: The (start) register address.
2352 * @value: The value(s) to write.
2353 * @size: The number of registers to write.
2355 * Writes register value(s) to the ABB.
2356 * @size has to be 1 for the current firmware version.
2358 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2360 u8 mask = ~0;
2362 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2366 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2368 int prcmu_ac_wake_req(void)
2370 u32 val;
2371 int ret = 0;
2373 mutex_lock(&mb0_transfer.ac_wake_lock);
2375 val = readl(PRCM_HOSTACCESS_REQ);
2376 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2377 goto unlock_and_return;
2379 atomic_set(&ac_wake_req_state, 1);
2382 * Force Modem Wake-up before hostaccess_req ping-pong.
2383 * It prevents Modem to enter in Sleep while acking the hostaccess
2384 * request. The 31us delay has been calculated by HWI.
2386 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2387 writel(val, PRCM_HOSTACCESS_REQ);
2389 udelay(31);
2391 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2392 writel(val, PRCM_HOSTACCESS_REQ);
2394 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2395 msecs_to_jiffies(5000))) {
2396 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2397 db8500_prcmu_debug_dump(__func__, true, true);
2398 #endif
2399 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2400 __func__);
2401 ret = -EFAULT;
2404 unlock_and_return:
2405 mutex_unlock(&mb0_transfer.ac_wake_lock);
2406 return ret;
2410 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2412 void prcmu_ac_sleep_req()
2414 u32 val;
2416 mutex_lock(&mb0_transfer.ac_wake_lock);
2418 val = readl(PRCM_HOSTACCESS_REQ);
2419 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2420 goto unlock_and_return;
2422 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2423 PRCM_HOSTACCESS_REQ);
2425 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2426 msecs_to_jiffies(5000))) {
2427 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2428 __func__);
2431 atomic_set(&ac_wake_req_state, 0);
2433 unlock_and_return:
2434 mutex_unlock(&mb0_transfer.ac_wake_lock);
2437 bool db8500_prcmu_is_ac_wake_requested(void)
2439 return (atomic_read(&ac_wake_req_state) != 0);
2443 * db8500_prcmu_system_reset - System reset
2445 * Saves the reset reason code and then sets the APE_SOFTRST register which
2446 * fires interrupt to fw
2448 void db8500_prcmu_system_reset(u16 reset_code)
2450 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2451 writel(1, PRCM_APE_SOFTRST);
2455 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2457 * Retrieves the reset reason code stored by prcmu_system_reset() before
2458 * last restart.
2460 u16 db8500_prcmu_get_reset_code(void)
2462 return readw(tcdm_base + PRCM_SW_RST_REASON);
2466 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2468 void db8500_prcmu_modem_reset(void)
2470 mutex_lock(&mb1_transfer.lock);
2472 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2473 cpu_relax();
2475 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2476 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2477 wait_for_completion(&mb1_transfer.work);
2480 * No need to check return from PRCMU as modem should go in reset state
2481 * This state is already managed by upper layer
2484 mutex_unlock(&mb1_transfer.lock);
2487 static void ack_dbb_wakeup(void)
2489 unsigned long flags;
2491 spin_lock_irqsave(&mb0_transfer.lock, flags);
2493 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2494 cpu_relax();
2496 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2497 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2499 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2502 static inline void print_unknown_header_warning(u8 n, u8 header)
2504 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2505 header, n);
2508 static bool read_mailbox_0(void)
2510 bool r;
2511 u32 ev;
2512 unsigned int n;
2513 u8 header;
2515 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2516 switch (header) {
2517 case MB0H_WAKEUP_EXE:
2518 case MB0H_WAKEUP_SLEEP:
2519 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2520 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2521 else
2522 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2524 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2525 complete(&mb0_transfer.ac_wake_work);
2526 if (ev & WAKEUP_BIT_SYSCLK_OK)
2527 complete(&mb3_transfer.sysclk_work);
2529 ev &= mb0_transfer.req.dbb_irqs;
2531 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2532 if (ev & prcmu_irq_bit[n])
2533 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2535 r = true;
