pcmcia cis: on an out of range CIS read return 0xff, don't just warn
[linux-2.6/btrfs-unstable.git] / kernel / trace / ring_buffer.c
blob7a4104cb95cb28792364d60c0abb5826a3a0aad5
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct *work);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq *s)
37 trace_seq_puts(s, "# compressed entry header\n");
38 trace_seq_puts(s, "\ttype_len : 5 bits\n");
39 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
40 trace_seq_puts(s, "\tarray : 32 bits\n");
41 trace_seq_putc(s, '\n');
42 trace_seq_printf(s, "\tpadding : type == %d\n",
43 RINGBUF_TYPE_PADDING);
44 trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 RINGBUF_TYPE_TIME_EXTEND);
46 trace_seq_printf(s, "\tdata max type_len == %d\n",
47 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
49 return !trace_seq_has_overflowed(s);
53 * The ring buffer is made up of a list of pages. A separate list of pages is
54 * allocated for each CPU. A writer may only write to a buffer that is
55 * associated with the CPU it is currently executing on. A reader may read
56 * from any per cpu buffer.
58 * The reader is special. For each per cpu buffer, the reader has its own
59 * reader page. When a reader has read the entire reader page, this reader
60 * page is swapped with another page in the ring buffer.
62 * Now, as long as the writer is off the reader page, the reader can do what
63 * ever it wants with that page. The writer will never write to that page
64 * again (as long as it is out of the ring buffer).
66 * Here's some silly ASCII art.
68 * +------+
69 * |reader| RING BUFFER
70 * |page |
71 * +------+ +---+ +---+ +---+
72 * | |-->| |-->| |
73 * +---+ +---+ +---+
74 * ^ |
75 * | |
76 * +---------------+
79 * +------+
80 * |reader| RING BUFFER
81 * |page |------------------v
82 * +------+ +---+ +---+ +---+
83 * | |-->| |-->| |
84 * +---+ +---+ +---+
85 * ^ |
86 * | |
87 * +---------------+
90 * +------+
91 * |reader| RING BUFFER
92 * |page |------------------v
93 * +------+ +---+ +---+ +---+
94 * ^ | |-->| |-->| |
95 * | +---+ +---+ +---+
96 * | |
97 * | |
98 * +------------------------------+
101 * +------+
102 * |buffer| RING BUFFER
103 * |page |------------------v
104 * +------+ +---+ +---+ +---+
105 * ^ | | | |-->| |
106 * | New +---+ +---+ +---+
107 * | Reader------^ |
108 * | page |
109 * +------------------------------+
112 * After we make this swap, the reader can hand this page off to the splice
113 * code and be done with it. It can even allocate a new page if it needs to
114 * and swap that into the ring buffer.
116 * We will be using cmpxchg soon to make all this lockless.
121 * A fast way to enable or disable all ring buffers is to
122 * call tracing_on or tracing_off. Turning off the ring buffers
123 * prevents all ring buffers from being recorded to.
124 * Turning this switch on, makes it OK to write to the
125 * ring buffer, if the ring buffer is enabled itself.
127 * There's three layers that must be on in order to write
128 * to the ring buffer.
130 * 1) This global flag must be set.
131 * 2) The ring buffer must be enabled for recording.
132 * 3) The per cpu buffer must be enabled for recording.
134 * In case of an anomaly, this global flag has a bit set that
135 * will permantly disable all ring buffers.
139 * Global flag to disable all recording to ring buffers
140 * This has two bits: ON, DISABLED
142 * ON DISABLED
143 * ---- ----------
144 * 0 0 : ring buffers are off
145 * 1 0 : ring buffers are on
146 * X 1 : ring buffers are permanently disabled
149 enum {
150 RB_BUFFERS_ON_BIT = 0,
151 RB_BUFFERS_DISABLED_BIT = 1,
154 enum {
155 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
156 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
161 /* Used for individual buffers (after the counter) */
162 #define RB_BUFFER_OFF (1 << 20)
164 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167 * tracing_off_permanent - permanently disable ring buffers
169 * This function, once called, will disable all ring buffers
170 * permanently.
172 void tracing_off_permanent(void)
174 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
178 #define RB_ALIGNMENT 4U
179 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
180 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
182 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
183 # define RB_FORCE_8BYTE_ALIGNMENT 0
184 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
185 #else
186 # define RB_FORCE_8BYTE_ALIGNMENT 1
187 # define RB_ARCH_ALIGNMENT 8U
188 #endif
190 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
192 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
193 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
195 enum {
196 RB_LEN_TIME_EXTEND = 8,
197 RB_LEN_TIME_STAMP = 16,
200 #define skip_time_extend(event) \
201 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
203 static inline int rb_null_event(struct ring_buffer_event *event)
205 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 static void rb_event_set_padding(struct ring_buffer_event *event)
210 /* padding has a NULL time_delta */
211 event->type_len = RINGBUF_TYPE_PADDING;
212 event->time_delta = 0;
215 static unsigned
216 rb_event_data_length(struct ring_buffer_event *event)
218 unsigned length;
220 if (event->type_len)
221 length = event->type_len * RB_ALIGNMENT;
222 else
223 length = event->array[0];
224 return length + RB_EVNT_HDR_SIZE;
228 * Return the length of the given event. Will return
229 * the length of the time extend if the event is a
230 * time extend.
232 static inline unsigned
233 rb_event_length(struct ring_buffer_event *event)
235 switch (event->type_len) {
236 case RINGBUF_TYPE_PADDING:
237 if (rb_null_event(event))
238 /* undefined */
239 return -1;
240 return event->array[0] + RB_EVNT_HDR_SIZE;
242 case RINGBUF_TYPE_TIME_EXTEND:
243 return RB_LEN_TIME_EXTEND;
245 case RINGBUF_TYPE_TIME_STAMP:
246 return RB_LEN_TIME_STAMP;
248 case RINGBUF_TYPE_DATA:
249 return rb_event_data_length(event);
250 default:
251 BUG();
253 /* not hit */
254 return 0;
258 * Return total length of time extend and data,
259 * or just the event length for all other events.
261 static inline unsigned
262 rb_event_ts_length(struct ring_buffer_event *event)
264 unsigned len = 0;
266 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
267 /* time extends include the data event after it */
268 len = RB_LEN_TIME_EXTEND;
269 event = skip_time_extend(event);
271 return len + rb_event_length(event);
275 * ring_buffer_event_length - return the length of the event
276 * @event: the event to get the length of
278 * Returns the size of the data load of a data event.
279 * If the event is something other than a data event, it
280 * returns the size of the event itself. With the exception
281 * of a TIME EXTEND, where it still returns the size of the
282 * data load of the data event after it.
284 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
286 unsigned length;
288 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
289 event = skip_time_extend(event);
291 length = rb_event_length(event);
292 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
293 return length;
294 length -= RB_EVNT_HDR_SIZE;
295 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
296 length -= sizeof(event->array[0]);
297 return length;
299 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
301 /* inline for ring buffer fast paths */
302 static void *
303 rb_event_data(struct ring_buffer_event *event)
305 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
306 event = skip_time_extend(event);
307 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
308 /* If length is in len field, then array[0] has the data */
309 if (event->type_len)
310 return (void *)&event->array[0];
311 /* Otherwise length is in array[0] and array[1] has the data */
312 return (void *)&event->array[1];
316 * ring_buffer_event_data - return the data of the event
317 * @event: the event to get the data from
319 void *ring_buffer_event_data(struct ring_buffer_event *event)
321 return rb_event_data(event);
323 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
325 #define for_each_buffer_cpu(buffer, cpu) \
326 for_each_cpu(cpu, buffer->cpumask)
328 #define TS_SHIFT 27
329 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
330 #define TS_DELTA_TEST (~TS_MASK)
332 /* Flag when events were overwritten */
333 #define RB_MISSED_EVENTS (1 << 31)
334 /* Missed count stored at end */
335 #define RB_MISSED_STORED (1 << 30)
337 struct buffer_data_page {
338 u64 time_stamp; /* page time stamp */
339 local_t commit; /* write committed index */
340 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
344 * Note, the buffer_page list must be first. The buffer pages
345 * are allocated in cache lines, which means that each buffer
346 * page will be at the beginning of a cache line, and thus
347 * the least significant bits will be zero. We use this to
348 * add flags in the list struct pointers, to make the ring buffer
349 * lockless.
351 struct buffer_page {
352 struct list_head list; /* list of buffer pages */
353 local_t write; /* index for next write */
354 unsigned read; /* index for next read */
355 local_t entries; /* entries on this page */
356 unsigned long real_end; /* real end of data */
357 struct buffer_data_page *page; /* Actual data page */
361 * The buffer page counters, write and entries, must be reset
362 * atomically when crossing page boundaries. To synchronize this
363 * update, two counters are inserted into the number. One is
364 * the actual counter for the write position or count on the page.
366 * The other is a counter of updaters. Before an update happens
367 * the update partition of the counter is incremented. This will
368 * allow the updater to update the counter atomically.
370 * The counter is 20 bits, and the state data is 12.
372 #define RB_WRITE_MASK 0xfffff
373 #define RB_WRITE_INTCNT (1 << 20)
375 static void rb_init_page(struct buffer_data_page *bpage)
377 local_set(&bpage->commit, 0);
381 * ring_buffer_page_len - the size of data on the page.
382 * @page: The page to read
384 * Returns the amount of data on the page, including buffer page header.
386 size_t ring_buffer_page_len(void *page)
388 return local_read(&((struct buffer_data_page *)page)->commit)
389 + BUF_PAGE_HDR_SIZE;
393 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
394 * this issue out.
396 static void free_buffer_page(struct buffer_page *bpage)
398 free_page((unsigned long)bpage->page);
399 kfree(bpage);
403 * We need to fit the time_stamp delta into 27 bits.
405 static inline int test_time_stamp(u64 delta)
407 if (delta & TS_DELTA_TEST)
408 return 1;
409 return 0;
412 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
414 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
415 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
417 int ring_buffer_print_page_header(struct trace_seq *s)
419 struct buffer_data_page field;
421 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
422 "offset:0;\tsize:%u;\tsigned:%u;\n",
423 (unsigned int)sizeof(field.time_stamp),
424 (unsigned int)is_signed_type(u64));
426 trace_seq_printf(s, "\tfield: local_t commit;\t"
427 "offset:%u;\tsize:%u;\tsigned:%u;\n",
428 (unsigned int)offsetof(typeof(field), commit),
429 (unsigned int)sizeof(field.commit),
430 (unsigned int)is_signed_type(long));
432 trace_seq_printf(s, "\tfield: int overwrite;\t"
433 "offset:%u;\tsize:%u;\tsigned:%u;\n",
434 (unsigned int)offsetof(typeof(field), commit),
436 (unsigned int)is_signed_type(long));
438 trace_seq_printf(s, "\tfield: char data;\t"
439 "offset:%u;\tsize:%u;\tsigned:%u;\n",
440 (unsigned int)offsetof(typeof(field), data),
441 (unsigned int)BUF_PAGE_SIZE,
442 (unsigned int)is_signed_type(char));
444 return !trace_seq_has_overflowed(s);
447 struct rb_irq_work {
448 struct irq_work work;
449 wait_queue_head_t waiters;
450 bool waiters_pending;
454 * head_page == tail_page && head == tail then buffer is empty.
456 struct ring_buffer_per_cpu {
457 int cpu;
458 atomic_t record_disabled;
459 struct ring_buffer *buffer;
460 raw_spinlock_t reader_lock; /* serialize readers */
461 arch_spinlock_t lock;
462 struct lock_class_key lock_key;
463 unsigned int nr_pages;
464 struct list_head *pages;
465 struct buffer_page *head_page; /* read from head */
466 struct buffer_page *tail_page; /* write to tail */
467 struct buffer_page *commit_page; /* committed pages */
468 struct buffer_page *reader_page;
469 unsigned long lost_events;
470 unsigned long last_overrun;
471 local_t entries_bytes;
472 local_t entries;
473 local_t overrun;
474 local_t commit_overrun;
475 local_t dropped_events;
476 local_t committing;
477 local_t commits;
478 unsigned long read;
479 unsigned long read_bytes;
480 u64 write_stamp;
481 u64 read_stamp;
482 /* ring buffer pages to update, > 0 to add, < 0 to remove */
483 int nr_pages_to_update;
484 struct list_head new_pages; /* new pages to add */
485 struct work_struct update_pages_work;
486 struct completion update_done;
488 struct rb_irq_work irq_work;
491 struct ring_buffer {
492 unsigned flags;
493 int cpus;
494 atomic_t record_disabled;
495 atomic_t resize_disabled;
496 cpumask_var_t cpumask;
498 struct lock_class_key *reader_lock_key;
500 struct mutex mutex;
502 struct ring_buffer_per_cpu **buffers;
504 #ifdef CONFIG_HOTPLUG_CPU
505 struct notifier_block cpu_notify;
506 #endif
507 u64 (*clock)(void);
509 struct rb_irq_work irq_work;
512 struct ring_buffer_iter {
513 struct ring_buffer_per_cpu *cpu_buffer;
514 unsigned long head;
515 struct buffer_page *head_page;
516 struct buffer_page *cache_reader_page;
517 unsigned long cache_read;
518 u64 read_stamp;
522 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
524 * Schedules a delayed work to wake up any task that is blocked on the
525 * ring buffer waiters queue.
527 static void rb_wake_up_waiters(struct irq_work *work)
529 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
531 wake_up_all(&rbwork->waiters);
535 * ring_buffer_wait - wait for input to the ring buffer
536 * @buffer: buffer to wait on
537 * @cpu: the cpu buffer to wait on
538 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
540 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
541 * as data is added to any of the @buffer's cpu buffers. Otherwise
542 * it will wait for data to be added to a specific cpu buffer.
544 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
546 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
547 DEFINE_WAIT(wait);
548 struct rb_irq_work *work;
549 int ret = 0;
552 * Depending on what the caller is waiting for, either any
553 * data in any cpu buffer, or a specific buffer, put the
554 * caller on the appropriate wait queue.
556 if (cpu == RING_BUFFER_ALL_CPUS)
557 work = &buffer->irq_work;
558 else {
559 if (!cpumask_test_cpu(cpu, buffer->cpumask))
560 return -ENODEV;
561 cpu_buffer = buffer->buffers[cpu];
562 work = &cpu_buffer->irq_work;
566 while (true) {
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
589 work->waiters_pending = true;
591 if (signal_pending(current)) {
592 ret = -EINTR;
593 break;
596 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
597 break;
599 if (cpu != RING_BUFFER_ALL_CPUS &&
600 !ring_buffer_empty_cpu(buffer, cpu)) {
601 unsigned long flags;
602 bool pagebusy;
604 if (!full)
605 break;
607 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
608 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
609 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
611 if (!pagebusy)
612 break;
615 schedule();
618 finish_wait(&work->waiters, &wait);
620 return ret;
624 * ring_buffer_poll_wait - poll on buffer input
625 * @buffer: buffer to wait on
626 * @cpu: the cpu buffer to wait on
627 * @filp: the file descriptor
628 * @poll_table: The poll descriptor
630 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
631 * as data is added to any of the @buffer's cpu buffers. Otherwise
632 * it will wait for data to be added to a specific cpu buffer.
634 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
635 * zero otherwise.
637 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
638 struct file *filp, poll_table *poll_table)
640 struct ring_buffer_per_cpu *cpu_buffer;
641 struct rb_irq_work *work;
643 if (cpu == RING_BUFFER_ALL_CPUS)
644 work = &buffer->irq_work;
645 else {
646 if (!cpumask_test_cpu(cpu, buffer->cpumask))
647 return -EINVAL;
649 cpu_buffer = buffer->buffers[cpu];
650 work = &cpu_buffer->irq_work;
653 poll_wait(filp, &work->waiters, poll_table);
654 work->waiters_pending = true;
656 * There's a tight race between setting the waiters_pending and
657 * checking if the ring buffer is empty. Once the waiters_pending bit
658 * is set, the next event will wake the task up, but we can get stuck
659 * if there's only a single event in.
