crypto: marvell/cesa - use readl_relaxed()/writel_relaxed()
[linux-2.6/btrfs-unstable.git] / drivers / crypto / marvell / hash.c
bloba9bea0ba95fbc265ea24f0e0fb390dce24e27f30
1 /*
2 * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
4 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
5 * Author: Arnaud Ebalard <arno@natisbad.org>
7 * This work is based on an initial version written by
8 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published
12 * by the Free Software Foundation.
15 #include <crypto/md5.h>
16 #include <crypto/sha.h>
18 #include "cesa.h"
20 struct mv_cesa_ahash_dma_iter {
21 struct mv_cesa_dma_iter base;
22 struct mv_cesa_sg_dma_iter src;
25 static inline void
26 mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
27 struct ahash_request *req)
29 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
30 unsigned int len = req->nbytes + creq->cache_ptr;
32 if (!creq->last_req)
33 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
35 mv_cesa_req_dma_iter_init(&iter->base, len);
36 mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
37 iter->src.op_offset = creq->cache_ptr;
40 static inline bool
41 mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
43 iter->src.op_offset = 0;
45 return mv_cesa_req_dma_iter_next_op(&iter->base);
48 static inline int mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_req *creq,
49 gfp_t flags)
51 struct mv_cesa_ahash_dma_req *dreq = &creq->req.dma;
53 creq->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
54 &dreq->cache_dma);
55 if (!creq->cache)
56 return -ENOMEM;
58 return 0;
61 static inline int mv_cesa_ahash_std_alloc_cache(struct mv_cesa_ahash_req *creq,
62 gfp_t flags)
64 creq->cache = kzalloc(CESA_MAX_HASH_BLOCK_SIZE, flags);
65 if (!creq->cache)
66 return -ENOMEM;
68 return 0;
71 static int mv_cesa_ahash_alloc_cache(struct ahash_request *req)
73 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
74 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
75 GFP_KERNEL : GFP_ATOMIC;
76 int ret;
78 if (creq->cache)
79 return 0;
81 if (creq->req.base.type == CESA_DMA_REQ)
82 ret = mv_cesa_ahash_dma_alloc_cache(creq, flags);
83 else
84 ret = mv_cesa_ahash_std_alloc_cache(creq, flags);
86 return ret;
89 static inline void mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_req *creq)
91 dma_pool_free(cesa_dev->dma->cache_pool, creq->cache,
92 creq->req.dma.cache_dma);
95 static inline void mv_cesa_ahash_std_free_cache(struct mv_cesa_ahash_req *creq)
97 kfree(creq->cache);
100 static void mv_cesa_ahash_free_cache(struct mv_cesa_ahash_req *creq)
102 if (!creq->cache)
103 return;
105 if (creq->req.base.type == CESA_DMA_REQ)
106 mv_cesa_ahash_dma_free_cache(creq);
107 else
108 mv_cesa_ahash_std_free_cache(creq);
110 creq->cache = NULL;
113 static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
114 gfp_t flags)
116 if (req->padding)
117 return 0;
119 req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
120 &req->padding_dma);
121 if (!req->padding)
122 return -ENOMEM;
124 return 0;
127 static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
129 if (!req->padding)
130 return;
132 dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
133 req->padding_dma);
134 req->padding = NULL;
137 static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
139 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
141 mv_cesa_ahash_dma_free_padding(&creq->req.dma);
144 static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
146 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
148 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
149 mv_cesa_dma_cleanup(&creq->req.dma.base);
152 static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
154 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
156 if (creq->req.base.type == CESA_DMA_REQ)
157 mv_cesa_ahash_dma_cleanup(req);
160 static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
162 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
164 mv_cesa_ahash_free_cache(creq);
166 if (creq->req.base.type == CESA_DMA_REQ)
167 mv_cesa_ahash_dma_last_cleanup(req);
170 static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
172 unsigned int index, padlen;
174 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
175 padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
177 return padlen;
180 static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
182 unsigned int index, padlen;
184 buf[0] = 0x80;
185 /* Pad out to 56 mod 64 */
186 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
187 padlen = mv_cesa_ahash_pad_len(creq);
188 memset(buf + 1, 0, padlen - 1);
190 if (creq->algo_le) {
191 __le64 bits = cpu_to_le64(creq->len << 3);
192 memcpy(buf + padlen, &bits, sizeof(bits));
193 } else {