2536 break;
2537 default:
2538 print_unknown_header_warning(0, header);
2539 r = false;
2540 break;
2542 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2543 return r;
2546 static bool read_mailbox_1(void)
2548 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2549 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2550 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2551 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2552 PRCM_ACK_MB1_CURRENT_APE_OPP);
2553 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2554 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2555 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2556 complete(&mb1_transfer.work);
2557 return false;
2560 static bool read_mailbox_2(void)
2562 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2563 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2564 complete(&mb2_transfer.work);
2565 return false;
2568 static bool read_mailbox_3(void)
2570 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2571 return false;
2574 static bool read_mailbox_4(void)
2576 u8 header;
2577 bool do_complete = true;
2579 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2580 switch (header) {
2581 case MB4H_MEM_ST:
2582 case MB4H_HOTDOG:
2583 case MB4H_HOTMON:
2584 case MB4H_HOT_PERIOD:
2585 case MB4H_A9WDOG_CONF:
2586 case MB4H_A9WDOG_EN:
2587 case MB4H_A9WDOG_DIS:
2588 case MB4H_A9WDOG_LOAD:
2589 case MB4H_A9WDOG_KICK:
2590 break;
2591 default:
2592 print_unknown_header_warning(4, header);
2593 do_complete = false;
2594 break;
2597 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2599 if (do_complete)
2600 complete(&mb4_transfer.work);
2602 return false;
2605 static bool read_mailbox_5(void)
2607 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2608 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2609 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2610 complete(&mb5_transfer.work);
2611 return false;
2614 static bool read_mailbox_6(void)
2616 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2617 return false;
2620 static bool read_mailbox_7(void)
2622 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2623 return false;
2626 static bool (* const read_mailbox[NUM_MB])(void) = {
2627 read_mailbox_0,
2628 read_mailbox_1,
2629 read_mailbox_2,
2630 read_mailbox_3,
2631 read_mailbox_4,
2632 read_mailbox_5,
2633 read_mailbox_6,
2634 read_mailbox_7
2637 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2639 u32 bits;
2640 u8 n;
2641 irqreturn_t r;
2643 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2644 if (unlikely(!bits))
2645 return IRQ_NONE;
2647 r = IRQ_HANDLED;
2648 for (n = 0; bits; n++) {
2649 if (bits & MBOX_BIT(n)) {
2650 bits -= MBOX_BIT(n);
2651 if (read_mailbox[n]())
2652 r = IRQ_WAKE_THREAD;
2655 return r;
2658 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2660 ack_dbb_wakeup();
2661 return IRQ_HANDLED;
2664 static void prcmu_mask_work(struct work_struct *work)
2666 unsigned long flags;
2668 spin_lock_irqsave(&mb0_transfer.lock, flags);
2670 config_wakeups();
2672 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2675 static void prcmu_irq_mask(struct irq_data *d)
2677 unsigned long flags;
2679 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2681 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2683 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2685 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2686 schedule_work(&mb0_transfer.mask_work);
2689 static void prcmu_irq_unmask(struct irq_data *d)
2691 unsigned long flags;
2693 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2695 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2697 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2699 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2700 schedule_work(&mb0_transfer.mask_work);
2703 static void noop(struct irq_data *d)
2707 static struct irq_chip prcmu_irq_chip = {
2708 .name = "prcmu",
2709 .irq_disable = prcmu_irq_mask,
2710 .irq_ack = noop,
2711 .irq_mask = prcmu_irq_mask,
2712 .irq_unmask = prcmu_irq_unmask,
2715 static char *fw_project_name(u8 project)
2717 switch (project) {
2718 case PRCMU_FW_PROJECT_U8500:
2719 return "U8500";
2720 case PRCMU_FW_PROJECT_U8500_C2:
2721 return "U8500 C2";
2722 case PRCMU_FW_PROJECT_U9500:
2723 return "U9500";
2724 case PRCMU_FW_PROJECT_U9500_C2:
2725 return "U9500 C2";
2726 case PRCMU_FW_PROJECT_U8520:
2727 return "U8520";
2728 case PRCMU_FW_PROJECT_U8420:
2729 return "U8420";
2730 default:
2731 return "Unknown";
2735 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2736 irq_hw_number_t hwirq)