661 * FIXME: Ideally, we need a memory barrier on the writer side as well,
662 * but adding a memory barrier to all events will cause too much of a
663 * performance hit in the fast path. We only need a memory barrier when
664 * the buffer goes from empty to having content. But as this race is
665 * extremely small, and it's not a problem if another event comes in, we
666 * will fix it later.
668 smp_mb();
670 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
671 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
672 return POLLIN | POLLRDNORM;
673 return 0;
676 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
677 #define RB_WARN_ON(b, cond) \
678 ({ \
679 int _____ret = unlikely(cond); \
680 if (_____ret) { \
681 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
682 struct ring_buffer_per_cpu *__b = \
683 (void *)b; \
684 atomic_inc(&__b->buffer->record_disabled); \
685 } else \
686 atomic_inc(&b->record_disabled); \
687 WARN_ON(1); \
689 _____ret; \
692 /* Up this if you want to test the TIME_EXTENTS and normalization */
693 #define DEBUG_SHIFT 0
695 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
697 /* shift to debug/test normalization and TIME_EXTENTS */
698 return buffer->clock() << DEBUG_SHIFT;
701 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
703 u64 time;
705 preempt_disable_notrace();
706 time = rb_time_stamp(buffer);
707 preempt_enable_no_resched_notrace();
709 return time;
711 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
713 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
714 int cpu, u64 *ts)
716 /* Just stupid testing the normalize function and deltas */
717 *ts >>= DEBUG_SHIFT;
719 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
722 * Making the ring buffer lockless makes things tricky.
723 * Although writes only happen on the CPU that they are on,
724 * and they only need to worry about interrupts. Reads can
725 * happen on any CPU.
727 * The reader page is always off the ring buffer, but when the
728 * reader finishes with a page, it needs to swap its page with
729 * a new one from the buffer. The reader needs to take from
730 * the head (writes go to the tail). But if a writer is in overwrite
731 * mode and wraps, it must push the head page forward.
733 * Here lies the problem.
735 * The reader must be careful to replace only the head page, and
736 * not another one. As described at the top of the file in the
737 * ASCII art, the reader sets its old page to point to the next
738 * page after head. It then sets the page after head to point to
739 * the old reader page. But if the writer moves the head page
740 * during this operation, the reader could end up with the tail.
742 * We use cmpxchg to help prevent this race. We also do something
743 * special with the page before head. We set the LSB to 1.
745 * When the writer must push the page forward, it will clear the
746 * bit that points to the head page, move the head, and then set
747 * the bit that points to the new head page.
749 * We also don't want an interrupt coming in and moving the head
750 * page on another writer. Thus we use the second LSB to catch
751 * that too. Thus:
753 * head->list->prev->next bit 1 bit 0
754 * ------- -------
755 * Normal page 0 0
756 * Points to head page 0 1
757 * New head page 1 0
759 * Note we can not trust the prev pointer of the head page, because:
761 * +----+ +-----+ +-----+
762 * | |------>| T |---X--->| N |
763 * | |<------| | | |
764 * +----+ +-----+ +-----+
765 * ^ ^ |
766 * | +-----+ | |
767 * +----------| R |----------+ |
768 * | |<-----------+
769 * +-----+
771 * Key: ---X--> HEAD flag set in pointer
772 * T Tail page
773 * R Reader page
774 * N Next page
776 * (see __rb_reserve_next() to see where this happens)
778 * What the above shows is that the reader just swapped out
779 * the reader page with a page in the buffer, but before it
780 * could make the new header point back to the new page added
781 * it was preempted by a writer. The writer moved forward onto
782 * the new page added by the reader and is about to move forward
783 * again.
785 * You can see, it is legitimate for the previous pointer of
786 * the head (or any page) not to point back to itself. But only
787 * temporarially.
790 #define RB_PAGE_NORMAL 0UL
791 #define RB_PAGE_HEAD 1UL
792 #define RB_PAGE_UPDATE 2UL
795 #define RB_FLAG_MASK 3UL
797 /* PAGE_MOVED is not part of the mask */
798 #define RB_PAGE_MOVED 4UL
801 * rb_list_head - remove any bit
803 static struct list_head *rb_list_head(struct list_head *list)
805 unsigned long val = (unsigned long)list;
807 return (struct list_head *)(val & ~RB_FLAG_MASK);
811 * rb_is_head_page - test if the given page is the head page
813 * Because the reader may move the head_page pointer, we can
814 * not trust what the head page is (it may be pointing to
815 * the reader page). But if the next page is a header page,
816 * its flags will be non zero.
818 static inline int
819 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
820 struct buffer_page *page, struct list_head *list)
822 unsigned long val;
824 val = (unsigned long)list->next;
826 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
827 return RB_PAGE_MOVED;
829 return val & RB_FLAG_MASK;
833 * rb_is_reader_page
835 * The unique thing about the reader page, is that, if the
836 * writer is ever on it, the previous pointer never points
837 * back to the reader page.
839 static int rb_is_reader_page(struct buffer_page *page)
841 struct list_head *list = page->list.prev;
843 return rb_list_head(list->next) != &page->list;
847 * rb_set_list_to_head - set a list_head to be pointing to head.
849 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
850 struct list_head *list)
852 unsigned long *ptr;
854 ptr = (unsigned long *)&list->next;
855 *ptr |= RB_PAGE_HEAD;
856 *ptr &= ~RB_PAGE_UPDATE;
860 * rb_head_page_activate - sets up head page
862 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
864 struct buffer_page *head;
866 head = cpu_buffer->head_page;
867 if (!head)
868 return;
871 * Set the previous list pointer to have the HEAD flag.
873 rb_set_list_to_head(cpu_buffer, head->list.prev);
876 static void rb_list_head_clear(struct list_head *list)
878 unsigned long *ptr = (unsigned long *)&list->next;
880 *ptr &= ~RB_FLAG_MASK;
884 * rb_head_page_dactivate - clears head page ptr (for free list)
886 static void
887 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
889 struct list_head *hd;
891 /* Go through the whole list and clear any pointers found. */
892 rb_list_head_clear(cpu_buffer->pages);
894 list_for_each(hd, cpu_buffer->pages)
895 rb_list_head_clear(hd);
898 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
899 struct buffer_page *head,
900 struct buffer_page *prev,
901 int old_flag, int new_flag)
903 struct list_head *list;
904 unsigned long val = (unsigned long)&head->list;
905 unsigned long ret;
907 list = &prev->list;
909 val &= ~RB_FLAG_MASK;
911 ret = cmpxchg((unsigned long *)&list->next,
912 val | old_flag, val | new_flag);
914 /* check if the reader took the page */
915 if ((ret & ~RB_FLAG_MASK) != val)
916 return RB_PAGE_MOVED;
918 return ret & RB_FLAG_MASK;
921 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
922 struct buffer_page *head,
923 struct buffer_page *prev,
924 int old_flag)
926 return rb_head_page_set(cpu_buffer, head, prev,
927 old_flag, RB_PAGE_UPDATE);
930 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
931 struct buffer_page *head,
932 struct buffer_page *prev,
933 int old_flag)
935 return rb_head_page_set(cpu_buffer, head, prev,
936 old_flag, RB_PAGE_HEAD);
939 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
940 struct buffer_page *head,
941 struct buffer_page *prev,
942 int old_flag)
944 return rb_head_page_set(cpu_buffer, head, prev,
945 old_flag, RB_PAGE_NORMAL);
948 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
949 struct buffer_page **bpage)
951 struct list_head *p = rb_list_head((*bpage)->list.next);
953 *bpage = list_entry(p, struct buffer_page, list);
956 static struct buffer_page *
957 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
959 struct buffer_page *head;
960 struct buffer_page *page;
961 struct list_head *list;
962 int i;
964 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
965 return NULL;
967 /* sanity check */
968 list = cpu_buffer->pages;
969 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
970 return NULL;
972 page = head = cpu_buffer->head_page;
974 * It is possible that the writer moves the header behind
975 * where we started, and we miss in one loop.
976 * A second loop should grab the header, but we'll do
977 * three loops just because I'm paranoid.
979 for (i = 0; i < 3; i++) {
980 do {
981 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
982 cpu_buffer->head_page = page;
983 return page;
985 rb_inc_page(cpu_buffer, &page);
986 } while (page != head);
989 RB_WARN_ON(cpu_buffer, 1);
991 return NULL;
994 static int rb_head_page_replace(struct buffer_page *old,
995 struct buffer_page *new)
997 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
998 unsigned long val;
999 unsigned long ret;
1001 val = *ptr & ~RB_FLAG_MASK;
1002 val |= RB_PAGE_HEAD;
1004 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1006 return ret == val;
1010 * rb_tail_page_update - move the tail page forward
1012 * Returns 1 if moved tail page, 0 if someone else did.
1014 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1015 struct buffer_page *tail_page,
1016 struct buffer_page *next_page)
1018 struct buffer_page *old_tail;
1019 unsigned long old_entries;
1020 unsigned long old_write;
1021 int ret = 0;
1024 * The tail page now needs to be moved forward.
1026 * We need to reset the tail page, but without messing
1027 * with possible erasing of data brought in by interrupts
1028 * that have moved the tail page and are currently on it.
1030 * We add a counter to the write field to denote this.
1032 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1033 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1036 * Just make sure we have seen our old_write and synchronize
1037 * with any interrupts that come in.
1039 barrier();
1042 * If the tail page is still the same as what we think
1043 * it is, then it is up to us to update the tail
1044 * pointer.
1046 if (tail_page == cpu_buffer->tail_page) {
1047 /* Zero the write counter */
1048 unsigned long val = old_write & ~RB_WRITE_MASK;
1049 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1052 * This will only succeed if an interrupt did
1053 * not come in and change it. In which case, we
1054 * do not want to modify it.
1056 * We add (void) to let the compiler know that we do not care
1057 * about the return value of these functions. We use the
1058 * cmpxchg to only update if an interrupt did not already
1059 * do it for us. If the cmpxchg fails, we don't care.
1061 (void)local_cmpxchg(&next_page->write, old_write, val);
1062 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1065 * No need to worry about races with clearing out the commit.
1066 * it only can increment when a commit takes place. But that
1067 * only happens in the outer most nested commit.
1069 local_set(&next_page->page->commit, 0);
1071 old_tail = cmpxchg(&cpu_buffer->tail_page,
1072 tail_page, next_page);
1074 if (old_tail == tail_page)
1075 ret = 1;
1078 return ret;
1081 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1082 struct buffer_page *bpage)
1084 unsigned long val = (unsigned long)bpage;
1086 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1087 return 1;
1089 return 0;
1093 * rb_check_list - make sure a pointer to a list has the last bits zero
1095 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1096 struct list_head *list)
1098 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1099 return 1;
1100 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1101 return 1;
1102 return 0;
1106 * rb_check_pages - integrity check of buffer pages
1107 * @cpu_buffer: CPU buffer with pages to test
1109 * As a safety measure we check to make sure the data pages have not
1110 * been corrupted.
1112 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1114 struct list_head *head = cpu_buffer->pages;
1115 struct buffer_page *bpage, *tmp;
1117 /* Reset the head page if it exists */
1118 if (cpu_buffer->head_page)
1119 rb_set_head_page(cpu_buffer);
1121 rb_head_page_deactivate(cpu_buffer);
1123 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1124 return -1;
1125 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1126 return -1;
1128 if (rb_check_list(cpu_buffer, head))
1129 return -1;
1131 list_for_each_entry_safe(bpage, tmp, head, list) {
1132 if (RB_WARN_ON(cpu_buffer,
1133 bpage->list.next->prev != &bpage->list))
1134 return -1;
1135 if (RB_WARN_ON(cpu_buffer,
1136 bpage->list.prev->next != &bpage->list))
1137 return -1;
1138 if (rb_check_list(cpu_buffer, &bpage->list))
1139 return -1;
1142 rb_head_page_activate(cpu_buffer);
1144 return 0;
1147 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1149 int i;
1150 struct buffer_page *bpage, *tmp;
1152 for (i = 0; i < nr_pages; i++) {
1153 struct page *page;
1155 * __GFP_NORETRY flag makes sure that the allocation fails
1156 * gracefully without invoking oom-killer and the system is
1157 * not destabilized.
1159 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1160 GFP_KERNEL | __GFP_NORETRY,
1161 cpu_to_node(cpu));
1162 if (!bpage)
1163 goto free_pages;
1165 list_add(&bpage->list, pages);
1167 page = alloc_pages_node(cpu_to_node(cpu),
1168 GFP_KERNEL | __GFP_NORETRY, 0);
1169 if (!page)
1170 goto free_pages;
1171 bpage->page = page_address(page);
1172 rb_init_page(bpage->page);
1175 return 0;
1177 free_pages:
1178 list_for_each_entry_safe(bpage, tmp, pages, list) {
1179 list_del_init(&bpage->list);
1180 free_buffer_page(bpage);
1183 return -ENOMEM;
1186 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1187 unsigned nr_pages)
1189 LIST_HEAD(pages);
1191 WARN_ON(!nr_pages);
1193 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1194 return -ENOMEM;
1197 * The ring buffer page list is a circular list that does not
1198 * start and end with a list head. All page list items point to
1199 * other pages.
1201 cpu_buffer->pages = pages.next;
1202 list_del(&pages);
1204 cpu_buffer->nr_pages = nr_pages;
1206 rb_check_pages(cpu_buffer);
1208 return 0;
1211 static struct ring_buffer_per_cpu *
1212 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1214 struct ring_buffer_per_cpu *cpu_buffer;
1215 struct buffer_page *bpage;
1216 struct page *page;
1217 int ret;
1219 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1220 GFP_KERNEL, cpu_to_node(cpu));
1221 if (!cpu_buffer)
1222 return NULL;
1224 cpu_buffer->cpu = cpu;
1225 cpu_buffer->buffer = buffer;
1226 raw_spin_lock_init(&cpu_buffer->reader_lock);
1227 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1228 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1229 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1230 init_completion(&cpu_buffer->update_done);
1231 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1232 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1234 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1235 GFP_KERNEL, cpu_to_node(cpu));
1236 if (!bpage)
1237 goto fail_free_buffer;
1239 rb_check_bpage(cpu_buffer, bpage);
1241 cpu_buffer->reader_page = bpage;
1242 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1243 if (!page)
1244 goto fail_free_reader;
1245 bpage->page = page_address(page);
1246 rb_init_page(bpage->page);
1248 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1249 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1251 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1252 if (ret < 0)
1253 goto fail_free_reader;
1255 cpu_buffer->head_page
1256 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1257 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1259 rb_head_page_activate(cpu_buffer);
1261 return cpu_buffer;
1263 fail_free_reader:
1264 free_buffer_page(cpu_buffer->reader_page);
1266 fail_free_buffer:
1267 kfree(cpu_buffer);
1268 return NULL;
1271 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1273 struct list_head *head = cpu_buffer->pages;
1274 struct buffer_page *bpage, *tmp;
1276 free_buffer_page(cpu_buffer->reader_page);
1278 rb_head_page_deactivate(cpu_buffer);
1280 if (head) {
1281 list_for_each_entry_safe(bpage, tmp, head, list) {
1282 list_del_init(&bpage->list);
1283 free_buffer_page(bpage);
1285 bpage = list_entry(head, struct buffer_page, list);
1286 free_buffer_page(bpage);
1289 kfree(cpu_buffer);
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 static int rb_cpu_notify(struct notifier_block *self,
1294 unsigned long action, void *hcpu);
1295 #endif
1298 * __ring_buffer_alloc - allocate a new ring_buffer
1299 * @size: the size in bytes per cpu that is needed.
1300 * @flags: attributes to set for the ring buffer.
1302 * Currently the only flag that is available is the RB_FL_OVERWRITE
1303 * flag. This flag means that the buffer will overwrite old data
1304 * when the buffer wraps. If this flag is not set, the buffer will
1305 * drop data when the tail hits the head.
