btrfs: create sprout should rename fsid on the sysfs as well
[linux-2.6/btrfs-unstable.git] / fs / btrfs / volumes.c
blob6ca0d9cc46f93734aa034e0349c1f714f8c9df97
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
56 static void lock_chunks(struct btrfs_root *root)
58 mutex_lock(&root->fs_info->chunk_mutex);
61 static void unlock_chunks(struct btrfs_root *root)
63 mutex_unlock(&root->fs_info->chunk_mutex);
66 static struct btrfs_fs_devices *__alloc_fs_devices(void)
68 struct btrfs_fs_devices *fs_devs;
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
74 mutex_init(&fs_devs->device_list_mutex);
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
80 return fs_devs;
83 /**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
92 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
94 struct btrfs_fs_devices *fs_devs;
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
105 return fs_devs;
108 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
116 rcu_string_free(device->name);
117 kfree(device);
119 kfree(fs_devices);
122 static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
125 int ret;
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
129 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
135 void btrfs_cleanup_fs_uuids(void)
137 struct btrfs_fs_devices *fs_devices;
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
143 free_fs_devices(fs_devices);
147 static struct btrfs_device *__alloc_device(void)
149 struct btrfs_device *dev;
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
158 spin_lock_init(&dev->io_lock);
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
165 return dev;
168 static noinline struct btrfs_device *__find_device(struct list_head *head,
169 u64 devid, u8 *uuid)
171 struct btrfs_device *dev;
173 list_for_each_entry(dev, head, dev_list) {
174 if (dev->devid == devid &&
175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
176 return dev;
179 return NULL;
182 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
184 struct btrfs_fs_devices *fs_devices;
186 list_for_each_entry(fs_devices, &fs_uuids, list) {
187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 return fs_devices;
190 return NULL;
193 static int
194 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 int flush, struct block_device **bdev,
196 struct buffer_head **bh)
198 int ret;
200 *bdev = blkdev_get_by_path(device_path, flags, holder);
202 if (IS_ERR(*bdev)) {
203 ret = PTR_ERR(*bdev);
204 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
205 goto error;
208 if (flush)
209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 ret = set_blocksize(*bdev, 4096);
211 if (ret) {
212 blkdev_put(*bdev, flags);
213 goto error;
215 invalidate_bdev(*bdev);
216 *bh = btrfs_read_dev_super(*bdev);
217 if (!*bh) {
218 ret = -EINVAL;
219 blkdev_put(*bdev, flags);
220 goto error;
223 return 0;
225 error:
226 *bdev = NULL;
227 *bh = NULL;
228 return ret;
231 static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 struct bio *head, struct bio *tail)
235 struct bio *old_head;
237 old_head = pending_bios->head;
238 pending_bios->head = head;
239 if (pending_bios->tail)
240 tail->bi_next = old_head;
241 else
242 pending_bios->tail = tail;
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
256 static noinline void run_scheduled_bios(struct btrfs_device *device)
258 struct bio *pending;
259 struct backing_dev_info *bdi;
260 struct btrfs_fs_info *fs_info;
261 struct btrfs_pending_bios *pending_bios;
262 struct bio *tail;
263 struct bio *cur;
264 int again = 0;
265 unsigned long num_run;
266 unsigned long batch_run = 0;
267 unsigned long limit;
268 unsigned long last_waited = 0;
269 int force_reg = 0;
270 int sync_pending = 0;
271 struct blk_plug plug;
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
279 blk_start_plug(&plug);
281 bdi = blk_get_backing_dev_info(device->bdev);
282 fs_info = device->dev_root->fs_info;
283 limit = btrfs_async_submit_limit(fs_info);
284 limit = limit * 2 / 3;
286 loop:
287 spin_lock(&device->io_lock);
289 loop_lock:
290 num_run = 0;
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
297 if (!force_reg && device->pending_sync_bios.head) {
298 pending_bios = &device->pending_sync_bios;
299 force_reg = 1;
300 } else {
301 pending_bios = &device->pending_bios;
302 force_reg = 0;
305 pending = pending_bios->head;
306 tail = pending_bios->tail;
307 WARN_ON(pending && !tail);
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
314 * device->running_pending is used to synchronize with the
315 * schedule_bio code.
317 if (device->pending_sync_bios.head == NULL &&
318 device->pending_bios.head == NULL) {
319 again = 0;
320 device->running_pending = 0;
321 } else {
322 again = 1;
323 device->running_pending = 1;
326 pending_bios->head = NULL;
327 pending_bios->tail = NULL;
329 spin_unlock(&device->io_lock);
331 while (pending) {
333 rmb();
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
337 if ((num_run > 32 &&
338 pending_bios != &device->pending_sync_bios &&
339 device->pending_sync_bios.head) ||
340 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 device->pending_bios.head)) {
342 spin_lock(&device->io_lock);
343 requeue_list(pending_bios, pending, tail);
344 goto loop_lock;
347 cur = pending;
348 pending = pending->bi_next;
349 cur->bi_next = NULL;
351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
352 waitqueue_active(&fs_info->async_submit_wait))
353 wake_up(&fs_info->async_submit_wait);
355 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
363 * we add more
365 if (pending_bios == &device->pending_sync_bios) {
366 sync_pending = 1;
367 } else if (sync_pending) {
368 blk_finish_plug(&plug);
369 blk_start_plug(&plug);
370 sync_pending = 0;
373 btrfsic_submit_bio(cur->bi_rw, cur);
374 num_run++;
375 batch_run++;
376 if (need_resched())
377 cond_resched();
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
382 * run instead
384 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
385 fs_info->fs_devices->open_devices > 1) {
386 struct io_context *ioc;
388 ioc = current->io_context;
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
399 if (ioc && ioc->nr_batch_requests > 0 &&
400 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 (last_waited == 0 ||
402 ioc->last_waited == last_waited)) {
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
409 last_waited = ioc->last_waited;
410 if (need_resched())
411 cond_resched();
412 continue;
414 spin_lock(&device->io_lock);
415 requeue_list(pending_bios, pending, tail);
416 device->running_pending = 1;
418 spin_unlock(&device->io_lock);
419 btrfs_queue_work(fs_info->submit_workers,
420 &device->work);
421 goto done;
423 /* unplug every 64 requests just for good measure */
424 if (batch_run % 64 == 0) {
425 blk_finish_plug(&plug);
426 blk_start_plug(&plug);
427 sync_pending = 0;
431 cond_resched();
432 if (again)
433 goto loop;
435 spin_lock(&device->io_lock);
436 if (device->pending_bios.head || device->pending_sync_bios.head)
437 goto loop_lock;
438 spin_unlock(&device->io_lock);
440 done:
441 blk_finish_plug(&plug);
444 static void pending_bios_fn(struct btrfs_work *work)
446 struct btrfs_device *device;
448 device = container_of(work, struct btrfs_device, work);
449 run_scheduled_bios(device);
453 * Add new device to list of registered devices
455 * Returns:
456 * 1 - first time device is seen
457 * 0 - device already known
458 * < 0 - error
460 static noinline int device_list_add(const char *path,
461 struct btrfs_super_block *disk_super,
462 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
464 struct btrfs_device *device;
465 struct btrfs_fs_devices *fs_devices;
466 struct rcu_string *name;
467 int ret = 0;
468 u64 found_transid = btrfs_super_generation(disk_super);
470 fs_devices = find_fsid(disk_super->fsid);
471 if (!fs_devices) {
472 fs_devices = alloc_fs_devices(disk_super->fsid);
473 if (IS_ERR(fs_devices))
474 return PTR_ERR(fs_devices);
476 list_add(&fs_devices->list, &fs_uuids);
477 fs_devices->latest_devid = devid;
478 fs_devices->latest_trans = found_transid;
480 device = NULL;
481 } else {
482 device = __find_device(&fs_devices->devices, devid,
483 disk_super->dev_item.uuid);
485 if (!device) {
486 if (fs_devices->opened)
487 return -EBUSY;
489 device = btrfs_alloc_device(NULL, &devid,
490 disk_super->dev_item.uuid);
491 if (IS_ERR(device)) {
492 /* we can safely leave the fs_devices entry around */
493 return PTR_ERR(device);
496 name = rcu_string_strdup(path, GFP_NOFS);
497 if (!name) {
498 kfree(device);
499 return -ENOMEM;
501 rcu_assign_pointer(device->name, name);
503 mutex_lock(&fs_devices->device_list_mutex);
504 list_add_rcu(&device->dev_list, &fs_devices->devices);
505 fs_devices->num_devices++;
506 mutex_unlock(&fs_devices->device_list_mutex);
508 ret = 1;
509 device->fs_devices = fs_devices;
510 } else if (!device->name || strcmp(device->name->str, path)) {
511 name = rcu_string_strdup(path, GFP_NOFS);
512 if (!name)
513 return -ENOMEM;
514 rcu_string_free(device->name);
515 rcu_assign_pointer(device->name, name);
516 if (device->missing) {
517 fs_devices->missing_devices--;
518 device->missing = 0;
522 if (found_transid > fs_devices->latest_trans) {
523 fs_devices->latest_devid = devid;
524 fs_devices->latest_trans = found_transid;
526 *fs_devices_ret = fs_devices;
528 return ret;
531 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
533 struct btrfs_fs_devices *fs_devices;
534 struct btrfs_device *device;
535 struct btrfs_device *orig_dev;
537 fs_devices = alloc_fs_devices(orig->fsid);
538 if (IS_ERR(fs_devices))
539 return fs_devices;
541 fs_devices->latest_devid = orig->latest_devid;
542 fs_devices->latest_trans = orig->latest_trans;
543 fs_devices->total_devices = orig->total_devices;
545 /* We have held the volume lock, it is safe to get the devices. */
546 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
547 struct rcu_string *name;
549 device = btrfs_alloc_device(NULL, &orig_dev->devid,
550 orig_dev->uuid);
551 if (IS_ERR(device))
552 goto error;
555 * This is ok to do without rcu read locked because we hold the
556 * uuid mutex so nothing we touch in here is going to disappear.
558 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
559 if (!name) {
560 kfree(device);
561 goto error;
563 rcu_assign_pointer(device->name, name);
565 list_add(&device->dev_list, &fs_devices->devices);
566 device->fs_devices = fs_devices;
567 fs_devices->num_devices++;
569 return fs_devices;
570 error:
571 free_fs_devices(fs_devices);
572 return ERR_PTR(-ENOMEM);
575 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
576 struct btrfs_fs_devices *fs_devices, int step)
578 struct btrfs_device *device, *next;
580 struct block_device *latest_bdev = NULL;
581 u64 latest_devid = 0;
582 u64 latest_transid = 0;
584 mutex_lock(&uuid_mutex);
585 again:
586 /* This is the initialized path, it is safe to release the devices. */
587 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
588 if (device->in_fs_metadata) {
589 if (!device->is_tgtdev_for_dev_replace &&
590 (!latest_transid ||
591 device->generation > latest_transid)) {
592 latest_devid = device->devid;
593 latest_transid = device->generation;
594 latest_bdev = device->bdev;
596 continue;
599 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
601 * In the first step, keep the device which has
602 * the correct fsid and the devid that is used
603 * for the dev_replace procedure.
604 * In the second step, the dev_replace state is
605 * read from the device tree and it is known
606 * whether the procedure is really active or
607 * not, which means whether this device is
608 * used or whether it should be removed.
610 if (step == 0 || device->is_tgtdev_for_dev_replace) {
611 continue;
614 if (device->bdev) {
615 blkdev_put(device->bdev, device->mode);
616 device->bdev = NULL;
617 fs_devices->open_devices--;
619 if (device->writeable) {
620 list_del_init(&device->dev_alloc_list);
621 device->writeable = 0;
622 if (!device->is_tgtdev_for_dev_replace)
623 fs_devices->rw_devices--;
625 list_del_init(&device->dev_list);
626 fs_devices->num_devices--;
627 rcu_string_free(device->name);
628 kfree(device);
631 if (fs_devices->seed) {
632 fs_devices = fs_devices->seed;
633 goto again;
636 fs_devices->latest_bdev = latest_bdev;
637 fs_devices->latest_devid = latest_devid;
638 fs_devices->latest_trans = latest_transid;
640 mutex_unlock(&uuid_mutex);
643 static void __free_device(struct work_struct *work)
645 struct btrfs_device *device;
647 device = container_of(work, struct btrfs_device, rcu_work);
649 if (device->bdev)
650 blkdev_put(device->bdev, device->mode);
652 rcu_string_free(device->name);
653 kfree(device);
656 static void free_device(struct rcu_head *head)
658 struct btrfs_device *device;
660 device = container_of(head, struct btrfs_device, rcu);
662 INIT_WORK(&device->rcu_work, __free_device);
663 schedule_work(&device->rcu_work);
666 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
668 struct btrfs_device *device;
670 if (--fs_devices->opened > 0)
671 return 0;
673 mutex_lock(&fs_devices->device_list_mutex);
674 list_for_each_entry(device, &fs_devices->devices, dev_list) {
675 struct btrfs_device *new_device;
676 struct rcu_string *name;
678 if (device->bdev)
679 fs_devices->open_devices--;
681 if (device->writeable &&
682 device->devid != BTRFS_DEV_REPLACE_DEVID) {
683 list_del_init(&device->dev_alloc_list);
684 fs_devices->rw_devices--;
687 if (device->can_discard)
688 fs_devices->num_can_discard--;
689 if (device->missing)
690 fs_devices->missing_devices--;
692 new_device = btrfs_alloc_device(NULL, &device->devid,
693 device->uuid);
694 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
696 /* Safe because we are under uuid_mutex */
697 if (device->name) {
698 name = rcu_string_strdup(device->name->str, GFP_NOFS);
699 BUG_ON(!name); /* -ENOMEM */
700 rcu_assign_pointer(new_device->name, name);
703 list_replace_rcu(&device->dev_list, &new_device->dev_list);
704 new_device->fs_devices = device->fs_devices;
706 call_rcu(&device->rcu, free_device);
708 mutex_unlock(&fs_devices->device_list_mutex);
710 WARN_ON(fs_devices->open_devices);
711 WARN_ON(fs_devices->rw_devices);
712 fs_devices->opened = 0;
713 fs_devices->seeding = 0;
715 return 0;
718 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
720 struct btrfs_fs_devices *seed_devices = NULL;
721 int ret;
723 mutex_lock(&uuid_mutex);
724 ret = __btrfs_close_devices(fs_devices);
725 if (!fs_devices->opened) {
726 seed_devices = fs_devices->seed;
727 fs_devices->seed = NULL;
729 mutex_unlock(&uuid_mutex);
731 while (seed_devices) {
732 fs_devices = seed_devices;
733 seed_devices = fs_devices->seed;
734 __btrfs_close_devices(fs_devices);
735 free_fs_devices(fs_devices);
738 * Wait for rcu kworkers under __btrfs_close_devices
739 * to finish all blkdev_puts so device is really
740 * free when umount is done.
742 rcu_barrier();
743 return ret;
746 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
747 fmode_t flags, void *holder)
749 struct request_queue *q;
750 struct block_device *bdev;
751 struct list_head *head = &fs_devices->devices;
752 struct btrfs_device *device;
753 struct block_device *latest_bdev = NULL;
754 struct buffer_head *bh;
755 struct btrfs_super_block *disk_super;
756 u64 latest_devid = 0;
757 u64 latest_transid = 0;
758 u64 devid;
759 int seeding = 1;
760 int ret = 0;
762 flags |= FMODE_EXCL;
764 list_for_each_entry(device, head, dev_list) {
765 if (device->bdev)
766 continue;
767 if (!device->name)
768 continue;
770 /* Just open everything we can; ignore failures here */
771 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
772 &bdev, &bh))
773 continue;
775 disk_super = (struct btrfs_super_block *)bh->b_data;
776 devid = btrfs_stack_device_id(&disk_super->dev_item);
777 if (devid != device->devid)
778 goto error_brelse;
780 if (memcmp(device->uuid, disk_super->dev_item.uuid,
781 BTRFS_UUID_SIZE))
782 goto error_brelse;
784 device->generation = btrfs_super_generation(disk_super);
785 if (!latest_transid || device->generation > latest_transid) {
786 latest_devid = devid;
787 latest_transid = device->generation;
788 latest_bdev = bdev;
791 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
792 device->writeable = 0;
793 } else {
794 device->writeable = !bdev_read_only(bdev);
795 seeding = 0;
798 q = bdev_get_queue(bdev);
799 if (blk_queue_discard(q)) {
800 device->can_discard = 1;
801 fs_devices->num_can_discard++;
804 device->bdev = bdev;
805 device->in_fs_metadata = 0;
806 device->mode = flags;
808 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
809 fs_devices->rotating = 1;
811 fs_devices->open_devices++;
812 if (device->writeable &&
813 device->devid != BTRFS_DEV_REPLACE_DEVID) {
814 fs_devices->rw_devices++;
815 list_add(&device->dev_alloc_list,
816 &fs_devices->alloc_list);
818 brelse(bh);
819 continue;
821 error_brelse:
822 brelse(bh);
823 blkdev_put(bdev, flags);
824 continue;
826 if (fs_devices->open_devices == 0) {
827 ret = -EINVAL;
828 goto out;
830 fs_devices->seeding = seeding;
831 fs_devices->opened = 1;
832 fs_devices->latest_bdev = latest_bdev;
833 fs_devices->latest_devid = latest_devid;
834 fs_devices->latest_trans = latest_transid;
835 fs_devices->total_rw_bytes = 0;
836 out:
837 return ret;
840 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
841 fmode_t flags, void *holder)
843 int ret;
845 mutex_lock(&uuid_mutex);
846 if (fs_devices->opened) {
847 fs_devices->opened++;
848 ret = 0;
849 } else {
850 ret = __btrfs_open_devices(fs_devices, flags, holder);
852 mutex_unlock(&uuid_mutex);
853 return ret;
857 * Look for a btrfs signature on a device. This may be called out of the mount path
858 * and we are not allowed to call set_blocksize during the scan. The superblock
859 * is read via pagecache
861 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
862 struct btrfs_fs_devices **fs_devices_ret)
864 struct btrfs_super_block *disk_super;
865 struct block_device *bdev;
866 struct page *page;
867 void *p;
868 int ret = -EINVAL;
869 u64 devid;
870 u64 transid;
871 u64 total_devices;
872 u64 bytenr;
873 pgoff_t index;
876 * we would like to check all the supers, but that would make
877 * a btrfs mount succeed after a mkfs from a different FS.
878 * So, we need to add a special mount option to scan for
879 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
881 bytenr = btrfs_sb_offset(0);
882 flags |= FMODE_EXCL;
883 mutex_lock(&uuid_mutex);
885 bdev = blkdev_get_by_path(path, flags, holder);
887 if (IS_ERR(bdev)) {
888 ret = PTR_ERR(bdev);
889 goto error;
892 /* make sure our super fits in the device */
893 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
894 goto error_bdev_put;
896 /* make sure our super fits in the page */
897 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
898 goto error_bdev_put;
900 /* make sure our super doesn't straddle pages on disk */
901 index = bytenr >> PAGE_CACHE_SHIFT;
902 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
903 goto error_bdev_put;
905 /* pull in the page with our super */
906 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
907 index, GFP_NOFS);
909 if (IS_ERR_OR_NULL(page))
910 goto error_bdev_put;
912 p = kmap(page);
914 /* align our pointer to the offset of the super block */
915 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
917 if (btrfs_super_bytenr(disk_super) != bytenr ||
918 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
919 goto error_unmap;
921 devid = btrfs_stack_device_id(&disk_super->dev_item);
922 transid = btrfs_super_generation(disk_super);
923 total_devices = btrfs_super_num_devices(disk_super);
925 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
926 if (ret > 0) {
927 if (disk_super->label[0]) {
928 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
929 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
930 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
931 } else {
932 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
935 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
936 ret = 0;
938 if (!ret && fs_devices_ret)
939 (*fs_devices_ret)->total_devices = total_devices;
941 error_unmap:
942 kunmap(page);
943 page_cache_release(page);
945 error_bdev_put:
946 blkdev_put(bdev, flags);
947 error:
948 mutex_unlock(&uuid_mutex);
949 return ret;
952 /* helper to account the used device space in the range */
953 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
954 u64 end, u64 *length)
956 struct btrfs_key key;
957 struct btrfs_root *root = device->dev_root;
958 struct btrfs_dev_extent *dev_extent;
959 struct btrfs_path *path;
960 u64 extent_end;
961 int ret;
962 int slot;
963 struct extent_buffer *l;
965 *length = 0;
967 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
968 return 0;
970 path = btrfs_alloc_path();
971 if (!path)
972 return -ENOMEM;
973 path->reada = 2;
975 key.objectid = device->devid;
976 key.offset = start;
977 key.type = BTRFS_DEV_EXTENT_KEY;
979 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
980 if (ret < 0)
981 goto out;
982 if (ret > 0) {
983 ret = btrfs_previous_item(root, path, key.objectid, key.type);
984 if (ret < 0)
985 goto out;
988 while (1) {
989 l = path->nodes[0];
990 slot = path->slots[0];
991 if (slot >= btrfs_header_nritems(l)) {
992 ret = btrfs_next_leaf(root, path);
993 if (ret == 0)
994 continue;
995 if (ret < 0)
996 goto out;
998 break;
1000 btrfs_item_key_to_cpu(l, &key, slot);
1002 if (key.objectid < device->devid)
1003 goto next;
1005 if (key.objectid > device->devid)
1006 break;
1008 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1009 goto next;
1011 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1012 extent_end = key.offset + btrfs_dev_extent_length(l,
1013 dev_extent);
1014 if (key.offset <= start && extent_end > end) {
1015 *length = end - start + 1;
1016 break;
1017 } else if (key.offset <= start && extent_end > start)
1018 *length += extent_end - start;
1019 else if (key.offset > start && extent_end <= end)
1020 *length += extent_end - key.offset;
1021 else if (key.offset > start && key.offset <= end) {
1022 *length += end - key.offset + 1;
1023 break;
1024 } else if (key.offset > end)
1025 break;
1027 next:
1028 path->slots[0]++;
1030 ret = 0;
1031 out:
1032 btrfs_free_path(path);
1033 return ret;
1036 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1037 struct btrfs_device *device,
1038 u64 *start, u64 len)
1040 struct extent_map *em;
1041 int ret = 0;
1043 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1044 struct map_lookup *map;
1045 int i;
1047 map = (struct map_lookup *)em->bdev;
1048 for (i = 0; i < map->num_stripes; i++) {
1049 if (map->stripes[i].dev != device)
1050 continue;
1051 if (map->stripes[i].physical >= *start + len ||
1052 map->stripes[i].physical + em->orig_block_len <=
1053 *start)
1054 continue;
1055 *start = map->stripes[i].physical +
1056 em->orig_block_len;
1057 ret = 1;
1061 return ret;
1066 * find_free_dev_extent - find free space in the specified device
1067 * @device: the device which we search the free space in
1068 * @num_bytes: the size of the free space that we need
1069 * @start: store the start of the free space.