2738 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2739 handle_simple_irq);
2740 set_irq_flags(virq, IRQF_VALID);
2742 return 0;
2745 static struct irq_domain_ops db8500_irq_ops = {
2746 .map = db8500_irq_map,
2747 .xlate = irq_domain_xlate_twocell,
2750 static int db8500_irq_init(struct device_node *np)
2752 int irq_base = 0;
2753 int i;
2755 /* In the device tree case, just take some IRQs */
2756 if (!np)
2757 irq_base = IRQ_PRCMU_BASE;
2759 db8500_irq_domain = irq_domain_add_simple(
2760 np, NUM_PRCMU_WAKEUPS, irq_base,
2761 &db8500_irq_ops, NULL);
2763 if (!db8500_irq_domain) {
2764 pr_err("Failed to create irqdomain\n");
2765 return -ENOSYS;
2768 /* All wakeups will be used, so create mappings for all */
2769 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2770 irq_create_mapping(db8500_irq_domain, i);
2772 return 0;
2775 void __init db8500_prcmu_early_init(void)
2777 if (cpu_is_u8500v2() || cpu_is_u9540()) {
2778 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2780 if (tcpm_base != NULL) {
2781 u32 version;
2782 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2783 fw_info.version.project = version & 0xFF;
2784 fw_info.version.api_version = (version >> 8) & 0xFF;
2785 fw_info.version.func_version = (version >> 16) & 0xFF;
2786 fw_info.version.errata = (version >> 24) & 0xFF;
2787 fw_info.valid = true;
2788 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2789 fw_project_name(fw_info.version.project),
2790 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2791 (version >> 24) & 0xFF);
2792 iounmap(tcpm_base);
2795 if (cpu_is_u9540())
2796 tcdm_base = ioremap_nocache(U8500_PRCMU_TCDM_BASE,
2797 SZ_4K + SZ_8K) + SZ_8K;
2798 else
2799 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2800 } else {
2801 pr_err("prcmu: Unsupported chip version\n");
2802 BUG();
2805 spin_lock_init(&mb0_transfer.lock);
2806 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2807 mutex_init(&mb0_transfer.ac_wake_lock);
2808 init_completion(&mb0_transfer.ac_wake_work);
2809 mutex_init(&mb1_transfer.lock);
2810 init_completion(&mb1_transfer.work);
2811 mb1_transfer.ape_opp = APE_NO_CHANGE;
2812 mutex_init(&mb2_transfer.lock);
2813 init_completion(&mb2_transfer.work);
2814 spin_lock_init(&mb2_transfer.auto_pm_lock);
2815 spin_lock_init(&mb3_transfer.lock);
2816 mutex_init(&mb3_transfer.sysclk_lock);
2817 init_completion(&mb3_transfer.sysclk_work);
2818 mutex_init(&mb4_transfer.lock);
2819 init_completion(&mb4_transfer.work);
2820 mutex_init(&mb5_transfer.lock);
2821 init_completion(&mb5_transfer.work);
2823 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2826 static void __init init_prcm_registers(void)
2828 u32 val;
2830 val = readl(PRCM_A9PL_FORCE_CLKEN);
2831 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2832 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2833 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2837 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2839 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2840 REGULATOR_SUPPLY("v-ape", NULL),
2841 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2842 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2843 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2844 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2845 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2846 /* "v-mmc" changed to "vcore" in the mainline kernel */
2847 REGULATOR_SUPPLY("vcore", "sdi0"),
2848 REGULATOR_SUPPLY("vcore", "sdi1"),
2849 REGULATOR_SUPPLY("vcore", "sdi2"),
2850 REGULATOR_SUPPLY("vcore", "sdi3"),
2851 REGULATOR_SUPPLY("vcore", "sdi4"),
2852 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2853 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2854 /* "v-uart" changed to "vcore" in the mainline kernel */
2855 REGULATOR_SUPPLY("vcore", "uart0"),
2856 REGULATOR_SUPPLY("vcore", "uart1"),
2857 REGULATOR_SUPPLY("vcore", "uart2"),
2858 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2859 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2860 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2863 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2864 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2865 /* AV8100 regulator */
2866 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2869 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2870 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2871 REGULATOR_SUPPLY("vsupply", "mcde"),
2874 /* SVA MMDSP regulator switch */
2875 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2876 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2879 /* SVA pipe regulator switch */