1307 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1308 struct lock_class_key *key)
1310 struct ring_buffer *buffer;
1311 int bsize;
1312 int cpu, nr_pages;
1314 /* keep it in its own cache line */
1315 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1316 GFP_KERNEL);
1317 if (!buffer)
1318 return NULL;
1320 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1321 goto fail_free_buffer;
1323 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1324 buffer->flags = flags;
1325 buffer->clock = trace_clock_local;
1326 buffer->reader_lock_key = key;
1328 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1329 init_waitqueue_head(&buffer->irq_work.waiters);
1331 /* need at least two pages */
1332 if (nr_pages < 2)
1333 nr_pages = 2;
1336 * In case of non-hotplug cpu, if the ring-buffer is allocated
1337 * in early initcall, it will not be notified of secondary cpus.
1338 * In that off case, we need to allocate for all possible cpus.
1340 #ifdef CONFIG_HOTPLUG_CPU
1341 cpu_notifier_register_begin();
1342 cpumask_copy(buffer->cpumask, cpu_online_mask);
1343 #else
1344 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1345 #endif
1346 buffer->cpus = nr_cpu_ids;
1348 bsize = sizeof(void *) * nr_cpu_ids;
1349 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1350 GFP_KERNEL);
1351 if (!buffer->buffers)
1352 goto fail_free_cpumask;
1354 for_each_buffer_cpu(buffer, cpu) {
1355 buffer->buffers[cpu] =
1356 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1357 if (!buffer->buffers[cpu])
1358 goto fail_free_buffers;
1361 #ifdef CONFIG_HOTPLUG_CPU
1362 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1363 buffer->cpu_notify.priority = 0;
1364 __register_cpu_notifier(&buffer->cpu_notify);
1365 cpu_notifier_register_done();
1366 #endif
1368 mutex_init(&buffer->mutex);
1370 return buffer;
1372 fail_free_buffers:
1373 for_each_buffer_cpu(buffer, cpu) {
1374 if (buffer->buffers[cpu])
1375 rb_free_cpu_buffer(buffer->buffers[cpu]);
1377 kfree(buffer->buffers);
1379 fail_free_cpumask:
1380 free_cpumask_var(buffer->cpumask);
1381 #ifdef CONFIG_HOTPLUG_CPU
1382 cpu_notifier_register_done();
1383 #endif
1385 fail_free_buffer:
1386 kfree(buffer);
1387 return NULL;
1389 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1392 * ring_buffer_free - free a ring buffer.
1393 * @buffer: the buffer to free.
1395 void
1396 ring_buffer_free(struct ring_buffer *buffer)
1398 int cpu;
1400 #ifdef CONFIG_HOTPLUG_CPU
1401 cpu_notifier_register_begin();
1402 __unregister_cpu_notifier(&buffer->cpu_notify);
1403 #endif
1405 for_each_buffer_cpu(buffer, cpu)
1406 rb_free_cpu_buffer(buffer->buffers[cpu]);
1408 #ifdef CONFIG_HOTPLUG_CPU
1409 cpu_notifier_register_done();
1410 #endif
1412 kfree(buffer->buffers);
1413 free_cpumask_var(buffer->cpumask);
1415 kfree(buffer);
1417 EXPORT_SYMBOL_GPL(ring_buffer_free);
1419 void ring_buffer_set_clock(struct ring_buffer *buffer,
1420 u64 (*clock)(void))
1422 buffer->clock = clock;
1425 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1427 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1429 return local_read(&bpage->entries) & RB_WRITE_MASK;
1432 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1434 return local_read(&bpage->write) & RB_WRITE_MASK;
1437 static int
1438 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1440 struct list_head *tail_page, *to_remove, *next_page;
1441 struct buffer_page *to_remove_page, *tmp_iter_page;
1442 struct buffer_page *last_page, *first_page;
1443 unsigned int nr_removed;
1444 unsigned long head_bit;
1445 int page_entries;
1447 head_bit = 0;
1449 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1450 atomic_inc(&cpu_buffer->record_disabled);
1452 * We don't race with the readers since we have acquired the reader
1453 * lock. We also don't race with writers after disabling recording.
1454 * This makes it easy to figure out the first and the last page to be
1455 * removed from the list. We unlink all the pages in between including
1456 * the first and last pages. This is done in a busy loop so that we
1457 * lose the least number of traces.
1458 * The pages are freed after we restart recording and unlock readers.
1460 tail_page = &cpu_buffer->tail_page->list;
1463 * tail page might be on reader page, we remove the next page
1464 * from the ring buffer
1466 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1467 tail_page = rb_list_head(tail_page->next);
1468 to_remove = tail_page;
1470 /* start of pages to remove */
1471 first_page = list_entry(rb_list_head(to_remove->next),
1472 struct buffer_page, list);
1474 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1475 to_remove = rb_list_head(to_remove)->next;
1476 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1479 next_page = rb_list_head(to_remove)->next;
1482 * Now we remove all pages between tail_page and next_page.
1483 * Make sure that we have head_bit value preserved for the
1484 * next page
1486 tail_page->next = (struct list_head *)((unsigned long)next_page |
1487 head_bit);
1488 next_page = rb_list_head(next_page);
1489 next_page->prev = tail_page;
1491 /* make sure pages points to a valid page in the ring buffer */
1492 cpu_buffer->pages = next_page;
1494 /* update head page */
1495 if (head_bit)
1496 cpu_buffer->head_page = list_entry(next_page,
1497 struct buffer_page, list);
1500 * change read pointer to make sure any read iterators reset
1501 * themselves
1503 cpu_buffer->read = 0;
1505 /* pages are removed, resume tracing and then free the pages */
1506 atomic_dec(&cpu_buffer->record_disabled);
1507 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1509 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1511 /* last buffer page to remove */
1512 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1513 list);
1514 tmp_iter_page = first_page;
1516 do {
1517 to_remove_page = tmp_iter_page;
1518 rb_inc_page(cpu_buffer, &tmp_iter_page);
1520 /* update the counters */
1521 page_entries = rb_page_entries(to_remove_page);
1522 if (page_entries) {
1524 * If something was added to this page, it was full
1525 * since it is not the tail page. So we deduct the
1526 * bytes consumed in ring buffer from here.
1527 * Increment overrun to account for the lost events.
1529 local_add(page_entries, &cpu_buffer->overrun);
1530 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1534 * We have already removed references to this list item, just
1535 * free up the buffer_page and its page
1537 free_buffer_page(to_remove_page);
1538 nr_removed--;
1540 } while (to_remove_page != last_page);
1542 RB_WARN_ON(cpu_buffer, nr_removed);
1544 return nr_removed == 0;
1547 static int
1548 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1550 struct list_head *pages = &cpu_buffer->new_pages;
1551 int retries, success;
1553 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1555 * We are holding the reader lock, so the reader page won't be swapped
1556 * in the ring buffer. Now we are racing with the writer trying to
1557 * move head page and the tail page.
1558 * We are going to adapt the reader page update process where:
1559 * 1. We first splice the start and end of list of new pages between
1560 * the head page and its previous page.
1561 * 2. We cmpxchg the prev_page->next to point from head page to the
1562 * start of new pages list.
1563 * 3. Finally, we update the head->prev to the end of new list.
1565 * We will try this process 10 times, to make sure that we don't keep
1566 * spinning.
1568 retries = 10;
1569 success = 0;
1570 while (retries--) {
1571 struct list_head *head_page, *prev_page, *r;
1572 struct list_head *last_page, *first_page;
1573 struct list_head *head_page_with_bit;
1575 head_page = &rb_set_head_page(cpu_buffer)->list;
1576 if (!head_page)
1577 break;
1578 prev_page = head_page->prev;
1580 first_page = pages->next;
1581 last_page = pages->prev;
1583 head_page_with_bit = (struct list_head *)
1584 ((unsigned long)head_page | RB_PAGE_HEAD);
1586 last_page->next = head_page_with_bit;
1587 first_page->prev = prev_page;
1589 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1591 if (r == head_page_with_bit) {
1593 * yay, we replaced the page pointer to our new list,
1594 * now, we just have to update to head page's prev
1595 * pointer to point to end of list
1597 head_page->prev = last_page;
1598 success = 1;
1599 break;
1603 if (success)
1604 INIT_LIST_HEAD(pages);
1606 * If we weren't successful in adding in new pages, warn and stop
1607 * tracing
1609 RB_WARN_ON(cpu_buffer, !success);
1610 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1612 /* free pages if they weren't inserted */
1613 if (!success) {
1614 struct buffer_page *bpage, *tmp;
1615 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1616 list) {
1617 list_del_init(&bpage->list);
1618 free_buffer_page(bpage);
1621 return success;
1624 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1626 int success;
1628 if (cpu_buffer->nr_pages_to_update > 0)
1629 success = rb_insert_pages(cpu_buffer);
1630 else
1631 success = rb_remove_pages(cpu_buffer,
1632 -cpu_buffer->nr_pages_to_update);
1634 if (success)
1635 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1638 static void update_pages_handler(struct work_struct *work)
1640 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1641 struct ring_buffer_per_cpu, update_pages_work);
1642 rb_update_pages(cpu_buffer);
1643 complete(&cpu_buffer->update_done);
1647 * ring_buffer_resize - resize the ring buffer
1648 * @buffer: the buffer to resize.
1649 * @size: the new size.
1650 * @cpu_id: the cpu buffer to resize
1652 * Minimum size is 2 * BUF_PAGE_SIZE.
1654 * Returns 0 on success and < 0 on failure.
1656 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1657 int cpu_id)
1659 struct ring_buffer_per_cpu *cpu_buffer;
1660 unsigned nr_pages;
1661 int cpu, err = 0;
1664 * Always succeed at resizing a non-existent buffer:
1666 if (!buffer)
1667 return size;
1669 /* Make sure the requested buffer exists */
1670 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1671 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1672 return size;
1674 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1675 size *= BUF_PAGE_SIZE;
1677 /* we need a minimum of two pages */
1678 if (size < BUF_PAGE_SIZE * 2)
1679 size = BUF_PAGE_SIZE * 2;
1681 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1684 * Don't succeed if resizing is disabled, as a reader might be
1685 * manipulating the ring buffer and is expecting a sane state while
1686 * this is true.
1688 if (atomic_read(&buffer->resize_disabled))
1689 return -EBUSY;
1691 /* prevent another thread from changing buffer sizes */
1692 mutex_lock(&buffer->mutex);
1694 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1695 /* calculate the pages to update */
1696 for_each_buffer_cpu(buffer, cpu) {
1697 cpu_buffer = buffer->buffers[cpu];
1699 cpu_buffer->nr_pages_to_update = nr_pages -
1700 cpu_buffer->nr_pages;
1702 * nothing more to do for removing pages or no update
1704 if (cpu_buffer->nr_pages_to_update <= 0)
1705 continue;
1707 * to add pages, make sure all new pages can be
1708 * allocated without receiving ENOMEM
1710 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1711 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1712 &cpu_buffer->new_pages, cpu)) {
1713 /* not enough memory for new pages */
1714 err = -ENOMEM;
1715 goto out_err;
1719 get_online_cpus();
1721 * Fire off all the required work handlers
1722 * We can't schedule on offline CPUs, but it's not necessary
1723 * since we can change their buffer sizes without any race.
1725 for_each_buffer_cpu(buffer, cpu) {
1726 cpu_buffer = buffer->buffers[cpu];
1727 if (!cpu_buffer->nr_pages_to_update)
1728 continue;
1730 /* Can't run something on an offline CPU. */
1731 if (!cpu_online(cpu)) {
1732 rb_update_pages(cpu_buffer);
1733 cpu_buffer->nr_pages_to_update = 0;
1734 } else {
1735 schedule_work_on(cpu,
1736 &cpu_buffer->update_pages_work);
1740 /* wait for all the updates to complete */
1741 for_each_buffer_cpu(buffer, cpu) {
1742 cpu_buffer = buffer->buffers[cpu];
1743 if (!cpu_buffer->nr_pages_to_update)
1744 continue;
1746 if (cpu_online(cpu))
1747 wait_for_completion(&cpu_buffer->update_done);
1748 cpu_buffer->nr_pages_to_update = 0;
1751 put_online_cpus();
1752 } else {
1753 /* Make sure this CPU has been intitialized */
1754 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1755 goto out;
1757 cpu_buffer = buffer->buffers[cpu_id];
1759 if (nr_pages == cpu_buffer->nr_pages)
1760 goto out;
1762 cpu_buffer->nr_pages_to_update = nr_pages -
1763 cpu_buffer->nr_pages;
1765 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1766 if (cpu_buffer->nr_pages_to_update > 0 &&
1767 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1768 &cpu_buffer->new_pages, cpu_id)) {
1769 err = -ENOMEM;
1770 goto out_err;
1773 get_online_cpus();
1775 /* Can't run something on an offline CPU. */
1776 if (!cpu_online(cpu_id))
1777 rb_update_pages(cpu_buffer);
1778 else {
1779 schedule_work_on(cpu_id,
1780 &cpu_buffer->update_pages_work);
1781 wait_for_completion(&cpu_buffer->update_done);
1784 cpu_buffer->nr_pages_to_update = 0;
1785 put_online_cpus();
1788 out:
1790 * The ring buffer resize can happen with the ring buffer
1791 * enabled, so that the update disturbs the tracing as little
1792 * as possible. But if the buffer is disabled, we do not need
1793 * to worry about that, and we can take the time to verify
1794 * that the buffer is not corrupt.
1796 if (atomic_read(&buffer->record_disabled)) {
1797 atomic_inc(&buffer->record_disabled);
1799 * Even though the buffer was disabled, we must make sure
1800 * that it is truly disabled before calling rb_check_pages.
1801 * There could have been a race between checking
1802 * record_disable and incrementing it.
1804 synchronize_sched();
1805 for_each_buffer_cpu(buffer, cpu) {
1806 cpu_buffer = buffer->buffers[cpu];
1807 rb_check_pages(cpu_buffer);
1809 atomic_dec(&buffer->record_disabled);
1812 mutex_unlock(&buffer->mutex);
1813 return size;
1815 out_err:
1816 for_each_buffer_cpu(buffer, cpu) {
1817 struct buffer_page *bpage, *tmp;
1819 cpu_buffer = buffer->buffers[cpu];
1820 cpu_buffer->nr_pages_to_update = 0;
1822 if (list_empty(&cpu_buffer->new_pages))
1823 continue;
1825 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1826 list) {
1827 list_del_init(&bpage->list);
1828 free_buffer_page(bpage);
1831 mutex_unlock(&buffer->mutex);
1832 return err;
1834 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1836 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1838 mutex_lock(&buffer->mutex);
1839 if (val)
1840 buffer->flags |= RB_FL_OVERWRITE;
1841 else
1842 buffer->flags &= ~RB_FL_OVERWRITE;
1843 mutex_unlock(&buffer->mutex);
1845 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1847 static inline void *
1848 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1850 return bpage->data + index;
1853 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1855 return bpage->page->data + index;
1858 static inline struct ring_buffer_event *
1859 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1861 return __rb_page_index(cpu_buffer->reader_page,
1862 cpu_buffer->reader_page->read);
1865 static inline struct ring_buffer_event *
1866 rb_iter_head_event(struct ring_buffer_iter *iter)
1868 return __rb_page_index(iter->head_page, iter->head);
1871 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1873 return local_read(&bpage->page->commit);
1876 /* Size is determined by what has been committed */
1877 static inline unsigned rb_page_size(struct buffer_page *bpage)
1879 return rb_page_commit(bpage);
1882 static inline unsigned
1883 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1885 return rb_page_commit(cpu_buffer->commit_page);
1888 static inline unsigned
1889 rb_event_index(struct ring_buffer_event *event)
1891 unsigned long addr = (unsigned long)event;
1893 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1896 static inline int
1897 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1898 struct ring_buffer_event *event)
1900 unsigned long addr = (unsigned long)event;
1901 unsigned long index;
1903 index = rb_event_index(event);
1904 addr &= PAGE_MASK;
1906 return cpu_buffer->commit_page->page == (void *)addr &&
1907 rb_commit_index(cpu_buffer) == index;
1910 static void
1911 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1913 unsigned long max_count;
1916 * We only race with interrupts and NMIs on this CPU.
1917 * If we own the commit event, then we can commit
1918 * all others that interrupted us, since the interruptions
1919 * are in stack format (they finish before they come
1920 * back to us). This allows us to do a simple loop to
1921 * assign the commit to the tail.