1070 * @len: the size of the free space. that we find, or the size of the max
1071 * free space if we don't find suitable free space
1073 * this uses a pretty simple search, the expectation is that it is
1074 * called very infrequently and that a given device has a small number
1075 * of extents
1077 * @start is used to store the start of the free space if we find. But if we
1078 * don't find suitable free space, it will be used to store the start position
1079 * of the max free space.
1081 * @len is used to store the size of the free space that we find.
1082 * But if we don't find suitable free space, it is used to store the size of
1083 * the max free space.
1085 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1086 struct btrfs_device *device, u64 num_bytes,
1087 u64 *start, u64 *len)
1089 struct btrfs_key key;
1090 struct btrfs_root *root = device->dev_root;
1091 struct btrfs_dev_extent *dev_extent;
1092 struct btrfs_path *path;
1093 u64 hole_size;
1094 u64 max_hole_start;
1095 u64 max_hole_size;
1096 u64 extent_end;
1097 u64 search_start;
1098 u64 search_end = device->total_bytes;
1099 int ret;
1100 int slot;
1101 struct extent_buffer *l;
1103 /* FIXME use last free of some kind */
1105 /* we don't want to overwrite the superblock on the drive,
1106 * so we make sure to start at an offset of at least 1MB
1108 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1110 path = btrfs_alloc_path();
1111 if (!path)
1112 return -ENOMEM;
1113 again:
1114 max_hole_start = search_start;
1115 max_hole_size = 0;
1116 hole_size = 0;
1118 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1119 ret = -ENOSPC;
1120 goto out;
1123 path->reada = 2;
1124 path->search_commit_root = 1;
1125 path->skip_locking = 1;
1127 key.objectid = device->devid;
1128 key.offset = search_start;
1129 key.type = BTRFS_DEV_EXTENT_KEY;
1131 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1132 if (ret < 0)
1133 goto out;
1134 if (ret > 0) {
1135 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1136 if (ret < 0)
1137 goto out;
1140 while (1) {
1141 l = path->nodes[0];
1142 slot = path->slots[0];
1143 if (slot >= btrfs_header_nritems(l)) {
1144 ret = btrfs_next_leaf(root, path);
1145 if (ret == 0)
1146 continue;
1147 if (ret < 0)
1148 goto out;
1150 break;
1152 btrfs_item_key_to_cpu(l, &key, slot);
1154 if (key.objectid < device->devid)
1155 goto next;
1157 if (key.objectid > device->devid)
1158 break;
1160 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1161 goto next;
1163 if (key.offset > search_start) {
1164 hole_size = key.offset - search_start;
1167 * Have to check before we set max_hole_start, otherwise
1168 * we could end up sending back this offset anyway.
1170 if (contains_pending_extent(trans, device,
1171 &search_start,
1172 hole_size))
1173 hole_size = 0;
1175 if (hole_size > max_hole_size) {
1176 max_hole_start = search_start;
1177 max_hole_size = hole_size;
1181 * If this free space is greater than which we need,
1182 * it must be the max free space that we have found
1183 * until now, so max_hole_start must point to the start
1184 * of this free space and the length of this free space
1185 * is stored in max_hole_size. Thus, we return
1186 * max_hole_start and max_hole_size and go back to the
1187 * caller.
1189 if (hole_size >= num_bytes) {
1190 ret = 0;
1191 goto out;
1195 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1196 extent_end = key.offset + btrfs_dev_extent_length(l,
1197 dev_extent);
1198 if (extent_end > search_start)
1199 search_start = extent_end;
1200 next:
1201 path->slots[0]++;
1202 cond_resched();
1206 * At this point, search_start should be the end of
1207 * allocated dev extents, and when shrinking the device,
1208 * search_end may be smaller than search_start.
1210 if (search_end > search_start)
1211 hole_size = search_end - search_start;
1213 if (hole_size > max_hole_size) {
1214 max_hole_start = search_start;
1215 max_hole_size = hole_size;
1218 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1219 btrfs_release_path(path);
1220 goto again;
1223 /* See above. */
1224 if (hole_size < num_bytes)
1225 ret = -ENOSPC;
1226 else
1227 ret = 0;
1229 out:
1230 btrfs_free_path(path);
1231 *start = max_hole_start;
1232 if (len)
1233 *len = max_hole_size;
1234 return ret;
1237 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1238 struct btrfs_device *device,
1239 u64 start)
1241 int ret;
1242 struct btrfs_path *path;
1243 struct btrfs_root *root = device->dev_root;
1244 struct btrfs_key key;
1245 struct btrfs_key found_key;
1246 struct extent_buffer *leaf = NULL;
1247 struct btrfs_dev_extent *extent = NULL;
1249 path = btrfs_alloc_path();
1250 if (!path)
1251 return -ENOMEM;
1253 key.objectid = device->devid;
1254 key.offset = start;
1255 key.type = BTRFS_DEV_EXTENT_KEY;
1256 again:
1257 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1258 if (ret > 0) {
1259 ret = btrfs_previous_item(root, path, key.objectid,
1260 BTRFS_DEV_EXTENT_KEY);
1261 if (ret)
1262 goto out;
1263 leaf = path->nodes[0];
1264 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1265 extent = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_dev_extent);
1267 BUG_ON(found_key.offset > start || found_key.offset +
1268 btrfs_dev_extent_length(leaf, extent) < start);
1269 key = found_key;
1270 btrfs_release_path(path);
1271 goto again;
1272 } else if (ret == 0) {
1273 leaf = path->nodes[0];
1274 extent = btrfs_item_ptr(leaf, path->slots[0],
1275 struct btrfs_dev_extent);
1276 } else {
1277 btrfs_error(root->fs_info, ret, "Slot search failed");
1278 goto out;
1281 if (device->bytes_used > 0) {
1282 u64 len = btrfs_dev_extent_length(leaf, extent);
1283 device->bytes_used -= len;
1284 spin_lock(&root->fs_info->free_chunk_lock);
1285 root->fs_info->free_chunk_space += len;
1286 spin_unlock(&root->fs_info->free_chunk_lock);
1288 ret = btrfs_del_item(trans, root, path);
1289 if (ret) {
1290 btrfs_error(root->fs_info, ret,
1291 "Failed to remove dev extent item");
1293 out:
1294 btrfs_free_path(path);
1295 return ret;
1298 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1299 struct btrfs_device *device,
1300 u64 chunk_tree, u64 chunk_objectid,
1301 u64 chunk_offset, u64 start, u64 num_bytes)
1303 int ret;
1304 struct btrfs_path *path;
1305 struct btrfs_root *root = device->dev_root;
1306 struct btrfs_dev_extent *extent;
1307 struct extent_buffer *leaf;
1308 struct btrfs_key key;
1310 WARN_ON(!device->in_fs_metadata);
1311 WARN_ON(device->is_tgtdev_for_dev_replace);
1312 path = btrfs_alloc_path();
1313 if (!path)
1314 return -ENOMEM;
1316 key.objectid = device->devid;
1317 key.offset = start;
1318 key.type = BTRFS_DEV_EXTENT_KEY;
1319 ret = btrfs_insert_empty_item(trans, root, path, &key,
1320 sizeof(*extent));
1321 if (ret)
1322 goto out;
1324 leaf = path->nodes[0];
1325 extent = btrfs_item_ptr(leaf, path->slots[0],
1326 struct btrfs_dev_extent);
1327 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1328 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1329 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1331 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1332 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1334 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1335 btrfs_mark_buffer_dirty(leaf);
1336 out:
1337 btrfs_free_path(path);
1338 return ret;
1341 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1343 struct extent_map_tree *em_tree;
1344 struct extent_map *em;
1345 struct rb_node *n;
1346 u64 ret = 0;
1348 em_tree = &fs_info->mapping_tree.map_tree;
1349 read_lock(&em_tree->lock);
1350 n = rb_last(&em_tree->map);
1351 if (n) {
1352 em = rb_entry(n, struct extent_map, rb_node);
1353 ret = em->start + em->len;
1355 read_unlock(&em_tree->lock);
1357 return ret;
1360 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1361 u64 *devid_ret)
1363 int ret;
1364 struct btrfs_key key;
1365 struct btrfs_key found_key;
1366 struct btrfs_path *path;
1368 path = btrfs_alloc_path();
1369 if (!path)
1370 return -ENOMEM;
1372 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1373 key.type = BTRFS_DEV_ITEM_KEY;
1374 key.offset = (u64)-1;
1376 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1377 if (ret < 0)
1378 goto error;
1380 BUG_ON(ret == 0); /* Corruption */
1382 ret = btrfs_previous_item(fs_info->chunk_root, path,
1383 BTRFS_DEV_ITEMS_OBJECTID,
1384 BTRFS_DEV_ITEM_KEY);
1385 if (ret) {
1386 *devid_ret = 1;
1387 } else {
1388 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1389 path->slots[0]);
1390 *devid_ret = found_key.offset + 1;
1392 ret = 0;
1393 error:
1394 btrfs_free_path(path);
1395 return ret;
1399 * the device information is stored in the chunk root
1400 * the btrfs_device struct should be fully filled in
1402 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_device *device)
1406 int ret;
1407 struct btrfs_path *path;
1408 struct btrfs_dev_item *dev_item;
1409 struct extent_buffer *leaf;
1410 struct btrfs_key key;
1411 unsigned long ptr;
1413 root = root->fs_info->chunk_root;
1415 path = btrfs_alloc_path();
1416 if (!path)
1417 return -ENOMEM;
1419 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1420 key.type = BTRFS_DEV_ITEM_KEY;
1421 key.offset = device->devid;
1423 ret = btrfs_insert_empty_item(trans, root, path, &key,
1424 sizeof(*dev_item));
1425 if (ret)
1426 goto out;
1428 leaf = path->nodes[0];
1429 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1431 btrfs_set_device_id(leaf, dev_item, device->devid);
1432 btrfs_set_device_generation(leaf, dev_item, 0);
1433 btrfs_set_device_type(leaf, dev_item, device->type);
1434 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1435 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1436 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1437 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1438 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1439 btrfs_set_device_group(leaf, dev_item, 0);
1440 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1441 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1442 btrfs_set_device_start_offset(leaf, dev_item, 0);
1444 ptr = btrfs_device_uuid(dev_item);
1445 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1446 ptr = btrfs_device_fsid(dev_item);
1447 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1448 btrfs_mark_buffer_dirty(leaf);
1450 ret = 0;
1451 out:
1452 btrfs_free_path(path);
1453 return ret;
1457 * Function to update ctime/mtime for a given device path.
1458 * Mainly used for ctime/mtime based probe like libblkid.
1460 static void update_dev_time(char *path_name)
1462 struct file *filp;
1464 filp = filp_open(path_name, O_RDWR, 0);
1465 if (!filp)
1466 return;
1467 file_update_time(filp);
1468 filp_close(filp, NULL);
1469 return;
1472 static int btrfs_rm_dev_item(struct btrfs_root *root,
1473 struct btrfs_device *device)
1475 int ret;
1476 struct btrfs_path *path;
1477 struct btrfs_key key;
1478 struct btrfs_trans_handle *trans;
1480 root = root->fs_info->chunk_root;
1482 path = btrfs_alloc_path();
1483 if (!path)
1484 return -ENOMEM;
1486 trans = btrfs_start_transaction(root, 0);
1487 if (IS_ERR(trans)) {
1488 btrfs_free_path(path);
1489 return PTR_ERR(trans);
1491 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1492 key.type = BTRFS_DEV_ITEM_KEY;
1493 key.offset = device->devid;
1494 lock_chunks(root);
1496 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1497 if (ret < 0)
1498 goto out;
1500 if (ret > 0) {
1501 ret = -ENOENT;
1502 goto out;
1505 ret = btrfs_del_item(trans, root, path);
1506 if (ret)
1507 goto out;
1508 out:
1509 btrfs_free_path(path);
1510 unlock_chunks(root);
1511 btrfs_commit_transaction(trans, root);
1512 return ret;
1515 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1517 struct btrfs_device *device;
1518 struct btrfs_device *next_device;
1519 struct block_device *bdev;
1520 struct buffer_head *bh = NULL;
1521 struct btrfs_super_block *disk_super;
1522 struct btrfs_fs_devices *cur_devices;
1523 u64 all_avail;
1524 u64 devid;
1525 u64 num_devices;
1526 u8 *dev_uuid;
1527 unsigned seq;
1528 int ret = 0;
1529 bool clear_super = false;
1531 mutex_lock(&uuid_mutex);
1533 do {
1534 seq = read_seqbegin(&root->fs_info->profiles_lock);
1536 all_avail = root->fs_info->avail_data_alloc_bits |
1537 root->fs_info->avail_system_alloc_bits |
1538 root->fs_info->avail_metadata_alloc_bits;
1539 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1541 num_devices = root->fs_info->fs_devices->num_devices;
1542 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1543 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1544 WARN_ON(num_devices < 1);
1545 num_devices--;
1547 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1549 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1550 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1551 goto out;
1554 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1555 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1556 goto out;
1559 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1560 root->fs_info->fs_devices->rw_devices <= 2) {
1561 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1562 goto out;
1564 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1565 root->fs_info->fs_devices->rw_devices <= 3) {
1566 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1567 goto out;
1570 if (strcmp(device_path, "missing") == 0) {
1571 struct list_head *devices;
1572 struct btrfs_device *tmp;
1574 device = NULL;
1575 devices = &root->fs_info->fs_devices->devices;
1577 * It is safe to read the devices since the volume_mutex
1578 * is held.
1580 list_for_each_entry(tmp, devices, dev_list) {
1581 if (tmp->in_fs_metadata &&
1582 !tmp->is_tgtdev_for_dev_replace &&
1583 !tmp->bdev) {
1584 device = tmp;
1585 break;
1588 bdev = NULL;
1589 bh = NULL;
1590 disk_super = NULL;
1591 if (!device) {
1592 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1593 goto out;
1595 } else {
1596 ret = btrfs_get_bdev_and_sb(device_path,
1597 FMODE_WRITE | FMODE_EXCL,
1598 root->fs_info->bdev_holder, 0,
1599 &bdev, &bh);
1600 if (ret)
1601 goto out;
1602 disk_super = (struct btrfs_super_block *)bh->b_data;
1603 devid = btrfs_stack_device_id(&disk_super->dev_item);
1604 dev_uuid = disk_super->dev_item.uuid;
1605 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1606 disk_super->fsid);
1607 if (!device) {
1608 ret = -ENOENT;
1609 goto error_brelse;
1613 if (device->is_tgtdev_for_dev_replace) {
1614 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1615 goto error_brelse;
1618 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1619 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1620 goto error_brelse;
1623 if (device->writeable) {
1624 lock_chunks(root);
1625 list_del_init(&device->dev_alloc_list);
1626 unlock_chunks(root);
1627 root->fs_info->fs_devices->rw_devices--;
1628 clear_super = true;
1631 mutex_unlock(&uuid_mutex);
1632 ret = btrfs_shrink_device(device, 0);
1633 mutex_lock(&uuid_mutex);
1634 if (ret)
1635 goto error_undo;
1638 * TODO: the superblock still includes this device in its num_devices
1639 * counter although write_all_supers() is not locked out. This
1640 * could give a filesystem state which requires a degraded mount.
1642 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1643 if (ret)
1644 goto error_undo;
1646 spin_lock(&root->fs_info->free_chunk_lock);
1647 root->fs_info->free_chunk_space = device->total_bytes -
1648 device->bytes_used;
1649 spin_unlock(&root->fs_info->free_chunk_lock);
1651 device->in_fs_metadata = 0;
1652 btrfs_scrub_cancel_dev(root->fs_info, device);
1655 * the device list mutex makes sure that we don't change
1656 * the device list while someone else is writing out all
1657 * the device supers. Whoever is writing all supers, should
1658 * lock the device list mutex before getting the number of
1659 * devices in the super block (super_copy). Conversely,
1660 * whoever updates the number of devices in the super block
1661 * (super_copy) should hold the device list mutex.
1664 cur_devices = device->fs_devices;
1665 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1666 list_del_rcu(&device->dev_list);
1668 device->fs_devices->num_devices--;
1669 device->fs_devices->total_devices--;
1671 if (device->missing)
1672 root->fs_info->fs_devices->missing_devices--;
1674 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1675 struct btrfs_device, dev_list);
1676 if (device->bdev == root->fs_info->sb->s_bdev)
1677 root->fs_info->sb->s_bdev = next_device->bdev;
1678 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1679 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1681 if (device->bdev)
1682 device->fs_devices->open_devices--;
1684 /* remove sysfs entry */
1685 btrfs_kobj_rm_device(root->fs_info, device);
1687 call_rcu(&device->rcu, free_device);
1689 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1690 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1691 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1693 if (cur_devices->open_devices == 0) {
1694 struct btrfs_fs_devices *fs_devices;
1695 fs_devices = root->fs_info->fs_devices;
1696 while (fs_devices) {
1697 if (fs_devices->seed == cur_devices) {
1698 fs_devices->seed = cur_devices->seed;
1699 break;
1701 fs_devices = fs_devices->seed;
1703 cur_devices->seed = NULL;
1704 lock_chunks(root);
1705 __btrfs_close_devices(cur_devices);
1706 unlock_chunks(root);
1707 free_fs_devices(cur_devices);
1710 root->fs_info->num_tolerated_disk_barrier_failures =
1711 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1714 * at this point, the device is zero sized. We want to
1715 * remove it from the devices list and zero out the old super
1717 if (clear_super && disk_super) {
1718 u64 bytenr;
1719 int i;
1721 /* make sure this device isn't detected as part of
1722 * the FS anymore
1724 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1725 set_buffer_dirty(bh);
1726 sync_dirty_buffer(bh);
1728 /* clear the mirror copies of super block on the disk
1729 * being removed, 0th copy is been taken care above and
1730 * the below would take of the rest
1732 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1733 bytenr = btrfs_sb_offset(i);
1734 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1735 i_size_read(bdev->bd_inode))
1736 break;
1738 brelse(bh);
1739 bh = __bread(bdev, bytenr / 4096,
1740 BTRFS_SUPER_INFO_SIZE);
1741 if (!bh)
1742 continue;
1744 disk_super = (struct btrfs_super_block *)bh->b_data;
1746 if (btrfs_super_bytenr(disk_super) != bytenr ||
1747 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1748 continue;
1750 memset(&disk_super->magic, 0,
1751 sizeof(disk_super->magic));
1752 set_buffer_dirty(bh);
1753 sync_dirty_buffer(bh);
1757 ret = 0;
1759 if (bdev) {
1760 /* Notify udev that device has changed */
1761 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1763 /* Update ctime/mtime for device path for libblkid */
1764 update_dev_time(device_path);
1767 error_brelse:
1768 brelse(bh);
1769 if (bdev)
1770 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1771 out:
1772 mutex_unlock(&uuid_mutex);
1773 return ret;
1774 error_undo:
1775 if (device->writeable) {
1776 lock_chunks(root);
1777 list_add(&device->dev_alloc_list,
1778 &root->fs_info->fs_devices->alloc_list);
1779 unlock_chunks(root);
1780 root->fs_info->fs_devices->rw_devices++;
1782 goto error_brelse;
1785 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1786 struct btrfs_device *srcdev)
1788 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1790 list_del_rcu(&srcdev->dev_list);
1791 list_del_rcu(&srcdev->dev_alloc_list);
1792 fs_info->fs_devices->num_devices--;
1793 if (srcdev->missing) {
1794 fs_info->fs_devices->missing_devices--;
1795 fs_info->fs_devices->rw_devices++;
1797 if (srcdev->can_discard)
1798 fs_info->fs_devices->num_can_discard--;
1799 if (srcdev->bdev) {
1800 fs_info->fs_devices->open_devices--;
1802 /* zero out the old super */
1803 btrfs_scratch_superblock(srcdev);
1806 call_rcu(&srcdev->rcu, free_device);
1809 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1810 struct btrfs_device *tgtdev)
1812 struct btrfs_device *next_device;
1814 WARN_ON(!tgtdev);
1815 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1816 if (tgtdev->bdev) {
1817 btrfs_scratch_superblock(tgtdev);
1818 fs_info->fs_devices->open_devices--;
1820 fs_info->fs_devices->num_devices--;
1821 if (tgtdev->can_discard)
1822 fs_info->fs_devices->num_can_discard++;
1824 next_device = list_entry(fs_info->fs_devices->devices.next,
1825 struct btrfs_device, dev_list);
1826 if (tgtdev->bdev == fs_info->sb->s_bdev)
1827 fs_info->sb->s_bdev = next_device->bdev;
1828 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1829 fs_info->fs_devices->latest_bdev = next_device->bdev;
1830 list_del_rcu(&tgtdev->dev_list);
1832 call_rcu(&tgtdev->rcu, free_device);
1834 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1837 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1838 struct btrfs_device **device)
1840 int ret = 0;
1841 struct btrfs_super_block *disk_super;
1842 u64 devid;
1843 u8 *dev_uuid;
1844 struct block_device *bdev;
1845 struct buffer_head *bh;
1847 *device = NULL;
1848 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1849 root->fs_info->bdev_holder, 0, &bdev, &bh);
1850 if (ret)
1851 return ret;
1852 disk_super = (struct btrfs_super_block *)bh->b_data;
1853 devid = btrfs_stack_device_id(&disk_super->dev_item);
1854 dev_uuid = disk_super->dev_item.uuid;
1855 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1856 disk_super->fsid);
1857 brelse(bh);
1858 if (!*device)
1859 ret = -ENOENT;
1860 blkdev_put(bdev, FMODE_READ);
1861 return ret;
1864 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1865 char *device_path,
1866 struct btrfs_device **device)
1868 *device = NULL;
1869 if (strcmp(device_path, "missing") == 0) {
1870 struct list_head *devices;
1871 struct btrfs_device *tmp;
1873 devices = &root->fs_info->fs_devices->devices;
1875 * It is safe to read the devices since the volume_mutex
1876 * is held by the caller.