2880 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2881 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2884 /* SIA MMDSP regulator switch */
2885 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2886 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2889 /* SIA pipe regulator switch */
2890 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2891 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2894 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2895 REGULATOR_SUPPLY("v-mali", NULL),
2898 /* ESRAM1 and 2 regulator switch */
2899 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2900 REGULATOR_SUPPLY("esram12", "cm_control"),
2903 /* ESRAM3 and 4 regulator switch */
2904 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2905 REGULATOR_SUPPLY("v-esram34", "mcde"),
2906 REGULATOR_SUPPLY("esram34", "cm_control"),
2907 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2910 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2911 [DB8500_REGULATOR_VAPE] = {
2912 .constraints = {
2913 .name = "db8500-vape",
2914 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915 .always_on = true,
2917 .consumer_supplies = db8500_vape_consumers,
2918 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2920 [DB8500_REGULATOR_VARM] = {
2921 .constraints = {
2922 .name = "db8500-varm",
2923 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2926 [DB8500_REGULATOR_VMODEM] = {
2927 .constraints = {
2928 .name = "db8500-vmodem",
2929 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2932 [DB8500_REGULATOR_VPLL] = {
2933 .constraints = {
2934 .name = "db8500-vpll",
2935 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2938 [DB8500_REGULATOR_VSMPS1] = {
2939 .constraints = {
2940 .name = "db8500-vsmps1",
2941 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944 [DB8500_REGULATOR_VSMPS2] = {
2945 .constraints = {
2946 .name = "db8500-vsmps2",
2947 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2949 .consumer_supplies = db8500_vsmps2_consumers,
2950 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2952 [DB8500_REGULATOR_VSMPS3] = {
2953 .constraints = {
2954 .name = "db8500-vsmps3",
2955 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2958 [DB8500_REGULATOR_VRF1] = {
2959 .constraints = {
2960 .name = "db8500-vrf1",
2961 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2964 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2965 /* dependency to u8500-vape is handled outside regulator framework */
2966 .constraints = {
2967 .name = "db8500-sva-mmdsp",
2968 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2970 .consumer_supplies = db8500_svammdsp_consumers,
2971 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2973 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2974 .constraints = {
2975 /* "ret" means "retention" */
2976 .name = "db8500-sva-mmdsp-ret",
2977 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2980 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2981 /* dependency to u8500-vape is handled outside regulator framework */
2982 .constraints = {
2983 .name = "db8500-sva-pipe",
2984 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2986 .consumer_supplies = db8500_svapipe_consumers,
2987 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2989 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2990 /* dependency to u8500-vape is handled outside regulator framework */
2991 .constraints = {
2992 .name = "db8500-sia-mmdsp",
2993 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2995 .consumer_supplies = db8500_siammdsp_consumers,
2996 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2998 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2999 .constraints = {
3000 .name = "db8500-sia-mmdsp-ret",
3001 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3004 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
3005 /* dependency to u8500-vape is handled outside regulator framework */
3006 .constraints = {
3007 .name = "db8500-sia-pipe",
3008 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3010 .consumer_supplies = db8500_siapipe_consumers,
3011 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
3013 [DB8500_REGULATOR_SWITCH_SGA] = {
3014 .supply_regulator = "db8500-vape",
3015 .constraints = {
3016 .name = "db8500-sga",
3017 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3019 .consumer_supplies = db8500_sga_consumers,
3020 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3023 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3024 .supply_regulator = "db8500-vape",
3025 .constraints = {
3026 .name = "db8500-b2r2-mcde",
3027 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3029 .consumer_supplies = db8500_b2r2_mcde_consumers,
3030 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3032 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
3034 * esram12 is set in retention and supplied by Vsafe when Vape is off,
3035 * no need to hold Vape
3037 .constraints = {
3038 .name = "db8500-esram12",
3039 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3041 .consumer_supplies = db8500_esram12_consumers,
3042 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3044 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3045 .constraints = {
3046 .name = "db8500-esram12-ret",
3047 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3050 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3052 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3053 * no need to hold Vape
3055 .constraints = {
3056 .name = "db8500-esram34",
3057 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3059 .consumer_supplies = db8500_esram34_consumers,
3060 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3062 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3063 .constraints = {
3064 .name = "db8500-esram34-ret",
3065 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3070 static struct resource ab8500_resources[] = {
3071 [0] = {
3072 .start = IRQ_DB8500_AB8500,
3073 .end = IRQ_DB8500_AB8500,
3074 .flags = IORESOURCE_IRQ
3078 static struct ux500_wdt_data db8500_wdt_pdata = {
3079 .timeout = 600, /* 10 minutes */
3080 .has_28_bits_resolution = true,
3083 static struct mfd_cell db8500_prcmu_devs[] = {
3085 .name = "db8500-prcmu-regulators",
3086 .of_compatible = "stericsson,db8500-prcmu-regulator",
3087 .platform_data = &db8500_regulators,
3088 .pdata_size = sizeof(db8500_regulators),
3091 .name = "cpufreq-u8500",
3092 .of_compatible = "stericsson,cpufreq-u8500",
3093 .platform_data = &db8500_cpufreq_table,
3094 .pdata_size = sizeof(db8500_cpufreq_table),
3097 .name = "ux500_wdt",
3098 .platform_data = &db8500_wdt_pdata,
3099 .pdata_size = sizeof(db8500_wdt_pdata),
3100 .id = -1,
3103 .name = "ab8500-core",
3104 .of_compatible = "stericsson,ab8500",
3105 .num_resources = ARRAY_SIZE(ab8500_resources),
3106 .resources = ab8500_resources,
3107 .id = AB8500_VERSION_AB8500,
3111 static void db8500_prcmu_update_cpufreq(void)
3113 if (prcmu_has_arm_maxopp()) {
3114 db8500_cpufreq_table[3].frequency = 1000000;
3115 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3120 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3123 static int db8500_prcmu_probe(struct platform_device *pdev)
3125 struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3126 struct device_node *np = pdev->dev.of_node;
3127 int irq = 0, err = 0, i;
3129 if (ux500_is_svp())
3130 return -ENODEV;
3132 init_prcm_registers();
3134 /* Clean up the mailbox interrupts after pre-kernel code. */
3135 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3137 if (np)
3138 irq = platform_get_irq(pdev, 0);
3140 if (!np || irq <= 0)
3141 irq = IRQ_DB8500_PRCMU1;
3143 err = request_threaded_irq(irq, prcmu_irq_handler,
3144 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3145 if (err < 0) {
3146 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3147 err = -EBUSY;
3148 goto no_irq_return;
3151 db8500_irq_init(np);
3153 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3154 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3155 db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3156 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3160 if (cpu_is_u8500v20_or_later())
3161 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3163 db8500_prcmu_update_cpufreq();
3165 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3166 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3167 if (err) {
3168 pr_err("prcmu: Failed to add subdevices\n");
3169 return err;
3172 pr_info("DB8500 PRCMU initialized\n");
3174 no_irq_return:
3175 return err;
3177 static const struct of_device_id db8500_prcmu_match[] = {
3178 { .compatible = "stericsson,db8500-prcmu"},
3179 { },
3182 static struct platform_driver db8500_prcmu_driver = {
3183 .driver = {
3184 .name = "db8500-prcmu",
3185 .owner = THIS_MODULE,
3186 .of_match_table = db8500_prcmu_match,
3188 .probe = db8500_prcmu_probe,
3191 static int __init db8500_prcmu_init(void)
3193 return platform_driver_register(&db8500_prcmu_driver);
3196 core_initcall(db8500_prcmu_init);
3198 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3199 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3200 MODULE_LICENSE("GPL v2");