1923 again:
1924 max_count = cpu_buffer->nr_pages * 100;
1926 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1927 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1928 return;
1929 if (RB_WARN_ON(cpu_buffer,
1930 rb_is_reader_page(cpu_buffer->tail_page)))
1931 return;
1932 local_set(&cpu_buffer->commit_page->page->commit,
1933 rb_page_write(cpu_buffer->commit_page));
1934 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1935 cpu_buffer->write_stamp =
1936 cpu_buffer->commit_page->page->time_stamp;
1937 /* add barrier to keep gcc from optimizing too much */
1938 barrier();
1940 while (rb_commit_index(cpu_buffer) !=
1941 rb_page_write(cpu_buffer->commit_page)) {
1943 local_set(&cpu_buffer->commit_page->page->commit,
1944 rb_page_write(cpu_buffer->commit_page));
1945 RB_WARN_ON(cpu_buffer,
1946 local_read(&cpu_buffer->commit_page->page->commit) &
1947 ~RB_WRITE_MASK);
1948 barrier();
1951 /* again, keep gcc from optimizing */
1952 barrier();
1955 * If an interrupt came in just after the first while loop
1956 * and pushed the tail page forward, we will be left with
1957 * a dangling commit that will never go forward.
1959 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1960 goto again;
1963 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1965 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1966 cpu_buffer->reader_page->read = 0;
1969 static void rb_inc_iter(struct ring_buffer_iter *iter)
1971 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1974 * The iterator could be on the reader page (it starts there).
1975 * But the head could have moved, since the reader was
1976 * found. Check for this case and assign the iterator
1977 * to the head page instead of next.
1979 if (iter->head_page == cpu_buffer->reader_page)
1980 iter->head_page = rb_set_head_page(cpu_buffer);
1981 else
1982 rb_inc_page(cpu_buffer, &iter->head_page);
1984 iter->read_stamp = iter->head_page->page->time_stamp;
1985 iter->head = 0;
1988 /* Slow path, do not inline */
1989 static noinline struct ring_buffer_event *
1990 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1992 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1994 /* Not the first event on the page? */
1995 if (rb_event_index(event)) {
1996 event->time_delta = delta & TS_MASK;
1997 event->array[0] = delta >> TS_SHIFT;
1998 } else {
1999 /* nope, just zero it */
2000 event->time_delta = 0;
2001 event->array[0] = 0;
2004 return skip_time_extend(event);
2008 * rb_update_event - update event type and data
2009 * @event: the event to update
2010 * @type: the type of event
2011 * @length: the size of the event field in the ring buffer
2013 * Update the type and data fields of the event. The length
2014 * is the actual size that is written to the ring buffer,
2015 * and with this, we can determine what to place into the
2016 * data field.
2018 static void
2019 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2020 struct ring_buffer_event *event, unsigned length,
2021 int add_timestamp, u64 delta)
2023 /* Only a commit updates the timestamp */
2024 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2025 delta = 0;
2028 * If we need to add a timestamp, then we
2029 * add it to the start of the resevered space.
2031 if (unlikely(add_timestamp)) {
2032 event = rb_add_time_stamp(event, delta);
2033 length -= RB_LEN_TIME_EXTEND;
2034 delta = 0;
2037 event->time_delta = delta;
2038 length -= RB_EVNT_HDR_SIZE;
2039 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2040 event->type_len = 0;
2041 event->array[0] = length;
2042 } else
2043 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2047 * rb_handle_head_page - writer hit the head page
2049 * Returns: +1 to retry page
2050 * 0 to continue
2051 * -1 on error
2053 static int
2054 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2055 struct buffer_page *tail_page,
2056 struct buffer_page *next_page)
2058 struct buffer_page *new_head;
2059 int entries;
2060 int type;
2061 int ret;
2063 entries = rb_page_entries(next_page);
2066 * The hard part is here. We need to move the head
2067 * forward, and protect against both readers on
2068 * other CPUs and writers coming in via interrupts.
2070 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2071 RB_PAGE_HEAD);
2074 * type can be one of four:
2075 * NORMAL - an interrupt already moved it for us
2076 * HEAD - we are the first to get here.
2077 * UPDATE - we are the interrupt interrupting
2078 * a current move.
2079 * MOVED - a reader on another CPU moved the next
2080 * pointer to its reader page. Give up
2081 * and try again.
2084 switch (type) {
2085 case RB_PAGE_HEAD:
2087 * We changed the head to UPDATE, thus
2088 * it is our responsibility to update
2089 * the counters.
2091 local_add(entries, &cpu_buffer->overrun);
2092 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2095 * The entries will be zeroed out when we move the
2096 * tail page.
2099 /* still more to do */
2100 break;
2102 case RB_PAGE_UPDATE:
2104 * This is an interrupt that interrupt the
2105 * previous update. Still more to do.
2107 break;
2108 case RB_PAGE_NORMAL:
2110 * An interrupt came in before the update
2111 * and processed this for us.
2112 * Nothing left to do.
2114 return 1;
2115 case RB_PAGE_MOVED:
2117 * The reader is on another CPU and just did
2118 * a swap with our next_page.
2119 * Try again.
2121 return 1;
2122 default:
2123 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2124 return -1;
2128 * Now that we are here, the old head pointer is
2129 * set to UPDATE. This will keep the reader from
2130 * swapping the head page with the reader page.
2131 * The reader (on another CPU) will spin till
2132 * we are finished.
2134 * We just need to protect against interrupts
2135 * doing the job. We will set the next pointer
2136 * to HEAD. After that, we set the old pointer
2137 * to NORMAL, but only if it was HEAD before.
2138 * otherwise we are an interrupt, and only
2139 * want the outer most commit to reset it.
2141 new_head = next_page;
2142 rb_inc_page(cpu_buffer, &new_head);
2144 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2145 RB_PAGE_NORMAL);
2148 * Valid returns are:
2149 * HEAD - an interrupt came in and already set it.
2150 * NORMAL - One of two things:
2151 * 1) We really set it.
2152 * 2) A bunch of interrupts came in and moved
2153 * the page forward again.
2155 switch (ret) {
2156 case RB_PAGE_HEAD:
2157 case RB_PAGE_NORMAL:
2158 /* OK */
2159 break;
2160 default:
2161 RB_WARN_ON(cpu_buffer, 1);
2162 return -1;
2166 * It is possible that an interrupt came in,
2167 * set the head up, then more interrupts came in
2168 * and moved it again. When we get back here,
2169 * the page would have been set to NORMAL but we
2170 * just set it back to HEAD.
2172 * How do you detect this? Well, if that happened
2173 * the tail page would have moved.
2175 if (ret == RB_PAGE_NORMAL) {
2177 * If the tail had moved passed next, then we need
2178 * to reset the pointer.
2180 if (cpu_buffer->tail_page != tail_page &&
2181 cpu_buffer->tail_page != next_page)
2182 rb_head_page_set_normal(cpu_buffer, new_head,
2183 next_page,
2184 RB_PAGE_HEAD);
2188 * If this was the outer most commit (the one that
2189 * changed the original pointer from HEAD to UPDATE),
2190 * then it is up to us to reset it to NORMAL.
2192 if (type == RB_PAGE_HEAD) {
2193 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2194 tail_page,
2195 RB_PAGE_UPDATE);
2196 if (RB_WARN_ON(cpu_buffer,
2197 ret != RB_PAGE_UPDATE))
2198 return -1;
2201 return 0;
2204 static unsigned rb_calculate_event_length(unsigned length)
2206 struct ring_buffer_event event; /* Used only for sizeof array */
2208 /* zero length can cause confusions */
2209 if (!length)
2210 length = 1;
2212 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2213 length += sizeof(event.array[0]);
2215 length += RB_EVNT_HDR_SIZE;
2216 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2218 return length;
2221 static inline void
2222 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2223 struct buffer_page *tail_page,
2224 unsigned long tail, unsigned long length)
2226 struct ring_buffer_event *event;
2229 * Only the event that crossed the page boundary
2230 * must fill the old tail_page with padding.
2232 if (tail >= BUF_PAGE_SIZE) {
2234 * If the page was filled, then we still need
2235 * to update the real_end. Reset it to zero
2236 * and the reader will ignore it.
2238 if (tail == BUF_PAGE_SIZE)
2239 tail_page->real_end = 0;
2241 local_sub(length, &tail_page->write);
2242 return;
2245 event = __rb_page_index(tail_page, tail);
2246 kmemcheck_annotate_bitfield(event, bitfield);
2248 /* account for padding bytes */
2249 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2252 * Save the original length to the meta data.
2253 * This will be used by the reader to add lost event
2254 * counter.
2256 tail_page->real_end = tail;
2259 * If this event is bigger than the minimum size, then
2260 * we need to be careful that we don't subtract the
2261 * write counter enough to allow another writer to slip
2262 * in on this page.
2263 * We put in a discarded commit instead, to make sure
2264 * that this space is not used again.
2266 * If we are less than the minimum size, we don't need to
2267 * worry about it.
2269 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2270 /* No room for any events */
2272 /* Mark the rest of the page with padding */
2273 rb_event_set_padding(event);
2275 /* Set the write back to the previous setting */
2276 local_sub(length, &tail_page->write);
2277 return;
2280 /* Put in a discarded event */
2281 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2282 event->type_len = RINGBUF_TYPE_PADDING;
2283 /* time delta must be non zero */
2284 event->time_delta = 1;
2286 /* Set write to end of buffer */
2287 length = (tail + length) - BUF_PAGE_SIZE;
2288 local_sub(length, &tail_page->write);
2292 * This is the slow path, force gcc not to inline it.
2294 static noinline struct ring_buffer_event *
2295 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2296 unsigned long length, unsigned long tail,
2297 struct buffer_page *tail_page, u64 ts)
2299 struct buffer_page *commit_page = cpu_buffer->commit_page;
2300 struct ring_buffer *buffer = cpu_buffer->buffer;
2301 struct buffer_page *next_page;
2302 int ret;
2304 next_page = tail_page;
2306 rb_inc_page(cpu_buffer, &next_page);
2309 * If for some reason, we had an interrupt storm that made
2310 * it all the way around the buffer, bail, and warn
2311 * about it.
2313 if (unlikely(next_page == commit_page)) {
2314 local_inc(&cpu_buffer->commit_overrun);
2315 goto out_reset;
2319 * This is where the fun begins!
2321 * We are fighting against races between a reader that
2322 * could be on another CPU trying to swap its reader
2323 * page with the buffer head.
2325 * We are also fighting against interrupts coming in and
2326 * moving the head or tail on us as well.
2328 * If the next page is the head page then we have filled
2329 * the buffer, unless the commit page is still on the
2330 * reader page.
2332 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2335 * If the commit is not on the reader page, then
2336 * move the header page.
2338 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2340 * If we are not in overwrite mode,
2341 * this is easy, just stop here.
2343 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2344 local_inc(&cpu_buffer->dropped_events);
2345 goto out_reset;
2348 ret = rb_handle_head_page(cpu_buffer,
2349 tail_page,
2350 next_page);
2351 if (ret < 0)
2352 goto out_reset;
2353 if (ret)
2354 goto out_again;
2355 } else {
2357 * We need to be careful here too. The
2358 * commit page could still be on the reader
2359 * page. We could have a small buffer, and
2360 * have filled up the buffer with events
2361 * from interrupts and such, and wrapped.
2363 * Note, if the tail page is also the on the
2364 * reader_page, we let it move out.
2366 if (unlikely((cpu_buffer->commit_page !=
2367 cpu_buffer->tail_page) &&
2368 (cpu_buffer->commit_page ==
2369 cpu_buffer->reader_page))) {
2370 local_inc(&cpu_buffer->commit_overrun);
2371 goto out_reset;
2376 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2377 if (ret) {
2379 * Nested commits always have zero deltas, so
2380 * just reread the time stamp
2382 ts = rb_time_stamp(buffer);
2383 next_page->page->time_stamp = ts;
2386 out_again:
2388 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2390 /* fail and let the caller try again */
2391 return ERR_PTR(-EAGAIN);
2393 out_reset:
2394 /* reset write */
2395 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2397 return NULL;
2400 static struct ring_buffer_event *
2401 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2402 unsigned long length, u64 ts,
2403 u64 delta, int add_timestamp)
2405 struct buffer_page *tail_page;
2406 struct ring_buffer_event *event;
2407 unsigned long tail, write;
2410 * If the time delta since the last event is too big to
2411 * hold in the time field of the event, then we append a
2412 * TIME EXTEND event ahead of the data event.
2414 if (unlikely(add_timestamp))
2415 length += RB_LEN_TIME_EXTEND;
2417 tail_page = cpu_buffer->tail_page;
2418 write = local_add_return(length, &tail_page->write);
2420 /* set write to only the index of the write */
2421 write &= RB_WRITE_MASK;
2422 tail = write - length;
2425 * If this is the first commit on the page, then it has the same
2426 * timestamp as the page itself.
2428 if (!tail)
2429 delta = 0;
2431 /* See if we shot pass the end of this buffer page */
2432 if (unlikely(write > BUF_PAGE_SIZE))
2433 return rb_move_tail(cpu_buffer, length, tail,
2434 tail_page, ts);
2436 /* We reserved something on the buffer */
2438 event = __rb_page_index(tail_page, tail);
2439 kmemcheck_annotate_bitfield(event, bitfield);
2440 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2442 local_inc(&tail_page->entries);
2445 * If this is the first commit on the page, then update
2446 * its timestamp.
2448 if (!tail)
2449 tail_page->page->time_stamp = ts;
2451 /* account for these added bytes */
2452 local_add(length, &cpu_buffer->entries_bytes);
2454 return event;
2457 static inline int
2458 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2459 struct ring_buffer_event *event)
2461 unsigned long new_index, old_index;
2462 struct buffer_page *bpage;
2463 unsigned long index;
2464 unsigned long addr;
2466 new_index = rb_event_index(event);
2467 old_index = new_index + rb_event_ts_length(event);
2468 addr = (unsigned long)event;
2469 addr &= PAGE_MASK;
2471 bpage = cpu_buffer->tail_page;
2473 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2474 unsigned long write_mask =
2475 local_read(&bpage->write) & ~RB_WRITE_MASK;
2476 unsigned long event_length = rb_event_length(event);
2478 * This is on the tail page. It is possible that
2479 * a write could come in and move the tail page
2480 * and write to the next page. That is fine
2481 * because we just shorten what is on this page.
2483 old_index += write_mask;
2484 new_index += write_mask;
2485 index = local_cmpxchg(&bpage->write, old_index, new_index);
2486 if (index == old_index) {
2487 /* update counters */
2488 local_sub(event_length, &cpu_buffer->entries_bytes);
2489 return 1;
2493 /* could not discard */
2494 return 0;
2497 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2499 local_inc(&cpu_buffer->committing);
2500 local_inc(&cpu_buffer->commits);
2503 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2505 unsigned long commits;
2507 if (RB_WARN_ON(cpu_buffer,
2508 !local_read(&cpu_buffer->committing)))
2509 return;
2511 again:
2512 commits = local_read(&cpu_buffer->commits);
2513 /* synchronize with interrupts */
2514 barrier();
2515 if (local_read(&cpu_buffer->committing) == 1)
2516 rb_set_commit_to_write(cpu_buffer);
2518 local_dec(&cpu_buffer->committing);
2520 /* synchronize with interrupts */
2521 barrier();
2524 * Need to account for interrupts coming in between the
2525 * updating of the commit page and the clearing of the
2526 * committing counter.
2528 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2529 !local_read(&cpu_buffer->committing)) {
2530 local_inc(&cpu_buffer->committing);
2531 goto again;
2535 static struct ring_buffer_event *
2536 rb_reserve_next_event(struct ring_buffer *buffer,
2537 struct ring_buffer_per_cpu *cpu_buffer,
2538 unsigned long length)
2540 struct ring_buffer_event *event;
2541 u64 ts, delta;
2542 int nr_loops = 0;
2543 int add_timestamp;
2544 u64 diff;
2546 rb_start_commit(cpu_buffer);
2548 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2550 * Due to the ability to swap a cpu buffer from a buffer
2551 * it is possible it was swapped before we committed.