1878 list_for_each_entry(tmp, devices, dev_list) {
1879 if (tmp->in_fs_metadata && !tmp->bdev) {
1880 *device = tmp;
1881 break;
1885 if (!*device) {
1886 btrfs_err(root->fs_info, "no missing device found");
1887 return -ENOENT;
1890 return 0;
1891 } else {
1892 return btrfs_find_device_by_path(root, device_path, device);
1897 * does all the dirty work required for changing file system's UUID.
1899 static int btrfs_prepare_sprout(struct btrfs_root *root)
1901 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1902 struct btrfs_fs_devices *old_devices;
1903 struct btrfs_fs_devices *seed_devices;
1904 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1905 struct btrfs_device *device;
1906 u64 super_flags;
1908 BUG_ON(!mutex_is_locked(&uuid_mutex));
1909 if (!fs_devices->seeding)
1910 return -EINVAL;
1912 seed_devices = __alloc_fs_devices();
1913 if (IS_ERR(seed_devices))
1914 return PTR_ERR(seed_devices);
1916 old_devices = clone_fs_devices(fs_devices);
1917 if (IS_ERR(old_devices)) {
1918 kfree(seed_devices);
1919 return PTR_ERR(old_devices);
1922 list_add(&old_devices->list, &fs_uuids);
1924 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1925 seed_devices->opened = 1;
1926 INIT_LIST_HEAD(&seed_devices->devices);
1927 INIT_LIST_HEAD(&seed_devices->alloc_list);
1928 mutex_init(&seed_devices->device_list_mutex);
1930 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1931 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1932 synchronize_rcu);
1934 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1935 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1936 device->fs_devices = seed_devices;
1939 fs_devices->seeding = 0;
1940 fs_devices->num_devices = 0;
1941 fs_devices->open_devices = 0;
1942 fs_devices->seed = seed_devices;
1944 generate_random_uuid(fs_devices->fsid);
1945 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1946 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1947 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1949 super_flags = btrfs_super_flags(disk_super) &
1950 ~BTRFS_SUPER_FLAG_SEEDING;
1951 btrfs_set_super_flags(disk_super, super_flags);
1953 return 0;
1957 * strore the expected generation for seed devices in device items.
1959 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1960 struct btrfs_root *root)
1962 struct btrfs_path *path;
1963 struct extent_buffer *leaf;
1964 struct btrfs_dev_item *dev_item;
1965 struct btrfs_device *device;
1966 struct btrfs_key key;
1967 u8 fs_uuid[BTRFS_UUID_SIZE];
1968 u8 dev_uuid[BTRFS_UUID_SIZE];
1969 u64 devid;
1970 int ret;
1972 path = btrfs_alloc_path();
1973 if (!path)
1974 return -ENOMEM;
1976 root = root->fs_info->chunk_root;
1977 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1978 key.offset = 0;
1979 key.type = BTRFS_DEV_ITEM_KEY;
1981 while (1) {
1982 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1983 if (ret < 0)
1984 goto error;
1986 leaf = path->nodes[0];
1987 next_slot:
1988 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1989 ret = btrfs_next_leaf(root, path);
1990 if (ret > 0)
1991 break;
1992 if (ret < 0)
1993 goto error;
1994 leaf = path->nodes[0];
1995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1996 btrfs_release_path(path);
1997 continue;
2000 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2001 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2002 key.type != BTRFS_DEV_ITEM_KEY)
2003 break;
2005 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2006 struct btrfs_dev_item);
2007 devid = btrfs_device_id(leaf, dev_item);
2008 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2009 BTRFS_UUID_SIZE);
2010 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2011 BTRFS_UUID_SIZE);
2012 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2013 fs_uuid);
2014 BUG_ON(!device); /* Logic error */
2016 if (device->fs_devices->seeding) {
2017 btrfs_set_device_generation(leaf, dev_item,
2018 device->generation);
2019 btrfs_mark_buffer_dirty(leaf);
2022 path->slots[0]++;
2023 goto next_slot;
2025 ret = 0;
2026 error:
2027 btrfs_free_path(path);
2028 return ret;
2031 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2033 struct request_queue *q;
2034 struct btrfs_trans_handle *trans;
2035 struct btrfs_device *device;
2036 struct block_device *bdev;
2037 struct list_head *devices;
2038 struct super_block *sb = root->fs_info->sb;
2039 struct rcu_string *name;
2040 u64 total_bytes;
2041 int seeding_dev = 0;
2042 int ret = 0;
2044 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2045 return -EROFS;
2047 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2048 root->fs_info->bdev_holder);
2049 if (IS_ERR(bdev))
2050 return PTR_ERR(bdev);
2052 if (root->fs_info->fs_devices->seeding) {
2053 seeding_dev = 1;
2054 down_write(&sb->s_umount);
2055 mutex_lock(&uuid_mutex);
2058 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2060 devices = &root->fs_info->fs_devices->devices;
2062 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2063 list_for_each_entry(device, devices, dev_list) {
2064 if (device->bdev == bdev) {
2065 ret = -EEXIST;
2066 mutex_unlock(
2067 &root->fs_info->fs_devices->device_list_mutex);
2068 goto error;
2071 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2073 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2074 if (IS_ERR(device)) {
2075 /* we can safely leave the fs_devices entry around */
2076 ret = PTR_ERR(device);
2077 goto error;
2080 name = rcu_string_strdup(device_path, GFP_NOFS);
2081 if (!name) {
2082 kfree(device);
2083 ret = -ENOMEM;
2084 goto error;
2086 rcu_assign_pointer(device->name, name);
2088 trans = btrfs_start_transaction(root, 0);
2089 if (IS_ERR(trans)) {
2090 rcu_string_free(device->name);
2091 kfree(device);
2092 ret = PTR_ERR(trans);
2093 goto error;
2096 lock_chunks(root);
2098 q = bdev_get_queue(bdev);
2099 if (blk_queue_discard(q))
2100 device->can_discard = 1;
2101 device->writeable = 1;
2102 device->generation = trans->transid;
2103 device->io_width = root->sectorsize;
2104 device->io_align = root->sectorsize;
2105 device->sector_size = root->sectorsize;
2106 device->total_bytes = i_size_read(bdev->bd_inode);
2107 device->disk_total_bytes = device->total_bytes;
2108 device->dev_root = root->fs_info->dev_root;
2109 device->bdev = bdev;
2110 device->in_fs_metadata = 1;
2111 device->is_tgtdev_for_dev_replace = 0;
2112 device->mode = FMODE_EXCL;
2113 device->dev_stats_valid = 1;
2114 set_blocksize(device->bdev, 4096);
2116 if (seeding_dev) {
2117 sb->s_flags &= ~MS_RDONLY;
2118 ret = btrfs_prepare_sprout(root);
2119 BUG_ON(ret); /* -ENOMEM */
2122 device->fs_devices = root->fs_info->fs_devices;
2124 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2125 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2126 list_add(&device->dev_alloc_list,
2127 &root->fs_info->fs_devices->alloc_list);
2128 root->fs_info->fs_devices->num_devices++;
2129 root->fs_info->fs_devices->open_devices++;
2130 root->fs_info->fs_devices->rw_devices++;
2131 root->fs_info->fs_devices->total_devices++;
2132 if (device->can_discard)
2133 root->fs_info->fs_devices->num_can_discard++;
2134 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2136 spin_lock(&root->fs_info->free_chunk_lock);
2137 root->fs_info->free_chunk_space += device->total_bytes;
2138 spin_unlock(&root->fs_info->free_chunk_lock);
2140 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2141 root->fs_info->fs_devices->rotating = 1;
2143 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2144 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2145 total_bytes + device->total_bytes);
2147 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2148 btrfs_set_super_num_devices(root->fs_info->super_copy,
2149 total_bytes + 1);
2151 /* add sysfs device entry */
2152 btrfs_kobj_add_device(root->fs_info, device);
2154 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2156 if (seeding_dev) {
2157 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2158 ret = init_first_rw_device(trans, root, device);
2159 if (ret) {
2160 btrfs_abort_transaction(trans, root, ret);
2161 goto error_trans;
2163 ret = btrfs_finish_sprout(trans, root);
2164 if (ret) {
2165 btrfs_abort_transaction(trans, root, ret);
2166 goto error_trans;
2169 /* Sprouting would change fsid of the mounted root,
2170 * so rename the fsid on the sysfs
2172 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2173 root->fs_info->fsid);
2174 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2175 goto error_trans;
2176 } else {
2177 ret = btrfs_add_device(trans, root, device);
2178 if (ret) {
2179 btrfs_abort_transaction(trans, root, ret);
2180 goto error_trans;
2185 * we've got more storage, clear any full flags on the space
2186 * infos
2188 btrfs_clear_space_info_full(root->fs_info);
2190 unlock_chunks(root);
2191 root->fs_info->num_tolerated_disk_barrier_failures =
2192 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2193 ret = btrfs_commit_transaction(trans, root);
2195 if (seeding_dev) {
2196 mutex_unlock(&uuid_mutex);
2197 up_write(&sb->s_umount);
2199 if (ret) /* transaction commit */
2200 return ret;
2202 ret = btrfs_relocate_sys_chunks(root);
2203 if (ret < 0)
2204 btrfs_error(root->fs_info, ret,
2205 "Failed to relocate sys chunks after "
2206 "device initialization. This can be fixed "
2207 "using the \"btrfs balance\" command.");
2208 trans = btrfs_attach_transaction(root);
2209 if (IS_ERR(trans)) {
2210 if (PTR_ERR(trans) == -ENOENT)
2211 return 0;
2212 return PTR_ERR(trans);
2214 ret = btrfs_commit_transaction(trans, root);
2217 /* Update ctime/mtime for libblkid */
2218 update_dev_time(device_path);
2219 return ret;
2221 error_trans:
2222 unlock_chunks(root);
2223 btrfs_end_transaction(trans, root);
2224 rcu_string_free(device->name);
2225 btrfs_kobj_rm_device(root->fs_info, device);
2226 kfree(device);
2227 error:
2228 blkdev_put(bdev, FMODE_EXCL);
2229 if (seeding_dev) {
2230 mutex_unlock(&uuid_mutex);
2231 up_write(&sb->s_umount);
2233 return ret;
2236 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2237 struct btrfs_device **device_out)
2239 struct request_queue *q;
2240 struct btrfs_device *device;
2241 struct block_device *bdev;
2242 struct btrfs_fs_info *fs_info = root->fs_info;
2243 struct list_head *devices;
2244 struct rcu_string *name;
2245 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2246 int ret = 0;
2248 *device_out = NULL;
2249 if (fs_info->fs_devices->seeding)
2250 return -EINVAL;
2252 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2253 fs_info->bdev_holder);
2254 if (IS_ERR(bdev))
2255 return PTR_ERR(bdev);
2257 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2259 devices = &fs_info->fs_devices->devices;
2260 list_for_each_entry(device, devices, dev_list) {
2261 if (device->bdev == bdev) {
2262 ret = -EEXIST;
2263 goto error;
2267 device = btrfs_alloc_device(NULL, &devid, NULL);
2268 if (IS_ERR(device)) {
2269 ret = PTR_ERR(device);
2270 goto error;
2273 name = rcu_string_strdup(device_path, GFP_NOFS);
2274 if (!name) {
2275 kfree(device);
2276 ret = -ENOMEM;
2277 goto error;
2279 rcu_assign_pointer(device->name, name);
2281 q = bdev_get_queue(bdev);
2282 if (blk_queue_discard(q))
2283 device->can_discard = 1;
2284 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2285 device->writeable = 1;
2286 device->generation = 0;
2287 device->io_width = root->sectorsize;
2288 device->io_align = root->sectorsize;
2289 device->sector_size = root->sectorsize;
2290 device->total_bytes = i_size_read(bdev->bd_inode);
2291 device->disk_total_bytes = device->total_bytes;
2292 device->dev_root = fs_info->dev_root;
2293 device->bdev = bdev;
2294 device->in_fs_metadata = 1;
2295 device->is_tgtdev_for_dev_replace = 1;
2296 device->mode = FMODE_EXCL;
2297 device->dev_stats_valid = 1;
2298 set_blocksize(device->bdev, 4096);
2299 device->fs_devices = fs_info->fs_devices;
2300 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2301 fs_info->fs_devices->num_devices++;
2302 fs_info->fs_devices->open_devices++;
2303 if (device->can_discard)
2304 fs_info->fs_devices->num_can_discard++;
2305 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2307 *device_out = device;
2308 return ret;
2310 error:
2311 blkdev_put(bdev, FMODE_EXCL);
2312 return ret;
2315 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2316 struct btrfs_device *tgtdev)
2318 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2319 tgtdev->io_width = fs_info->dev_root->sectorsize;
2320 tgtdev->io_align = fs_info->dev_root->sectorsize;
2321 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2322 tgtdev->dev_root = fs_info->dev_root;
2323 tgtdev->in_fs_metadata = 1;
2326 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2327 struct btrfs_device *device)
2329 int ret;
2330 struct btrfs_path *path;
2331 struct btrfs_root *root;
2332 struct btrfs_dev_item *dev_item;
2333 struct extent_buffer *leaf;
2334 struct btrfs_key key;
2336 root = device->dev_root->fs_info->chunk_root;
2338 path = btrfs_alloc_path();
2339 if (!path)
2340 return -ENOMEM;
2342 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2343 key.type = BTRFS_DEV_ITEM_KEY;
2344 key.offset = device->devid;
2346 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2347 if (ret < 0)
2348 goto out;
2350 if (ret > 0) {
2351 ret = -ENOENT;
2352 goto out;
2355 leaf = path->nodes[0];
2356 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2358 btrfs_set_device_id(leaf, dev_item, device->devid);
2359 btrfs_set_device_type(leaf, dev_item, device->type);
2360 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2361 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2362 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2363 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2364 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2365 btrfs_mark_buffer_dirty(leaf);
2367 out:
2368 btrfs_free_path(path);
2369 return ret;
2372 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2373 struct btrfs_device *device, u64 new_size)
2375 struct btrfs_super_block *super_copy =
2376 device->dev_root->fs_info->super_copy;
2377 u64 old_total = btrfs_super_total_bytes(super_copy);
2378 u64 diff = new_size - device->total_bytes;
2380 if (!device->writeable)
2381 return -EACCES;
2382 if (new_size <= device->total_bytes ||
2383 device->is_tgtdev_for_dev_replace)
2384 return -EINVAL;
2386 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2387 device->fs_devices->total_rw_bytes += diff;
2389 device->total_bytes = new_size;
2390 device->disk_total_bytes = new_size;
2391 btrfs_clear_space_info_full(device->dev_root->fs_info);
2393 return btrfs_update_device(trans, device);
2396 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2397 struct btrfs_device *device, u64 new_size)
2399 int ret;
2400 lock_chunks(device->dev_root);
2401 ret = __btrfs_grow_device(trans, device, new_size);
2402 unlock_chunks(device->dev_root);
2403 return ret;
2406 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2407 struct btrfs_root *root,
2408 u64 chunk_tree, u64 chunk_objectid,
2409 u64 chunk_offset)
2411 int ret;
2412 struct btrfs_path *path;
2413 struct btrfs_key key;
2415 root = root->fs_info->chunk_root;
2416 path = btrfs_alloc_path();
2417 if (!path)
2418 return -ENOMEM;
2420 key.objectid = chunk_objectid;
2421 key.offset = chunk_offset;
2422 key.type = BTRFS_CHUNK_ITEM_KEY;
2424 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2425 if (ret < 0)
2426 goto out;
2427 else if (ret > 0) { /* Logic error or corruption */
2428 btrfs_error(root->fs_info, -ENOENT,
2429 "Failed lookup while freeing chunk.");
2430 ret = -ENOENT;
2431 goto out;
2434 ret = btrfs_del_item(trans, root, path);
2435 if (ret < 0)
2436 btrfs_error(root->fs_info, ret,
2437 "Failed to delete chunk item.");
2438 out:
2439 btrfs_free_path(path);
2440 return ret;
2443 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2444 chunk_offset)
2446 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2447 struct btrfs_disk_key *disk_key;
2448 struct btrfs_chunk *chunk;
2449 u8 *ptr;
2450 int ret = 0;
2451 u32 num_stripes;
2452 u32 array_size;
2453 u32 len = 0;
2454 u32 cur;
2455 struct btrfs_key key;
2457 array_size = btrfs_super_sys_array_size(super_copy);
2459 ptr = super_copy->sys_chunk_array;
2460 cur = 0;
2462 while (cur < array_size) {
2463 disk_key = (struct btrfs_disk_key *)ptr;
2464 btrfs_disk_key_to_cpu(&key, disk_key);
2466 len = sizeof(*disk_key);
2468 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2469 chunk = (struct btrfs_chunk *)(ptr + len);
2470 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2471 len += btrfs_chunk_item_size(num_stripes);
2472 } else {
2473 ret = -EIO;
2474 break;
2476 if (key.objectid == chunk_objectid &&
2477 key.offset == chunk_offset) {
2478 memmove(ptr, ptr + len, array_size - (cur + len));
2479 array_size -= len;
2480 btrfs_set_super_sys_array_size(super_copy, array_size);
2481 } else {
2482 ptr += len;
2483 cur += len;
2486 return ret;
2489 static int btrfs_relocate_chunk(struct btrfs_root *root,
2490 u64 chunk_tree, u64 chunk_objectid,
2491 u64 chunk_offset)
2493 struct extent_map_tree *em_tree;
2494 struct btrfs_root *extent_root;
2495 struct btrfs_trans_handle *trans;
2496 struct extent_map *em;
2497 struct map_lookup *map;
2498 int ret;
2499 int i;
2501 root = root->fs_info->chunk_root;
2502 extent_root = root->fs_info->extent_root;
2503 em_tree = &root->fs_info->mapping_tree.map_tree;
2505 ret = btrfs_can_relocate(extent_root, chunk_offset);
2506 if (ret)
2507 return -ENOSPC;
2509 /* step one, relocate all the extents inside this chunk */
2510 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2511 if (ret)
2512 return ret;
2514 trans = btrfs_start_transaction(root, 0);
2515 if (IS_ERR(trans)) {
2516 ret = PTR_ERR(trans);
2517 btrfs_std_error(root->fs_info, ret);
2518 return ret;
2521 lock_chunks(root);
2524 * step two, delete the device extents and the
2525 * chunk tree entries
2527 read_lock(&em_tree->lock);
2528 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2529 read_unlock(&em_tree->lock);
2531 BUG_ON(!em || em->start > chunk_offset ||
2532 em->start + em->len < chunk_offset);
2533 map = (struct map_lookup *)em->bdev;
2535 for (i = 0; i < map->num_stripes; i++) {
2536 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2537 map->stripes[i].physical);
2538 BUG_ON(ret);
2540 if (map->stripes[i].dev) {
2541 ret = btrfs_update_device(trans, map->stripes[i].dev);
2542 BUG_ON(ret);
2545 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2546 chunk_offset);
2548 BUG_ON(ret);
2550 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2552 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2553 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2554 BUG_ON(ret);
2557 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2558 BUG_ON(ret);
2560 write_lock(&em_tree->lock);
2561 remove_extent_mapping(em_tree, em);
2562 write_unlock(&em_tree->lock);
2564 /* once for the tree */
2565 free_extent_map(em);
2566 /* once for us */
2567 free_extent_map(em);
2569 unlock_chunks(root);
2570 btrfs_end_transaction(trans, root);
2571 return 0;
2574 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2576 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2577 struct btrfs_path *path;
2578 struct extent_buffer *leaf;
2579 struct btrfs_chunk *chunk;
2580 struct btrfs_key key;
2581 struct btrfs_key found_key;
2582 u64 chunk_tree = chunk_root->root_key.objectid;
2583 u64 chunk_type;
2584 bool retried = false;
2585 int failed = 0;
2586 int ret;
2588 path = btrfs_alloc_path();
2589 if (!path)
2590 return -ENOMEM;
2592 again:
2593 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2594 key.offset = (u64)-1;
2595 key.type = BTRFS_CHUNK_ITEM_KEY;
2597 while (1) {
2598 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2599 if (ret < 0)
2600 goto error;
2601 BUG_ON(ret == 0); /* Corruption */
2603 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2604 key.type);
2605 if (ret < 0)
2606 goto error;
2607 if (ret > 0)
2608 break;
2610 leaf = path->nodes[0];
2611 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2613 chunk = btrfs_item_ptr(leaf, path->slots[0],
2614 struct btrfs_chunk);
2615 chunk_type = btrfs_chunk_type(leaf, chunk);
2616 btrfs_release_path(path);
2618 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2619 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2620 found_key.objectid,
2621 found_key.offset);
2622 if (ret == -ENOSPC)
2623 failed++;
2624 else if (ret)
2625 BUG();
2628 if (found_key.offset == 0)
2629 break;
2630 key.offset = found_key.offset - 1;
2632 ret = 0;
2633 if (failed && !retried) {
2634 failed = 0;
2635 retried = true;
2636 goto again;
2637 } else if (WARN_ON(failed && retried)) {
2638 ret = -ENOSPC;
2640 error:
2641 btrfs_free_path(path);
2642 return ret;
2645 static int insert_balance_item(struct btrfs_root *root,
2646 struct btrfs_balance_control *bctl)
2648 struct btrfs_trans_handle *trans;
2649 struct btrfs_balance_item *item;
2650 struct btrfs_disk_balance_args disk_bargs;
2651 struct btrfs_path *path;
2652 struct extent_buffer *leaf;
2653 struct btrfs_key key;
2654 int ret, err;
2656 path = btrfs_alloc_path();
2657 if (!path)
2658 return -ENOMEM;
2660 trans = btrfs_start_transaction(root, 0);
2661 if (IS_ERR(trans)) {
2662 btrfs_free_path(path);
2663 return PTR_ERR(trans);
2666 key.objectid = BTRFS_BALANCE_OBJECTID;
2667 key.type = BTRFS_BALANCE_ITEM_KEY;
2668 key.offset = 0;
2670 ret = btrfs_insert_empty_item(trans, root, path, &key,
2671 sizeof(*item));
2672 if (ret)
2673 goto out;
2675 leaf = path->nodes[0];
2676 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2678 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2680 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2681 btrfs_set_balance_data(leaf, item, &disk_bargs);
2682 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2683 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2684 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2685 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2687 btrfs_set_balance_flags(leaf, item, bctl->flags);
2689 btrfs_mark_buffer_dirty(leaf);
2690 out:
2691 btrfs_free_path(path);
2692 err = btrfs_commit_transaction(trans, root);
2693 if (err && !ret)
2694 ret = err;
2695 return ret;
2698 static int del_balance_item(struct btrfs_root *root)
2700 struct btrfs_trans_handle *trans;
2701 struct btrfs_path *path;
2702 struct btrfs_key key;
2703 int ret, err;
2705 path = btrfs_alloc_path();
2706 if (!path)
2707 return -ENOMEM;
2709 trans = btrfs_start_transaction(root, 0);
2710 if (IS_ERR(trans)) {
2711 btrfs_free_path(path);
2712 return PTR_ERR(trans);
2715 key.objectid = BTRFS_BALANCE_OBJECTID;
2716 key.type = BTRFS_BALANCE_ITEM_KEY;
2717 key.offset = 0;
2719 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2720 if (ret < 0)
2721 goto out;
2722 if (ret > 0) {
2723 ret = -ENOENT;
2724 goto out;
2727 ret = btrfs_del_item(trans, root, path);
2728 out:
2729 btrfs_free_path(path);
2730 err = btrfs_commit_transaction(trans, root);
2731 if (err && !ret)
2732 ret = err;
2733 return ret;
2737 * This is a heuristic used to reduce the number of chunks balanced on
2738 * resume after balance was interrupted.
