1 // SPDX-License-Identifier: GPL-2.0
3 * Virtual Memory Map support
5 * (C) 2007 sgi. Christoph Lameter.
7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8 * virt_to_page, page_address() to be implemented as a base offset
9 * calculation without memory access.
11 * However, virtual mappings need a page table and TLBs. Many Linux
12 * architectures already map their physical space using 1-1 mappings
13 * via TLBs. For those arches the virtual memory map is essentially
14 * for free if we use the same page size as the 1-1 mappings. In that
15 * case the overhead consists of a few additional pages that are
16 * allocated to create a view of memory for vmemmap.
18 * The architecture is expected to provide a vmemmap_populate() function
19 * to instantiate the mapping.
22 #include <linux/mmzone.h>
23 #include <linux/bootmem.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
35 * Allocate a block of memory to be used to back the virtual memory map
36 * or to back the page tables that are used to create the mapping.
37 * Uses the main allocators if they are available, else bootmem.
40 static void * __ref
__earlyonly_bootmem_alloc(int node
,
45 return memblock_virt_alloc_try_nid_raw(size
, align
, goal
,
46 BOOTMEM_ALLOC_ACCESSIBLE
, node
);
49 static void *vmemmap_buf
;
50 static void *vmemmap_buf_end
;
52 void * __meminit
vmemmap_alloc_block(unsigned long size
, int node
)
54 /* If the main allocator is up use that, fallback to bootmem. */
55 if (slab_is_available()) {
56 gfp_t gfp_mask
= GFP_KERNEL
|__GFP_RETRY_MAYFAIL
|__GFP_NOWARN
;
57 int order
= get_order(size
);
61 page
= alloc_pages_node(node
, gfp_mask
, order
);
63 return page_address(page
);
66 warn_alloc(gfp_mask
& ~__GFP_NOWARN
, NULL
,
67 "vmemmap alloc failure: order:%u", order
);
72 return __earlyonly_bootmem_alloc(node
, size
, size
,
73 __pa(MAX_DMA_ADDRESS
));
76 /* need to make sure size is all the same during early stage */
77 void * __meminit
vmemmap_alloc_block_buf(unsigned long size
, int node
)
82 return vmemmap_alloc_block(size
, node
);
84 /* take the from buf */
85 ptr
= (void *)ALIGN((unsigned long)vmemmap_buf
, size
);
86 if (ptr
+ size
> vmemmap_buf_end
)
87 return vmemmap_alloc_block(size
, node
);
89 vmemmap_buf
= ptr
+ size
;
94 static unsigned long __meminit
vmem_altmap_next_pfn(struct vmem_altmap
*altmap
)
96 return altmap
->base_pfn
+ altmap
->reserve
+ altmap
->alloc
100 static unsigned long __meminit
vmem_altmap_nr_free(struct vmem_altmap
*altmap
)
102 unsigned long allocated
= altmap
->alloc
+ altmap
->align
;
104 if (altmap
->free
> allocated
)
105 return altmap
->free
- allocated
;
110 * altmap_alloc_block_buf - allocate pages from the device page map
111 * @altmap: device page map
112 * @size: size (in bytes) of the allocation
114 * Allocations are aligned to the size of the request.
116 void * __meminit
altmap_alloc_block_buf(unsigned long size
,
117 struct vmem_altmap
*altmap
)
119 unsigned long pfn
, nr_pfns
, nr_align
;
121 if (size
& ~PAGE_MASK
) {
122 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
127 pfn
= vmem_altmap_next_pfn(altmap
);
128 nr_pfns
= size
>> PAGE_SHIFT
;
129 nr_align
= 1UL << find_first_bit(&nr_pfns
, BITS_PER_LONG
);
130 nr_align
= ALIGN(pfn
, nr_align
) - pfn
;
131 if (nr_pfns
+ nr_align
> vmem_altmap_nr_free(altmap
))
134 altmap
->alloc
+= nr_pfns
;
135 altmap
->align
+= nr_align
;
138 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
139 __func__
, pfn
, altmap
->alloc
, altmap
->align
, nr_pfns
);
140 return __va(__pfn_to_phys(pfn
));
143 void __meminit
vmemmap_verify(pte_t
*pte
, int node