2552 * (committing stops a swap). We check for it here and
2553 * if it happened, we have to fail the write.
2555 barrier();
2556 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2557 local_dec(&cpu_buffer->committing);
2558 local_dec(&cpu_buffer->commits);
2559 return NULL;
2561 #endif
2563 length = rb_calculate_event_length(length);
2564 again:
2565 add_timestamp = 0;
2566 delta = 0;
2569 * We allow for interrupts to reenter here and do a trace.
2570 * If one does, it will cause this original code to loop
2571 * back here. Even with heavy interrupts happening, this
2572 * should only happen a few times in a row. If this happens
2573 * 1000 times in a row, there must be either an interrupt
2574 * storm or we have something buggy.
2575 * Bail!
2577 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2578 goto out_fail;
2580 ts = rb_time_stamp(cpu_buffer->buffer);
2581 diff = ts - cpu_buffer->write_stamp;
2583 /* make sure this diff is calculated here */
2584 barrier();
2586 /* Did the write stamp get updated already? */
2587 if (likely(ts >= cpu_buffer->write_stamp)) {
2588 delta = diff;
2589 if (unlikely(test_time_stamp(delta))) {
2590 int local_clock_stable = 1;
2591 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2592 local_clock_stable = sched_clock_stable();
2593 #endif
2594 WARN_ONCE(delta > (1ULL << 59),
2595 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2596 (unsigned long long)delta,
2597 (unsigned long long)ts,
2598 (unsigned long long)cpu_buffer->write_stamp,
2599 local_clock_stable ? "" :
2600 "If you just came from a suspend/resume,\n"
2601 "please switch to the trace global clock:\n"
2602 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2603 add_timestamp = 1;
2607 event = __rb_reserve_next(cpu_buffer, length, ts,
2608 delta, add_timestamp);
2609 if (unlikely(PTR_ERR(event) == -EAGAIN))
2610 goto again;
2612 if (!event)
2613 goto out_fail;
2615 return event;
2617 out_fail:
2618 rb_end_commit(cpu_buffer);
2619 return NULL;
2622 #ifdef CONFIG_TRACING
2625 * The lock and unlock are done within a preempt disable section.
2626 * The current_context per_cpu variable can only be modified
2627 * by the current task between lock and unlock. But it can
2628 * be modified more than once via an interrupt. To pass this
2629 * information from the lock to the unlock without having to
2630 * access the 'in_interrupt()' functions again (which do show
2631 * a bit of overhead in something as critical as function tracing,
2632 * we use a bitmask trick.
2634 * bit 0 = NMI context
2635 * bit 1 = IRQ context
2636 * bit 2 = SoftIRQ context
2637 * bit 3 = normal context.
2639 * This works because this is the order of contexts that can
2640 * preempt other contexts. A SoftIRQ never preempts an IRQ
2641 * context.
2643 * When the context is determined, the corresponding bit is
2644 * checked and set (if it was set, then a recursion of that context
2645 * happened).
2647 * On unlock, we need to clear this bit. To do so, just subtract
2648 * 1 from the current_context and AND it to itself.
2650 * (binary)
2651 * 101 - 1 = 100
2652 * 101 & 100 = 100 (clearing bit zero)
2654 * 1010 - 1 = 1001
2655 * 1010 & 1001 = 1000 (clearing bit 1)
2657 * The least significant bit can be cleared this way, and it
2658 * just so happens that it is the same bit corresponding to
2659 * the current context.
2661 static DEFINE_PER_CPU(unsigned int, current_context);
2663 static __always_inline int trace_recursive_lock(void)
2665 unsigned int val = this_cpu_read(current_context);
2666 int bit;
2668 if (in_interrupt()) {
2669 if (in_nmi())
2670 bit = 0;
2671 else if (in_irq())
2672 bit = 1;
2673 else
2674 bit = 2;
2675 } else
2676 bit = 3;
2678 if (unlikely(val & (1 << bit)))
2679 return 1;
2681 val |= (1 << bit);
2682 this_cpu_write(current_context, val);
2684 return 0;
2687 static __always_inline void trace_recursive_unlock(void)
2689 unsigned int val = this_cpu_read(current_context);
2691 val--;
2692 val &= this_cpu_read(current_context);
2693 this_cpu_write(current_context, val);
2696 #else
2698 #define trace_recursive_lock() (0)
2699 #define trace_recursive_unlock() do { } while (0)
2701 #endif
2704 * ring_buffer_lock_reserve - reserve a part of the buffer
2705 * @buffer: the ring buffer to reserve from
2706 * @length: the length of the data to reserve (excluding event header)
2708 * Returns a reseverd event on the ring buffer to copy directly to.
2709 * The user of this interface will need to get the body to write into
2710 * and can use the ring_buffer_event_data() interface.
2712 * The length is the length of the data needed, not the event length
2713 * which also includes the event header.
2715 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2716 * If NULL is returned, then nothing has been allocated or locked.
2718 struct ring_buffer_event *
2719 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2721 struct ring_buffer_per_cpu *cpu_buffer;
2722 struct ring_buffer_event *event;
2723 int cpu;
2725 if (ring_buffer_flags != RB_BUFFERS_ON)
2726 return NULL;
2728 /* If we are tracing schedule, we don't want to recurse */
2729 preempt_disable_notrace();
2731 if (atomic_read(&buffer->record_disabled))
2732 goto out_nocheck;
2734 if (trace_recursive_lock())
2735 goto out_nocheck;
2737 cpu = raw_smp_processor_id();
2739 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2740 goto out;
2742 cpu_buffer = buffer->buffers[cpu];
2744 if (atomic_read(&cpu_buffer->record_disabled))
2745 goto out;
2747 if (length > BUF_MAX_DATA_SIZE)
2748 goto out;
2750 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2751 if (!event)
2752 goto out;
2754 return event;
2756 out:
2757 trace_recursive_unlock();
2759 out_nocheck:
2760 preempt_enable_notrace();
2761 return NULL;
2763 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2765 static void
2766 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2767 struct ring_buffer_event *event)
2769 u64 delta;
2772 * The event first in the commit queue updates the
2773 * time stamp.
2775 if (rb_event_is_commit(cpu_buffer, event)) {
2777 * A commit event that is first on a page
2778 * updates the write timestamp with the page stamp
2780 if (!rb_event_index(event))
2781 cpu_buffer->write_stamp =
2782 cpu_buffer->commit_page->page->time_stamp;
2783 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2784 delta = event->array[0];
2785 delta <<= TS_SHIFT;
2786 delta += event->time_delta;
2787 cpu_buffer->write_stamp += delta;
2788 } else
2789 cpu_buffer->write_stamp += event->time_delta;
2793 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2794 struct ring_buffer_event *event)
2796 local_inc(&cpu_buffer->entries);
2797 rb_update_write_stamp(cpu_buffer, event);
2798 rb_end_commit(cpu_buffer);
2801 static __always_inline void
2802 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2804 if (buffer->irq_work.waiters_pending) {
2805 buffer->irq_work.waiters_pending = false;
2806 /* irq_work_queue() supplies it's own memory barriers */
2807 irq_work_queue(&buffer->irq_work.work);
2810 if (cpu_buffer->irq_work.waiters_pending) {
2811 cpu_buffer->irq_work.waiters_pending = false;
2812 /* irq_work_queue() supplies it's own memory barriers */
2813 irq_work_queue(&cpu_buffer->irq_work.work);
2818 * ring_buffer_unlock_commit - commit a reserved
2819 * @buffer: The buffer to commit to
2820 * @event: The event pointer to commit.
2822 * This commits the data to the ring buffer, and releases any locks held.
2824 * Must be paired with ring_buffer_lock_reserve.
2826 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2827 struct ring_buffer_event *event)
2829 struct ring_buffer_per_cpu *cpu_buffer;
2830 int cpu = raw_smp_processor_id();
2832 cpu_buffer = buffer->buffers[cpu];
2834 rb_commit(cpu_buffer, event);
2836 rb_wakeups(buffer, cpu_buffer);
2838 trace_recursive_unlock();
2840 preempt_enable_notrace();
2842 return 0;
2844 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2846 static inline void rb_event_discard(struct ring_buffer_event *event)
2848 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2849 event = skip_time_extend(event);
2851 /* array[0] holds the actual length for the discarded event */
2852 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2853 event->type_len = RINGBUF_TYPE_PADDING;
2854 /* time delta must be non zero */
2855 if (!event->time_delta)
2856 event->time_delta = 1;
2860 * Decrement the entries to the page that an event is on.
2861 * The event does not even need to exist, only the pointer
2862 * to the page it is on. This may only be called before the commit
2863 * takes place.
2865 static inline void
2866 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2867 struct ring_buffer_event *event)
2869 unsigned long addr = (unsigned long)event;
2870 struct buffer_page *bpage = cpu_buffer->commit_page;
2871 struct buffer_page *start;
2873 addr &= PAGE_MASK;
2875 /* Do the likely case first */
2876 if (likely(bpage->page == (void *)addr)) {
2877 local_dec(&bpage->entries);
2878 return;
2882 * Because the commit page may be on the reader page we
2883 * start with the next page and check the end loop there.
2885 rb_inc_page(cpu_buffer, &bpage);
2886 start = bpage;
2887 do {
2888 if (bpage->page == (void *)addr) {
2889 local_dec(&bpage->entries);
2890 return;
2892 rb_inc_page(cpu_buffer, &bpage);
2893 } while (bpage != start);
2895 /* commit not part of this buffer?? */
2896 RB_WARN_ON(cpu_buffer, 1);
2900 * ring_buffer_commit_discard - discard an event that has not been committed
2901 * @buffer: the ring buffer
2902 * @event: non committed event to discard
2904 * Sometimes an event that is in the ring buffer needs to be ignored.
2905 * This function lets the user discard an event in the ring buffer
2906 * and then that event will not be read later.
2908 * This function only works if it is called before the the item has been
2909 * committed. It will try to free the event from the ring buffer
2910 * if another event has not been added behind it.
2912 * If another event has been added behind it, it will set the event
2913 * up as discarded, and perform the commit.
2915 * If this function is called, do not call ring_buffer_unlock_commit on
2916 * the event.
2918 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2919 struct ring_buffer_event *event)
2921 struct ring_buffer_per_cpu *cpu_buffer;
2922 int cpu;
2924 /* The event is discarded regardless */
2925 rb_event_discard(event);
2927 cpu = smp_processor_id();
2928 cpu_buffer = buffer->buffers[cpu];
2931 * This must only be called if the event has not been
2932 * committed yet. Thus we can assume that preemption
2933 * is still disabled.
2935 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2937 rb_decrement_entry(cpu_buffer, event);
2938 if (rb_try_to_discard(cpu_buffer, event))
2939 goto out;
2942 * The commit is still visible by the reader, so we
2943 * must still update the timestamp.
2945 rb_update_write_stamp(cpu_buffer, event);
2946 out:
2947 rb_end_commit(cpu_buffer);
2949 trace_recursive_unlock();
2951 preempt_enable_notrace();
2954 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2957 * ring_buffer_write - write data to the buffer without reserving
2958 * @buffer: The ring buffer to write to.
2959 * @length: The length of the data being written (excluding the event header)
2960 * @data: The data to write to the buffer.
2962 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2963 * one function. If you already have the data to write to the buffer, it
2964 * may be easier to simply call this function.
2966 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2967 * and not the length of the event which would hold the header.
2969 int ring_buffer_write(struct ring_buffer *buffer,
2970 unsigned long length,
2971 void *data)
2973 struct ring_buffer_per_cpu *cpu_buffer;
2974 struct ring_buffer_event *event;
2975 void *body;
2976 int ret = -EBUSY;
2977 int cpu;
2979 if (ring_buffer_flags != RB_BUFFERS_ON)
2980 return -EBUSY;
2982 preempt_disable_notrace();
2984 if (atomic_read(&buffer->record_disabled))
2985 goto out;
2987 cpu = raw_smp_processor_id();
2989 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2990 goto out;
2992 cpu_buffer = buffer->buffers[cpu];
2994 if (atomic_read(&cpu_buffer->record_disabled))
2995 goto out;
2997 if (length > BUF_MAX_DATA_SIZE)
2998 goto out;
3000 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3001 if (!event)
3002 goto out;
3004 body = rb_event_data(event);
3006 memcpy(body, data, length);
3008 rb_commit(cpu_buffer, event);
3010 rb_wakeups(buffer, cpu_buffer);
3012 ret = 0;
3013 out:
3014 preempt_enable_notrace();
3016 return ret;
3018 EXPORT_SYMBOL_GPL(ring_buffer_write);
3020 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3022 struct buffer_page *reader = cpu_buffer->reader_page;
3023 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3024 struct buffer_page *commit = cpu_buffer->commit_page;
3026 /* In case of error, head will be NULL */
3027 if (unlikely(!head))
3028 return 1;
3030 return reader->read == rb_page_commit(reader) &&
3031 (commit == reader ||
3032 (commit == head &&
3033 head->read == rb_page_commit(commit)));
3037 * ring_buffer_record_disable - stop all writes into the buffer
3038 * @buffer: The ring buffer to stop writes to.
3040 * This prevents all writes to the buffer. Any attempt to write
3041 * to the buffer after this will fail and return NULL.
3043 * The caller should call synchronize_sched() after this.
3045 void ring_buffer_record_disable(struct ring_buffer *buffer)
3047 atomic_inc(&buffer->record_disabled);
3049 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3052 * ring_buffer_record_enable - enable writes to the buffer
3053 * @buffer: The ring buffer to enable writes
3055 * Note, multiple disables will need the same number of enables
3056 * to truly enable the writing (much like preempt_disable).
3058 void ring_buffer_record_enable(struct ring_buffer *buffer)
3060 atomic_dec(&buffer->record_disabled);
3062 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3065 * ring_buffer_record_off - stop all writes into the buffer
3066 * @buffer: The ring buffer to stop writes to.
3068 * This prevents all writes to the buffer. Any attempt to write
3069 * to the buffer after this will fail and return NULL.
3071 * This is different than ring_buffer_record_disable() as
3072 * it works like an on/off switch, where as the disable() version
3073 * must be paired with a enable().
3075 void ring_buffer_record_off(struct ring_buffer *buffer)
3077 unsigned int rd;
3078 unsigned int new_rd;
3080 do {
3081 rd = atomic_read(&buffer->record_disabled);
3082 new_rd = rd | RB_BUFFER_OFF;
3083 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3085 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3088 * ring_buffer_record_on - restart writes into the buffer
3089 * @buffer: The ring buffer to start writes to.
3091 * This enables all writes to the buffer that was disabled by
3092 * ring_buffer_record_off().
3094 * This is different than ring_buffer_record_enable() as
3095 * it works like an on/off switch, where as the enable() version
3096 * must be paired with a disable().
3098 void ring_buffer_record_on(struct ring_buffer *buffer)
3100 unsigned int rd;
3101 unsigned int new_rd;
3103 do {
3104 rd = atomic_read(&buffer->record_disabled);
3105 new_rd = rd & ~RB_BUFFER_OFF;
3106 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3108 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3111 * ring_buffer_record_is_on - return true if the ring buffer can write
3112 * @buffer: The ring buffer to see if write is enabled
3114 * Returns true if the ring buffer is in a state that it accepts writes.
3116 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3118 return !atomic_read(&buffer->record_disabled);
3122 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3123 * @buffer: The ring buffer to stop writes to.
3124 * @cpu: The CPU buffer to stop
3126 * This prevents all writes to the buffer. Any attempt to write
3127 * to the buffer after this will fail and return NULL.
3129 * The caller should call synchronize_sched() after this.
3131 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3133 struct ring_buffer_per_cpu *cpu_buffer;
3135 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3136 return;
3138 cpu_buffer = buffer->buffers[cpu];
3139 atomic_inc(&cpu_buffer->record_disabled);
3141 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3144 * ring_buffer_record_enable_cpu - enable writes to the buffer
3145 * @buffer: The ring buffer to enable writes
3146 * @cpu: The CPU to enable.
3148 * Note, multiple disables will need the same number of enables
3149 * to truly enable the writing (much like preempt_disable).