2740 static void update_balance_args(struct btrfs_balance_control *bctl)
2743 * Turn on soft mode for chunk types that were being converted.
2745 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2746 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2747 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2748 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2749 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2750 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2753 * Turn on usage filter if is not already used. The idea is
2754 * that chunks that we have already balanced should be
2755 * reasonably full. Don't do it for chunks that are being
2756 * converted - that will keep us from relocating unconverted
2757 * (albeit full) chunks.
2759 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2760 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2761 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2762 bctl->data.usage = 90;
2764 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2765 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2766 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2767 bctl->sys.usage = 90;
2769 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2770 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2771 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2772 bctl->meta.usage = 90;
2777 * Should be called with both balance and volume mutexes held to
2778 * serialize other volume operations (add_dev/rm_dev/resize) with
2779 * restriper. Same goes for unset_balance_control.
2781 static void set_balance_control(struct btrfs_balance_control *bctl)
2783 struct btrfs_fs_info *fs_info = bctl->fs_info;
2785 BUG_ON(fs_info->balance_ctl);
2787 spin_lock(&fs_info->balance_lock);
2788 fs_info->balance_ctl = bctl;
2789 spin_unlock(&fs_info->balance_lock);
2792 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2794 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2796 BUG_ON(!fs_info->balance_ctl);
2798 spin_lock(&fs_info->balance_lock);
2799 fs_info->balance_ctl = NULL;
2800 spin_unlock(&fs_info->balance_lock);
2802 kfree(bctl);
2806 * Balance filters. Return 1 if chunk should be filtered out
2807 * (should not be balanced).
2809 static int chunk_profiles_filter(u64 chunk_type,
2810 struct btrfs_balance_args *bargs)
2812 chunk_type = chunk_to_extended(chunk_type) &
2813 BTRFS_EXTENDED_PROFILE_MASK;
2815 if (bargs->profiles & chunk_type)
2816 return 0;
2818 return 1;
2821 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2822 struct btrfs_balance_args *bargs)
2824 struct btrfs_block_group_cache *cache;
2825 u64 chunk_used, user_thresh;
2826 int ret = 1;
2828 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2829 chunk_used = btrfs_block_group_used(&cache->item);
2831 if (bargs->usage == 0)
2832 user_thresh = 1;
2833 else if (bargs->usage > 100)
2834 user_thresh = cache->key.offset;
2835 else
2836 user_thresh = div_factor_fine(cache->key.offset,
2837 bargs->usage);
2839 if (chunk_used < user_thresh)
2840 ret = 0;
2842 btrfs_put_block_group(cache);
2843 return ret;
2846 static int chunk_devid_filter(struct extent_buffer *leaf,
2847 struct btrfs_chunk *chunk,
2848 struct btrfs_balance_args *bargs)
2850 struct btrfs_stripe *stripe;
2851 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2852 int i;
2854 for (i = 0; i < num_stripes; i++) {
2855 stripe = btrfs_stripe_nr(chunk, i);
2856 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2857 return 0;
2860 return 1;
2863 /* [pstart, pend) */
2864 static int chunk_drange_filter(struct extent_buffer *leaf,
2865 struct btrfs_chunk *chunk,
2866 u64 chunk_offset,
2867 struct btrfs_balance_args *bargs)
2869 struct btrfs_stripe *stripe;
2870 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2871 u64 stripe_offset;
2872 u64 stripe_length;
2873 int factor;
2874 int i;
2876 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2877 return 0;
2879 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2880 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2881 factor = num_stripes / 2;
2882 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2883 factor = num_stripes - 1;
2884 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2885 factor = num_stripes - 2;
2886 } else {
2887 factor = num_stripes;
2890 for (i = 0; i < num_stripes; i++) {
2891 stripe = btrfs_stripe_nr(chunk, i);
2892 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2893 continue;
2895 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2896 stripe_length = btrfs_chunk_length(leaf, chunk);
2897 do_div(stripe_length, factor);
2899 if (stripe_offset < bargs->pend &&
2900 stripe_offset + stripe_length > bargs->pstart)
2901 return 0;
2904 return 1;
2907 /* [vstart, vend) */
2908 static int chunk_vrange_filter(struct extent_buffer *leaf,
2909 struct btrfs_chunk *chunk,
2910 u64 chunk_offset,
2911 struct btrfs_balance_args *bargs)
2913 if (chunk_offset < bargs->vend &&
2914 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2915 /* at least part of the chunk is inside this vrange */
2916 return 0;
2918 return 1;
2921 static int chunk_soft_convert_filter(u64 chunk_type,
2922 struct btrfs_balance_args *bargs)
2924 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2925 return 0;
2927 chunk_type = chunk_to_extended(chunk_type) &
2928 BTRFS_EXTENDED_PROFILE_MASK;
2930 if (bargs->target == chunk_type)
2931 return 1;
2933 return 0;
2936 static int should_balance_chunk(struct btrfs_root *root,
2937 struct extent_buffer *leaf,
2938 struct btrfs_chunk *chunk, u64 chunk_offset)
2940 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2941 struct btrfs_balance_args *bargs = NULL;
2942 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2944 /* type filter */
2945 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2946 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2947 return 0;
2950 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2951 bargs = &bctl->data;
2952 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2953 bargs = &bctl->sys;
2954 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2955 bargs = &bctl->meta;
2957 /* profiles filter */
2958 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2959 chunk_profiles_filter(chunk_type, bargs)) {
2960 return 0;
2963 /* usage filter */
2964 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2965 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2966 return 0;
2969 /* devid filter */
2970 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2971 chunk_devid_filter(leaf, chunk, bargs)) {
2972 return 0;
2975 /* drange filter, makes sense only with devid filter */
2976 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2977 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2978 return 0;
2981 /* vrange filter */
2982 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2983 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2984 return 0;
2987 /* soft profile changing mode */
2988 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2989 chunk_soft_convert_filter(chunk_type, bargs)) {
2990 return 0;
2994 * limited by count, must be the last filter
2996 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
2997 if (bargs->limit == 0)
2998 return 0;
2999 else
3000 bargs->limit--;
3003 return 1;
3006 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3008 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3009 struct btrfs_root *chunk_root = fs_info->chunk_root;
3010 struct btrfs_root *dev_root = fs_info->dev_root;
3011 struct list_head *devices;
3012 struct btrfs_device *device;
3013 u64 old_size;
3014 u64 size_to_free;
3015 struct btrfs_chunk *chunk;
3016 struct btrfs_path *path;
3017 struct btrfs_key key;
3018 struct btrfs_key found_key;
3019 struct btrfs_trans_handle *trans;
3020 struct extent_buffer *leaf;
3021 int slot;
3022 int ret;
3023 int enospc_errors = 0;
3024 bool counting = true;
3025 u64 limit_data = bctl->data.limit;
3026 u64 limit_meta = bctl->meta.limit;
3027 u64 limit_sys = bctl->sys.limit;
3029 /* step one make some room on all the devices */
3030 devices = &fs_info->fs_devices->devices;
3031 list_for_each_entry(device, devices, dev_list) {
3032 old_size = device->total_bytes;
3033 size_to_free = div_factor(old_size, 1);
3034 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3035 if (!device->writeable ||
3036 device->total_bytes - device->bytes_used > size_to_free ||
3037 device->is_tgtdev_for_dev_replace)
3038 continue;
3040 ret = btrfs_shrink_device(device, old_size - size_to_free);
3041 if (ret == -ENOSPC)
3042 break;
3043 BUG_ON(ret);
3045 trans = btrfs_start_transaction(dev_root, 0);
3046 BUG_ON(IS_ERR(trans));
3048 ret = btrfs_grow_device(trans, device, old_size);
3049 BUG_ON(ret);
3051 btrfs_end_transaction(trans, dev_root);
3054 /* step two, relocate all the chunks */
3055 path = btrfs_alloc_path();
3056 if (!path) {
3057 ret = -ENOMEM;
3058 goto error;
3061 /* zero out stat counters */
3062 spin_lock(&fs_info->balance_lock);
3063 memset(&bctl->stat, 0, sizeof(bctl->stat));
3064 spin_unlock(&fs_info->balance_lock);
3065 again:
3066 if (!counting) {
3067 bctl->data.limit = limit_data;
3068 bctl->meta.limit = limit_meta;
3069 bctl->sys.limit = limit_sys;
3071 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3072 key.offset = (u64)-1;
3073 key.type = BTRFS_CHUNK_ITEM_KEY;
3075 while (1) {
3076 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3077 atomic_read(&fs_info->balance_cancel_req)) {
3078 ret = -ECANCELED;
3079 goto error;
3082 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3083 if (ret < 0)
3084 goto error;
3087 * this shouldn't happen, it means the last relocate
3088 * failed
3090 if (ret == 0)
3091 BUG(); /* FIXME break ? */
3093 ret = btrfs_previous_item(chunk_root, path, 0,
3094 BTRFS_CHUNK_ITEM_KEY);
3095 if (ret) {
3096 ret = 0;
3097 break;
3100 leaf = path->nodes[0];
3101 slot = path->slots[0];
3102 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3104 if (found_key.objectid != key.objectid)
3105 break;
3107 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3109 if (!counting) {
3110 spin_lock(&fs_info->balance_lock);
3111 bctl->stat.considered++;
3112 spin_unlock(&fs_info->balance_lock);
3115 ret = should_balance_chunk(chunk_root, leaf, chunk,
3116 found_key.offset);
3117 btrfs_release_path(path);
3118 if (!ret)
3119 goto loop;
3121 if (counting) {
3122 spin_lock(&fs_info->balance_lock);
3123 bctl->stat.expected++;
3124 spin_unlock(&fs_info->balance_lock);
3125 goto loop;
3128 ret = btrfs_relocate_chunk(chunk_root,
3129 chunk_root->root_key.objectid,
3130 found_key.objectid,
3131 found_key.offset);
3132 if (ret && ret != -ENOSPC)
3133 goto error;
3134 if (ret == -ENOSPC) {
3135 enospc_errors++;
3136 } else {
3137 spin_lock(&fs_info->balance_lock);
3138 bctl->stat.completed++;
3139 spin_unlock(&fs_info->balance_lock);
3141 loop:
3142 if (found_key.offset == 0)
3143 break;
3144 key.offset = found_key.offset - 1;
3147 if (counting) {
3148 btrfs_release_path(path);
3149 counting = false;
3150 goto again;
3152 error:
3153 btrfs_free_path(path);
3154 if (enospc_errors) {
3155 btrfs_info(fs_info, "%d enospc errors during balance",
3156 enospc_errors);
3157 if (!ret)
3158 ret = -ENOSPC;
3161 return ret;
3165 * alloc_profile_is_valid - see if a given profile is valid and reduced
3166 * @flags: profile to validate
3167 * @extended: if true @flags is treated as an extended profile
3169 static int alloc_profile_is_valid(u64 flags, int extended)
3171 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3172 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3174 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3176 /* 1) check that all other bits are zeroed */
3177 if (flags & ~mask)
3178 return 0;
3180 /* 2) see if profile is reduced */
3181 if (flags == 0)
3182 return !extended; /* "0" is valid for usual profiles */
3184 /* true if exactly one bit set */
3185 return (flags & (flags - 1)) == 0;
3188 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3190 /* cancel requested || normal exit path */
3191 return atomic_read(&fs_info->balance_cancel_req) ||
3192 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3193 atomic_read(&fs_info->balance_cancel_req) == 0);
3196 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3198 int ret;
3200 unset_balance_control(fs_info);
3201 ret = del_balance_item(fs_info->tree_root);
3202 if (ret)
3203 btrfs_std_error(fs_info, ret);
3205 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3209 * Should be called with both balance and volume mutexes held
3211 int btrfs_balance(struct btrfs_balance_control *bctl,
3212 struct btrfs_ioctl_balance_args *bargs)
3214 struct btrfs_fs_info *fs_info = bctl->fs_info;
3215 u64 allowed;
3216 int mixed = 0;
3217 int ret;
3218 u64 num_devices;
3219 unsigned seq;
3221 if (btrfs_fs_closing(fs_info) ||
3222 atomic_read(&fs_info->balance_pause_req) ||
3223 atomic_read(&fs_info->balance_cancel_req)) {
3224 ret = -EINVAL;
3225 goto out;
3228 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3229 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3230 mixed = 1;
3233 * In case of mixed groups both data and meta should be picked,
3234 * and identical options should be given for both of them.
