staging: vt6655: IFRFbWriteEmbedded replace __iomem with vnt_private
[linux-2.6/btrfs-unstable.git] / drivers / cpufreq / exynos5250-cpufreq.c
blob3eafdc7ba7877f4eedc2484fa7208c32f5cf49eb
1 /*
2 * Copyright (c) 2010-20122Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
5 * EXYNOS5250 - CPU frequency scaling support
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/err.h>
15 #include <linux/clk.h>
16 #include <linux/io.h>
17 #include <linux/slab.h>
18 #include <linux/cpufreq.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
22 #include "exynos-cpufreq.h"
24 static struct clk *cpu_clk;
25 static struct clk *moutcore;
26 static struct clk *mout_mpll;
27 static struct clk *mout_apll;
28 static struct exynos_dvfs_info *cpufreq;
30 static unsigned int exynos5250_volt_table[] = {
31 1300000, 1250000, 1225000, 1200000, 1150000,
32 1125000, 1100000, 1075000, 1050000, 1025000,
33 1012500, 1000000, 975000, 950000, 937500,
34 925000
37 static struct cpufreq_frequency_table exynos5250_freq_table[] = {
38 {0, L0, 1700 * 1000},
39 {0, L1, 1600 * 1000},
40 {0, L2, 1500 * 1000},
41 {0, L3, 1400 * 1000},
42 {0, L4, 1300 * 1000},
43 {0, L5, 1200 * 1000},
44 {0, L6, 1100 * 1000},
45 {0, L7, 1000 * 1000},
46 {0, L8, 900 * 1000},
47 {0, L9, 800 * 1000},
48 {0, L10, 700 * 1000},
49 {0, L11, 600 * 1000},
50 {0, L12, 500 * 1000},
51 {0, L13, 400 * 1000},
52 {0, L14, 300 * 1000},
53 {0, L15, 200 * 1000},
54 {0, 0, CPUFREQ_TABLE_END},
57 static struct apll_freq apll_freq_5250[] = {
59 * values:
60 * freq
61 * clock divider for ARM, CPUD, ACP, PERIPH, ATB, PCLK_DBG, APLL, ARM2
62 * clock divider for COPY, HPM, RESERVED
63 * PLL M, P, S
65 APLL_FREQ(1700, 0, 3, 7, 7, 7, 3, 5, 0, 0, 2, 0, 425, 6, 0),
66 APLL_FREQ(1600, 0, 3, 7, 7, 7, 1, 4, 0, 0, 2, 0, 200, 3, 0),
67 APLL_FREQ(1500, 0, 2, 7, 7, 7, 1, 4, 0, 0, 2, 0, 250, 4, 0),
68 APLL_FREQ(1400, 0, 2, 7, 7, 6, 1, 4, 0, 0, 2, 0, 175, 3, 0),
69 APLL_FREQ(1300, 0, 2, 7, 7, 6, 1, 3, 0, 0, 2, 0, 325, 6, 0),
70 APLL_FREQ(1200, 0, 2, 7, 7, 5, 1, 3, 0, 0, 2, 0, 200, 4, 0),
71 APLL_FREQ(1100, 0, 3, 7, 7, 5, 1, 3, 0, 0, 2, 0, 275, 6, 0),
72 APLL_FREQ(1000, 0, 1, 7, 7, 4, 1, 2, 0, 0, 2, 0, 125, 3, 0),
73 APLL_FREQ(900, 0, 1, 7, 7, 4, 1, 2, 0, 0, 2, 0, 150, 4, 0),
74 APLL_FREQ(800, 0, 1, 7, 7, 4, 1, 2, 0, 0, 2, 0, 100, 3, 0),
75 APLL_FREQ(700, 0, 1, 7, 7, 3, 1, 1, 0, 0, 2, 0, 175, 3, 1),
76 APLL_FREQ(600, 0, 1, 7, 7, 3, 1, 1, 0, 0, 2, 0, 200, 4, 1),
77 APLL_FREQ(500, 0, 1, 7, 7, 2, 1, 1, 0, 0, 2, 0, 125, 3, 1),
78 APLL_FREQ(400, 0, 1, 7, 7, 2, 1, 1, 0, 0, 2, 0, 100, 3, 1),
79 APLL_FREQ(300, 0, 1, 7, 7, 1, 1, 1, 0, 0, 2, 0, 200, 4, 2),
80 APLL_FREQ(200, 0, 1, 7, 7, 1, 1, 1, 0, 0, 2, 0, 100, 3, 2),
83 static void set_clkdiv(unsigned int div_index)
85 unsigned int tmp;
87 /* Change Divider - CPU0 */
89 tmp = apll_freq_5250[div_index].clk_div_cpu0;
91 __raw_writel(tmp, cpufreq->cmu_regs + EXYNOS5_CLKDIV_CPU0);