194 __be64 bits = cpu_to_be64(creq->len << 3);
195 memcpy(buf + padlen, &bits, sizeof(bits));
198 return padlen + 8;
201 static void mv_cesa_ahash_std_step(struct ahash_request *req)
203 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
204 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
205 struct mv_cesa_engine *engine = sreq->base.engine;
206 struct mv_cesa_op_ctx *op;
207 unsigned int new_cache_ptr = 0;
208 u32 frag_mode;
209 size_t len;
211 if (creq->cache_ptr)
212 memcpy(engine->sram + CESA_SA_DATA_SRAM_OFFSET, creq->cache,
213 creq->cache_ptr);
215 len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
216 CESA_SA_SRAM_PAYLOAD_SIZE);
218 if (!creq->last_req) {
219 new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
220 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
223 if (len - creq->cache_ptr)
224 sreq->offset += sg_pcopy_to_buffer(req->src, creq->src_nents,
225 engine->sram +
226 CESA_SA_DATA_SRAM_OFFSET +
227 creq->cache_ptr,
228 len - creq->cache_ptr,
229 sreq->offset);
231 op = &creq->op_tmpl;
233 frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
235 if (creq->last_req && sreq->offset == req->nbytes &&
236 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
237 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
238 frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
239 else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
240 frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
243 if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
244 frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
245 if (len &&
246 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
247 mv_cesa_set_mac_op_total_len(op, creq->len);
248 } else {
249 int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
251 if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
252 len &= CESA_HASH_BLOCK_SIZE_MSK;
253 new_cache_ptr = 64 - trailerlen;
254 memcpy(creq->cache,
255 engine->sram +
256 CESA_SA_DATA_SRAM_OFFSET + len,
257 new_cache_ptr);
258 } else {
259 len += mv_cesa_ahash_pad_req(creq,
260 engine->sram + len +
261 CESA_SA_DATA_SRAM_OFFSET);
264 if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
265 frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
266 else
267 frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
271 mv_cesa_set_mac_op_frag_len(op, len);
272 mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
274 /* FIXME: only update enc_len field */
275 memcpy(engine->sram, op, sizeof(*op));
277 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
278 mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
279 CESA_SA_DESC_CFG_FRAG_MSK);
281 creq->cache_ptr = new_cache_ptr;
283 mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
284 writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
285 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
288 static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
290 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
291 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
293 if (sreq->offset < (req->nbytes - creq->cache_ptr))
294 return -EINPROGRESS;
296 return 0;
299 static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
301 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
302 struct mv_cesa_tdma_req *dreq = &creq->req.dma.base;
304 mv_cesa_dma_prepare(dreq, dreq->base.engine);
307 static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
309 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
310 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
311 struct mv_cesa_engine *engine = sreq->base.engine;
313 sreq->offset = 0;
314 mv_cesa_adjust_op(engine, &creq->op_tmpl);
315 memcpy(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl));
318 static void mv_cesa_ahash_step(struct crypto_async_request *req)
320 struct ahash_request *ahashreq = ahash_request_cast(req);
321 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
323 if (creq->req.base.type == CESA_DMA_REQ)
324 mv_cesa_dma_step(&creq->req.dma.base);
325 else
326 mv_cesa_ahash_std_step(ahashreq);
329 static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
331 struct ahash_request *ahashreq = ahash_request_cast(req);
332 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
333 struct mv_cesa_engine *engine = creq->req.base.engine;
334 unsigned int digsize;
335 int ret, i;
337 if (creq->req.base.type == CESA_DMA_REQ)
338 ret = mv_cesa_dma_process(&creq->req.dma.base, status);
339 else
340 ret = mv_cesa_ahash_std_process(ahashreq, status);
342 if (ret == -EINPROGRESS)
343 return ret;
345 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
346 for (i = 0; i < digsize / 4; i++)
347 creq->state[i] = readl_relaxed(engine->regs + CESA_IVDIG(i));