3236 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3237 if (mixed && (bctl->flags & allowed)) {
3238 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3239 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3240 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3241 btrfs_err(fs_info, "with mixed groups data and "
3242 "metadata balance options must be the same");
3243 ret = -EINVAL;
3244 goto out;
3248 num_devices = fs_info->fs_devices->num_devices;
3249 btrfs_dev_replace_lock(&fs_info->dev_replace);
3250 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3251 BUG_ON(num_devices < 1);
3252 num_devices--;
3254 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3255 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3256 if (num_devices == 1)
3257 allowed |= BTRFS_BLOCK_GROUP_DUP;
3258 else if (num_devices > 1)
3259 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3260 if (num_devices > 2)
3261 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3262 if (num_devices > 3)
3263 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3264 BTRFS_BLOCK_GROUP_RAID6);
3265 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3266 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3267 (bctl->data.target & ~allowed))) {
3268 btrfs_err(fs_info, "unable to start balance with target "
3269 "data profile %llu",
3270 bctl->data.target);
3271 ret = -EINVAL;
3272 goto out;
3274 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3275 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3276 (bctl->meta.target & ~allowed))) {
3277 btrfs_err(fs_info,
3278 "unable to start balance with target metadata profile %llu",
3279 bctl->meta.target);
3280 ret = -EINVAL;
3281 goto out;
3283 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3284 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3285 (bctl->sys.target & ~allowed))) {
3286 btrfs_err(fs_info,
3287 "unable to start balance with target system profile %llu",
3288 bctl->sys.target);
3289 ret = -EINVAL;
3290 goto out;
3293 /* allow dup'ed data chunks only in mixed mode */
3294 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3295 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3296 btrfs_err(fs_info, "dup for data is not allowed");
3297 ret = -EINVAL;
3298 goto out;
3301 /* allow to reduce meta or sys integrity only if force set */
3302 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3303 BTRFS_BLOCK_GROUP_RAID10 |
3304 BTRFS_BLOCK_GROUP_RAID5 |
3305 BTRFS_BLOCK_GROUP_RAID6;
3306 do {
3307 seq = read_seqbegin(&fs_info->profiles_lock);
3309 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3310 (fs_info->avail_system_alloc_bits & allowed) &&
3311 !(bctl->sys.target & allowed)) ||
3312 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3313 (fs_info->avail_metadata_alloc_bits & allowed) &&
3314 !(bctl->meta.target & allowed))) {
3315 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3316 btrfs_info(fs_info, "force reducing metadata integrity");
3317 } else {
3318 btrfs_err(fs_info, "balance will reduce metadata "
3319 "integrity, use force if you want this");
3320 ret = -EINVAL;
3321 goto out;
3324 } while (read_seqretry(&fs_info->profiles_lock, seq));
3326 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3327 int num_tolerated_disk_barrier_failures;
3328 u64 target = bctl->sys.target;
3330 num_tolerated_disk_barrier_failures =
3331 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3332 if (num_tolerated_disk_barrier_failures > 0 &&
3333 (target &
3334 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3335 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3336 num_tolerated_disk_barrier_failures = 0;
3337 else if (num_tolerated_disk_barrier_failures > 1 &&
3338 (target &
3339 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3340 num_tolerated_disk_barrier_failures = 1;
3342 fs_info->num_tolerated_disk_barrier_failures =
3343 num_tolerated_disk_barrier_failures;
3346 ret = insert_balance_item(fs_info->tree_root, bctl);
3347 if (ret && ret != -EEXIST)
3348 goto out;
3350 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3351 BUG_ON(ret == -EEXIST);
3352 set_balance_control(bctl);
3353 } else {
3354 BUG_ON(ret != -EEXIST);
3355 spin_lock(&fs_info->balance_lock);
3356 update_balance_args(bctl);
3357 spin_unlock(&fs_info->balance_lock);
3360 atomic_inc(&fs_info->balance_running);
3361 mutex_unlock(&fs_info->balance_mutex);
3363 ret = __btrfs_balance(fs_info);
3365 mutex_lock(&fs_info->balance_mutex);
3366 atomic_dec(&fs_info->balance_running);
3368 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3369 fs_info->num_tolerated_disk_barrier_failures =
3370 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3373 if (bargs) {
3374 memset(bargs, 0, sizeof(*bargs));
3375 update_ioctl_balance_args(fs_info, 0, bargs);
3378 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3379 balance_need_close(fs_info)) {
3380 __cancel_balance(fs_info);
3383 wake_up(&fs_info->balance_wait_q);
3385 return ret;
3386 out:
3387 if (bctl->flags & BTRFS_BALANCE_RESUME)
3388 __cancel_balance(fs_info);
3389 else {
3390 kfree(bctl);
3391 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3393 return ret;
3396 static int balance_kthread(void *data)
3398 struct btrfs_fs_info *fs_info = data;
3399 int ret = 0;
3401 mutex_lock(&fs_info->volume_mutex);
3402 mutex_lock(&fs_info->balance_mutex);
3404 if (fs_info->balance_ctl) {
3405 btrfs_info(fs_info, "continuing balance");
3406 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3409 mutex_unlock(&fs_info->balance_mutex);
3410 mutex_unlock(&fs_info->volume_mutex);
3412 return ret;
3415 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3417 struct task_struct *tsk;
3419 spin_lock(&fs_info->balance_lock);
3420 if (!fs_info->balance_ctl) {
3421 spin_unlock(&fs_info->balance_lock);
3422 return 0;
3424 spin_unlock(&fs_info->balance_lock);
3426 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3427 btrfs_info(fs_info, "force skipping balance");
3428 return 0;
3431 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3432 return PTR_ERR_OR_ZERO(tsk);
3435 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3437 struct btrfs_balance_control *bctl;
3438 struct btrfs_balance_item *item;
3439 struct btrfs_disk_balance_args disk_bargs;
3440 struct btrfs_path *path;
3441 struct extent_buffer *leaf;
3442 struct btrfs_key key;
3443 int ret;
3445 path = btrfs_alloc_path();
3446 if (!path)
3447 return -ENOMEM;
3449 key.objectid = BTRFS_BALANCE_OBJECTID;
3450 key.type = BTRFS_BALANCE_ITEM_KEY;
3451 key.offset = 0;
3453 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3454 if (ret < 0)
3455 goto out;
3456 if (ret > 0) { /* ret = -ENOENT; */
3457 ret = 0;
3458 goto out;
3461 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3462 if (!bctl) {
3463 ret = -ENOMEM;
3464 goto out;
3467 leaf = path->nodes[0];
3468 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3470 bctl->fs_info = fs_info;
3471 bctl->flags = btrfs_balance_flags(leaf, item);
3472 bctl->flags |= BTRFS_BALANCE_RESUME;
3474 btrfs_balance_data(leaf, item, &disk_bargs);
3475 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3476 btrfs_balance_meta(leaf, item, &disk_bargs);
3477 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3478 btrfs_balance_sys(leaf, item, &disk_bargs);
3479 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3481 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3483 mutex_lock(&fs_info->volume_mutex);
3484 mutex_lock(&fs_info->balance_mutex);
3486 set_balance_control(bctl);
3488 mutex_unlock(&fs_info->balance_mutex);
3489 mutex_unlock(&fs_info->volume_mutex);
3490 out:
3491 btrfs_free_path(path);
3492 return ret;
3495 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3497 int ret = 0;
3499 mutex_lock(&fs_info->balance_mutex);
3500 if (!fs_info->balance_ctl) {
3501 mutex_unlock(&fs_info->balance_mutex);
3502 return -ENOTCONN;
3505 if (atomic_read(&fs_info->balance_running)) {
3506 atomic_inc(&fs_info->balance_pause_req);
3507 mutex_unlock(&fs_info->balance_mutex);
3509 wait_event(fs_info->balance_wait_q,
3510 atomic_read(&fs_info->balance_running) == 0);
3512 mutex_lock(&fs_info->balance_mutex);
3513 /* we are good with balance_ctl ripped off from under us */
3514 BUG_ON(atomic_read(&fs_info->balance_running));
3515 atomic_dec(&fs_info->balance_pause_req);
3516 } else {
3517 ret = -ENOTCONN;
3520 mutex_unlock(&fs_info->balance_mutex);
3521 return ret;
3524 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3526 if (fs_info->sb->s_flags & MS_RDONLY)
3527 return -EROFS;
3529 mutex_lock(&fs_info->balance_mutex);
3530 if (!fs_info->balance_ctl) {
3531 mutex_unlock(&fs_info->balance_mutex);
3532 return -ENOTCONN;
3535 atomic_inc(&fs_info->balance_cancel_req);
3537 * if we are running just wait and return, balance item is
3538 * deleted in btrfs_balance in this case
3540 if (atomic_read(&fs_info->balance_running)) {
3541 mutex_unlock(&fs_info->balance_mutex);
3542 wait_event(fs_info->balance_wait_q,
3543 atomic_read(&fs_info->balance_running) == 0);
3544 mutex_lock(&fs_info->balance_mutex);
3545 } else {
3546 /* __cancel_balance needs volume_mutex */
3547 mutex_unlock(&fs_info->balance_mutex);
3548 mutex_lock(&fs_info->volume_mutex);
3549 mutex_lock(&fs_info->balance_mutex);
3551 if (fs_info->balance_ctl)
3552 __cancel_balance(fs_info);
3554 mutex_unlock(&fs_info->volume_mutex);
3557 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3558 atomic_dec(&fs_info->balance_cancel_req);
3559 mutex_unlock(&fs_info->balance_mutex);
3560 return 0;
3563 static int btrfs_uuid_scan_kthread(void *data)
3565 struct btrfs_fs_info *fs_info = data;
3566 struct btrfs_root *root = fs_info->tree_root;
3567 struct btrfs_key key;
3568 struct btrfs_key max_key;
3569 struct btrfs_path *path = NULL;
3570 int ret = 0;
3571 struct extent_buffer *eb;
3572 int slot;
3573 struct btrfs_root_item root_item;
3574 u32 item_size;
3575 struct btrfs_trans_handle *trans = NULL;
3577 path = btrfs_alloc_path();
3578 if (!path) {
3579 ret = -ENOMEM;
3580 goto out;
3583 key.objectid = 0;
3584 key.type = BTRFS_ROOT_ITEM_KEY;
3585 key.offset = 0;
3587 max_key.objectid = (u64)-1;
3588 max_key.type = BTRFS_ROOT_ITEM_KEY;
3589 max_key.offset = (u64)-1;
3591 path->keep_locks = 1;
3593 while (1) {
3594 ret = btrfs_search_forward(root, &key, path, 0);
3595 if (ret) {
3596 if (ret > 0)
3597 ret = 0;
3598 break;
3601 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3602 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3603 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3604 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3605 goto skip;
3607 eb = path->nodes[0];
3608 slot = path->slots[0];
3609 item_size = btrfs_item_size_nr(eb, slot);
3610 if (item_size < sizeof(root_item))
3611 goto skip;
3613 read_extent_buffer(eb, &root_item,
3614 btrfs_item_ptr_offset(eb, slot),
3615 (int)sizeof(root_item));
3616 if (btrfs_root_refs(&root_item) == 0)
3617 goto skip;
3619 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3620 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3621 if (trans)
3622 goto update_tree;
3624 btrfs_release_path(path);
3626 * 1 - subvol uuid item
3627 * 1 - received_subvol uuid item
3629 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3630 if (IS_ERR(trans)) {
3631 ret = PTR_ERR(trans);
3632 break;
3634 continue;
3635 } else {
3636 goto skip;
3638 update_tree:
3639 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3640 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3641 root_item.uuid,
3642 BTRFS_UUID_KEY_SUBVOL,
3643 key.objectid);
3644 if (ret < 0) {
3645 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3646 ret);
3647 break;
3651 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3652 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3653 root_item.received_uuid,
3654 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3655 key.objectid);
3656 if (ret < 0) {
3657 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3658 ret);
3659 break;
3663 skip:
3664 if (trans) {
3665 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3666 trans = NULL;
3667 if (ret)
3668 break;
3671 btrfs_release_path(path);
3672 if (key.offset < (u64)-1) {
3673 key.offset++;
3674 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3675 key.offset = 0;
3676 key.type = BTRFS_ROOT_ITEM_KEY;
3677 } else if (key.objectid < (u64)-1) {
3678 key.offset = 0;
3679 key.type = BTRFS_ROOT_ITEM_KEY;
3680 key.objectid++;
3681 } else {
3682 break;
3684 cond_resched();
3687 out:
3688 btrfs_free_path(path);
3689 if (trans && !IS_ERR(trans))
3690 btrfs_end_transaction(trans, fs_info->uuid_root);
3691 if (ret)
3692 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3693 else
3694 fs_info->update_uuid_tree_gen = 1;
3695 up(&fs_info->uuid_tree_rescan_sem);
3696 return 0;
3700 * Callback for btrfs_uuid_tree_iterate().
3701 * returns:
3702 * 0 check succeeded, the entry is not outdated.
3703 * < 0 if an error occured.
3704 * > 0 if the check failed, which means the caller shall remove the entry.
3706 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3707 u8 *uuid, u8 type, u64 subid)
3709 struct btrfs_key key;
3710 int ret = 0;
3711 struct btrfs_root *subvol_root;
3713 if (type != BTRFS_UUID_KEY_SUBVOL &&
3714 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3715 goto out;
3717 key.objectid = subid;
3718 key.type = BTRFS_ROOT_ITEM_KEY;
3719 key.offset = (u64)-1;
3720 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3721 if (IS_ERR(subvol_root)) {
3722 ret = PTR_ERR(subvol_root);
3723 if (ret == -ENOENT)
3724 ret = 1;
3725 goto out;
3728 switch (type) {
3729 case BTRFS_UUID_KEY_SUBVOL:
3730 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3731 ret = 1;
3732 break;
3733 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3734 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3735 BTRFS_UUID_SIZE))
3736 ret = 1;
3737 break;
3740 out:
3741 return ret;
3744 static int btrfs_uuid_rescan_kthread(void *data)
3746 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3747 int ret;
3750 * 1st step is to iterate through the existing UUID tree and
3751 * to delete all entries that contain outdated data.
3752 * 2nd step is to add all missing entries to the UUID tree.
3754 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3755 if (ret < 0) {
3756 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3757 up(&fs_info->uuid_tree_rescan_sem);
3758 return ret;
3760 return btrfs_uuid_scan_kthread(data);
3763 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3765 struct btrfs_trans_handle *trans;
3766 struct btrfs_root *tree_root = fs_info->tree_root;
3767 struct btrfs_root *uuid_root;
3768 struct task_struct *task;
3769 int ret;
3772 * 1 - root node
3773 * 1 - root item
3775 trans = btrfs_start_transaction(tree_root, 2);
3776 if (IS_ERR(trans))
3777 return PTR_ERR(trans);
3779 uuid_root = btrfs_create_tree(trans, fs_info,
3780 BTRFS_UUID_TREE_OBJECTID);
3781 if (IS_ERR(uuid_root)) {
3782 btrfs_abort_transaction(trans, tree_root,
3783 PTR_ERR(uuid_root));
3784 return PTR_ERR(uuid_root);
3787 fs_info->uuid_root = uuid_root;
3789 ret = btrfs_commit_transaction(trans, tree_root);
3790 if (ret)
3791 return ret;
3793 down(&fs_info->uuid_tree_rescan_sem);
3794 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3795 if (IS_ERR(task)) {
3796 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3797 btrfs_warn(fs_info, "failed to start uuid_scan task");
3798 up(&fs_info->uuid_tree_rescan_sem);
3799 return PTR_ERR(task);
3802 return 0;
3805 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3807 struct task_struct *task;
3809 down(&fs_info->uuid_tree_rescan_sem);
3810 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3811 if (IS_ERR(task)) {
3812 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3813 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3814 up(&fs_info->uuid_tree_rescan_sem);
3815 return PTR_ERR(task);
3818 return 0;
3822 * shrinking a device means finding all of the device extents past
3823 * the new size, and then following the back refs to the chunks.
3824 * The chunk relocation code actually frees the device extent
3826 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3828 struct btrfs_trans_handle *trans;
3829 struct btrfs_root *root = device->dev_root;
3830 struct btrfs_dev_extent *dev_extent = NULL;
3831 struct btrfs_path *path;
3832 u64 length;
3833 u64 chunk_tree;
3834 u64 chunk_objectid;
3835 u64 chunk_offset;
3836 int ret;
3837 int slot;
3838 int failed = 0;
3839 bool retried = false;
3840 struct extent_buffer *l;
3841 struct btrfs_key key;
3842 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3843 u64 old_total = btrfs_super_total_bytes(super_copy);
3844 u64 old_size = device->total_bytes;
3845 u64 diff = device->total_bytes - new_size;
3847 if (device->is_tgtdev_for_dev_replace)
3848 return -EINVAL;
3850 path = btrfs_alloc_path();
3851 if (!path)
3852 return -ENOMEM;
3854 path->reada = 2;
3856 lock_chunks(root);
3858 device->total_bytes = new_size;
3859 if (device->writeable) {
3860 device->fs_devices->total_rw_bytes -= diff;
3861 spin_lock(&root->fs_info->free_chunk_lock);
3862 root->fs_info->free_chunk_space -= diff;
3863 spin_unlock(&root->fs_info->free_chunk_lock);
3865 unlock_chunks(root);
3867 again:
3868 key.objectid = device->devid;
3869 key.offset = (u64)-1;
3870 key.type = BTRFS_DEV_EXTENT_KEY;
3872 do {
3873 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3874 if (ret < 0)
3875 goto done;
3877 ret = btrfs_previous_item(root, path, 0, key.type);
3878 if (ret < 0)
3879 goto done;
3880 if (ret) {
3881 ret = 0;
3882 btrfs_release_path(path);
3883 break;
3886 l = path->nodes[0];
3887 slot = path->slots[0];
3888 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3890 if (key.objectid != device->devid) {
3891 btrfs_release_path(path);
3892 break;
3895 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3896 length = btrfs_dev_extent_length(l, dev_extent);
3898 if (key.offset + length <= new_size) {
3899 btrfs_release_path(path);
3900 break;
3903 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3904 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3905 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3906 btrfs_release_path(path);
3908 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3909 chunk_offset);
3910 if (ret && ret != -ENOSPC)
3911 goto done;
3912 if (ret == -ENOSPC)
3913 failed++;
3914 } while (key.offset-- > 0);
3916 if (failed && !retried) {
3917 failed = 0;
3918 retried = true;
3919 goto again;
3920 } else if (failed && retried) {
3921 ret = -ENOSPC;
3922 lock_chunks(root);
3924 device->total_bytes = old_size;
3925 if (device->writeable)
3926 device->fs_devices->total_rw_bytes += diff;
3927 spin_lock(&root->fs_info->free_chunk_lock);
3928 root->fs_info->free_chunk_space += diff;
3929 spin_unlock(&root->fs_info->free_chunk_lock);
3930 unlock_chunks(root);
3931 goto done;
3934 /* Shrinking succeeded, else we would be at "done". */
3935 trans = btrfs_start_transaction(root, 0);
3936 if (IS_ERR(trans)) {
3937 ret = PTR_ERR(trans);
3938 goto done;
3941 lock_chunks(root);
3943 device->disk_total_bytes = new_size;
3944 /* Now btrfs_update_device() will change the on-disk size. */
3945 ret = btrfs_update_device(trans, device);
3946 if (ret) {
3947 unlock_chunks(root);
3948 btrfs_end_transaction(trans, root);
3949 goto done;
3951 WARN_ON(diff > old_total);
3952 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3953 unlock_chunks(root);
3954 btrfs_end_transaction(trans, root);
3955 done:
3956 btrfs_free_path(path);
3957 return ret;
3960 static int btrfs_add_system_chunk(struct btrfs_root *root,
3961 struct btrfs_key *key,
3962 struct btrfs_chunk *chunk, int item_size)
3964 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3965 struct btrfs_disk_key disk_key;
3966 u32 array_size;
3967 u8 *ptr;
3969 array_size = btrfs_super_sys_array_size(super_copy);
3970 if (array_size + item_size + sizeof(disk_key)
3971 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3972 return -EFBIG;
3974 ptr = super_copy->sys_chunk_array + array_size;
3975 btrfs_cpu_key_to_disk(&disk_key, key);
3976 memcpy(ptr, &disk_key, sizeof(disk_key));
3977 ptr += sizeof(disk_key);
3978 memcpy(ptr, chunk, item_size);
3979 item_size += sizeof(disk_key);
3980 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3981 return 0;
3985 * sort the devices in descending order by max_avail, total_avail
3987 static int btrfs_cmp_device_info(const void *a, const void *b)
3989 const struct btrfs_device_info *di_a = a;
3990 const struct btrfs_device_info *di_b = b;
3992 if (di_a->max_avail > di_b->max_avail)
3993 return -1;
3994 if (di_a->max_avail < di_b->max_avail)
3995 return 1;
3996 if (di_a->total_avail > di_b->total_avail)
3997 return -1;
3998 if (di_a->total_avail < di_b->total_avail)
3999 return 1;
4000 return 0;
4003 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4004 [BTRFS_RAID_RAID10] = {
4005 .sub_stripes = 2,
4006 .dev_stripes = 1,
4007 .devs_max = 0, /* 0 == as many as possible */
4008 .devs_min = 4,
4009 .devs_increment = 2,
4010 .ncopies = 2,
4012 [BTRFS_RAID_RAID1] = {
4013 .sub_stripes = 1,
4014 .dev_stripes = 1,
4015 .devs_max = 2,
4016 .devs_min = 2,
4017 .devs_increment = 2,
4018 .ncopies = 2,
4020 [BTRFS_RAID_DUP] = {
4021 .sub_stripes = 1,
4022 .dev_stripes = 2,
4023 .devs_max = 1,
4024 .devs_min = 1,
4025 .devs_increment = 1,
4026 .ncopies = 2,
4028 [BTRFS_RAID_RAID0] = {
4029 .sub_stripes = 1,
4030 .dev_stripes = 1,
4031 .devs_max = 0,
4032 .devs_min = 2,
4033 .devs_increment = 1,
4034 .ncopies = 1,
4036 [BTRFS_RAID_SINGLE] = {
4037 .sub_stripes = 1,
4038 .dev_stripes = 1,
4039 .devs_max = 1,
4040 .devs_min = 1,
4041 .devs_increment = 1,
4042 .ncopies = 1,
4044 [BTRFS_RAID_RAID5] = {
4045 .sub_stripes = 1,
4046 .dev_stripes = 1,
4047 .devs_max = 0,
4048 .devs_min = 2,
4049 .devs_increment = 1,
4050 .ncopies = 2,
4052 [BTRFS_RAID_RAID6] = {
4053 .sub_stripes = 1,
4054 .dev_stripes = 1,
4055 .devs_max = 0,
4056 .devs_min = 3,
4057 .devs_increment = 1,
4058 .ncopies = 3,
4062 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4064 /* TODO allow them to set a preferred stripe size */
4065 return 64 * 1024;
4068 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4070 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4071 return;
4073 btrfs_set_fs_incompat(info, RAID56);
4076 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4077 - sizeof(struct btrfs_item) \
4078 - sizeof(struct btrfs_chunk)) \
4079 / sizeof(struct btrfs_stripe) + 1)
4081 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4082 - 2 * sizeof(struct btrfs_disk_key) \
4083 - 2 * sizeof(struct btrfs_chunk)) \
4084 / sizeof(struct btrfs_stripe) + 1)
4086 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4087 struct btrfs_root *extent_root, u64 start,
4088 u64 type)
4090 struct btrfs_fs_info *info = extent_root->fs_info;
4091 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4092 struct list_head *cur;
4093 struct map_lookup *map = NULL;
4094 struct extent_map_tree *em_tree;
4095 struct extent_map *em;
4096 struct btrfs_device_info *devices_info = NULL;
4097 u64 total_avail;
4098 int num_stripes; /* total number of stripes to allocate */
4099 int data_stripes; /* number of stripes that count for
4100 block group size */
4101 int sub_stripes; /* sub_stripes info for map */
4102 int dev_stripes; /* stripes per dev */
4103 int devs_max; /* max devs to use */
4104 int devs_min; /* min devs needed */
4105 int devs_increment; /* ndevs has to be a multiple of this */
4106 int ncopies; /* how many copies to data has */
4107 int ret;
4108 u64 max_stripe_size;
4109 u64 max_chunk_size;
4110 u64 stripe_size;
4111 u64 num_bytes;
4112 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4113 int ndevs;
4114 int i;
4115 int j;
4116 int index;
4118 BUG_ON(!alloc_profile_is_valid(type, 0));
4120 if (list_empty(&fs_devices->alloc_list))
4121 return -ENOSPC;
4123 index = __get_raid_index(type);
4125 sub_stripes = btrfs_raid_array[index].sub_stripes;
4126 dev_stripes = btrfs_raid_array[index].dev_stripes;
4127 devs_max = btrfs_raid_array[index].devs_max;
4128 devs_min = btrfs_raid_array[index].devs_min;
4129 devs_increment = btrfs_raid_array[index].devs_increment;
4130 ncopies = btrfs_raid_array[index].ncopies;
4132 if (type & BTRFS_BLOCK_GROUP_DATA) {
4133 max_stripe_size = 1024 * 1024 * 1024;
4134 max_chunk_size = 10 * max_stripe_size;
4135 if (!devs_max)
4136 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4137 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4138 /* for larger filesystems, use larger metadata chunks */
4139 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4140 max_stripe_size = 1024 * 1024 * 1024;
4141 else
4142 max_stripe_size = 256 * 1024 * 1024;
4143 max_chunk_size = max_stripe_size;
4144 if (!devs_max)
4145 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4146 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4147 max_stripe_size = 32 * 1024 * 1024;
4148 max_chunk_size = 2 * max_stripe_size;
4149 if (!devs_max)
4150 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4151 } else {
4152 btrfs_err(info, "invalid chunk type 0x%llx requested",
4153 type);
4154 BUG_ON(1);
4157 /* we don't want a chunk larger than 10% of writeable space */
4158 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4159 max_chunk_size);
4161 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4162 GFP_NOFS);
4163 if (!devices_info)
4164 return -ENOMEM;
4166 cur = fs_devices->alloc_list.next;
4169 * in the first pass through the devices list, we gather information
4170 * about the available holes on each device.