3151 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3153 struct ring_buffer_per_cpu *cpu_buffer;
3155 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3156 return;
3158 cpu_buffer = buffer->buffers[cpu];
3159 atomic_dec(&cpu_buffer->record_disabled);
3161 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3164 * The total entries in the ring buffer is the running counter
3165 * of entries entered into the ring buffer, minus the sum of
3166 * the entries read from the ring buffer and the number of
3167 * entries that were overwritten.
3169 static inline unsigned long
3170 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3172 return local_read(&cpu_buffer->entries) -
3173 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3177 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3178 * @buffer: The ring buffer
3179 * @cpu: The per CPU buffer to read from.
3181 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3183 unsigned long flags;
3184 struct ring_buffer_per_cpu *cpu_buffer;
3185 struct buffer_page *bpage;
3186 u64 ret = 0;
3188 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3189 return 0;
3191 cpu_buffer = buffer->buffers[cpu];
3192 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3194 * if the tail is on reader_page, oldest time stamp is on the reader
3195 * page
3197 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3198 bpage = cpu_buffer->reader_page;
3199 else
3200 bpage = rb_set_head_page(cpu_buffer);
3201 if (bpage)
3202 ret = bpage->page->time_stamp;
3203 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3205 return ret;
3207 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3210 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3211 * @buffer: The ring buffer
3212 * @cpu: The per CPU buffer to read from.
3214 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3216 struct ring_buffer_per_cpu *cpu_buffer;
3217 unsigned long ret;
3219 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3220 return 0;
3222 cpu_buffer = buffer->buffers[cpu];
3223 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3225 return ret;
3227 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3230 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3231 * @buffer: The ring buffer
3232 * @cpu: The per CPU buffer to get the entries from.
3234 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3236 struct ring_buffer_per_cpu *cpu_buffer;
3238 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3239 return 0;
3241 cpu_buffer = buffer->buffers[cpu];
3243 return rb_num_of_entries(cpu_buffer);
3245 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3248 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3249 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3250 * @buffer: The ring buffer
3251 * @cpu: The per CPU buffer to get the number of overruns from
3253 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3255 struct ring_buffer_per_cpu *cpu_buffer;
3256 unsigned long ret;
3258 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259 return 0;
3261 cpu_buffer = buffer->buffers[cpu];
3262 ret = local_read(&cpu_buffer->overrun);
3264 return ret;
3266 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3269 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3270 * commits failing due to the buffer wrapping around while there are uncommitted
3271 * events, such as during an interrupt storm.
3272 * @buffer: The ring buffer
3273 * @cpu: The per CPU buffer to get the number of overruns from
3275 unsigned long
3276 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 unsigned long ret;
3281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282 return 0;
3284 cpu_buffer = buffer->buffers[cpu];
3285 ret = local_read(&cpu_buffer->commit_overrun);
3287 return ret;
3289 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3292 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3293 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3294 * @buffer: The ring buffer
3295 * @cpu: The per CPU buffer to get the number of overruns from
3297 unsigned long
3298 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3300 struct ring_buffer_per_cpu *cpu_buffer;
3301 unsigned long ret;
3303 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3304 return 0;
3306 cpu_buffer = buffer->buffers[cpu];
3307 ret = local_read(&cpu_buffer->dropped_events);
3309 return ret;
3311 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3314 * ring_buffer_read_events_cpu - get the number of events successfully read
3315 * @buffer: The ring buffer
3316 * @cpu: The per CPU buffer to get the number of events read
3318 unsigned long
3319 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3321 struct ring_buffer_per_cpu *cpu_buffer;
3323 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3324 return 0;
3326 cpu_buffer = buffer->buffers[cpu];
3327 return cpu_buffer->read;
3329 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3332 * ring_buffer_entries - get the number of entries in a buffer
3333 * @buffer: The ring buffer
3335 * Returns the total number of entries in the ring buffer
3336 * (all CPU entries)
3338 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3340 struct ring_buffer_per_cpu *cpu_buffer;
3341 unsigned long entries = 0;
3342 int cpu;
3344 /* if you care about this being correct, lock the buffer */
3345 for_each_buffer_cpu(buffer, cpu) {
3346 cpu_buffer = buffer->buffers[cpu];
3347 entries += rb_num_of_entries(cpu_buffer);
3350 return entries;
3352 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3355 * ring_buffer_overruns - get the number of overruns in buffer
3356 * @buffer: The ring buffer
3358 * Returns the total number of overruns in the ring buffer
3359 * (all CPU entries)
3361 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3363 struct ring_buffer_per_cpu *cpu_buffer;
3364 unsigned long overruns = 0;
3365 int cpu;
3367 /* if you care about this being correct, lock the buffer */
3368 for_each_buffer_cpu(buffer, cpu) {
3369 cpu_buffer = buffer->buffers[cpu];
3370 overruns += local_read(&cpu_buffer->overrun);
3373 return overruns;
3375 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3377 static void rb_iter_reset(struct ring_buffer_iter *iter)
3379 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3381 /* Iterator usage is expected to have record disabled */
3382 iter->head_page = cpu_buffer->reader_page;
3383 iter->head = cpu_buffer->reader_page->read;
3385 iter->cache_reader_page = iter->head_page;
3386 iter->cache_read = cpu_buffer->read;
3388 if (iter->head)
3389 iter->read_stamp = cpu_buffer->read_stamp;
3390 else
3391 iter->read_stamp = iter->head_page->page->time_stamp;
3395 * ring_buffer_iter_reset - reset an iterator
3396 * @iter: The iterator to reset
3398 * Resets the iterator, so that it will start from the beginning
3399 * again.
3401 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3403 struct ring_buffer_per_cpu *cpu_buffer;
3404 unsigned long flags;
3406 if (!iter)
3407 return;
3409 cpu_buffer = iter->cpu_buffer;
3411 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3412 rb_iter_reset(iter);
3413 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3415 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3418 * ring_buffer_iter_empty - check if an iterator has no more to read
3419 * @iter: The iterator to check
3421 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3423 struct ring_buffer_per_cpu *cpu_buffer;
3425 cpu_buffer = iter->cpu_buffer;
3427 return iter->head_page == cpu_buffer->commit_page &&
3428 iter->head == rb_commit_index(cpu_buffer);
3430 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3432 static void
3433 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3434 struct ring_buffer_event *event)
3436 u64 delta;
3438 switch (event->type_len) {
3439 case RINGBUF_TYPE_PADDING:
3440 return;
3442 case RINGBUF_TYPE_TIME_EXTEND:
3443 delta = event->array[0];
3444 delta <<= TS_SHIFT;
3445 delta += event->time_delta;
3446 cpu_buffer->read_stamp += delta;
3447 return;
3449 case RINGBUF_TYPE_TIME_STAMP:
3450 /* FIXME: not implemented */
3451 return;
3453 case RINGBUF_TYPE_DATA:
3454 cpu_buffer->read_stamp += event->time_delta;
3455 return;
3457 default:
3458 BUG();
3460 return;
3463 static void
3464 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3465 struct ring_buffer_event *event)
3467 u64 delta;
3469 switch (event->type_len) {
3470 case RINGBUF_TYPE_PADDING:
3471 return;
3473 case RINGBUF_TYPE_TIME_EXTEND:
3474 delta = event->array[0];
3475 delta <<= TS_SHIFT;
3476 delta += event->time_delta;
3477 iter->read_stamp += delta;
3478 return;
3480 case RINGBUF_TYPE_TIME_STAMP:
3481 /* FIXME: not implemented */
3482 return;
3484 case RINGBUF_TYPE_DATA:
3485 iter->read_stamp += event->time_delta;
3486 return;
3488 default:
3489 BUG();
3491 return;
3494 static struct buffer_page *
3495 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3497 struct buffer_page *reader = NULL;
3498 unsigned long overwrite;
3499 unsigned long flags;
3500 int nr_loops = 0;
3501 int ret;
3503 local_irq_save(flags);
3504 arch_spin_lock(&cpu_buffer->lock);
3506 again:
3508 * This should normally only loop twice. But because the
3509 * start of the reader inserts an empty page, it causes
3510 * a case where we will loop three times. There should be no
3511 * reason to loop four times (that I know of).
3513 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3514 reader = NULL;
3515 goto out;
3518 reader = cpu_buffer->reader_page;
3520 /* If there's more to read, return this page */
3521 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3522 goto out;
3524 /* Never should we have an index greater than the size */
3525 if (RB_WARN_ON(cpu_buffer,
3526 cpu_buffer->reader_page->read > rb_page_size(reader)))
3527 goto out;
3529 /* check if we caught up to the tail */
3530 reader = NULL;
3531 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3532 goto out;
3534 /* Don't bother swapping if the ring buffer is empty */
3535 if (rb_num_of_entries(cpu_buffer) == 0)
3536 goto out;
3539 * Reset the reader page to size zero.
3541 local_set(&cpu_buffer->reader_page->write, 0);
3542 local_set(&cpu_buffer->reader_page->entries, 0);
3543 local_set(&cpu_buffer->reader_page->page->commit, 0);
3544 cpu_buffer->reader_page->real_end = 0;
3546 spin:
3548 * Splice the empty reader page into the list around the head.
3550 reader = rb_set_head_page(cpu_buffer);
3551 if (!reader)
3552 goto out;
3553 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3554 cpu_buffer->reader_page->list.prev = reader->list.prev;
3557 * cpu_buffer->pages just needs to point to the buffer, it
3558 * has no specific buffer page to point to. Lets move it out
3559 * of our way so we don't accidentally swap it.
3561 cpu_buffer->pages = reader->list.prev;
3563 /* The reader page will be pointing to the new head */
3564 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3567 * We want to make sure we read the overruns after we set up our
3568 * pointers to the next object. The writer side does a
3569 * cmpxchg to cross pages which acts as the mb on the writer
3570 * side. Note, the reader will constantly fail the swap
3571 * while the writer is updating the pointers, so this
3572 * guarantees that the overwrite recorded here is the one we
3573 * want to compare with the last_overrun.
3575 smp_mb();
3576 overwrite = local_read(&(cpu_buffer->overrun));
3579 * Here's the tricky part.
3581 * We need to move the pointer past the header page.
3582 * But we can only do that if a writer is not currently
3583 * moving it. The page before the header page has the
3584 * flag bit '1' set if it is pointing to the page we want.
3585 * but if the writer is in the process of moving it
3586 * than it will be '2' or already moved '0'.
3589 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3592 * If we did not convert it, then we must try again.
3594 if (!ret)
3595 goto spin;
3598 * Yeah! We succeeded in replacing the page.
3600 * Now make the new head point back to the reader page.
3602 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3603 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3605 /* Finally update the reader page to the new head */
3606 cpu_buffer->reader_page = reader;
3607 rb_reset_reader_page(cpu_buffer);
3609 if (overwrite != cpu_buffer->last_overrun) {
3610 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3611 cpu_buffer->last_overrun = overwrite;
3614 goto again;
3616 out:
3617 arch_spin_unlock(&cpu_buffer->lock);
3618 local_irq_restore(flags);
3620 return reader;
3623 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3625 struct ring_buffer_event *event;
3626 struct buffer_page *reader;
3627 unsigned length;
3629 reader = rb_get_reader_page(cpu_buffer);
3631 /* This function should not be called when buffer is empty */
3632 if (RB_WARN_ON(cpu_buffer, !reader))
3633 return;
3635 event = rb_reader_event(cpu_buffer);
3637 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3638 cpu_buffer->read++;
3640 rb_update_read_stamp(cpu_buffer, event);
3642 length = rb_event_length(event);
3643 cpu_buffer->reader_page->read += length;
3646 static void rb_advance_iter(struct ring_buffer_iter *iter)
3648 struct ring_buffer_per_cpu *cpu_buffer;
3649 struct ring_buffer_event *event;
3650 unsigned length;
3652 cpu_buffer = iter->cpu_buffer;
3655 * Check if we are at the end of the buffer.
3657 if (iter->head >= rb_page_size(iter->head_page)) {
3658 /* discarded commits can make the page empty */
3659 if (iter->head_page == cpu_buffer->commit_page)
3660 return;
3661 rb_inc_iter(iter);
3662 return;
3665 event = rb_iter_head_event(iter);
3667 length = rb_event_length(event);
3670 * This should not be called to advance the header if we are
3671 * at the tail of the buffer.
3673 if (RB_WARN_ON(cpu_buffer,
3674 (iter->head_page == cpu_buffer->commit_page) &&
3675 (iter->head + length > rb_commit_index(cpu_buffer))))
3676 return;
3678 rb_update_iter_read_stamp(iter, event);
3680 iter->head += length;
3682 /* check for end of page padding */
3683 if ((iter->head >= rb_page_size(iter->head_page)) &&
3684 (iter->head_page != cpu_buffer->commit_page))
3685 rb_inc_iter(iter);
3688 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3690 return cpu_buffer->lost_events;
3693 static struct ring_buffer_event *
3694 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3695 unsigned long *lost_events)
3697 struct ring_buffer_event *event;
3698 struct buffer_page *reader;
3699 int nr_loops = 0;
3701 again:
3703 * We repeat when a time extend is encountered.
3704 * Since the time extend is always attached to a data event,
3705 * we should never loop more than once.
3706 * (We never hit the following condition more than twice).
3708 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3709 return NULL;
3711 reader = rb_get_reader_page(cpu_buffer);
3712 if (!reader)
3713 return NULL;
3715 event = rb_reader_event(cpu_buffer);
3717 switch (event->type_len) {
3718 case RINGBUF_TYPE_PADDING:
3719 if (rb_null_event(event))
3720 RB_WARN_ON(cpu_buffer, 1);
3722 * Because the writer could be discarding every
3723 * event it creates (which would probably be bad)
3724 * if we were to go back to "again" then we may never
3725 * catch up, and will trigger the warn on, or lock
3726 * the box. Return the padding, and we will release
3727 * the current locks, and try again.
3729 return event;
3731 case RINGBUF_TYPE_TIME_EXTEND:
3732 /* Internal data, OK to advance */
3733 rb_advance_reader(cpu_buffer);
3734 goto again;
3736 case RINGBUF_TYPE_TIME_STAMP:
3737 /* FIXME: not implemented */
3738 rb_advance_reader(cpu_buffer);
3739 goto again;
3741 case RINGBUF_TYPE_DATA:
3742 if (ts) {
3743 *ts = cpu_buffer->read_stamp + event->time_delta;
3744 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3745 cpu_buffer->cpu, ts);
3747 if (lost_events)
3748 *lost_events = rb_lost_events(cpu_buffer);
3749 return event;
3751 default:
3752 BUG();
3755 return NULL;
3757 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3759 static struct ring_buffer_event *
3760 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3762 struct ring_buffer *buffer;
3763 struct ring_buffer_per_cpu *cpu_buffer;
3764 struct ring_buffer_event *event;
3765 int nr_loops = 0;
3767 cpu_buffer = iter->cpu_buffer;
3768 buffer = cpu_buffer->buffer;
3771 * Check if someone performed a consuming read to
3772 * the buffer. A consuming read invalidates the iterator
3773 * and we need to reset the iterator in this case.
3775 if (unlikely(iter->cache_read != cpu_buffer->read ||
3776 iter->cache_reader_page != cpu_buffer->reader_page))
3777 rb_iter_reset(iter);
3779 again:
3780 if (ring_buffer_iter_empty(iter))
3781 return NULL;
3784 * We repeat when a time extend is encountered or we hit
3785 * the end of the page. Since the time extend is always attached
3786 * to a data event, we should never loop more than three times.
3787 * Once for going to next page, once on time extend, and
3788 * finally once to get the event.
3789 * (We never hit the following condition more than thrice).