349 if (creq->cache_ptr)
350 sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
351 creq->cache,
352 creq->cache_ptr,
353 ahashreq->nbytes - creq->cache_ptr);
355 if (creq->last_req) {
357 * Hardware's MD5 digest is in little endian format, but
358 * SHA in big endian format
360 if (creq->algo_le) {
361 __le32 *result = (void *)ahashreq->result;
363 for (i = 0; i < digsize / 4; i++)
364 result[i] = cpu_to_le32(creq->state[i]);
365 } else {
366 __be32 *result = (void *)ahashreq->result;
368 for (i = 0; i < digsize / 4; i++)
369 result[i] = cpu_to_be32(creq->state[i]);
373 return ret;
376 static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
377 struct mv_cesa_engine *engine)
379 struct ahash_request *ahashreq = ahash_request_cast(req);
380 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
381 unsigned int digsize;
382 int i;
384 creq->req.base.engine = engine;
386 if (creq->req.base.type == CESA_DMA_REQ)
387 mv_cesa_ahash_dma_prepare(ahashreq);
388 else
389 mv_cesa_ahash_std_prepare(ahashreq);
391 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
392 for (i = 0; i < digsize / 4; i++)
393 writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i));
396 static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
398 struct ahash_request *ahashreq = ahash_request_cast(req);
399 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
401 if (creq->last_req)
402 mv_cesa_ahash_last_cleanup(ahashreq);
404 mv_cesa_ahash_cleanup(ahashreq);
407 static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
408 .step = mv_cesa_ahash_step,
409 .process = mv_cesa_ahash_process,
410 .prepare = mv_cesa_ahash_prepare,
411 .cleanup = mv_cesa_ahash_req_cleanup,
414 static int mv_cesa_ahash_init(struct ahash_request *req,
415 struct mv_cesa_op_ctx *tmpl, bool algo_le)
417 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
419 memset(creq, 0, sizeof(*creq));
420 mv_cesa_update_op_cfg(tmpl,
421 CESA_SA_DESC_CFG_OP_MAC_ONLY |
422 CESA_SA_DESC_CFG_FIRST_FRAG,
423 CESA_SA_DESC_CFG_OP_MSK |
424 CESA_SA_DESC_CFG_FRAG_MSK);
425 mv_cesa_set_mac_op_total_len(tmpl, 0);
426 mv_cesa_set_mac_op_frag_len(tmpl, 0);
427 creq->op_tmpl = *tmpl;
428 creq->len = 0;
429 creq->algo_le = algo_le;
431 return 0;
434 static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
436 struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
438 ctx->base.ops = &mv_cesa_ahash_req_ops;
440 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
441 sizeof(struct mv_cesa_ahash_req));
442 return 0;
445 static int mv_cesa_ahash_cache_req(struct ahash_request *req, bool *cached)
447 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
448 int ret;
450 if (((creq->cache_ptr + req->nbytes) & CESA_HASH_BLOCK_SIZE_MSK) &&
451 !creq->last_req) {
452 ret = mv_cesa_ahash_alloc_cache(req);
453 if (ret)
454 return ret;
457 if (creq->cache_ptr + req->nbytes < 64 && !creq->last_req) {
458 *cached = true;
460 if (!req->nbytes)
461 return 0;
463 sg_pcopy_to_buffer(req->src, creq->src_nents,
464 creq->cache + creq->cache_ptr,
465 req->nbytes, 0);
467 creq->cache_ptr += req->nbytes;
470 return 0;
473 static struct mv_cesa_op_ctx *
474 mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
475 struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
476 gfp_t flags)
478 struct mv_cesa_op_ctx *op;
479 int ret;
481 op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
482 if (IS_ERR(op))
483 return op;
485 /* Set the operation block fragment length. */
486 mv_cesa_set_mac_op_frag_len(op, frag_len);
488 /* Append dummy desc to launch operation */
489 ret = mv_cesa_dma_add_dummy_launch(chain, flags);
490 if (ret)
491 return ERR_PTR(ret);
493 if (mv_cesa_mac_op_is_first_frag(tmpl))
494 mv_cesa_update_op_cfg(tmpl,
495 CESA_SA_DESC_CFG_MID_FRAG,
496 CESA_SA_DESC_CFG_FRAG_MSK);
498 return op;
501 static int
502 mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
503 struct mv_cesa_ahash_dma_iter *dma_iter,
504 struct mv_cesa_ahash_req *creq,
505 gfp_t flags)
507 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
509 if (!creq->cache_ptr)
510 return 0;
512 return mv_cesa_dma_add_data_transfer(chain,
513 CESA_SA_DATA_SRAM_OFFSET,
514 ahashdreq->cache_dma,
515 creq->cache_ptr,
516 CESA_TDMA_DST_IN_SRAM,
517 flags);
520 static struct mv_cesa_op_ctx *
521 mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
522 struct mv_cesa_ahash_dma_iter *dma_iter,
523 struct mv_cesa_ahash_req *creq,
524 unsigned int frag_len, gfp_t flags)
526 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
527 unsigned int len, trailerlen, padoff = 0;
528 struct mv_cesa_op_ctx *op;
529 int ret;
532 * If the transfer is smaller than our maximum length, and we have
533 * some data outstanding, we can ask the engine to finish the hash.