4172 ndevs = 0;
4173 while (cur != &fs_devices->alloc_list) {
4174 struct btrfs_device *device;
4175 u64 max_avail;
4176 u64 dev_offset;
4178 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4180 cur = cur->next;
4182 if (!device->writeable) {
4183 WARN(1, KERN_ERR
4184 "BTRFS: read-only device in alloc_list\n");
4185 continue;
4188 if (!device->in_fs_metadata ||
4189 device->is_tgtdev_for_dev_replace)
4190 continue;
4192 if (device->total_bytes > device->bytes_used)
4193 total_avail = device->total_bytes - device->bytes_used;
4194 else
4195 total_avail = 0;
4197 /* If there is no space on this device, skip it. */
4198 if (total_avail == 0)
4199 continue;
4201 ret = find_free_dev_extent(trans, device,
4202 max_stripe_size * dev_stripes,
4203 &dev_offset, &max_avail);
4204 if (ret && ret != -ENOSPC)
4205 goto error;
4207 if (ret == 0)
4208 max_avail = max_stripe_size * dev_stripes;
4210 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4211 continue;
4213 if (ndevs == fs_devices->rw_devices) {
4214 WARN(1, "%s: found more than %llu devices\n",
4215 __func__, fs_devices->rw_devices);
4216 break;
4218 devices_info[ndevs].dev_offset = dev_offset;
4219 devices_info[ndevs].max_avail = max_avail;
4220 devices_info[ndevs].total_avail = total_avail;
4221 devices_info[ndevs].dev = device;
4222 ++ndevs;
4226 * now sort the devices by hole size / available space
4228 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4229 btrfs_cmp_device_info, NULL);
4231 /* round down to number of usable stripes */
4232 ndevs -= ndevs % devs_increment;
4234 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4235 ret = -ENOSPC;
4236 goto error;
4239 if (devs_max && ndevs > devs_max)
4240 ndevs = devs_max;
4242 * the primary goal is to maximize the number of stripes, so use as many
4243 * devices as possible, even if the stripes are not maximum sized.
4245 stripe_size = devices_info[ndevs-1].max_avail;
4246 num_stripes = ndevs * dev_stripes;
4249 * this will have to be fixed for RAID1 and RAID10 over
4250 * more drives
4252 data_stripes = num_stripes / ncopies;
4254 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4255 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4256 btrfs_super_stripesize(info->super_copy));
4257 data_stripes = num_stripes - 1;
4259 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4260 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4261 btrfs_super_stripesize(info->super_copy));
4262 data_stripes = num_stripes - 2;
4266 * Use the number of data stripes to figure out how big this chunk
4267 * is really going to be in terms of logical address space,
4268 * and compare that answer with the max chunk size
4270 if (stripe_size * data_stripes > max_chunk_size) {
4271 u64 mask = (1ULL << 24) - 1;
4272 stripe_size = max_chunk_size;
4273 do_div(stripe_size, data_stripes);
4275 /* bump the answer up to a 16MB boundary */
4276 stripe_size = (stripe_size + mask) & ~mask;
4278 /* but don't go higher than the limits we found
4279 * while searching for free extents
4281 if (stripe_size > devices_info[ndevs-1].max_avail)
4282 stripe_size = devices_info[ndevs-1].max_avail;
4285 do_div(stripe_size, dev_stripes);
4287 /* align to BTRFS_STRIPE_LEN */
4288 do_div(stripe_size, raid_stripe_len);
4289 stripe_size *= raid_stripe_len;
4291 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4292 if (!map) {
4293 ret = -ENOMEM;
4294 goto error;
4296 map->num_stripes = num_stripes;
4298 for (i = 0; i < ndevs; ++i) {
4299 for (j = 0; j < dev_stripes; ++j) {
4300 int s = i * dev_stripes + j;
4301 map->stripes[s].dev = devices_info[i].dev;
4302 map->stripes[s].physical = devices_info[i].dev_offset +
4303 j * stripe_size;
4306 map->sector_size = extent_root->sectorsize;
4307 map->stripe_len = raid_stripe_len;
4308 map->io_align = raid_stripe_len;
4309 map->io_width = raid_stripe_len;
4310 map->type = type;
4311 map->sub_stripes = sub_stripes;
4313 num_bytes = stripe_size * data_stripes;
4315 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4317 em = alloc_extent_map();
4318 if (!em) {
4319 kfree(map);
4320 ret = -ENOMEM;
4321 goto error;
4323 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4324 em->bdev = (struct block_device *)map;
4325 em->start = start;
4326 em->len = num_bytes;
4327 em->block_start = 0;
4328 em->block_len = em->len;
4329 em->orig_block_len = stripe_size;
4331 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4332 write_lock(&em_tree->lock);
4333 ret = add_extent_mapping(em_tree, em, 0);
4334 if (!ret) {
4335 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4336 atomic_inc(&em->refs);
4338 write_unlock(&em_tree->lock);
4339 if (ret) {
4340 free_extent_map(em);
4341 goto error;
4344 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4345 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4346 start, num_bytes);
4347 if (ret)
4348 goto error_del_extent;
4350 free_extent_map(em);
4351 check_raid56_incompat_flag(extent_root->fs_info, type);
4353 kfree(devices_info);
4354 return 0;
4356 error_del_extent:
4357 write_lock(&em_tree->lock);
4358 remove_extent_mapping(em_tree, em);
4359 write_unlock(&em_tree->lock);
4361 /* One for our allocation */
4362 free_extent_map(em);
4363 /* One for the tree reference */
4364 free_extent_map(em);
4365 error:
4366 kfree(devices_info);
4367 return ret;
4370 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4371 struct btrfs_root *extent_root,
4372 u64 chunk_offset, u64 chunk_size)
4374 struct btrfs_key key;
4375 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4376 struct btrfs_device *device;
4377 struct btrfs_chunk *chunk;
4378 struct btrfs_stripe *stripe;
4379 struct extent_map_tree *em_tree;
4380 struct extent_map *em;
4381 struct map_lookup *map;
4382 size_t item_size;
4383 u64 dev_offset;
4384 u64 stripe_size;
4385 int i = 0;
4386 int ret;
4388 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4389 read_lock(&em_tree->lock);
4390 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4391 read_unlock(&em_tree->lock);
4393 if (!em) {
4394 btrfs_crit(extent_root->fs_info, "unable to find logical "
4395 "%Lu len %Lu", chunk_offset, chunk_size);
4396 return -EINVAL;
4399 if (em->start != chunk_offset || em->len != chunk_size) {
4400 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4401 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4402 chunk_size, em->start, em->len);
4403 free_extent_map(em);
4404 return -EINVAL;
4407 map = (struct map_lookup *)em->bdev;
4408 item_size = btrfs_chunk_item_size(map->num_stripes);
4409 stripe_size = em->orig_block_len;
4411 chunk = kzalloc(item_size, GFP_NOFS);
4412 if (!chunk) {
4413 ret = -ENOMEM;
4414 goto out;
4417 for (i = 0; i < map->num_stripes; i++) {
4418 device = map->stripes[i].dev;
4419 dev_offset = map->stripes[i].physical;
4421 device->bytes_used += stripe_size;
4422 ret = btrfs_update_device(trans, device);
4423 if (ret)
4424 goto out;
4425 ret = btrfs_alloc_dev_extent(trans, device,
4426 chunk_root->root_key.objectid,
4427 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4428 chunk_offset, dev_offset,
4429 stripe_size);
4430 if (ret)
4431 goto out;
4434 spin_lock(&extent_root->fs_info->free_chunk_lock);
4435 extent_root->fs_info->free_chunk_space -= (stripe_size *
4436 map->num_stripes);
4437 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4439 stripe = &chunk->stripe;
4440 for (i = 0; i < map->num_stripes; i++) {
4441 device = map->stripes[i].dev;
4442 dev_offset = map->stripes[i].physical;
4444 btrfs_set_stack_stripe_devid(stripe, device->devid);
4445 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4446 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4447 stripe++;
4450 btrfs_set_stack_chunk_length(chunk, chunk_size);
4451 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4452 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4453 btrfs_set_stack_chunk_type(chunk, map->type);
4454 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4455 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4456 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4457 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4458 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4460 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4461 key.type = BTRFS_CHUNK_ITEM_KEY;
4462 key.offset = chunk_offset;
4464 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4465 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4467 * TODO: Cleanup of inserted chunk root in case of
4468 * failure.
4470 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4471 item_size);
4474 out:
4475 kfree(chunk);
4476 free_extent_map(em);
4477 return ret;
4481 * Chunk allocation falls into two parts. The first part does works
4482 * that make the new allocated chunk useable, but not do any operation
4483 * that modifies the chunk tree. The second part does the works that
4484 * require modifying the chunk tree. This division is important for the
4485 * bootstrap process of adding storage to a seed btrfs.
4487 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4488 struct btrfs_root *extent_root, u64 type)
4490 u64 chunk_offset;
4492 chunk_offset = find_next_chunk(extent_root->fs_info);
4493 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4496 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4497 struct btrfs_root *root,
4498 struct btrfs_device *device)
4500 u64 chunk_offset;
4501 u64 sys_chunk_offset;
4502 u64 alloc_profile;
4503 struct btrfs_fs_info *fs_info = root->fs_info;
4504 struct btrfs_root *extent_root = fs_info->extent_root;
4505 int ret;
4507 chunk_offset = find_next_chunk(fs_info);
4508 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4509 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4510 alloc_profile);
4511 if (ret)
4512 return ret;
4514 sys_chunk_offset = find_next_chunk(root->fs_info);
4515 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4516 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4517 alloc_profile);
4518 if (ret) {
4519 btrfs_abort_transaction(trans, root, ret);
4520 goto out;
4523 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4524 if (ret)
4525 btrfs_abort_transaction(trans, root, ret);
4526 out:
4527 return ret;
4530 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4532 struct extent_map *em;
4533 struct map_lookup *map;
4534 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4535 int readonly = 0;
4536 int i;
4538 read_lock(&map_tree->map_tree.lock);
4539 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4540 read_unlock(&map_tree->map_tree.lock);
4541 if (!em)
4542 return 1;
4544 if (btrfs_test_opt(root, DEGRADED)) {
4545 free_extent_map(em);
4546 return 0;
4549 map = (struct map_lookup *)em->bdev;
4550 for (i = 0; i < map->num_stripes; i++) {
4551 if (!map->stripes[i].dev->writeable) {
4552 readonly = 1;
4553 break;
4556 free_extent_map(em);
4557 return readonly;
4560 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4562 extent_map_tree_init(&tree->map_tree);
4565 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4567 struct extent_map *em;
4569 while (1) {
4570 write_lock(&tree->map_tree.lock);
4571 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4572 if (em)
4573 remove_extent_mapping(&tree->map_tree, em);
4574 write_unlock(&tree->map_tree.lock);
4575 if (!em)
4576 break;
4577 /* once for us */
4578 free_extent_map(em);
4579 /* once for the tree */
4580 free_extent_map(em);
4584 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4586 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4587 struct extent_map *em;
4588 struct map_lookup *map;
4589 struct extent_map_tree *em_tree = &map_tree->map_tree;
4590 int ret;
4592 read_lock(&em_tree->lock);
4593 em = lookup_extent_mapping(em_tree, logical, len);
4594 read_unlock(&em_tree->lock);
4597 * We could return errors for these cases, but that could get ugly and
4598 * we'd probably do the same thing which is just not do anything else
4599 * and exit, so return 1 so the callers don't try to use other copies.
4601 if (!em) {
4602 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4603 logical+len);
4604 return 1;
4607 if (em->start > logical || em->start + em->len < logical) {
4608 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4609 "%Lu-%Lu", logical, logical+len, em->start,
4610 em->start + em->len);
4611 free_extent_map(em);
4612 return 1;
4615 map = (struct map_lookup *)em->bdev;
4616 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4617 ret = map->num_stripes;
4618 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4619 ret = map->sub_stripes;
4620 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4621 ret = 2;
4622 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4623 ret = 3;
4624 else
4625 ret = 1;
4626 free_extent_map(em);
4628 btrfs_dev_replace_lock(&fs_info->dev_replace);
4629 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4630 ret++;
4631 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4633 return ret;
4636 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4637 struct btrfs_mapping_tree *map_tree,
4638 u64 logical)
4640 struct extent_map *em;
4641 struct map_lookup *map;
4642 struct extent_map_tree *em_tree = &map_tree->map_tree;
4643 unsigned long len = root->sectorsize;
4645 read_lock(&em_tree->lock);
4646 em = lookup_extent_mapping(em_tree, logical, len);
4647 read_unlock(&em_tree->lock);
4648 BUG_ON(!em);
4650 BUG_ON(em->start > logical || em->start + em->len < logical);
4651 map = (struct map_lookup *)em->bdev;
4652 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4653 BTRFS_BLOCK_GROUP_RAID6)) {
4654 len = map->stripe_len * nr_data_stripes(map);
4656 free_extent_map(em);
4657 return len;
4660 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4661 u64 logical, u64 len, int mirror_num)
4663 struct extent_map *em;
4664 struct map_lookup *map;
4665 struct extent_map_tree *em_tree = &map_tree->map_tree;
4666 int ret = 0;
4668 read_lock(&em_tree->lock);
4669 em = lookup_extent_mapping(em_tree, logical, len);
4670 read_unlock(&em_tree->lock);
4671 BUG_ON(!em);
4673 BUG_ON(em->start > logical || em->start + em->len < logical);
4674 map = (struct map_lookup *)em->bdev;
4675 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4676 BTRFS_BLOCK_GROUP_RAID6))
4677 ret = 1;
4678 free_extent_map(em);
4679 return ret;
4682 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4683 struct map_lookup *map, int first, int num,
4684 int optimal, int dev_replace_is_ongoing)
4686 int i;
4687 int tolerance;
4688 struct btrfs_device *srcdev;
4690 if (dev_replace_is_ongoing &&
4691 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4692 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4693 srcdev = fs_info->dev_replace.srcdev;
4694 else
4695 srcdev = NULL;
4698 * try to avoid the drive that is the source drive for a
4699 * dev-replace procedure, only choose it if no other non-missing
4700 * mirror is available
4702 for (tolerance = 0; tolerance < 2; tolerance++) {
4703 if (map->stripes[optimal].dev->bdev &&
4704 (tolerance || map->stripes[optimal].dev != srcdev))
4705 return optimal;
4706 for (i = first; i < first + num; i++) {
4707 if (map->stripes[i].dev->bdev &&
4708 (tolerance || map->stripes[i].dev != srcdev))
4709 return i;
4713 /* we couldn't find one that doesn't fail. Just return something
4714 * and the io error handling code will clean up eventually
4716 return optimal;
4719 static inline int parity_smaller(u64 a, u64 b)
4721 return a > b;
4724 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4725 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4727 struct btrfs_bio_stripe s;
4728 int i;
4729 u64 l;
4730 int again = 1;
4732 while (again) {
4733 again = 0;
4734 for (i = 0; i < bbio->num_stripes - 1; i++) {
4735 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4736 s = bbio->stripes[i];
4737 l = raid_map[i];
4738 bbio->stripes[i] = bbio->stripes[i+1];
4739 raid_map[i] = raid_map[i+1];
4740 bbio->stripes[i+1] = s;
4741 raid_map[i+1] = l;
4742 again = 1;
4748 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4749 u64 logical, u64 *length,
4750 struct btrfs_bio **bbio_ret,
4751 int mirror_num, u64 **raid_map_ret)
4753 struct extent_map *em;
4754 struct map_lookup *map;
4755 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4756 struct extent_map_tree *em_tree = &map_tree->map_tree;
4757 u64 offset;
4758 u64 stripe_offset;
4759 u64 stripe_end_offset;
4760 u64 stripe_nr;
4761 u64 stripe_nr_orig;
4762 u64 stripe_nr_end;
4763 u64 stripe_len;
4764 u64 *raid_map = NULL;
4765 int stripe_index;
4766 int i;
4767 int ret = 0;
4768 int num_stripes;
4769 int max_errors = 0;
4770 struct btrfs_bio *bbio = NULL;
4771 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4772 int dev_replace_is_ongoing = 0;
4773 int num_alloc_stripes;
4774 int patch_the_first_stripe_for_dev_replace = 0;
4775 u64 physical_to_patch_in_first_stripe = 0;
4776 u64 raid56_full_stripe_start = (u64)-1;
4778 read_lock(&em_tree->lock);
4779 em = lookup_extent_mapping(em_tree, logical, *length);
4780 read_unlock(&em_tree->lock);
4782 if (!em) {
4783 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4784 logical, *length);
4785 return -EINVAL;
4788 if (em->start > logical || em->start + em->len < logical) {
4789 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4790 "found %Lu-%Lu", logical, em->start,
4791 em->start + em->len);
4792 free_extent_map(em);
4793 return -EINVAL;
4796 map = (struct map_lookup *)em->bdev;
4797 offset = logical - em->start;
4799 stripe_len = map->stripe_len;
4800 stripe_nr = offset;
4802 * stripe_nr counts the total number of stripes we have to stride
4803 * to get to this block
4805 do_div(stripe_nr, stripe_len);
4807 stripe_offset = stripe_nr * stripe_len;
4808 BUG_ON(offset < stripe_offset);
4810 /* stripe_offset is the offset of this block in its stripe*/
4811 stripe_offset = offset - stripe_offset;
4813 /* if we're here for raid56, we need to know the stripe aligned start */
4814 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4815 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4816 raid56_full_stripe_start = offset;
4818 /* allow a write of a full stripe, but make sure we don't
4819 * allow straddling of stripes
4821 do_div(raid56_full_stripe_start, full_stripe_len);
4822 raid56_full_stripe_start *= full_stripe_len;
4825 if (rw & REQ_DISCARD) {
4826 /* we don't discard raid56 yet */
4827 if (map->type &
4828 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4829 ret = -EOPNOTSUPP;
4830 goto out;
4832 *length = min_t(u64, em->len - offset, *length);
4833 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4834 u64 max_len;
4835 /* For writes to RAID[56], allow a full stripeset across all disks.
4836 For other RAID types and for RAID[56] reads, just allow a single
4837 stripe (on a single disk). */
4838 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4839 (rw & REQ_WRITE)) {
4840 max_len = stripe_len * nr_data_stripes(map) -
4841 (offset - raid56_full_stripe_start);
4842 } else {
4843 /* we limit the length of each bio to what fits in a stripe */
4844 max_len = stripe_len - stripe_offset;
4846 *length = min_t(u64, em->len - offset, max_len);
4847 } else {
4848 *length = em->len - offset;
4851 /* This is for when we're called from btrfs_merge_bio_hook() and all
4852 it cares about is the length */
4853 if (!bbio_ret)
4854 goto out;
4856 btrfs_dev_replace_lock(dev_replace);
4857 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4858 if (!dev_replace_is_ongoing)
4859 btrfs_dev_replace_unlock(dev_replace);
4861 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4862 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4863 dev_replace->tgtdev != NULL) {
4865 * in dev-replace case, for repair case (that's the only
4866 * case where the mirror is selected explicitly when
4867 * calling btrfs_map_block), blocks left of the left cursor
4868 * can also be read from the target drive.
4869 * For REQ_GET_READ_MIRRORS, the target drive is added as
4870 * the last one to the array of stripes. For READ, it also
4871 * needs to be supported using the same mirror number.
4872 * If the requested block is not left of the left cursor,
4873 * EIO is returned. This can happen because btrfs_num_copies()
4874 * returns one more in the dev-replace case.
4876 u64 tmp_length = *length;
4877 struct btrfs_bio *tmp_bbio = NULL;
4878 int tmp_num_stripes;
4879 u64 srcdev_devid = dev_replace->srcdev->devid;
4880 int index_srcdev = 0;
4881 int found = 0;
4882 u64 physical_of_found = 0;
4884 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4885 logical, &tmp_length, &tmp_bbio, 0, NULL);
4886 if (ret) {
4887 WARN_ON(tmp_bbio != NULL);
4888 goto out;
4891 tmp_num_stripes = tmp_bbio->num_stripes;
4892 if (mirror_num > tmp_num_stripes) {
4894 * REQ_GET_READ_MIRRORS does not contain this
4895 * mirror, that means that the requested area
4896 * is not left of the left cursor
4898 ret = -EIO;
4899 kfree(tmp_bbio);
4900 goto out;
4904 * process the rest of the function using the mirror_num
4905 * of the source drive. Therefore look it up first.