3791 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3792 return NULL;
3794 if (rb_per_cpu_empty(cpu_buffer))
3795 return NULL;
3797 if (iter->head >= rb_page_size(iter->head_page)) {
3798 rb_inc_iter(iter);
3799 goto again;
3802 event = rb_iter_head_event(iter);
3804 switch (event->type_len) {
3805 case RINGBUF_TYPE_PADDING:
3806 if (rb_null_event(event)) {
3807 rb_inc_iter(iter);
3808 goto again;
3810 rb_advance_iter(iter);
3811 return event;
3813 case RINGBUF_TYPE_TIME_EXTEND:
3814 /* Internal data, OK to advance */
3815 rb_advance_iter(iter);
3816 goto again;
3818 case RINGBUF_TYPE_TIME_STAMP:
3819 /* FIXME: not implemented */
3820 rb_advance_iter(iter);
3821 goto again;
3823 case RINGBUF_TYPE_DATA:
3824 if (ts) {
3825 *ts = iter->read_stamp + event->time_delta;
3826 ring_buffer_normalize_time_stamp(buffer,
3827 cpu_buffer->cpu, ts);
3829 return event;
3831 default:
3832 BUG();
3835 return NULL;
3837 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3839 static inline int rb_ok_to_lock(void)
3842 * If an NMI die dumps out the content of the ring buffer
3843 * do not grab locks. We also permanently disable the ring
3844 * buffer too. A one time deal is all you get from reading
3845 * the ring buffer from an NMI.
3847 if (likely(!in_nmi()))
3848 return 1;
3850 tracing_off_permanent();
3851 return 0;
3855 * ring_buffer_peek - peek at the next event to be read
3856 * @buffer: The ring buffer to read
3857 * @cpu: The cpu to peak at
3858 * @ts: The timestamp counter of this event.
3859 * @lost_events: a variable to store if events were lost (may be NULL)
3861 * This will return the event that will be read next, but does
3862 * not consume the data.
3864 struct ring_buffer_event *
3865 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3866 unsigned long *lost_events)
3868 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3869 struct ring_buffer_event *event;
3870 unsigned long flags;
3871 int dolock;
3873 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3874 return NULL;
3876 dolock = rb_ok_to_lock();
3877 again:
3878 local_irq_save(flags);
3879 if (dolock)
3880 raw_spin_lock(&cpu_buffer->reader_lock);
3881 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3882 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3883 rb_advance_reader(cpu_buffer);
3884 if (dolock)
3885 raw_spin_unlock(&cpu_buffer->reader_lock);
3886 local_irq_restore(flags);
3888 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3889 goto again;
3891 return event;
3895 * ring_buffer_iter_peek - peek at the next event to be read
3896 * @iter: The ring buffer iterator
3897 * @ts: The timestamp counter of this event.
3899 * This will return the event that will be read next, but does
3900 * not increment the iterator.
3902 struct ring_buffer_event *
3903 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3905 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3906 struct ring_buffer_event *event;
3907 unsigned long flags;
3909 again:
3910 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3911 event = rb_iter_peek(iter, ts);
3912 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3914 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3915 goto again;
3917 return event;
3921 * ring_buffer_consume - return an event and consume it
3922 * @buffer: The ring buffer to get the next event from
3923 * @cpu: the cpu to read the buffer from
3924 * @ts: a variable to store the timestamp (may be NULL)
3925 * @lost_events: a variable to store if events were lost (may be NULL)
3927 * Returns the next event in the ring buffer, and that event is consumed.
3928 * Meaning, that sequential reads will keep returning a different event,
3929 * and eventually empty the ring buffer if the producer is slower.
3931 struct ring_buffer_event *
3932 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3933 unsigned long *lost_events)
3935 struct ring_buffer_per_cpu *cpu_buffer;
3936 struct ring_buffer_event *event = NULL;
3937 unsigned long flags;
3938 int dolock;
3940 dolock = rb_ok_to_lock();
3942 again:
3943 /* might be called in atomic */
3944 preempt_disable();
3946 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3947 goto out;
3949 cpu_buffer = buffer->buffers[cpu];
3950 local_irq_save(flags);
3951 if (dolock)
3952 raw_spin_lock(&cpu_buffer->reader_lock);
3954 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3955 if (event) {
3956 cpu_buffer->lost_events = 0;
3957 rb_advance_reader(cpu_buffer);
3960 if (dolock)
3961 raw_spin_unlock(&cpu_buffer->reader_lock);
3962 local_irq_restore(flags);
3964 out:
3965 preempt_enable();
3967 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3968 goto again;
3970 return event;
3972 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3975 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3976 * @buffer: The ring buffer to read from
3977 * @cpu: The cpu buffer to iterate over
3979 * This performs the initial preparations necessary to iterate
3980 * through the buffer. Memory is allocated, buffer recording
3981 * is disabled, and the iterator pointer is returned to the caller.
3983 * Disabling buffer recordng prevents the reading from being
3984 * corrupted. This is not a consuming read, so a producer is not
3985 * expected.
3987 * After a sequence of ring_buffer_read_prepare calls, the user is
3988 * expected to make at least one call to ring_buffer_read_prepare_sync.
3989 * Afterwards, ring_buffer_read_start is invoked to get things going
3990 * for real.
3992 * This overall must be paired with ring_buffer_read_finish.
3994 struct ring_buffer_iter *
3995 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3997 struct ring_buffer_per_cpu *cpu_buffer;
3998 struct ring_buffer_iter *iter;
4000 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4001 return NULL;
4003 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4004 if (!iter)
4005 return NULL;
4007 cpu_buffer = buffer->buffers[cpu];
4009 iter->cpu_buffer = cpu_buffer;
4011 atomic_inc(&buffer->resize_disabled);
4012 atomic_inc(&cpu_buffer->record_disabled);
4014 return iter;
4016 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4019 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4021 * All previously invoked ring_buffer_read_prepare calls to prepare
4022 * iterators will be synchronized. Afterwards, read_buffer_read_start
4023 * calls on those iterators are allowed.
4025 void
4026 ring_buffer_read_prepare_sync(void)
4028 synchronize_sched();
4030 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4033 * ring_buffer_read_start - start a non consuming read of the buffer
4034 * @iter: The iterator returned by ring_buffer_read_prepare
4036 * This finalizes the startup of an iteration through the buffer.
4037 * The iterator comes from a call to ring_buffer_read_prepare and
4038 * an intervening ring_buffer_read_prepare_sync must have been
4039 * performed.
4041 * Must be paired with ring_buffer_read_finish.
4043 void
4044 ring_buffer_read_start(struct ring_buffer_iter *iter)
4046 struct ring_buffer_per_cpu *cpu_buffer;
4047 unsigned long flags;
4049 if (!iter)
4050 return;
4052 cpu_buffer = iter->cpu_buffer;
4054 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4055 arch_spin_lock(&cpu_buffer->lock);
4056 rb_iter_reset(iter);
4057 arch_spin_unlock(&cpu_buffer->lock);
4058 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4060 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4063 * ring_buffer_read_finish - finish reading the iterator of the buffer
4064 * @iter: The iterator retrieved by ring_buffer_start
4066 * This re-enables the recording to the buffer, and frees the
4067 * iterator.
4069 void
4070 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4072 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4073 unsigned long flags;
4076 * Ring buffer is disabled from recording, here's a good place
4077 * to check the integrity of the ring buffer.
4078 * Must prevent readers from trying to read, as the check
4079 * clears the HEAD page and readers require it.
4081 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4082 rb_check_pages(cpu_buffer);
4083 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4085 atomic_dec(&cpu_buffer->record_disabled);
4086 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4087 kfree(iter);
4089 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4092 * ring_buffer_read - read the next item in the ring buffer by the iterator
4093 * @iter: The ring buffer iterator
4094 * @ts: The time stamp of the event read.
4096 * This reads the next event in the ring buffer and increments the iterator.
4098 struct ring_buffer_event *
4099 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4101 struct ring_buffer_event *event;
4102 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4103 unsigned long flags;
4105 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4106 again:
4107 event = rb_iter_peek(iter, ts);
4108 if (!event)
4109 goto out;
4111 if (event->type_len == RINGBUF_TYPE_PADDING)
4112 goto again;
4114 rb_advance_iter(iter);
4115 out:
4116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4118 return event;
4120 EXPORT_SYMBOL_GPL(ring_buffer_read);
4123 * ring_buffer_size - return the size of the ring buffer (in bytes)
4124 * @buffer: The ring buffer.
4126 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4129 * Earlier, this method returned
4130 * BUF_PAGE_SIZE * buffer->nr_pages
4131 * Since the nr_pages field is now removed, we have converted this to
4132 * return the per cpu buffer value.
4134 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4135 return 0;
4137 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4139 EXPORT_SYMBOL_GPL(ring_buffer_size);
4141 static void
4142 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4144 rb_head_page_deactivate(cpu_buffer);
4146 cpu_buffer->head_page
4147 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4148 local_set(&cpu_buffer->head_page->write, 0);
4149 local_set(&cpu_buffer->head_page->entries, 0);
4150 local_set(&cpu_buffer->head_page->page->commit, 0);
4152 cpu_buffer->head_page->read = 0;
4154 cpu_buffer->tail_page = cpu_buffer->head_page;
4155 cpu_buffer->commit_page = cpu_buffer->head_page;
4157 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4158 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4159 local_set(&cpu_buffer->reader_page->write, 0);
4160 local_set(&cpu_buffer->reader_page->entries, 0);
4161 local_set(&cpu_buffer->reader_page->page->commit, 0);
4162 cpu_buffer->reader_page->read = 0;
4164 local_set(&cpu_buffer->entries_bytes, 0);
4165 local_set(&cpu_buffer->overrun, 0);
4166 local_set(&cpu_buffer->commit_overrun, 0);
4167 local_set(&cpu_buffer->dropped_events, 0);
4168 local_set(&cpu_buffer->entries, 0);
4169 local_set(&cpu_buffer->committing, 0);
4170 local_set(&cpu_buffer->commits, 0);
4171 cpu_buffer->read = 0;
4172 cpu_buffer->read_bytes = 0;
4174 cpu_buffer->write_stamp = 0;
4175 cpu_buffer->read_stamp = 0;
4177 cpu_buffer->lost_events = 0;
4178 cpu_buffer->last_overrun = 0;
4180 rb_head_page_activate(cpu_buffer);
4184 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4185 * @buffer: The ring buffer to reset a per cpu buffer of
4186 * @cpu: The CPU buffer to be reset
4188 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4190 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4191 unsigned long flags;
4193 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4194 return;
4196 atomic_inc(&buffer->resize_disabled);
4197 atomic_inc(&cpu_buffer->record_disabled);
4199 /* Make sure all commits have finished */
4200 synchronize_sched();
4202 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4204 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4205 goto out;
4207 arch_spin_lock(&cpu_buffer->lock);
4209 rb_reset_cpu(cpu_buffer);
4211 arch_spin_unlock(&cpu_buffer->lock);
4213 out:
4214 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4216 atomic_dec(&cpu_buffer->record_disabled);
4217 atomic_dec(&buffer->resize_disabled);
4219 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4222 * ring_buffer_reset - reset a ring buffer
4223 * @buffer: The ring buffer to reset all cpu buffers
4225 void ring_buffer_reset(struct ring_buffer *buffer)
4227 int cpu;
4229 for_each_buffer_cpu(buffer, cpu)
4230 ring_buffer_reset_cpu(buffer, cpu);
4232 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4235 * rind_buffer_empty - is the ring buffer empty?
4236 * @buffer: The ring buffer to test
4238 int ring_buffer_empty(struct ring_buffer *buffer)
4240 struct ring_buffer_per_cpu *cpu_buffer;
4241 unsigned long flags;
4242 int dolock;
4243 int cpu;
4244 int ret;
4246 dolock = rb_ok_to_lock();
4248 /* yes this is racy, but if you don't like the race, lock the buffer */
4249 for_each_buffer_cpu(buffer, cpu) {
4250 cpu_buffer = buffer->buffers[cpu];
4251 local_irq_save(flags);
4252 if (dolock)
4253 raw_spin_lock(&cpu_buffer->reader_lock);
4254 ret = rb_per_cpu_empty(cpu_buffer);
4255 if (dolock)
4256 raw_spin_unlock(&cpu_buffer->reader_lock);
4257 local_irq_restore(flags);
4259 if (!ret)
4260 return 0;
4263 return 1;
4265 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4268 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4269 * @buffer: The ring buffer
4270 * @cpu: The CPU buffer to test
4272 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4274 struct ring_buffer_per_cpu *cpu_buffer;
4275 unsigned long flags;
4276 int dolock;
4277 int ret;
4279 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4280 return 1;
4282 dolock = rb_ok_to_lock();
4284 cpu_buffer = buffer->buffers[cpu];
4285 local_irq_save(flags);
4286 if (dolock)
4287 raw_spin_lock(&cpu_buffer->reader_lock);
4288 ret = rb_per_cpu_empty(cpu_buffer);
4289 if (dolock)
4290 raw_spin_unlock(&cpu_buffer->reader_lock);
4291 local_irq_restore(flags);
4293 return ret;
4295 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4297 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4299 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4300 * @buffer_a: One buffer to swap with
4301 * @buffer_b: The other buffer to swap with
4303 * This function is useful for tracers that want to take a "snapshot"
4304 * of a CPU buffer and has another back up buffer lying around.
4305 * it is expected that the tracer handles the cpu buffer not being
4306 * used at the moment.
4308 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4309 struct ring_buffer *buffer_b, int cpu)
4311 struct ring_buffer_per_cpu *cpu_buffer_a;
4312 struct ring_buffer_per_cpu *cpu_buffer_b;
4313 int ret = -EINVAL;
4315 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4316 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4317 goto out;
4319 cpu_buffer_a = buffer_a->buffers[cpu];
4320 cpu_buffer_b = buffer_b->buffers[cpu];
4322 /* At least make sure the two buffers are somewhat the same */
4323 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4324 goto out;
4326 ret = -EAGAIN;
4328 if (ring_buffer_flags != RB_BUFFERS_ON)
4329 goto out;
4331 if (atomic_read(&buffer_a->record_disabled))
4332 goto out;
4334 if (atomic_read(&buffer_b->record_disabled))
4335 goto out;
4337 if (atomic_read(&cpu_buffer_a->record_disabled))
4338 goto out;
4340 if (atomic_read(&cpu_buffer_b->record_disabled))
4341 goto out;
4344 * We can't do a synchronize_sched here because this
4345 * function can be called in atomic context.
4346 * Normally this will be called from the same CPU as cpu.
4347 * If not it's up to the caller to protect this.
4349 atomic_inc(&cpu_buffer_a->record_disabled);
4350 atomic_inc(&cpu_buffer_b->record_disabled);
4352 ret = -EBUSY;
4353 if (local_read(&cpu_buffer_a->committing))
4354 goto out_dec;
4355 if (local_read(&cpu_buffer_b->committing))
4356 goto out_dec;
4358 buffer_a->buffers[cpu] = cpu_buffer_b;
4359 buffer_b->buffers[cpu] = cpu_buffer_a;
4361 cpu_buffer_b->buffer = buffer_a;
4362 cpu_buffer_a->buffer = buffer_b;
4364 ret = 0;
4366 out_dec:
4367 atomic_dec(&cpu_buffer_a->record_disabled);
4368 atomic_dec(&cpu_buffer_b->record_disabled);
4369 out:
4370 return ret;
4372 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4373 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4376 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4377 * @buffer: the buffer to allocate for.
4378 * @cpu: the cpu buffer to allocate.
4380 * This function is used in conjunction with ring_buffer_read_page.
4381 * When reading a full page from the ring buffer, these functions
4382 * can be used to speed up the process. The calling function should
4383 * allocate a few pages first with this function. Then when it
4384 * needs to get pages from the ring buffer, it passes the result
4385 * of this function into ring_buffer_read_page, which will swap
4386 * the page that was allocated, with the read page of the buffer.
4388 * Returns:
4389 * The page allocated, or NULL on error.
4391 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4393 struct buffer_data_page *bpage;
4394 struct page *page;
4396 page = alloc_pages_node(cpu_to_node(cpu),
4397 GFP_KERNEL | __GFP_NORETRY, 0);
4398 if (!page)
4399 return NULL;
4401 bpage = page_address(page);
4403 rb_init_page(bpage);
4405 return bpage;
4407 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4410 * ring_buffer_free_read_page - free an allocated read page
4411 * @buffer: the buffer the page was allocate for
4412 * @data: the page to free
4414 * Free a page allocated from ring_buffer_alloc_read_page.