535 if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
536 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
537 flags);
538 if (IS_ERR(op))
539 return op;
541 mv_cesa_set_mac_op_total_len(op, creq->len);
542 mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
543 CESA_SA_DESC_CFG_NOT_FRAG :
544 CESA_SA_DESC_CFG_LAST_FRAG,
545 CESA_SA_DESC_CFG_FRAG_MSK);
547 return op;
551 * The request is longer than the engine can handle, or we have
552 * no data outstanding. Manually generate the padding, adding it
553 * as a "mid" fragment.
555 ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
556 if (ret)
557 return ERR_PTR(ret);
559 trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
561 len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
562 if (len) {
563 ret = mv_cesa_dma_add_data_transfer(chain,
564 CESA_SA_DATA_SRAM_OFFSET +
565 frag_len,
566 ahashdreq->padding_dma,
567 len, CESA_TDMA_DST_IN_SRAM,
568 flags);
569 if (ret)
570 return ERR_PTR(ret);
572 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
573 flags);
574 if (IS_ERR(op))
575 return op;
577 if (len == trailerlen)
578 return op;
580 padoff += len;
583 ret = mv_cesa_dma_add_data_transfer(chain,
584 CESA_SA_DATA_SRAM_OFFSET,
585 ahashdreq->padding_dma +
586 padoff,
587 trailerlen - padoff,
588 CESA_TDMA_DST_IN_SRAM,
589 flags);
590 if (ret)
591 return ERR_PTR(ret);
593 return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
594 flags);
597 static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
599 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
600 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
601 GFP_KERNEL : GFP_ATOMIC;
602 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
603 struct mv_cesa_tdma_req *dreq = &ahashdreq->base;
604 struct mv_cesa_ahash_dma_iter iter;
605 struct mv_cesa_op_ctx *op = NULL;
606 unsigned int frag_len;
607 int ret;
609 dreq->chain.first = NULL;
610 dreq->chain.last = NULL;
612 if (creq->src_nents) {
613 ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
614 DMA_TO_DEVICE);
615 if (!ret) {
616 ret = -ENOMEM;
617 goto err;
621 mv_cesa_tdma_desc_iter_init(&dreq->chain);
622 mv_cesa_ahash_req_iter_init(&iter, req);
625 * Add the cache (left-over data from a previous block) first.
626 * This will never overflow the SRAM size.
628 ret = mv_cesa_ahash_dma_add_cache(&dreq->chain, &iter, creq, flags);
629 if (ret)
630 goto err_free_tdma;
632 if (iter.src.sg) {
634 * Add all the new data, inserting an operation block and
635 * launch command between each full SRAM block-worth of
636 * data. We intentionally do not add the final op block.
638 while (true) {
639 ret = mv_cesa_dma_add_op_transfers(&dreq->chain,
640 &iter.base,
641 &iter.src, flags);
642 if (ret)
643 goto err_free_tdma;
645 frag_len = iter.base.op_len;
647 if (!mv_cesa_ahash_req_iter_next_op(&iter))
648 break;
650 op = mv_cesa_dma_add_frag(&dreq->chain, &creq->op_tmpl,
651 frag_len, flags);
652 if (IS_ERR(op)) {
653 ret = PTR_ERR(op);
654 goto err_free_tdma;
657 } else {
658 /* Account for the data that was in the cache. */
659 frag_len = iter.base.op_len;
663 * At this point, frag_len indicates whether we have any data
664 * outstanding which needs an operation. Queue up the final
665 * operation, which depends whether this is the final request.
667 if (creq->last_req)
668 op = mv_cesa_ahash_dma_last_req(&dreq->chain, &iter, creq,
669 frag_len, flags);
670 else if (frag_len)
671 op = mv_cesa_dma_add_frag(&dreq->chain, &creq->op_tmpl,
672 frag_len, flags);
674 if (IS_ERR(op)) {
675 ret = PTR_ERR(op);
676 goto err_free_tdma;
679 if (op) {
680 /* Add dummy desc to wait for crypto operation end */
681 ret = mv_cesa_dma_add_dummy_end(&dreq->chain, flags);
682 if (ret)
683 goto err_free_tdma;
686 if (!creq->last_req)
687 creq->cache_ptr = req->nbytes + creq->cache_ptr -
688 iter.base.len;
689 else
690 creq->cache_ptr = 0;
692 return 0;
694 err_free_tdma:
695 mv_cesa_dma_cleanup(dreq);
696 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
698 err:
699 mv_cesa_ahash_last_cleanup(req);
701 return ret;
704 static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
706 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
707 int ret;
709 if (cesa_dev->caps->has_tdma)
710 creq->req.base.type = CESA_DMA_REQ;
711 else
712 creq->req.base.type = CESA_STD_REQ;
714 creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
716 ret = mv_cesa_ahash_cache_req(req, cached);
717 if (ret)
718 return ret;
720 if (*cached)
721 return 0;
723 if (creq->req.base.type == CESA_DMA_REQ)
724 ret = mv_cesa_ahash_dma_req_init(req);
726 return ret;
729 static int mv_cesa_ahash_update(struct ahash_request *req)
731 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
732 bool cached = false;
733 int ret;
735 creq->len += req->nbytes;
736 ret = mv_cesa_ahash_req_init(req, &cached);
737 if (ret)
738 return ret;
740 if (cached)
741 return 0;
743 ret = mv_cesa_queue_req(&req->base);
744 if (ret && ret != -EINPROGRESS) {
745 mv_cesa_ahash_cleanup(req);
746 return ret;
749 return ret;
752 static int mv_cesa_ahash_final(struct ahash_request *req)
754 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
755 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
756 bool cached = false;
757 int ret;
759 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
760 creq->last_req = true;
761 req->nbytes = 0;
763 ret = mv_cesa_ahash_req_init(req, &cached);
764 if (ret)
765 return ret;
767 if (cached)
768 return 0;
770 ret = mv_cesa_queue_req(&req->base);
771 if (ret && ret != -EINPROGRESS)
772 mv_cesa_ahash_cleanup(req);
774 return ret;
777 static int mv_cesa_ahash_finup(struct ahash_request *req)
779 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
780 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
781 bool cached = false;
782 int ret;
784 creq->len += req->nbytes;
785 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
786 creq->last_req = true;
788 ret = mv_cesa_ahash_req_init(req, &cached);
789 if (ret)
790 return ret;
792 if (cached)
793 return 0;
795 ret = mv_cesa_queue_req(&req->base);
796 if (ret && ret != -EINPROGRESS)
797 mv_cesa_ahash_cleanup(req);
799 return ret;
802 static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
803 u64 *len, void *cache)
805 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
806 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
807 unsigned int digsize = crypto_ahash_digestsize(ahash);
808 unsigned int blocksize;
810 blocksize = crypto_ahash_blocksize(ahash);
812 *len = creq->len;
813 memcpy(hash, creq->state, digsize);
814 memset(cache, 0, blocksize);
815 if (creq->cache)
816 memcpy(cache, creq->cache, creq->cache_ptr);
818 return 0;
821 static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
822 u64 len, const void *cache)
824 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
825 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
826 unsigned int digsize = crypto_ahash_digestsize(ahash);
827 unsigned int blocksize;
828 unsigned int cache_ptr;
829 int ret;
831 ret = crypto_ahash_init(req);
832 if (ret)
833 return ret;
835 blocksize = crypto_ahash_blocksize(ahash);
836 if (len >= blocksize)
837 mv_cesa_update_op_cfg(&creq->op_tmpl,
838 CESA_SA_DESC_CFG_MID_FRAG,
839 CESA_SA_DESC_CFG_FRAG_MSK);
841 creq->len = len;
842 memcpy(creq->state, hash, digsize);
843 creq->cache_ptr = 0;
845 cache_ptr = do_div(len, blocksize);
846 if (!cache_ptr)
847 return 0;
849 ret = mv_cesa_ahash_alloc_cache(req);
850 if (ret)
851 return ret;
853 memcpy(creq->cache, cache, cache_ptr);
854 creq->cache_ptr = cache_ptr;
856 return 0;
859 static int mv_cesa_md5_init(struct ahash_request *req)
861 struct mv_cesa_op_ctx tmpl = { };
863 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
865 mv_cesa_ahash_init(req, &tmpl, true);
867 return 0;
870 static int mv_cesa_md5_export(struct ahash_request *req, void *out)
872 struct md5_state *out_state = out;
874 return mv_cesa_ahash_export(req, out_state->hash,
875 &out_state->byte_count, out_state->block);
878 static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
880 const struct md5_state *in_state = in;
882 return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
883 in_state->block);
886 static int mv_cesa_md5_digest(struct ahash_request *req)
888 int ret;
890 ret = mv_cesa_md5_init(req);
891 if (ret)
892 return ret;
894 return mv_cesa_ahash_finup(req);
897 struct ahash_alg mv_md5_alg = {
898 .init = mv_cesa_md5_init,
899 .update = mv_cesa_ahash_update,
900 .final = mv_cesa_ahash_final,
901 .finup = mv_cesa_ahash_finup,
902 .digest = mv_cesa_md5_digest,
903 .export = mv_cesa_md5_export,
904 .import = mv_cesa_md5_import,
905 .halg = {
906 .digestsize = MD5_DIGEST_SIZE,
907 .statesize = sizeof(struct md5_state),
908 .base = {
909 .cra_name = "md5",
910 .cra_driver_name = "mv-md5",
911 .cra_priority = 300,
912 .cra_flags = CRYPTO_ALG_ASYNC |
913 CRYPTO_ALG_KERN_DRIVER_ONLY,
914 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
915 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
916 .cra_init = mv_cesa_ahash_cra_init,
917 .cra_module = THIS_MODULE,
922 static int mv_cesa_sha1_init(struct ahash_request *req)
924 struct mv_cesa_op_ctx tmpl = { };
926 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
928 mv_cesa_ahash_init(req, &tmpl, false);
930 return 0;
933 static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
935 struct sha1_state *out_state = out;
937 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
938 out_state->buffer);
941 static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
943 const struct sha1_state *in_state = in;
945 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
946 in_state->buffer);
949 static int mv_cesa_sha1_digest(struct ahash_request *req)
951 int ret;
953 ret = mv_cesa_sha1_init(req);
954 if (ret)
955 return ret;
957 return mv_cesa_ahash_finup(req);
960 struct ahash_alg mv_sha1_alg = {
961 .init = mv_cesa_sha1_init,
962 .update = mv_cesa_ahash_update,
963 .final = mv_cesa_ahash_final,
964 .finup = mv_cesa_ahash_finup,
965 .digest = mv_cesa_sha1_digest,
966 .export = mv_cesa_sha1_export,
967 .import = mv_cesa_sha1_import,
968 .halg = {
969 .digestsize = SHA1_DIGEST_SIZE,
970 .statesize = sizeof(struct sha1_state),
971 .base = {
972 .cra_name = "sha1",
973 .cra_driver_name = "mv-sha1",
974 .cra_priority = 300,
975 .cra_flags = CRYPTO_ALG_ASYNC |
976 CRYPTO_ALG_KERN_DRIVER_ONLY,
977 .cra_blocksize = SHA1_BLOCK_SIZE,
978 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
979 .cra_init = mv_cesa_ahash_cra_init,
980 .cra_module = THIS_MODULE,
985 static int mv_cesa_sha256_init(struct ahash_request *req)
987 struct mv_cesa_op_ctx tmpl = { };
989 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
991 mv_cesa_ahash_init(req, &tmpl, false);
993 return 0;
996 static int mv_cesa_sha256_digest(struct ahash_request *req)
998 int ret;
1000 ret = mv_cesa_sha256_init(req);
1001 if (ret)
1002 return ret;
1004 return mv_cesa_ahash_finup(req);
1007 static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
1009 struct sha256_state *out_state = out;
1011 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
1012 out_state->buf);
1015 static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
1017 const struct sha256_state *in_state = in;
1019 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
1020 in_state->buf);
1023 struct ahash_alg mv_sha256_alg = {
1024 .init = mv_cesa_sha256_init,
1025 .update = mv_cesa_ahash_update,
1026 .final = mv_cesa_ahash_final,
1027 .finup = mv_cesa_ahash_finup,
1028 .digest = mv_cesa_sha256_digest,
1029 .export = mv_cesa_sha256_export,
1030 .import = mv_cesa_sha256_import,
1031 .halg = {
1032 .digestsize = SHA256_DIGEST_SIZE,
1033 .statesize = sizeof(struct sha256_state),
1034 .base = {
1035 .cra_name = "sha256",
1036 .cra_driver_name = "mv-sha256",
1037 .cra_priority = 300,
1038 .cra_flags = CRYPTO_ALG_ASYNC |
1039 CRYPTO_ALG_KERN_DRIVER_ONLY,
1040 .cra_blocksize = SHA256_BLOCK_SIZE,
1041 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1042 .cra_init = mv_cesa_ahash_cra_init,
1043 .cra_module = THIS_MODULE,
1048 struct mv_cesa_ahash_result {
1049 struct completion completion;
1050 int error;
1053 static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
1054 int error)
1056 struct mv_cesa_ahash_result *result = req->data;
1058 if (error == -EINPROGRESS)
1059 return;
1061 result->error = error;
1062 complete(&result->completion);
1065 static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
1066 void *state, unsigned int blocksize)
1068 struct mv_cesa_ahash_result result;
1069 struct scatterlist sg;
1070 int ret;
1072 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1073 mv_cesa_hmac_ahash_complete, &result);
1074 sg_init_one(&sg, pad, blocksize);
1075 ahash_request_set_crypt(req, &sg, pad, blocksize);
1076 init_completion(&result.completion);
1078 ret = crypto_ahash_init(req);
1079 if (ret)
1080 return ret;
1082 ret = crypto_ahash_update(req);
1083 if (ret && ret != -EINPROGRESS)
1084 return ret;
1086 wait_for_completion_interruptible(&result.completion);
1087 if (result.error)
1088 return result.error;
1090 ret = crypto_ahash_export(req, state);
1091 if (ret)
1092 return ret;
1094 return 0;
1097 static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
1098 const u8 *key, unsigned int keylen,
1099 u8 *ipad, u8 *opad,
1100 unsigned int blocksize)
1102 struct mv_cesa_ahash_result result;
1103 struct scatterlist sg;
1104 int ret;
1105 int i;
1107 if (keylen <= blocksize) {
1108 memcpy(ipad, key, keylen);
1109 } else {
1110 u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
1112 if (!keydup)
1113 return -ENOMEM;
1115 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1116 mv_cesa_hmac_ahash_complete,
1117 &result);
1118 sg_init_one(&sg, keydup, keylen);
1119 ahash_request_set_crypt(req, &sg, ipad, keylen);
1120 init_completion(&result.completion);
1122 ret = crypto_ahash_digest(req);
1123 if (ret == -EINPROGRESS) {
1124 wait_for_completion_interruptible(&result.completion);
1125 ret = result.error;
1128 /* Set the memory region to 0 to avoid any leak. */
1129 memset(keydup, 0, keylen);
1130 kfree(keydup);
1132 if (ret)
1133 return ret;
1135 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
1138 memset(ipad + keylen, 0, blocksize - keylen);
1139 memcpy(opad, ipad, blocksize);
1141 for (i = 0; i < blocksize; i++) {
1142 ipad[i] ^= 0x36;
1143 opad[i] ^= 0x5c;
1146 return 0;
1149 static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
1150 const u8 *key, unsigned int keylen,
1151 void *istate, void *ostate)
1153 struct ahash_request *req;
1154 struct crypto_ahash *tfm;
1155 unsigned int blocksize;
1156 u8 *ipad = NULL;
1157 u8 *opad;
1158 int ret;
1160 tfm = crypto_alloc_ahash(hash_alg_name, CRYPTO_ALG_TYPE_AHASH,
1161 CRYPTO_ALG_TYPE_AHASH_MASK);
1162 if (IS_ERR(tfm))
1163 return PTR_ERR(tfm);
1165 req = ahash_request_alloc(tfm, GFP_KERNEL);
1166 if (!req) {
1167 ret = -ENOMEM;
1168 goto free_ahash;
1171 crypto_ahash_clear_flags(tfm, ~0);
1173 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
1175 ipad = kzalloc(2 * blocksize, GFP_KERNEL);
1176 if (!ipad) {
1177 ret = -ENOMEM;
1178 goto free_req;
1181 opad = ipad + blocksize;
1183 ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
1184 if (ret)
1185 goto free_ipad;
1187 ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
1188 if (ret)
1189 goto free_ipad;
1191 ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
1193 free_ipad:
1194 kfree(ipad);
1195 free_req:
1196 ahash_request_free(req);
1197 free_ahash:
1198 crypto_free_ahash(tfm);
1200 return ret;
1203 static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
1205 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
1207 ctx->base.ops = &mv_cesa_ahash_req_ops;
1209 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1210 sizeof(struct mv_cesa_ahash_req));
1211 return 0;
1214 static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
1216 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1217 struct mv_cesa_op_ctx tmpl = { };
1219 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
1220 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1222 mv_cesa_ahash_init(req, &tmpl, true);
1224 return 0;
1227 static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1228 unsigned int keylen)
1230 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1231 struct md5_state istate, ostate;
1232 int ret, i;
1234 ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
1235 if (ret)
1236 return ret;
1238 for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
1239 ctx->iv[i] = be32_to_cpu(istate.hash[i]);
1241 for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
1242 ctx->iv[i + 8] = be32_to_cpu(ostate.hash[i]);
1244 return 0;
1247 static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
1249 int ret;
1251 ret = mv_cesa_ahmac_md5_init(req);
1252 if (ret)
1253 return ret;
1255 return mv_cesa_ahash_finup(req);
1258 struct ahash_alg mv_ahmac_md5_alg = {
1259 .init = mv_cesa_ahmac_md5_init,
1260 .update = mv_cesa_ahash_update,
1261 .final = mv_cesa_ahash_final,
1262 .finup = mv_cesa_ahash_finup,
1263 .digest = mv_cesa_ahmac_md5_digest,
1264 .setkey = mv_cesa_ahmac_md5_setkey,
1265 .export = mv_cesa_md5_export,
1266 .import = mv_cesa_md5_import,
1267 .halg = {
1268 .digestsize = MD5_DIGEST_SIZE,
1269 .statesize = sizeof(struct md5_state),
1270 .base = {
1271 .cra_name = "hmac(md5)",
1272 .cra_driver_name = "mv-hmac-md5",
1273 .cra_priority = 300,
1274 .cra_flags = CRYPTO_ALG_ASYNC |
1275 CRYPTO_ALG_KERN_DRIVER_ONLY,
1276 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1277 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1278 .cra_init = mv_cesa_ahmac_cra_init,
1279 .cra_module = THIS_MODULE,
1284 static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
1286 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1287 struct mv_cesa_op_ctx tmpl = { };
1289 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
1290 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1292 mv_cesa_ahash_init(req, &tmpl, false);
1294 return 0;
1297 static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1298 unsigned int keylen)
1300 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1301 struct sha1_state istate, ostate;
1302 int ret, i;
1304 ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
1305 if (ret)
1306 return ret;
1308 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1309 ctx->iv[i] = be32_to_cpu(istate.state[i]);
1311 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1312 ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
1314 return 0;
1317 static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
1319 int ret;
1321 ret = mv_cesa_ahmac_sha1_init(req);
1322 if (ret)
1323 return ret;
1325 return mv_cesa_ahash_finup(req);
1328 struct ahash_alg mv_ahmac_sha1_alg = {
1329 .init = mv_cesa_ahmac_sha1_init,
1330 .update = mv_cesa_ahash_update,
1331 .final = mv_cesa_ahash_final,
1332 .finup = mv_cesa_ahash_finup,
1333 .digest = mv_cesa_ahmac_sha1_digest,
1334 .setkey = mv_cesa_ahmac_sha1_setkey,
1335 .export = mv_cesa_sha1_export,
1336 .import = mv_cesa_sha1_import,
1337 .halg = {
1338 .digestsize = SHA1_DIGEST_SIZE,
1339 .statesize = sizeof(struct sha1_state),
1340 .base = {
1341 .cra_name = "hmac(sha1)",
1342 .cra_driver_name = "mv-hmac-sha1",
1343 .cra_priority = 300,
1344 .cra_flags = CRYPTO_ALG_ASYNC |
1345 CRYPTO_ALG_KERN_DRIVER_ONLY,
1346 .cra_blocksize = SHA1_BLOCK_SIZE,
1347 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1348 .cra_init = mv_cesa_ahmac_cra_init,
1349 .cra_module = THIS_MODULE,
1354 static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1355 unsigned int keylen)
1357 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1358 struct sha256_state istate, ostate;
1359 int ret, i;
1361 ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
1362 if (ret)
1363 return ret;
1365 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1366 ctx->iv[i] = be32_to_cpu(istate.state[i]);
1368 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1369 ctx->iv[i + 8] = be32_to_cpu(ostate.state[i]);
1371 return 0;
1374 static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
1376 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1377 struct mv_cesa_op_ctx tmpl = { };
1379 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
1380 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1382 mv_cesa_ahash_init(req, &tmpl, false);
1384 return 0;
1387 static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
1389 int ret;
1391 ret = mv_cesa_ahmac_sha256_init(req);
1392 if (ret)
1393 return ret;
1395 return mv_cesa_ahash_finup(req);
1398 struct ahash_alg mv_ahmac_sha256_alg = {
1399 .init = mv_cesa_ahmac_sha256_init,
1400 .update = mv_cesa_ahash_update,
1401 .final = mv_cesa_ahash_final,
1402 .finup = mv_cesa_ahash_finup,
1403 .digest = mv_cesa_ahmac_sha256_digest,
1404 .setkey = mv_cesa_ahmac_sha256_setkey,
1405 .export = mv_cesa_sha256_export,
1406 .import = mv_cesa_sha256_import,
1407 .halg = {
1408 .digestsize = SHA256_DIGEST_SIZE,
1409 .statesize = sizeof(struct sha256_state),
1410 .base = {
1411 .cra_name = "hmac(sha256)",
1412 .cra_driver_name = "mv-hmac-sha256",
1413 .cra_priority = 300,
1414 .cra_flags = CRYPTO_ALG_ASYNC |
1415 CRYPTO_ALG_KERN_DRIVER_ONLY,
1416 .cra_blocksize = SHA256_BLOCK_SIZE,
1417 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1418 .cra_init = mv_cesa_ahmac_cra_init,
1419 .cra_module = THIS_MODULE,