4906 * At the end, patch the device pointer to the one of the
4907 * target drive.
4909 for (i = 0; i < tmp_num_stripes; i++) {
4910 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4912 * In case of DUP, in order to keep it
4913 * simple, only add the mirror with the
4914 * lowest physical address
4916 if (found &&
4917 physical_of_found <=
4918 tmp_bbio->stripes[i].physical)
4919 continue;
4920 index_srcdev = i;
4921 found = 1;
4922 physical_of_found =
4923 tmp_bbio->stripes[i].physical;
4927 if (found) {
4928 mirror_num = index_srcdev + 1;
4929 patch_the_first_stripe_for_dev_replace = 1;
4930 physical_to_patch_in_first_stripe = physical_of_found;
4931 } else {
4932 WARN_ON(1);
4933 ret = -EIO;
4934 kfree(tmp_bbio);
4935 goto out;
4938 kfree(tmp_bbio);
4939 } else if (mirror_num > map->num_stripes) {
4940 mirror_num = 0;
4943 num_stripes = 1;
4944 stripe_index = 0;
4945 stripe_nr_orig = stripe_nr;
4946 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4947 do_div(stripe_nr_end, map->stripe_len);
4948 stripe_end_offset = stripe_nr_end * map->stripe_len -
4949 (offset + *length);
4951 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4952 if (rw & REQ_DISCARD)
4953 num_stripes = min_t(u64, map->num_stripes,
4954 stripe_nr_end - stripe_nr_orig);
4955 stripe_index = do_div(stripe_nr, map->num_stripes);
4956 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4957 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4958 num_stripes = map->num_stripes;
4959 else if (mirror_num)
4960 stripe_index = mirror_num - 1;
4961 else {
4962 stripe_index = find_live_mirror(fs_info, map, 0,
4963 map->num_stripes,
4964 current->pid % map->num_stripes,
4965 dev_replace_is_ongoing);
4966 mirror_num = stripe_index + 1;
4969 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4970 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4971 num_stripes = map->num_stripes;
4972 } else if (mirror_num) {
4973 stripe_index = mirror_num - 1;
4974 } else {
4975 mirror_num = 1;
4978 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4979 int factor = map->num_stripes / map->sub_stripes;
4981 stripe_index = do_div(stripe_nr, factor);
4982 stripe_index *= map->sub_stripes;
4984 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4985 num_stripes = map->sub_stripes;
4986 else if (rw & REQ_DISCARD)
4987 num_stripes = min_t(u64, map->sub_stripes *
4988 (stripe_nr_end - stripe_nr_orig),
4989 map->num_stripes);
4990 else if (mirror_num)
4991 stripe_index += mirror_num - 1;
4992 else {
4993 int old_stripe_index = stripe_index;
4994 stripe_index = find_live_mirror(fs_info, map,
4995 stripe_index,
4996 map->sub_stripes, stripe_index +
4997 current->pid % map->sub_stripes,
4998 dev_replace_is_ongoing);
4999 mirror_num = stripe_index - old_stripe_index + 1;
5002 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5003 BTRFS_BLOCK_GROUP_RAID6)) {
5004 u64 tmp;
5006 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
5007 && raid_map_ret) {
5008 int i, rot;
5010 /* push stripe_nr back to the start of the full stripe */
5011 stripe_nr = raid56_full_stripe_start;
5012 do_div(stripe_nr, stripe_len);
5014 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5016 /* RAID[56] write or recovery. Return all stripes */
5017 num_stripes = map->num_stripes;
5018 max_errors = nr_parity_stripes(map);
5020 raid_map = kmalloc_array(num_stripes, sizeof(u64),
5021 GFP_NOFS);
5022 if (!raid_map) {
5023 ret = -ENOMEM;
5024 goto out;
5027 /* Work out the disk rotation on this stripe-set */
5028 tmp = stripe_nr;
5029 rot = do_div(tmp, num_stripes);
5031 /* Fill in the logical address of each stripe */
5032 tmp = stripe_nr * nr_data_stripes(map);
5033 for (i = 0; i < nr_data_stripes(map); i++)
5034 raid_map[(i+rot) % num_stripes] =
5035 em->start + (tmp + i) * map->stripe_len;
5037 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5038 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5039 raid_map[(i+rot+1) % num_stripes] =
5040 RAID6_Q_STRIPE;
5042 *length = map->stripe_len;
5043 stripe_index = 0;
5044 stripe_offset = 0;
5045 } else {
5047 * Mirror #0 or #1 means the original data block.
5048 * Mirror #2 is RAID5 parity block.
5049 * Mirror #3 is RAID6 Q block.
5051 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5052 if (mirror_num > 1)
5053 stripe_index = nr_data_stripes(map) +
5054 mirror_num - 2;
5056 /* We distribute the parity blocks across stripes */
5057 tmp = stripe_nr + stripe_index;
5058 stripe_index = do_div(tmp, map->num_stripes);
5060 } else {
5062 * after this do_div call, stripe_nr is the number of stripes
5063 * on this device we have to walk to find the data, and
5064 * stripe_index is the number of our device in the stripe array
5066 stripe_index = do_div(stripe_nr, map->num_stripes);
5067 mirror_num = stripe_index + 1;
5069 BUG_ON(stripe_index >= map->num_stripes);
5071 num_alloc_stripes = num_stripes;
5072 if (dev_replace_is_ongoing) {
5073 if (rw & (REQ_WRITE | REQ_DISCARD))
5074 num_alloc_stripes <<= 1;
5075 if (rw & REQ_GET_READ_MIRRORS)
5076 num_alloc_stripes++;
5078 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
5079 if (!bbio) {
5080 kfree(raid_map);
5081 ret = -ENOMEM;
5082 goto out;
5084 atomic_set(&bbio->error, 0);
5086 if (rw & REQ_DISCARD) {
5087 int factor = 0;
5088 int sub_stripes = 0;
5089 u64 stripes_per_dev = 0;
5090 u32 remaining_stripes = 0;
5091 u32 last_stripe = 0;
5093 if (map->type &
5094 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5095 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5096 sub_stripes = 1;
5097 else
5098 sub_stripes = map->sub_stripes;
5100 factor = map->num_stripes / sub_stripes;
5101 stripes_per_dev = div_u64_rem(stripe_nr_end -
5102 stripe_nr_orig,
5103 factor,
5104 &remaining_stripes);
5105 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5106 last_stripe *= sub_stripes;
5109 for (i = 0; i < num_stripes; i++) {
5110 bbio->stripes[i].physical =
5111 map->stripes[stripe_index].physical +
5112 stripe_offset + stripe_nr * map->stripe_len;
5113 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5115 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5116 BTRFS_BLOCK_GROUP_RAID10)) {
5117 bbio->stripes[i].length = stripes_per_dev *
5118 map->stripe_len;
5120 if (i / sub_stripes < remaining_stripes)
5121 bbio->stripes[i].length +=
5122 map->stripe_len;
5125 * Special for the first stripe and
5126 * the last stripe:
5128 * |-------|...|-------|
5129 * |----------|
5130 * off end_off
5132 if (i < sub_stripes)
5133 bbio->stripes[i].length -=
5134 stripe_offset;
5136 if (stripe_index >= last_stripe &&
5137 stripe_index <= (last_stripe +
5138 sub_stripes - 1))
5139 bbio->stripes[i].length -=
5140 stripe_end_offset;
5142 if (i == sub_stripes - 1)
5143 stripe_offset = 0;
5144 } else
5145 bbio->stripes[i].length = *length;
5147 stripe_index++;
5148 if (stripe_index == map->num_stripes) {
5149 /* This could only happen for RAID0/10 */
5150 stripe_index = 0;
5151 stripe_nr++;
5154 } else {
5155 for (i = 0; i < num_stripes; i++) {
5156 bbio->stripes[i].physical =
5157 map->stripes[stripe_index].physical +
5158 stripe_offset +
5159 stripe_nr * map->stripe_len;
5160 bbio->stripes[i].dev =
5161 map->stripes[stripe_index].dev;
5162 stripe_index++;
5166 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5167 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5168 BTRFS_BLOCK_GROUP_RAID10 |
5169 BTRFS_BLOCK_GROUP_RAID5 |
5170 BTRFS_BLOCK_GROUP_DUP)) {
5171 max_errors = 1;
5172 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5173 max_errors = 2;
5177 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5178 dev_replace->tgtdev != NULL) {
5179 int index_where_to_add;
5180 u64 srcdev_devid = dev_replace->srcdev->devid;
5183 * duplicate the write operations while the dev replace
5184 * procedure is running. Since the copying of the old disk
5185 * to the new disk takes place at run time while the
5186 * filesystem is mounted writable, the regular write
5187 * operations to the old disk have to be duplicated to go
5188 * to the new disk as well.
5189 * Note that device->missing is handled by the caller, and
5190 * that the write to the old disk is already set up in the
5191 * stripes array.
5193 index_where_to_add = num_stripes;
5194 for (i = 0; i < num_stripes; i++) {
5195 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5196 /* write to new disk, too */
5197 struct btrfs_bio_stripe *new =
5198 bbio->stripes + index_where_to_add;
5199 struct btrfs_bio_stripe *old =
5200 bbio->stripes + i;
5202 new->physical = old->physical;
5203 new->length = old->length;
5204 new->dev = dev_replace->tgtdev;
5205 index_where_to_add++;
5206 max_errors++;
5209 num_stripes = index_where_to_add;
5210 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5211 dev_replace->tgtdev != NULL) {
5212 u64 srcdev_devid = dev_replace->srcdev->devid;
5213 int index_srcdev = 0;
5214 int found = 0;
5215 u64 physical_of_found = 0;
5218 * During the dev-replace procedure, the target drive can
5219 * also be used to read data in case it is needed to repair
5220 * a corrupt block elsewhere. This is possible if the
5221 * requested area is left of the left cursor. In this area,
5222 * the target drive is a full copy of the source drive.
5224 for (i = 0; i < num_stripes; i++) {
5225 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5227 * In case of DUP, in order to keep it
5228 * simple, only add the mirror with the
5229 * lowest physical address
5231 if (found &&
5232 physical_of_found <=
5233 bbio->stripes[i].physical)
5234 continue;
5235 index_srcdev = i;
5236 found = 1;
5237 physical_of_found = bbio->stripes[i].physical;
5240 if (found) {
5241 u64 length = map->stripe_len;
5243 if (physical_of_found + length <=
5244 dev_replace->cursor_left) {
5245 struct btrfs_bio_stripe *tgtdev_stripe =
5246 bbio->stripes + num_stripes;
5248 tgtdev_stripe->physical = physical_of_found;
5249 tgtdev_stripe->length =
5250 bbio->stripes[index_srcdev].length;
5251 tgtdev_stripe->dev = dev_replace->tgtdev;
5253 num_stripes++;
5258 *bbio_ret = bbio;
5259 bbio->num_stripes = num_stripes;
5260 bbio->max_errors = max_errors;
5261 bbio->mirror_num = mirror_num;
5264 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5265 * mirror_num == num_stripes + 1 && dev_replace target drive is
5266 * available as a mirror
5268 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5269 WARN_ON(num_stripes > 1);
5270 bbio->stripes[0].dev = dev_replace->tgtdev;
5271 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5272 bbio->mirror_num = map->num_stripes + 1;
5274 if (raid_map) {
5275 sort_parity_stripes(bbio, raid_map);
5276 *raid_map_ret = raid_map;
5278 out:
5279 if (dev_replace_is_ongoing)
5280 btrfs_dev_replace_unlock(dev_replace);
5281 free_extent_map(em);
5282 return ret;
5285 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5286 u64 logical, u64 *length,
5287 struct btrfs_bio **bbio_ret, int mirror_num)
5289 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5290 mirror_num, NULL);
5293 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5294 u64 chunk_start, u64 physical, u64 devid,
5295 u64 **logical, int *naddrs, int *stripe_len)
5297 struct extent_map_tree *em_tree = &map_tree->map_tree;
5298 struct extent_map *em;
5299 struct map_lookup *map;
5300 u64 *buf;
5301 u64 bytenr;
5302 u64 length;
5303 u64 stripe_nr;
5304 u64 rmap_len;
5305 int i, j, nr = 0;
5307 read_lock(&em_tree->lock);
5308 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5309 read_unlock(&em_tree->lock);
5311 if (!em) {
5312 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5313 chunk_start);
5314 return -EIO;
5317 if (em->start != chunk_start) {
5318 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5319 em->start, chunk_start);
5320 free_extent_map(em);
5321 return -EIO;
5323 map = (struct map_lookup *)em->bdev;
5325 length = em->len;
5326 rmap_len = map->stripe_len;
5328 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5329 do_div(length, map->num_stripes / map->sub_stripes);
5330 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5331 do_div(length, map->num_stripes);
5332 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5333 BTRFS_BLOCK_GROUP_RAID6)) {
5334 do_div(length, nr_data_stripes(map));
5335 rmap_len = map->stripe_len * nr_data_stripes(map);
5338 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5339 BUG_ON(!buf); /* -ENOMEM */
5341 for (i = 0; i < map->num_stripes; i++) {
5342 if (devid && map->stripes[i].dev->devid != devid)
5343 continue;
5344 if (map->stripes[i].physical > physical ||
5345 map->stripes[i].physical + length <= physical)
5346 continue;
5348 stripe_nr = physical - map->stripes[i].physical;
5349 do_div(stripe_nr, map->stripe_len);
5351 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5352 stripe_nr = stripe_nr * map->num_stripes + i;
5353 do_div(stripe_nr, map->sub_stripes);
5354 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5355 stripe_nr = stripe_nr * map->num_stripes + i;
5356 } /* else if RAID[56], multiply by nr_data_stripes().
5357 * Alternatively, just use rmap_len below instead of
5358 * map->stripe_len */
5360 bytenr = chunk_start + stripe_nr * rmap_len;
5361 WARN_ON(nr >= map->num_stripes);
5362 for (j = 0; j < nr; j++) {
5363 if (buf[j] == bytenr)
5364 break;
5366 if (j == nr) {
5367 WARN_ON(nr >= map->num_stripes);
5368 buf[nr++] = bytenr;
5372 *logical = buf;
5373 *naddrs = nr;
5374 *stripe_len = rmap_len;
5376 free_extent_map(em);
5377 return 0;
5380 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5382 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5383 bio_endio_nodec(bio, err);
5384 else
5385 bio_endio(bio, err);
5386 kfree(bbio);
5389 static void btrfs_end_bio(struct bio *bio, int err)
5391 struct btrfs_bio *bbio = bio->bi_private;
5392 struct btrfs_device *dev = bbio->stripes[0].dev;
5393 int is_orig_bio = 0;
5395 if (err) {
5396 atomic_inc(&bbio->error);
5397 if (err == -EIO || err == -EREMOTEIO) {
5398 unsigned int stripe_index =
5399 btrfs_io_bio(bio)->stripe_index;
5401 BUG_ON(stripe_index >= bbio->num_stripes);
5402 dev = bbio->stripes[stripe_index].dev;
5403 if (dev->bdev) {
5404 if (bio->bi_rw & WRITE)
5405 btrfs_dev_stat_inc(dev,
5406 BTRFS_DEV_STAT_WRITE_ERRS);
5407 else
5408 btrfs_dev_stat_inc(dev,
5409 BTRFS_DEV_STAT_READ_ERRS);
5410 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5411 btrfs_dev_stat_inc(dev,
5412 BTRFS_DEV_STAT_FLUSH_ERRS);
5413 btrfs_dev_stat_print_on_error(dev);
5418 if (bio == bbio->orig_bio)
5419 is_orig_bio = 1;
5421 btrfs_bio_counter_dec(bbio->fs_info);
5423 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5424 if (!is_orig_bio) {
5425 bio_put(bio);
5426 bio = bbio->orig_bio;
5429 bio->bi_private = bbio->private;
5430 bio->bi_end_io = bbio->end_io;
5431 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5432 /* only send an error to the higher layers if it is
5433 * beyond the tolerance of the btrfs bio
5435 if (atomic_read(&bbio->error) > bbio->max_errors) {
5436 err = -EIO;
5437 } else {
5439 * this bio is actually up to date, we didn't
5440 * go over the max number of errors
5442 set_bit(BIO_UPTODATE, &bio->bi_flags);
5443 err = 0;
5446 btrfs_end_bbio(bbio, bio, err);
5447 } else if (!is_orig_bio) {
5448 bio_put(bio);
5453 * see run_scheduled_bios for a description of why bios are collected for
5454 * async submit.
5456 * This will add one bio to the pending list for a device and make sure
5457 * the work struct is scheduled.
5459 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5460 struct btrfs_device *device,
5461 int rw, struct bio *bio)
5463 int should_queue = 1;
5464 struct btrfs_pending_bios *pending_bios;
5466 if (device->missing || !device->bdev) {
5467 bio_endio(bio, -EIO);
5468 return;
5471 /* don't bother with additional async steps for reads, right now */
5472 if (!(rw & REQ_WRITE)) {
5473 bio_get(bio);
5474 btrfsic_submit_bio(rw, bio);
5475 bio_put(bio);
5476 return;
5480 * nr_async_bios allows us to reliably return congestion to the
5481 * higher layers. Otherwise, the async bio makes it appear we have
5482 * made progress against dirty pages when we've really just put it
5483 * on a queue for later
5485 atomic_inc(&root->fs_info->nr_async_bios);
5486 WARN_ON(bio->bi_next);
5487 bio->bi_next = NULL;
5488 bio->bi_rw |= rw;
5490 spin_lock(&device->io_lock);
5491 if (bio->bi_rw & REQ_SYNC)
5492 pending_bios = &device->pending_sync_bios;
5493 else
5494 pending_bios = &device->pending_bios;
5496 if (pending_bios->tail)
5497 pending_bios->tail->bi_next = bio;
5499 pending_bios->tail = bio;
5500 if (!pending_bios->head)
5501 pending_bios->head = bio;
5502 if (device->running_pending)
5503 should_queue = 0;
5505 spin_unlock(&device->io_lock);
5507 if (should_queue)
5508 btrfs_queue_work(root->fs_info->submit_workers,
5509 &device->work);
5512 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5513 sector_t sector)
5515 struct bio_vec *prev;
5516 struct request_queue *q = bdev_get_queue(bdev);
5517 unsigned int max_sectors = queue_max_sectors(q);
5518 struct bvec_merge_data bvm = {
5519 .bi_bdev = bdev,
5520 .bi_sector = sector,
5521 .bi_rw = bio->bi_rw,
5524 if (WARN_ON(bio->bi_vcnt == 0))
5525 return 1;
5527 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5528 if (bio_sectors(bio) > max_sectors)
5529 return 0;
5531 if (!q->merge_bvec_fn)
5532 return 1;
5534 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5535 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5536 return 0;
5537 return 1;
5540 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5541 struct bio *bio, u64 physical, int dev_nr,
5542 int rw, int async)
5544 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5546 bio->bi_private = bbio;
5547 btrfs_io_bio(bio)->stripe_index = dev_nr;
5548 bio->bi_end_io = btrfs_end_bio;
5549 bio->bi_iter.bi_sector = physical >> 9;
5550 #ifdef DEBUG
5552 struct rcu_string *name;
5554 rcu_read_lock();
5555 name = rcu_dereference(dev->name);
5556 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5557 "(%s id %llu), size=%u\n", rw,
5558 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5559 name->str, dev->devid, bio->bi_size);
5560 rcu_read_unlock();
5562 #endif
5563 bio->bi_bdev = dev->bdev;
5565 btrfs_bio_counter_inc_noblocked(root->fs_info);
5567 if (async)
5568 btrfs_schedule_bio(root, dev, rw, bio);
5569 else
5570 btrfsic_submit_bio(rw, bio);
5573 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5574 struct bio *first_bio, struct btrfs_device *dev,
5575 int dev_nr, int rw, int async)
5577 struct bio_vec *bvec = first_bio->bi_io_vec;
5578 struct bio *bio;
5579 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5580 u64 physical = bbio->stripes[dev_nr].physical;
5582 again:
5583 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5584 if (!bio)
5585 return -ENOMEM;
5587 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5588 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5589 bvec->bv_offset) < bvec->bv_len) {
5590 u64 len = bio->bi_iter.bi_size;
5592 atomic_inc(&bbio->stripes_pending);
5593 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5594 rw, async);
5595 physical += len;
5596 goto again;
5598 bvec++;
5601 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5602 return 0;
5605 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5607 atomic_inc(&bbio->error);
5608 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5609 /* Shoud be the original bio. */
5610 WARN_ON(bio != bbio->orig_bio);
5612 bio->bi_private = bbio->private;
5613 bio->bi_end_io = bbio->end_io;
5614 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5615 bio->bi_iter.bi_sector = logical >> 9;
5617 btrfs_end_bbio(bbio, bio, -EIO);
5621 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5622 int mirror_num, int async_submit)
5624 struct btrfs_device *dev;
5625 struct bio *first_bio = bio;
5626 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5627 u64 length = 0;
5628 u64 map_length;
5629 u64 *raid_map = NULL;
5630 int ret;
5631 int dev_nr = 0;
5632 int total_devs = 1;
5633 struct btrfs_bio *bbio = NULL;
5635 length = bio->bi_iter.bi_size;
5636 map_length = length;
5638 btrfs_bio_counter_inc_blocked(root->fs_info);
5639 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5640 mirror_num, &raid_map);
5641 if (ret) {
5642 btrfs_bio_counter_dec(root->fs_info);
5643 return ret;
5646 total_devs = bbio->num_stripes;
5647 bbio->orig_bio = first_bio;
5648 bbio->private = first_bio->bi_private;
5649 bbio->end_io = first_bio->bi_end_io;
5650 bbio->fs_info = root->fs_info;
5651 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5653 if (raid_map) {
5654 /* In this case, map_length has been set to the length of
5655 a single stripe; not the whole write */
5656 if (rw & WRITE) {
5657 ret = raid56_parity_write(root, bio, bbio,
5658 raid_map, map_length);
5659 } else {
5660 ret = raid56_parity_recover(root, bio, bbio,
5661 raid_map, map_length,
5662 mirror_num);
5665 * FIXME, replace dosen't support raid56 yet, please fix
5666 * it in the future.