,
144 unsigned long start
, unsigned long end
)
146 unsigned long pfn
= pte_pfn(*pte
);
147 int actual_node
= early_pfn_to_nid(pfn
);
149 if (node_distance(actual_node
, node
) > LOCAL_DISTANCE
)
150 pr_warn("[%lx-%lx] potential offnode page_structs\n",
154 pte_t
* __meminit
vmemmap_pte_populate(pmd_t
*pmd
, unsigned long addr
, int node
)
156 pte_t
*pte
= pte_offset_kernel(pmd
, addr
);
157 if (pte_none(*pte
)) {
159 void *p
= vmemmap_alloc_block_buf(PAGE_SIZE
, node
);
162 entry
= pfn_pte(__pa(p
) >> PAGE_SHIFT
, PAGE_KERNEL
);
163 set_pte_at(&init_mm
, addr
, pte
, entry
);
168 static void * __meminit
vmemmap_alloc_block_zero(unsigned long size
, int node
)
170 void *p
= vmemmap_alloc_block(size
, node
);
179 pmd_t
* __meminit
vmemmap_pmd_populate(pud_t
*pud
, unsigned long addr
, int node
)
181 pmd_t
*pmd
= pmd_offset(pud
, addr
);
182 if (pmd_none(*pmd
)) {
183 void *p
= vmemmap_alloc_block_zero(PAGE_SIZE
, node
);
186 pmd_populate_kernel(&init_mm
, pmd
, p
);
191 pud_t
* __meminit
vmemmap_pud_populate(p4d_t
*p4d
, unsigned long addr
, int node
)
193 pud_t
*pud
= pud_offset(p4d
, addr
);
194 if (pud_none(*pud
)) {
195 void *p
= vmemmap_alloc_block_zero(PAGE_SIZE
, node
);
198 pud_populate(&init_mm
, pud
, p
);
203 p4d_t
* __meminit
vmemmap_p4d_populate(pgd_t
*pgd
, unsigned long addr
, int node
)
205 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
206 if (p4d_none(*p4d
)) {
207 void *p
= vmemmap_alloc_block_zero(PAGE_SIZE
, node
);
210 p4d_populate(&init_mm
, p4d
, p
);
215 pgd_t
* __meminit
vmemmap_pgd_populate(unsigned long addr
, int node
)
217 pgd_t
*pgd
= pgd_offset_k(addr
);
218 if (pgd_none(*pgd
)) {
219 void *p
= vmemmap_alloc_block_zero(PAGE_SIZE
, node
);
222 pgd_populate(&init_mm
, pgd
, p
);
227 int __meminit
vmemmap_populate_basepages(unsigned long start
,
228 unsigned long end
, int node
)
230 unsigned long addr
= start
;
237 for (; addr
< end
; addr
+= PAGE_SIZE
) {
238 pgd
= vmemmap_pgd_populate(addr
, node
);
241 p4d
= vmemmap_p4d_populate(pgd
, addr
, node
);
244 pud
= vmemmap_pud_populate(p4d
, addr
, node
);
247 pmd
= vmemmap_pmd_populate(pud
, addr
, node
);
250 pte
= vmemmap_pte_populate(pmd
, addr
, node
);
253 vmemmap_verify(pte
, node
, addr
, addr
+ PAGE_SIZE
);
259 struct page
* __meminit
sparse_mem_map_populate(unsigned long pnum
, int nid
,
260 struct vmem_altmap
*altmap
)
266 map
= pfn_to_page(pnum
* PAGES_PER_SECTION
);
267 start
= (unsigned long)map
;
268 end
= (unsigned long)(map
+ PAGES_PER_SECTION
);
270 if (vmemmap_populate(start
, end
, nid
, altmap
))
276 void __init
sparse_mem_maps_populate_node(struct page
**map_map
,
277 unsigned long pnum_begin
,
278 unsigned long pnum_end
,
279 unsigned long map_count
, int nodeid
)
282 unsigned long size
= sizeof(struct page
) * PAGES_PER_SECTION
;
283 void *vmemmap_buf_start
;
285 size
= ALIGN(size
, PMD_SIZE
);
286 vmemmap_buf_start
= __earlyonly_bootmem_alloc(nodeid
, size
* map_count
,
287 PMD_SIZE
, __pa(MAX_DMA_ADDRESS
));
289 if (vmemmap_buf_start
) {
290 vmemmap_buf
= vmemmap_buf_start
;
291 vmemmap_buf_end
= vmemmap_buf_start
+ size
* map_count
;
294 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
295 struct mem_section
*ms
;
297 if (!present_section_nr(pnum
))
300 map_map
[pnum
] = sparse_mem_map_populate(pnum
, nodeid
, NULL
);
303 ms
= __nr_to_section(pnum
);
304 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
306 ms
->section_mem_map
= 0;
309 if (vmemmap_buf_start
) {
310 /* need to free left buf */
311 memblock_free_early(__pa(vmemmap_buf
),
312 vmemmap_buf_end
- vmemmap_buf
);
314 vmemmap_buf_end
= NULL
;