93 while (__raw_readl(cpufreq->cmu_regs + EXYNOS5_CLKDIV_STATCPU0)
94 & 0x11111111)
95 cpu_relax();
97 /* Change Divider - CPU1 */
98 tmp = apll_freq_5250[div_index].clk_div_cpu1;
100 __raw_writel(tmp, cpufreq->cmu_regs + EXYNOS5_CLKDIV_CPU1);
102 while (__raw_readl(cpufreq->cmu_regs + EXYNOS5_CLKDIV_STATCPU1) & 0x11)
103 cpu_relax();
106 static void set_apll(unsigned int index)
108 unsigned int tmp;
109 unsigned int freq = apll_freq_5250[index].freq;
111 /* MUX_CORE_SEL = MPLL, ARMCLK uses MPLL for lock time */
112 clk_set_parent(moutcore, mout_mpll);
114 do {
115 cpu_relax();
116 tmp = (__raw_readl(cpufreq->cmu_regs + EXYNOS5_CLKMUX_STATCPU)
117 >> 16);
118 tmp &= 0x7;
119 } while (tmp != 0x2);
121 clk_set_rate(mout_apll, freq * 1000);
123 /* MUX_CORE_SEL = APLL */
124 clk_set_parent(moutcore, mout_apll);
126 do {
127 cpu_relax();
128 tmp = __raw_readl(cpufreq->cmu_regs + EXYNOS5_CLKMUX_STATCPU);
129 tmp &= (0x7 << 16);
130 } while (tmp != (0x1 << 16));
133 static void exynos5250_set_frequency(unsigned int old_index,
134 unsigned int new_index)
136 if (old_index > new_index) {
137 set_clkdiv(new_index);
138 set_apll(new_index);
139 } else if (old_index < new_index) {
140 set_apll(new_index);
141 set_clkdiv(new_index);
145 int exynos5250_cpufreq_init(struct exynos_dvfs_info *info)
147 struct device_node *np;
148 unsigned long rate;
151 * HACK: This is a temporary workaround to get access to clock
152 * controller registers directly and remove static mappings and
153 * dependencies on platform headers. It is necessary to enable
154 * Exynos multi-platform support and will be removed together with
155 * this whole driver as soon as Exynos gets migrated to use
156 * cpufreq-dt driver.
158 np = of_find_compatible_node(NULL, NULL, "samsung,exynos5250-clock");
159 if (!np) {
160 pr_err("%s: failed to find clock controller DT node\n",
161 __func__);
162 return -ENODEV;
165 info->cmu_regs = of_iomap(np, 0);
166 if (!info->cmu_regs) {
167 pr_err("%s: failed to map CMU registers\n", __func__);
168 return -EFAULT;
171 cpu_clk = clk_get(NULL, "armclk");
172 if (IS_ERR(cpu_clk))
173 return PTR_ERR(cpu_clk);
175 moutcore = clk_get(NULL, "mout_cpu");
176 if (IS_ERR(moutcore))
177 goto err_moutcore;
179 mout_mpll = clk_get(NULL, "mout_mpll");
180 if (IS_ERR(mout_mpll))
181 goto err_mout_mpll;
183 rate = clk_get_rate(mout_mpll) / 1000;
185 mout_apll = clk_get(NULL, "mout_apll");
186 if (IS_ERR(mout_apll))
187 goto err_mout_apll;
189 info->mpll_freq_khz = rate;
190 /* 800Mhz */
191 info->pll_safe_idx = L9;
192 info->cpu_clk = cpu_clk;
193 info->volt_table = exynos5250_volt_table;
194 info->freq_table = exynos5250_freq_table;
195 info->set_freq = exynos5250_set_frequency;
197 cpufreq = info;
199 return 0;
201 err_mout_apll:
202 clk_put(mout_mpll);
203 err_mout_mpll:
204 clk_put(moutcore);
205 err_moutcore:
206 clk_put(cpu_clk);
208 pr_err("%s: failed initialization\n", __func__);
209 return -EINVAL;