5668 btrfs_bio_counter_dec(root->fs_info);
5669 return ret;
5672 if (map_length < length) {
5673 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5674 logical, length, map_length);
5675 BUG();
5678 while (dev_nr < total_devs) {
5679 dev = bbio->stripes[dev_nr].dev;
5680 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5681 bbio_error(bbio, first_bio, logical);
5682 dev_nr++;
5683 continue;
5687 * Check and see if we're ok with this bio based on it's size
5688 * and offset with the given device.
5690 if (!bio_size_ok(dev->bdev, first_bio,
5691 bbio->stripes[dev_nr].physical >> 9)) {
5692 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5693 dev_nr, rw, async_submit);
5694 BUG_ON(ret);
5695 dev_nr++;
5696 continue;
5699 if (dev_nr < total_devs - 1) {
5700 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5701 BUG_ON(!bio); /* -ENOMEM */
5702 } else {
5703 bio = first_bio;
5704 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5707 submit_stripe_bio(root, bbio, bio,
5708 bbio->stripes[dev_nr].physical, dev_nr, rw,
5709 async_submit);
5710 dev_nr++;
5712 btrfs_bio_counter_dec(root->fs_info);
5713 return 0;
5716 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5717 u8 *uuid, u8 *fsid)
5719 struct btrfs_device *device;
5720 struct btrfs_fs_devices *cur_devices;
5722 cur_devices = fs_info->fs_devices;
5723 while (cur_devices) {
5724 if (!fsid ||
5725 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5726 device = __find_device(&cur_devices->devices,
5727 devid, uuid);
5728 if (device)
5729 return device;
5731 cur_devices = cur_devices->seed;
5733 return NULL;
5736 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5737 u64 devid, u8 *dev_uuid)
5739 struct btrfs_device *device;
5740 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5742 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5743 if (IS_ERR(device))
5744 return NULL;
5746 list_add(&device->dev_list, &fs_devices->devices);
5747 device->fs_devices = fs_devices;
5748 fs_devices->num_devices++;
5750 device->missing = 1;
5751 fs_devices->missing_devices++;
5753 return device;
5757 * btrfs_alloc_device - allocate struct btrfs_device
5758 * @fs_info: used only for generating a new devid, can be NULL if
5759 * devid is provided (i.e. @devid != NULL).
5760 * @devid: a pointer to devid for this device. If NULL a new devid
5761 * is generated.
5762 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5763 * is generated.
5765 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5766 * on error. Returned struct is not linked onto any lists and can be
5767 * destroyed with kfree() right away.
5769 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5770 const u64 *devid,
5771 const u8 *uuid)
5773 struct btrfs_device *dev;
5774 u64 tmp;
5776 if (WARN_ON(!devid && !fs_info))
5777 return ERR_PTR(-EINVAL);
5779 dev = __alloc_device();
5780 if (IS_ERR(dev))
5781 return dev;
5783 if (devid)
5784 tmp = *devid;
5785 else {
5786 int ret;
5788 ret = find_next_devid(fs_info, &tmp);
5789 if (ret) {
5790 kfree(dev);
5791 return ERR_PTR(ret);
5794 dev->devid = tmp;
5796 if (uuid)
5797 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5798 else
5799 generate_random_uuid(dev->uuid);
5801 btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
5803 return dev;
5806 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5807 struct extent_buffer *leaf,
5808 struct btrfs_chunk *chunk)
5810 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5811 struct map_lookup *map;
5812 struct extent_map *em;
5813 u64 logical;
5814 u64 length;
5815 u64 devid;
5816 u8 uuid[BTRFS_UUID_SIZE];
5817 int num_stripes;
5818 int ret;
5819 int i;
5821 logical = key->offset;
5822 length = btrfs_chunk_length(leaf, chunk);
5824 read_lock(&map_tree->map_tree.lock);
5825 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5826 read_unlock(&map_tree->map_tree.lock);
5828 /* already mapped? */
5829 if (em && em->start <= logical && em->start + em->len > logical) {
5830 free_extent_map(em);
5831 return 0;
5832 } else if (em) {
5833 free_extent_map(em);
5836 em = alloc_extent_map();
5837 if (!em)
5838 return -ENOMEM;
5839 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5840 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5841 if (!map) {
5842 free_extent_map(em);
5843 return -ENOMEM;
5846 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5847 em->bdev = (struct block_device *)map;
5848 em->start = logical;
5849 em->len = length;
5850 em->orig_start = 0;
5851 em->block_start = 0;
5852 em->block_len = em->len;
5854 map->num_stripes = num_stripes;
5855 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5856 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5857 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5858 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5859 map->type = btrfs_chunk_type(leaf, chunk);
5860 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5861 for (i = 0; i < num_stripes; i++) {
5862 map->stripes[i].physical =
5863 btrfs_stripe_offset_nr(leaf, chunk, i);
5864 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5865 read_extent_buffer(leaf, uuid, (unsigned long)
5866 btrfs_stripe_dev_uuid_nr(chunk, i),
5867 BTRFS_UUID_SIZE);
5868 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5869 uuid, NULL);
5870 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5871 free_extent_map(em);
5872 return -EIO;
5874 if (!map->stripes[i].dev) {
5875 map->stripes[i].dev =
5876 add_missing_dev(root, devid, uuid);
5877 if (!map->stripes[i].dev) {
5878 free_extent_map(em);
5879 return -EIO;
5882 map->stripes[i].dev->in_fs_metadata = 1;
5885 write_lock(&map_tree->map_tree.lock);
5886 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5887 write_unlock(&map_tree->map_tree.lock);
5888 BUG_ON(ret); /* Tree corruption */
5889 free_extent_map(em);
5891 return 0;
5894 static void fill_device_from_item(struct extent_buffer *leaf,
5895 struct btrfs_dev_item *dev_item,
5896 struct btrfs_device *device)
5898 unsigned long ptr;
5900 device->devid = btrfs_device_id(leaf, dev_item);
5901 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5902 device->total_bytes = device->disk_total_bytes;
5903 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5904 device->type = btrfs_device_type(leaf, dev_item);
5905 device->io_align = btrfs_device_io_align(leaf, dev_item);
5906 device->io_width = btrfs_device_io_width(leaf, dev_item);
5907 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5908 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5909 device->is_tgtdev_for_dev_replace = 0;
5911 ptr = btrfs_device_uuid(dev_item);
5912 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5915 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5917 struct btrfs_fs_devices *fs_devices;
5918 int ret;
5920 BUG_ON(!mutex_is_locked(&uuid_mutex));
5922 fs_devices = root->fs_info->fs_devices->seed;
5923 while (fs_devices) {
5924 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5925 ret = 0;
5926 goto out;
5928 fs_devices = fs_devices->seed;
5931 fs_devices = find_fsid(fsid);
5932 if (!fs_devices) {
5933 ret = -ENOENT;
5934 goto out;
5937 fs_devices = clone_fs_devices(fs_devices);
5938 if (IS_ERR(fs_devices)) {
5939 ret = PTR_ERR(fs_devices);
5940 goto out;
5943 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5944 root->fs_info->bdev_holder);
5945 if (ret) {
5946 free_fs_devices(fs_devices);
5947 goto out;
5950 if (!fs_devices->seeding) {
5951 __btrfs_close_devices(fs_devices);
5952 free_fs_devices(fs_devices);
5953 ret = -EINVAL;
5954 goto out;
5957 fs_devices->seed = root->fs_info->fs_devices->seed;
5958 root->fs_info->fs_devices->seed = fs_devices;
5959 out:
5960 return ret;
5963 static int read_one_dev(struct btrfs_root *root,
5964 struct extent_buffer *leaf,
5965 struct btrfs_dev_item *dev_item)
5967 struct btrfs_device *device;
5968 u64 devid;
5969 int ret;
5970 u8 fs_uuid[BTRFS_UUID_SIZE];
5971 u8 dev_uuid[BTRFS_UUID_SIZE];
5973 devid = btrfs_device_id(leaf, dev_item);
5974 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5975 BTRFS_UUID_SIZE);
5976 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5977 BTRFS_UUID_SIZE);
5979 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5980 ret = open_seed_devices(root, fs_uuid);
5981 if (ret && !btrfs_test_opt(root, DEGRADED))
5982 return ret;
5985 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5986 if (!device || !device->bdev) {
5987 if (!btrfs_test_opt(root, DEGRADED))
5988 return -EIO;
5990 if (!device) {
5991 btrfs_warn(root->fs_info, "devid %llu missing", devid);
5992 device = add_missing_dev(root, devid, dev_uuid);
5993 if (!device)
5994 return -ENOMEM;
5995 } else if (!device->missing) {
5997 * this happens when a device that was properly setup
5998 * in the device info lists suddenly goes bad.
5999 * device->bdev is NULL, and so we have to set
6000 * device->missing to one here
6002 root->fs_info->fs_devices->missing_devices++;
6003 device->missing = 1;
6007 if (device->fs_devices != root->fs_info->fs_devices) {
6008 BUG_ON(device->writeable);
6009 if (device->generation !=
6010 btrfs_device_generation(leaf, dev_item))
6011 return -EINVAL;
6014 fill_device_from_item(leaf, dev_item, device);
6015 device->in_fs_metadata = 1;
6016 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6017 device->fs_devices->total_rw_bytes += device->total_bytes;
6018 spin_lock(&root->fs_info->free_chunk_lock);
6019 root->fs_info->free_chunk_space += device->total_bytes -
6020 device->bytes_used;
6021 spin_unlock(&root->fs_info->free_chunk_lock);
6023 ret = 0;
6024 return ret;
6027 int btrfs_read_sys_array(struct btrfs_root *root)
6029 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6030 struct extent_buffer *sb;
6031 struct btrfs_disk_key *disk_key;
6032 struct btrfs_chunk *chunk;
6033 u8 *ptr;
6034 unsigned long sb_ptr;
6035 int ret = 0;
6036 u32 num_stripes;
6037 u32 array_size;
6038 u32 len = 0;
6039 u32 cur;
6040 struct btrfs_key key;
6042 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
6043 BTRFS_SUPER_INFO_SIZE);
6044 if (!sb)
6045 return -ENOMEM;
6046 btrfs_set_buffer_uptodate(sb);
6047 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6049 * The sb extent buffer is artifical and just used to read the system array.
6050 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6051 * pages up-to-date when the page is larger: extent does not cover the
6052 * whole page and consequently check_page_uptodate does not find all
6053 * the page's extents up-to-date (the hole beyond sb),
6054 * write_extent_buffer then triggers a WARN_ON.
6056 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6057 * but sb spans only this function. Add an explicit SetPageUptodate call
6058 * to silence the warning eg. on PowerPC 64.
6060 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6061 SetPageUptodate(sb->pages[0]);
6063 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6064 array_size = btrfs_super_sys_array_size(super_copy);
6066 ptr = super_copy->sys_chunk_array;
6067 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6068 cur = 0;
6070 while (cur < array_size) {
6071 disk_key = (struct btrfs_disk_key *)ptr;
6072 btrfs_disk_key_to_cpu(&key, disk_key);
6074 len = sizeof(*disk_key); ptr += len;
6075 sb_ptr += len;
6076 cur += len;
6078 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6079 chunk = (struct btrfs_chunk *)sb_ptr;
6080 ret = read_one_chunk(root, &key, sb, chunk);
6081 if (ret)
6082 break;
6083 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6084 len = btrfs_chunk_item_size(num_stripes);
6085 } else {
6086 ret = -EIO;
6087 break;
6089 ptr += len;
6090 sb_ptr += len;
6091 cur += len;
6093 free_extent_buffer(sb);
6094 return ret;
6097 int btrfs_read_chunk_tree(struct btrfs_root *root)
6099 struct btrfs_path *path;
6100 struct extent_buffer *leaf;
6101 struct btrfs_key key;
6102 struct btrfs_key found_key;
6103 int ret;
6104 int slot;
6106 root = root->fs_info->chunk_root;
6108 path = btrfs_alloc_path();
6109 if (!path)
6110 return -ENOMEM;
6112 mutex_lock(&uuid_mutex);
6113 lock_chunks(root);
6116 * Read all device items, and then all the chunk items. All
6117 * device items are found before any chunk item (their object id
6118 * is smaller than the lowest possible object id for a chunk
6119 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6121 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6122 key.offset = 0;
6123 key.type = 0;
6124 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6125 if (ret < 0)
6126 goto error;
6127 while (1) {
6128 leaf = path->nodes[0];
6129 slot = path->slots[0];
6130 if (slot >= btrfs_header_nritems(leaf)) {
6131 ret = btrfs_next_leaf(root, path);
6132 if (ret == 0)
6133 continue;
6134 if (ret < 0)
6135 goto error;
6136 break;
6138 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6139 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6140 struct btrfs_dev_item *dev_item;
6141 dev_item = btrfs_item_ptr(leaf, slot,
6142 struct btrfs_dev_item);
6143 ret = read_one_dev(root, leaf, dev_item);
6144 if (ret)
6145 goto error;
6146 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6147 struct btrfs_chunk *chunk;
6148 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6149 ret = read_one_chunk(root, &found_key, leaf, chunk);
6150 if (ret)
6151 goto error;
6153 path->slots[0]++;
6155 ret = 0;
6156 error:
6157 unlock_chunks(root);
6158 mutex_unlock(&uuid_mutex);
6160 btrfs_free_path(path);
6161 return ret;
6164 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6166 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6167 struct btrfs_device *device;
6169 while (fs_devices) {
6170 mutex_lock(&fs_devices->device_list_mutex);
6171 list_for_each_entry(device, &fs_devices->devices, dev_list)
6172 device->dev_root = fs_info->dev_root;
6173 mutex_unlock(&fs_devices->device_list_mutex);
6175 fs_devices = fs_devices->seed;
6179 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6181 int i;
6183 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6184 btrfs_dev_stat_reset(dev, i);
6187 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6189 struct btrfs_key key;
6190 struct btrfs_key found_key;
6191 struct btrfs_root *dev_root = fs_info->dev_root;
6192 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6193 struct extent_buffer *eb;
6194 int slot;
6195 int ret = 0;
6196 struct btrfs_device *device;
6197 struct btrfs_path *path = NULL;
6198 int i;
6200 path = btrfs_alloc_path();
6201 if (!path) {
6202 ret = -ENOMEM;
6203 goto out;
6206 mutex_lock(&fs_devices->device_list_mutex);
6207 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6208 int item_size;
6209 struct btrfs_dev_stats_item *ptr;
6211 key.objectid = 0;
6212 key.type = BTRFS_DEV_STATS_KEY;
6213 key.offset = device->devid;
6214 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6215 if (ret) {
6216 __btrfs_reset_dev_stats(device);
6217 device->dev_stats_valid = 1;
6218 btrfs_release_path(path);
6219 continue;
6221 slot = path->slots[0];
6222 eb = path->nodes[0];
6223 btrfs_item_key_to_cpu(eb, &found_key, slot);
6224 item_size = btrfs_item_size_nr(eb, slot);
6226 ptr = btrfs_item_ptr(eb, slot,
6227 struct btrfs_dev_stats_item);
6229 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6230 if (item_size >= (1 + i) * sizeof(__le64))
6231 btrfs_dev_stat_set(device, i,
6232 btrfs_dev_stats_value(eb, ptr, i));
6233 else
6234 btrfs_dev_stat_reset(device, i);
6237 device->dev_stats_valid = 1;
6238 btrfs_dev_stat_print_on_load(device);
6239 btrfs_release_path(path);
6241 mutex_unlock(&fs_devices->device_list_mutex);
6243 out:
6244 btrfs_free_path(path);
6245 return ret < 0 ? ret : 0;
6248 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6249 struct btrfs_root *dev_root,
6250 struct btrfs_device *device)
6252 struct btrfs_path *path;
6253 struct btrfs_key key;
6254 struct extent_buffer *eb;
6255 struct btrfs_dev_stats_item *ptr;
6256 int ret;
6257 int i;
6259 key.objectid = 0;
6260 key.type = BTRFS_DEV_STATS_KEY;
6261 key.offset = device->devid;
6263 path = btrfs_alloc_path();
6264 BUG_ON(!path);
6265 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6266 if (ret < 0) {
6267 printk_in_rcu(KERN_WARNING "BTRFS: "
6268 "error %d while searching for dev_stats item for device %s!\n",
6269 ret, rcu_str_deref(device->name));
6270 goto out;
6273 if (ret == 0 &&
6274 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6275 /* need to delete old one and insert a new one */
6276 ret = btrfs_del_item(trans, dev_root, path);
6277 if (ret != 0) {
6278 printk_in_rcu(KERN_WARNING "BTRFS: "
6279 "delete too small dev_stats item for device %s failed %d!\n",
6280 rcu_str_deref(device->name), ret);
6281 goto out;
6283 ret = 1;
6286 if (ret == 1) {
6287 /* need to insert a new item */
6288 btrfs_release_path(path);
6289 ret = btrfs_insert_empty_item(trans, dev_root, path,
6290 &key, sizeof(*ptr));
6291 if (ret < 0) {
6292 printk_in_rcu(KERN_WARNING "BTRFS: "
6293 "insert dev_stats item for device %s failed %d!\n",
6294 rcu_str_deref(device->name), ret);
6295 goto out;
6299 eb = path->nodes[0];
6300 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6301 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6302 btrfs_set_dev_stats_value(eb, ptr, i,
6303 btrfs_dev_stat_read(device, i));
6304 btrfs_mark_buffer_dirty(eb);
6306 out:
6307 btrfs_free_path(path);
6308 return ret;
6312 * called from commit_transaction. Writes all changed device stats to disk.
6314 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6315 struct btrfs_fs_info *fs_info)
6317 struct btrfs_root *dev_root = fs_info->dev_root;
6318 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6319 struct btrfs_device *device;
6320 int ret = 0;
6322 mutex_lock(&fs_devices->device_list_mutex);
6323 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6324 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6325 continue;
6327 ret = update_dev_stat_item(trans, dev_root, device);
6328 if (!ret)
6329 device->dev_stats_dirty = 0;
6331 mutex_unlock(&fs_devices->device_list_mutex);
6333 return ret;
6336 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6338 btrfs_dev_stat_inc(dev, index);
6339 btrfs_dev_stat_print_on_error(dev);
6342 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6344 if (!dev->dev_stats_valid)
6345 return;
6346 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6347 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6348 rcu_str_deref(dev->name),
6349 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6350 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6351 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6352 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6353 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6356 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6358 int i;
6360 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6361 if (btrfs_dev_stat_read(dev, i) != 0)
6362 break;
6363 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6364 return; /* all values == 0, suppress message */
6366 printk_in_rcu(KERN_INFO "BTRFS: "
6367 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6368 rcu_str_deref(dev->name),
6369 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6370 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6371 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6372 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6373 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6376 int btrfs_get_dev_stats(struct btrfs_root *root,
6377 struct btrfs_ioctl_get_dev_stats *stats)
6379 struct btrfs_device *dev;
6380 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6381 int i;
6383 mutex_lock(&fs_devices->device_list_mutex);
6384 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6385 mutex_unlock(&fs_devices->device_list_mutex);
6387 if (!dev) {
6388 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6389 return -ENODEV;
6390 } else if (!dev->dev_stats_valid) {
6391 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6392 return -ENODEV;
6393 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6394 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6395 if (stats->nr_items > i)
6396 stats->values[i] =
6397 btrfs_dev_stat_read_and_reset(dev, i);
6398 else
6399 btrfs_dev_stat_reset(dev, i);
6401 } else {
6402 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6403 if (stats->nr_items > i)
6404 stats->values[i] = btrfs_dev_stat_read(dev, i);
6406 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6407 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6408 return 0;
6411 int btrfs_scratch_superblock(struct btrfs_device *device)
6413 struct buffer_head *bh;
6414 struct btrfs_super_block *disk_super;
6416 bh = btrfs_read_dev_super(device->bdev);
6417 if (!bh)
6418 return -EINVAL;
6419 disk_super = (struct btrfs_super_block *)bh->b_data;
6421 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6422 set_buffer_dirty(bh);
6423 sync_dirty_buffer(bh);
6424 brelse(bh);
6426 return 0;