4416 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4418 free_page((unsigned long)data);
4420 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4423 * ring_buffer_read_page - extract a page from the ring buffer
4424 * @buffer: buffer to extract from
4425 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4426 * @len: amount to extract
4427 * @cpu: the cpu of the buffer to extract
4428 * @full: should the extraction only happen when the page is full.
4430 * This function will pull out a page from the ring buffer and consume it.
4431 * @data_page must be the address of the variable that was returned
4432 * from ring_buffer_alloc_read_page. This is because the page might be used
4433 * to swap with a page in the ring buffer.
4435 * for example:
4436 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4437 * if (!rpage)
4438 * return error;
4439 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4440 * if (ret >= 0)
4441 * process_page(rpage, ret);
4443 * When @full is set, the function will not return true unless
4444 * the writer is off the reader page.
4446 * Note: it is up to the calling functions to handle sleeps and wakeups.
4447 * The ring buffer can be used anywhere in the kernel and can not
4448 * blindly call wake_up. The layer that uses the ring buffer must be
4449 * responsible for that.
4451 * Returns:
4452 * >=0 if data has been transferred, returns the offset of consumed data.
4453 * <0 if no data has been transferred.
4455 int ring_buffer_read_page(struct ring_buffer *buffer,
4456 void **data_page, size_t len, int cpu, int full)
4458 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4459 struct ring_buffer_event *event;
4460 struct buffer_data_page *bpage;
4461 struct buffer_page *reader;
4462 unsigned long missed_events;
4463 unsigned long flags;
4464 unsigned int commit;
4465 unsigned int read;
4466 u64 save_timestamp;
4467 int ret = -1;
4469 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4470 goto out;
4473 * If len is not big enough to hold the page header, then
4474 * we can not copy anything.
4476 if (len <= BUF_PAGE_HDR_SIZE)
4477 goto out;
4479 len -= BUF_PAGE_HDR_SIZE;
4481 if (!data_page)
4482 goto out;
4484 bpage = *data_page;
4485 if (!bpage)
4486 goto out;
4488 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4490 reader = rb_get_reader_page(cpu_buffer);
4491 if (!reader)
4492 goto out_unlock;
4494 event = rb_reader_event(cpu_buffer);
4496 read = reader->read;
4497 commit = rb_page_commit(reader);
4499 /* Check if any events were dropped */
4500 missed_events = cpu_buffer->lost_events;
4503 * If this page has been partially read or
4504 * if len is not big enough to read the rest of the page or
4505 * a writer is still on the page, then
4506 * we must copy the data from the page to the buffer.
4507 * Otherwise, we can simply swap the page with the one passed in.
4509 if (read || (len < (commit - read)) ||
4510 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4511 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4512 unsigned int rpos = read;
4513 unsigned int pos = 0;
4514 unsigned int size;
4516 if (full)
4517 goto out_unlock;
4519 if (len > (commit - read))
4520 len = (commit - read);
4522 /* Always keep the time extend and data together */
4523 size = rb_event_ts_length(event);
4525 if (len < size)
4526 goto out_unlock;
4528 /* save the current timestamp, since the user will need it */
4529 save_timestamp = cpu_buffer->read_stamp;
4531 /* Need to copy one event at a time */
4532 do {
4533 /* We need the size of one event, because
4534 * rb_advance_reader only advances by one event,
4535 * whereas rb_event_ts_length may include the size of
4536 * one or two events.
4537 * We have already ensured there's enough space if this
4538 * is a time extend. */
4539 size = rb_event_length(event);
4540 memcpy(bpage->data + pos, rpage->data + rpos, size);
4542 len -= size;
4544 rb_advance_reader(cpu_buffer);
4545 rpos = reader->read;
4546 pos += size;
4548 if (rpos >= commit)
4549 break;
4551 event = rb_reader_event(cpu_buffer);
4552 /* Always keep the time extend and data together */
4553 size = rb_event_ts_length(event);
4554 } while (len >= size);
4556 /* update bpage */
4557 local_set(&bpage->commit, pos);
4558 bpage->time_stamp = save_timestamp;
4560 /* we copied everything to the beginning */
4561 read = 0;
4562 } else {
4563 /* update the entry counter */
4564 cpu_buffer->read += rb_page_entries(reader);
4565 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4567 /* swap the pages */
4568 rb_init_page(bpage);
4569 bpage = reader->page;
4570 reader->page = *data_page;
4571 local_set(&reader->write, 0);
4572 local_set(&reader->entries, 0);
4573 reader->read = 0;
4574 *data_page = bpage;
4577 * Use the real_end for the data size,
4578 * This gives us a chance to store the lost events
4579 * on the page.
4581 if (reader->real_end)
4582 local_set(&bpage->commit, reader->real_end);
4584 ret = read;
4586 cpu_buffer->lost_events = 0;
4588 commit = local_read(&bpage->commit);
4590 * Set a flag in the commit field if we lost events
4592 if (missed_events) {
4593 /* If there is room at the end of the page to save the
4594 * missed events, then record it there.
4596 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4597 memcpy(&bpage->data[commit], &missed_events,
4598 sizeof(missed_events));
4599 local_add(RB_MISSED_STORED, &bpage->commit);
4600 commit += sizeof(missed_events);
4602 local_add(RB_MISSED_EVENTS, &bpage->commit);
4606 * This page may be off to user land. Zero it out here.
4608 if (commit < BUF_PAGE_SIZE)
4609 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4611 out_unlock:
4612 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4614 out:
4615 return ret;
4617 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4619 #ifdef CONFIG_HOTPLUG_CPU
4620 static int rb_cpu_notify(struct notifier_block *self,
4621 unsigned long action, void *hcpu)
4623 struct ring_buffer *buffer =
4624 container_of(self, struct ring_buffer, cpu_notify);
4625 long cpu = (long)hcpu;
4626 int cpu_i, nr_pages_same;
4627 unsigned int nr_pages;
4629 switch (action) {
4630 case CPU_UP_PREPARE:
4631 case CPU_UP_PREPARE_FROZEN:
4632 if (cpumask_test_cpu(cpu, buffer->cpumask))
4633 return NOTIFY_OK;
4635 nr_pages = 0;
4636 nr_pages_same = 1;
4637 /* check if all cpu sizes are same */
4638 for_each_buffer_cpu(buffer, cpu_i) {
4639 /* fill in the size from first enabled cpu */
4640 if (nr_pages == 0)
4641 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4642 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4643 nr_pages_same = 0;
4644 break;
4647 /* allocate minimum pages, user can later expand it */
4648 if (!nr_pages_same)
4649 nr_pages = 2;
4650 buffer->buffers[cpu] =
4651 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4652 if (!buffer->buffers[cpu]) {
4653 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4654 cpu);
4655 return NOTIFY_OK;
4657 smp_wmb();
4658 cpumask_set_cpu(cpu, buffer->cpumask);
4659 break;
4660 case CPU_DOWN_PREPARE:
4661 case CPU_DOWN_PREPARE_FROZEN:
4663 * Do nothing.
4664 * If we were to free the buffer, then the user would
4665 * lose any trace that was in the buffer.
4667 break;
4668 default:
4669 break;
4671 return NOTIFY_OK;
4673 #endif
4675 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4677 * This is a basic integrity check of the ring buffer.
4678 * Late in the boot cycle this test will run when configured in.
4679 * It will kick off a thread per CPU that will go into a loop
4680 * writing to the per cpu ring buffer various sizes of data.
4681 * Some of the data will be large items, some small.
4683 * Another thread is created that goes into a spin, sending out
4684 * IPIs to the other CPUs to also write into the ring buffer.
4685 * this is to test the nesting ability of the buffer.
4687 * Basic stats are recorded and reported. If something in the
4688 * ring buffer should happen that's not expected, a big warning
4689 * is displayed and all ring buffers are disabled.
4691 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4693 struct rb_test_data {
4694 struct ring_buffer *buffer;
4695 unsigned long events;
4696 unsigned long bytes_written;
4697 unsigned long bytes_alloc;
4698 unsigned long bytes_dropped;
4699 unsigned long events_nested;
4700 unsigned long bytes_written_nested;
4701 unsigned long bytes_alloc_nested;
4702 unsigned long bytes_dropped_nested;
4703 int min_size_nested;
4704 int max_size_nested;
4705 int max_size;
4706 int min_size;
4707 int cpu;
4708 int cnt;
4711 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4713 /* 1 meg per cpu */
4714 #define RB_TEST_BUFFER_SIZE 1048576
4716 static char rb_string[] __initdata =
4717 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4718 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4719 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4721 static bool rb_test_started __initdata;
4723 struct rb_item {
4724 int size;
4725 char str[];
4728 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4730 struct ring_buffer_event *event;
4731 struct rb_item *item;
4732 bool started;
4733 int event_len;
4734 int size;
4735 int len;
4736 int cnt;
4738 /* Have nested writes different that what is written */
4739 cnt = data->cnt + (nested ? 27 : 0);
4741 /* Multiply cnt by ~e, to make some unique increment */
4742 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4744 len = size + sizeof(struct rb_item);
4746 started = rb_test_started;
4747 /* read rb_test_started before checking buffer enabled */
4748 smp_rmb();
4750 event = ring_buffer_lock_reserve(data->buffer, len);
4751 if (!event) {
4752 /* Ignore dropped events before test starts. */
4753 if (started) {
4754 if (nested)
4755 data->bytes_dropped += len;
4756 else
4757 data->bytes_dropped_nested += len;
4759 return len;
4762 event_len = ring_buffer_event_length(event);
4764 if (RB_WARN_ON(data->buffer, event_len < len))
4765 goto out;
4767 item = ring_buffer_event_data(event);
4768 item->size = size;
4769 memcpy(item->str, rb_string, size);
4771 if (nested) {
4772 data->bytes_alloc_nested += event_len;
4773 data->bytes_written_nested += len;
4774 data->events_nested++;
4775 if (!data->min_size_nested || len < data->min_size_nested)
4776 data->min_size_nested = len;
4777 if (len > data->max_size_nested)
4778 data->max_size_nested = len;
4779 } else {
4780 data->bytes_alloc += event_len;
4781 data->bytes_written += len;
4782 data->events++;
4783 if (!data->min_size || len < data->min_size)
4784 data->max_size = len;
4785 if (len > data->max_size)
4786 data->max_size = len;
4789 out:
4790 ring_buffer_unlock_commit(data->buffer, event);
4792 return 0;
4795 static __init int rb_test(void *arg)
4797 struct rb_test_data *data = arg;
4799 while (!kthread_should_stop()) {
4800 rb_write_something(data, false);
4801 data->cnt++;
4803 set_current_state(TASK_INTERRUPTIBLE);
4804 /* Now sleep between a min of 100-300us and a max of 1ms */
4805 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4808 return 0;
4811 static __init void rb_ipi(void *ignore)
4813 struct rb_test_data *data;
4814 int cpu = smp_processor_id();
4816 data = &rb_data[cpu];
4817 rb_write_something(data, true);
4820 static __init int rb_hammer_test(void *arg)
4822 while (!kthread_should_stop()) {
4824 /* Send an IPI to all cpus to write data! */
4825 smp_call_function(rb_ipi, NULL, 1);
4826 /* No sleep, but for non preempt, let others run */
4827 schedule();
4830 return 0;
4833 static __init int test_ringbuffer(void)
4835 struct task_struct *rb_hammer;
4836 struct ring_buffer *buffer;
4837 int cpu;
4838 int ret = 0;
4840 pr_info("Running ring buffer tests...\n");
4842 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4843 if (WARN_ON(!buffer))
4844 return 0;
4846 /* Disable buffer so that threads can't write to it yet */
4847 ring_buffer_record_off(buffer);
4849 for_each_online_cpu(cpu) {
4850 rb_data[cpu].buffer = buffer;
4851 rb_data[cpu].cpu = cpu;
4852 rb_data[cpu].cnt = cpu;
4853 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4854 "rbtester/%d", cpu);
4855 if (WARN_ON(!rb_threads[cpu])) {
4856 pr_cont("FAILED\n");
4857 ret = -1;
4858 goto out_free;
4861 kthread_bind(rb_threads[cpu], cpu);
4862 wake_up_process(rb_threads[cpu]);
4865 /* Now create the rb hammer! */
4866 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4867 if (WARN_ON(!rb_hammer)) {
4868 pr_cont("FAILED\n");
4869 ret = -1;
4870 goto out_free;
4873 ring_buffer_record_on(buffer);
4875 * Show buffer is enabled before setting rb_test_started.
4876 * Yes there's a small race window where events could be
4877 * dropped and the thread wont catch it. But when a ring
4878 * buffer gets enabled, there will always be some kind of
4879 * delay before other CPUs see it. Thus, we don't care about
4880 * those dropped events. We care about events dropped after
4881 * the threads see that the buffer is active.
4883 smp_wmb();
4884 rb_test_started = true;
4886 set_current_state(TASK_INTERRUPTIBLE);
4887 /* Just run for 10 seconds */;
4888 schedule_timeout(10 * HZ);
4890 kthread_stop(rb_hammer);
4892 out_free:
4893 for_each_online_cpu(cpu) {
4894 if (!rb_threads[cpu])
4895 break;
4896 kthread_stop(rb_threads[cpu]);
4898 if (ret) {
4899 ring_buffer_free(buffer);
4900 return ret;
4903 /* Report! */
4904 pr_info("finished\n");
4905 for_each_online_cpu(cpu) {
4906 struct ring_buffer_event *event;
4907 struct rb_test_data *data = &rb_data[cpu];
4908 struct rb_item *item;
4909 unsigned long total_events;
4910 unsigned long total_dropped;
4911 unsigned long total_written;
4912 unsigned long total_alloc;
4913 unsigned long total_read = 0;
4914 unsigned long total_size = 0;
4915 unsigned long total_len = 0;
4916 unsigned long total_lost = 0;
4917 unsigned long lost;
4918 int big_event_size;
4919 int small_event_size;
4921 ret = -1;
4923 total_events = data->events + data->events_nested;
4924 total_written = data->bytes_written + data->bytes_written_nested;
4925 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4926 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4928 big_event_size = data->max_size + data->max_size_nested;
4929 small_event_size = data->min_size + data->min_size_nested;
4931 pr_info("CPU %d:\n", cpu);
4932 pr_info(" events: %ld\n", total_events);
4933 pr_info(" dropped bytes: %ld\n", total_dropped);
4934 pr_info(" alloced bytes: %ld\n", total_alloc);
4935 pr_info(" written bytes: %ld\n", total_written);
4936 pr_info(" biggest event: %d\n", big_event_size);
4937 pr_info(" smallest event: %d\n", small_event_size);
4939 if (RB_WARN_ON(buffer, total_dropped))
4940 break;
4942 ret = 0;
4944 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4945 total_lost += lost;
4946 item = ring_buffer_event_data(event);
4947 total_len += ring_buffer_event_length(event);
4948 total_size += item->size + sizeof(struct rb_item);
4949 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4950 pr_info("FAILED!\n");
4951 pr_info("buffer had: %.*s\n", item->size, item->str);
4952 pr_info("expected: %.*s\n", item->size, rb_string);
4953 RB_WARN_ON(buffer, 1);
4954 ret = -1;
4955 break;
4957 total_read++;
4959 if (ret)
4960 break;
4962 ret = -1;
4964 pr_info(" read events: %ld\n", total_read);
4965 pr_info(" lost events: %ld\n", total_lost);
4966 pr_info(" total events: %ld\n", total_lost + total_read);
4967 pr_info(" recorded len bytes: %ld\n", total_len);
4968 pr_info(" recorded size bytes: %ld\n", total_size);
4969 if (total_lost)
4970 pr_info(" With dropped events, record len and size may not match\n"
4971 " alloced and written from above\n");
4972 if (!total_lost) {
4973 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4974 total_size != total_written))
4975 break;
4977 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4978 break;
4980 ret = 0;
4982 if (!ret)
4983 pr_info("Ring buffer PASSED!\n");
4985 ring_buffer_free(buffer);
4986 return 0;
4989 late_initcall(test_ringbuffer);
4990 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */