[media] media: mt9m111: add device-tree documentation
[linux-2.6/btrfs-unstable.git] / drivers / md / dm-thin-metadata.c
blobe9d33ad59df5e21a9fcdae85e96a27ccb93156cd
1 /*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
23 * - A space map managing the metadata blocks.
25 * - A space map managing the data blocks.
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
42 * Space maps have 2 btrees:
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
75 #define DM_MSG_PREFIX "thin metadata"
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
87 #define THIN_MAX_CONCURRENT_LOCKS 5
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
93 * Little endian on-disk superblock and device details.
95 struct thin_disk_superblock {
96 __le32 csum; /* Checksum of superblock except for this field. */
97 __le32 flags;
98 __le64 blocknr; /* This block number, dm_block_t. */
100 __u8 uuid[16];
101 __le64 magic;
102 __le32 version;
103 __le32 time;
105 __le64 trans_id;
108 * Root held by userspace transactions.
110 __le64 held_root;
112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
118 __le64 data_mapping_root;
121 * Device detail root mapping dev_id -> device_details
123 __le64 device_details_root;
125 __le32 data_block_size; /* In 512-byte sectors. */
127 __le32 metadata_block_size; /* In 512-byte sectors. */
128 __le64 metadata_nr_blocks;
130 __le32 compat_flags;
131 __le32 compat_ro_flags;
132 __le32 incompat_flags;
133 } __packed;
135 struct disk_device_details {
136 __le64 mapped_blocks;
137 __le64 transaction_id; /* When created. */
138 __le32 creation_time;
139 __le32 snapshotted_time;
140 } __packed;
142 struct dm_pool_metadata {
143 struct hlist_node hash;
145 struct block_device *bdev;
146 struct dm_block_manager *bm;
147 struct dm_space_map *metadata_sm;
148 struct dm_space_map *data_sm;
149 struct dm_transaction_manager *tm;
150 struct dm_transaction_manager *nb_tm;
153 * Two-level btree.
154 * First level holds thin_dev_t.
155 * Second level holds mappings.
157 struct dm_btree_info info;
160 * Non-blocking version of the above.
162 struct dm_btree_info nb_info;
165 * Just the top level for deleting whole devices.
167 struct dm_btree_info tl_info;
170 * Just the bottom level for creating new devices.
172 struct dm_btree_info bl_info;
175 * Describes the device details btree.
177 struct dm_btree_info details_info;
179 struct rw_semaphore root_lock;
180 uint32_t time;
181 dm_block_t root;
182 dm_block_t details_root;
183 struct list_head thin_devices;
184 uint64_t trans_id;
185 unsigned long flags;
186 sector_t data_block_size;
187 bool read_only:1;
190 * Set if a transaction has to be aborted but the attempt to roll back
191 * to the previous (good) transaction failed. The only pool metadata
192 * operation possible in this state is the closing of the device.
194 bool fail_io:1;
197 * Reading the space map roots can fail, so we read it into these
198 * buffers before the superblock is locked and updated.
200 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
201 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
204 struct dm_thin_device {
205 struct list_head list;
206 struct dm_pool_metadata *pmd;
207 dm_thin_id id;
209 int open_count;
210 bool changed:1;
211 bool aborted_with_changes:1;
212 uint64_t mapped_blocks;
213 uint64_t transaction_id;
214 uint32_t creation_time;
215 uint32_t snapshotted_time;
218 /*----------------------------------------------------------------
219 * superblock validator
220 *--------------------------------------------------------------*/
222 #define SUPERBLOCK_CSUM_XOR 160774
224 static void sb_prepare_for_write(struct dm_block_validator *v,
225 struct dm_block *b,
226 size_t block_size)
228 struct thin_disk_superblock *disk_super = dm_block_data(b);
230 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
231 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
232 block_size - sizeof(__le32),
233 SUPERBLOCK_CSUM_XOR));
236 static int sb_check(struct dm_block_validator *v,
237 struct dm_block *b,
238 size_t block_size)
240 struct thin_disk_superblock *disk_super = dm_block_data(b);
241 __le32 csum_le;
243 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
244 DMERR("sb_check failed: blocknr %llu: "
245 "wanted %llu", le64_to_cpu(disk_super->blocknr),
246 (unsigned long long)dm_block_location(b));
247 return -ENOTBLK;
250 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
251 DMERR("sb_check failed: magic %llu: "
252 "wanted %llu", le64_to_cpu(disk_super->magic),
253 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
254 return -EILSEQ;
257 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
258 block_size - sizeof(__le32),
259 SUPERBLOCK_CSUM_XOR));
260 if (csum_le != disk_super->csum) {
261 DMERR("sb_check failed: csum %u: wanted %u",
262 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
263 return -EILSEQ;
266 return 0;
269 static struct dm_block_validator sb_validator = {
270 .name = "superblock",
271 .prepare_for_write = sb_prepare_for_write,
272 .check = sb_check
275 /*----------------------------------------------------------------
276 * Methods for the btree value types
277 *--------------------------------------------------------------*/
279 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
281 return (b << 24) | t;
284 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
286 *b = v >> 24;
287 *t = v & ((1 << 24) - 1);
290 static void data_block_inc(void *context, const void *value_le)
292 struct dm_space_map *sm = context;
293 __le64 v_le;
294 uint64_t b;
295 uint32_t t;
297 memcpy(&v_le, value_le, sizeof(v_le));
298 unpack_block_time(le64_to_cpu(v_le), &b, &t);
299 dm_sm_inc_block(sm, b);
302 static void data_block_dec(void *context, const void *value_le)
304 struct dm_space_map *sm = context;
305 __le64 v_le;
306 uint64_t b;
307 uint32_t t;
309 memcpy(&v_le, value_le, sizeof(v_le));
310 unpack_block_time(le64_to_cpu(v_le), &b, &t);
311 dm_sm_dec_block(sm, b);
314 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
316 __le64 v1_le, v2_le;
317 uint64_t b1, b2;
318 uint32_t t;
320 memcpy(&v1_le, value1_le, sizeof(v1_le));
321 memcpy(&v2_le, value2_le, sizeof(v2_le));
322 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
323 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
325 return b1 == b2;
328 static void subtree_inc(void *context, const void *value)
330 struct dm_btree_info *info = context;
331 __le64 root_le;
332 uint64_t root;
334 memcpy(&root_le, value, sizeof(root_le));
335 root = le64_to_cpu(root_le);
336 dm_tm_inc(info->tm, root);
339 static void subtree_dec(void *context, const void *value)
341 struct dm_btree_info *info = context;
342 __le64 root_le;
343 uint64_t root;
345 memcpy(&root_le, value, sizeof(root_le));
346 root = le64_to_cpu(root_le);
347 if (dm_btree_del(info, root))
348 DMERR("btree delete failed\n");
351 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
353 __le64 v1_le, v2_le;
354 memcpy(&v1_le, value1_le, sizeof(v1_le));
355 memcpy(&v2_le, value2_le, sizeof(v2_le));
357 return v1_le == v2_le;
360 /*----------------------------------------------------------------*/
362 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
363 struct dm_block **sblock)
365 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
366 &sb_validator, sblock);
369 static int superblock_lock(struct dm_pool_metadata *pmd,
370 struct dm_block **sblock)
372 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
373 &sb_validator, sblock);
376 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
378 int r;
379 unsigned i;
380 struct dm_block *b;
381 __le64 *data_le, zero = cpu_to_le64(0);
382 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
385 * We can't use a validator here - it may be all zeroes.
387 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
388 if (r)
389 return r;
391 data_le = dm_block_data(b);
392 *result = 1;
393 for (i = 0; i < block_size; i++) {
394 if (data_le[i] != zero) {
395 *result = 0;
396 break;
400 return dm_bm_unlock(b);
403 static void __setup_btree_details(struct dm_pool_metadata *pmd)
405 pmd->info.tm = pmd->tm;
406 pmd->info.levels = 2;
407 pmd->info.value_type.context = pmd->data_sm;
408 pmd->info.value_type.size = sizeof(__le64);
409 pmd->info.value_type.inc = data_block_inc;
410 pmd->info.value_type.dec = data_block_dec;
411 pmd->info.value_type.equal = data_block_equal;
413 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
414 pmd->nb_info.tm = pmd->nb_tm;
416 pmd->tl_info.tm = pmd->tm;
417 pmd->tl_info.levels = 1;
418 pmd->tl_info.value_type.context = &pmd->bl_info;
419 pmd->tl_info.value_type.size = sizeof(__le64);
420 pmd->tl_info.value_type.inc = subtree_inc;
421 pmd->tl_info.value_type.dec = subtree_dec;
422 pmd->tl_info.value_type.equal = subtree_equal;
424 pmd->bl_info.tm = pmd->tm;
425 pmd->bl_info.levels = 1;
426 pmd->bl_info.value_type.context = pmd->data_sm;
427 pmd->bl_info.value_type.size = sizeof(__le64);
428 pmd->bl_info.value_type.inc = data_block_inc;
429 pmd->bl_info.value_type.dec = data_block_dec;
430 pmd->bl_info.value_type.equal = data_block_equal;
432 pmd->details_info.tm = pmd->tm;
433 pmd->details_info.levels = 1;
434 pmd->details_info.value_type.context = NULL;
435 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
436 pmd->details_info.value_type.inc = NULL;
437 pmd->details_info.value_type.dec = NULL;
438 pmd->details_info.value_type.equal = NULL;
441 static int save_sm_roots(struct dm_pool_metadata *pmd)
443 int r;
444 size_t len;
446 r = dm_sm_root_size(pmd->metadata_sm, &len);
447 if (r < 0)
448 return r;
450 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
451 if (r < 0)
452 return r;
454 r = dm_sm_root_size(pmd->data_sm, &len);
455 if (r < 0)
456 return r;
458 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
461 static void copy_sm_roots(struct dm_pool_metadata *pmd,
462 struct thin_disk_superblock *disk)
464 memcpy(&disk->metadata_space_map_root,
465 &pmd->metadata_space_map_root,
466 sizeof(pmd->metadata_space_map_root));
468 memcpy(&disk->data_space_map_root,
469 &pmd->data_space_map_root,
470 sizeof(pmd->data_space_map_root));
473 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
475 int r;
476 struct dm_block *sblock;
477 struct thin_disk_superblock *disk_super;
478 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
480 if (bdev_size > THIN_METADATA_MAX_SECTORS)
481 bdev_size = THIN_METADATA_MAX_SECTORS;
483 r = dm_sm_commit(pmd->data_sm);
484 if (r < 0)
485 return r;
487 r = save_sm_roots(pmd);
488 if (r < 0)
489 return r;
491 r = dm_tm_pre_commit(pmd->tm);
492 if (r < 0)
493 return r;
495 r = superblock_lock_zero(pmd, &sblock);
496 if (r)
497 return r;
499 disk_super = dm_block_data(sblock);
500 disk_super->flags = 0;
501 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
502 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
503 disk_super->version = cpu_to_le32(THIN_VERSION);
504 disk_super->time = 0;
505 disk_super->trans_id = 0;
506 disk_super->held_root = 0;
508 copy_sm_roots(pmd, disk_super);
510 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
511 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
512 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
513 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
514 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
516 return dm_tm_commit(pmd->tm, sblock);
519 static int __format_metadata(struct dm_pool_metadata *pmd)
521 int r;
523 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
524 &pmd->tm, &pmd->metadata_sm);
525 if (r < 0) {
526 DMERR("tm_create_with_sm failed");
527 return r;
530 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
531 if (IS_ERR(pmd->data_sm)) {
532 DMERR("sm_disk_create failed");
533 r = PTR_ERR(pmd->data_sm);
534 goto bad_cleanup_tm;
537 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
538 if (!pmd->nb_tm) {
539 DMERR("could not create non-blocking clone tm");
540 r = -ENOMEM;
541 goto bad_cleanup_data_sm;
544 __setup_btree_details(pmd);
546 r = dm_btree_empty(&pmd->info, &pmd->root);
547 if (r < 0)
548 goto bad_cleanup_nb_tm;
550 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
551 if (r < 0) {
552 DMERR("couldn't create devices root");
553 goto bad_cleanup_nb_tm;
556 r = __write_initial_superblock(pmd);
557 if (r)
558 goto bad_cleanup_nb_tm;
560 return 0;
562 bad_cleanup_nb_tm:
563 dm_tm_destroy(pmd->nb_tm);
564 bad_cleanup_data_sm:
565 dm_sm_destroy(pmd->data_sm);
566 bad_cleanup_tm:
567 dm_tm_destroy(pmd->tm);
568 dm_sm_destroy(pmd->metadata_sm);
570 return r;
573 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
574 struct dm_pool_metadata *pmd)
576 uint32_t features;
578 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
579 if (features) {
580 DMERR("could not access metadata due to unsupported optional features (%lx).",
581 (unsigned long)features);
582 return -EINVAL;
586 * Check for read-only metadata to skip the following RDWR checks.
588 if (get_disk_ro(pmd->bdev->bd_disk))
589 return 0;
591 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
592 if (features) {
593 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
594 (unsigned long)features);
595 return -EINVAL;
598 return 0;
601 static int __open_metadata(struct dm_pool_metadata *pmd)
603 int r;
604 struct dm_block *sblock;
605 struct thin_disk_superblock *disk_super;
607 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
608 &sb_validator, &sblock);
609 if (r < 0) {
610 DMERR("couldn't read superblock");
611 return r;
614 disk_super = dm_block_data(sblock);
616 /* Verify the data block size hasn't changed */
617 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
618 DMERR("changing the data block size (from %u to %llu) is not supported",
619 le32_to_cpu(disk_super->data_block_size),
620 (unsigned long long)pmd->data_block_size);
621 r = -EINVAL;
622 goto bad_unlock_sblock;
625 r = __check_incompat_features(disk_super, pmd);
626 if (r < 0)
627 goto bad_unlock_sblock;
629 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
630 disk_super->metadata_space_map_root,
631 sizeof(disk_super->metadata_space_map_root),
632 &pmd->tm, &pmd->metadata_sm);
633 if (r < 0) {
634 DMERR("tm_open_with_sm failed");
635 goto bad_unlock_sblock;
638 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
639 sizeof(disk_super->data_space_map_root));
640 if (IS_ERR(pmd->data_sm)) {
641 DMERR("sm_disk_open failed");
642 r = PTR_ERR(pmd->data_sm);
643 goto bad_cleanup_tm;
646 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
647 if (!pmd->nb_tm) {
648 DMERR("could not create non-blocking clone tm");
649 r = -ENOMEM;
650 goto bad_cleanup_data_sm;
653 __setup_btree_details(pmd);
654 return dm_bm_unlock(sblock);
656 bad_cleanup_data_sm:
657 dm_sm_destroy(pmd->data_sm);
658 bad_cleanup_tm:
659 dm_tm_destroy(pmd->tm);
660 dm_sm_destroy(pmd->metadata_sm);
661 bad_unlock_sblock:
662 dm_bm_unlock(sblock);
664 return r;
667 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
669 int r, unformatted;
671 r = __superblock_all_zeroes(pmd->bm, &unformatted);
672 if (r)
673 return r;
675 if (unformatted)
676 return format_device ? __format_metadata(pmd) : -EPERM;
678 return __open_metadata(pmd);
681 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
683 int r;
685 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
686 THIN_METADATA_CACHE_SIZE,
687 THIN_MAX_CONCURRENT_LOCKS);
688 if (IS_ERR(pmd->bm)) {
689 DMERR("could not create block manager");
690 return PTR_ERR(pmd->bm);
693 r = __open_or_format_metadata(pmd, format_device);
694 if (r)
695 dm_block_manager_destroy(pmd->bm);
697 return r;
700 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
702 dm_sm_destroy(pmd->data_sm);
703 dm_sm_destroy(pmd->metadata_sm);
704 dm_tm_destroy(pmd->nb_tm);
705 dm_tm_destroy(pmd->tm);
706 dm_block_manager_destroy(pmd->bm);
709 static int __begin_transaction(struct dm_pool_metadata *pmd)
711 int r;
712 struct thin_disk_superblock *disk_super;
713 struct dm_block *sblock;
716 * We re-read the superblock every time. Shouldn't need to do this
717 * really.
719 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
720 &sb_validator, &sblock);
721 if (r)
722 return r;
724 disk_super = dm_block_data(sblock);
725 pmd->time = le32_to_cpu(disk_super->time);
726 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
727 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
728 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
729 pmd->flags = le32_to_cpu(disk_super->flags);
730 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
732 dm_bm_unlock(sblock);
733 return 0;
736 static int __write_changed_details(struct dm_pool_metadata *pmd)
738 int r;
739 struct dm_thin_device *td, *tmp;
740 struct disk_device_details details;
741 uint64_t key;
743 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
744 if (!td->changed)
745 continue;
747 key = td->id;
749 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
750 details.transaction_id = cpu_to_le64(td->transaction_id);
751 details.creation_time = cpu_to_le32(td->creation_time);
752 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
753 __dm_bless_for_disk(&details);
755 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
756 &key, &details, &pmd->details_root);
757 if (r)
758 return r;
760 if (td->open_count)
761 td->changed = 0;
762 else {
763 list_del(&td->list);
764 kfree(td);
768 return 0;
771 static int __commit_transaction(struct dm_pool_metadata *pmd)
773 int r;
774 size_t metadata_len, data_len;
775 struct thin_disk_superblock *disk_super;
776 struct dm_block *sblock;
779 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
781 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
783 r = __write_changed_details(pmd);
784 if (r < 0)
785 return r;
787 r = dm_sm_commit(pmd->data_sm);
788 if (r < 0)
789 return r;
791 r = dm_tm_pre_commit(pmd->tm);
792 if (r < 0)
793 return r;
795 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
796 if (r < 0)
797 return r;
799 r = dm_sm_root_size(pmd->data_sm, &data_len);
800 if (r < 0)
801 return r;
803 r = save_sm_roots(pmd);
804 if (r < 0)
805 return r;
807 r = superblock_lock(pmd, &sblock);
808 if (r)
809 return r;
811 disk_super = dm_block_data(sblock);
812 disk_super->time = cpu_to_le32(pmd->time);
813 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
814 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
815 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
816 disk_super->flags = cpu_to_le32(pmd->flags);
818 copy_sm_roots(pmd, disk_super);
820 return dm_tm_commit(pmd->tm, sblock);
823 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
824 sector_t data_block_size,
825 bool format_device)
827 int r;
828 struct dm_pool_metadata *pmd;
830 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
831 if (!pmd) {
832 DMERR("could not allocate metadata struct");
833 return ERR_PTR(-ENOMEM);
836 init_rwsem(&pmd->root_lock);
837 pmd->time = 0;
838 INIT_LIST_HEAD(&pmd->thin_devices);
839 pmd->read_only = false;
840 pmd->fail_io = false;
841 pmd->bdev = bdev;
842 pmd->data_block_size = data_block_size;
844 r = __create_persistent_data_objects(pmd, format_device);
845 if (r) {
846 kfree(pmd);
847 return ERR_PTR(r);
850 r = __begin_transaction(pmd);
851 if (r < 0) {
852 if (dm_pool_metadata_close(pmd) < 0)
853 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
854 return ERR_PTR(r);
857 return pmd;
860 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
862 int r;
863 unsigned open_devices = 0;
864 struct dm_thin_device *td, *tmp;
866 down_read(&pmd->root_lock);
867 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
868 if (td->open_count)
869 open_devices++;
870 else {
871 list_del(&td->list);
872 kfree(td);
875 up_read(&pmd->root_lock);
877 if (open_devices) {
878 DMERR("attempt to close pmd when %u device(s) are still open",
879 open_devices);
880 return -EBUSY;
883 if (!pmd->read_only && !pmd->fail_io) {
884 r = __commit_transaction(pmd);
885 if (r < 0)
886 DMWARN("%s: __commit_transaction() failed, error = %d",
887 __func__, r);
890 if (!pmd->fail_io)
891 __destroy_persistent_data_objects(pmd);
893 kfree(pmd);
894 return 0;
898 * __open_device: Returns @td corresponding to device with id @dev,
899 * creating it if @create is set and incrementing @td->open_count.
900 * On failure, @td is undefined.
902 static int __open_device(struct dm_pool_metadata *pmd,
903 dm_thin_id dev, int create,
904 struct dm_thin_device **td)
906 int r, changed = 0;
907 struct dm_thin_device *td2;
908 uint64_t key = dev;
909 struct disk_device_details details_le;
912 * If the device is already open, return it.
914 list_for_each_entry(td2, &pmd->thin_devices, list)
915 if (td2->id == dev) {
917 * May not create an already-open device.
919 if (create)
920 return -EEXIST;
922 td2->open_count++;
923 *td = td2;
924 return 0;
928 * Check the device exists.
930 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
931 &key, &details_le);
932 if (r) {
933 if (r != -ENODATA || !create)
934 return r;
937 * Create new device.
939 changed = 1;
940 details_le.mapped_blocks = 0;
941 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
942 details_le.creation_time = cpu_to_le32(pmd->time);
943 details_le.snapshotted_time = cpu_to_le32(pmd->time);
946 *td = kmalloc(sizeof(**td), GFP_NOIO);
947 if (!*td)
948 return -ENOMEM;
950 (*td)->pmd = pmd;
951 (*td)->id = dev;
952 (*td)->open_count = 1;
953 (*td)->changed = changed;
954 (*td)->aborted_with_changes = false;
955 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
956 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
957 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
958 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
960 list_add(&(*td)->list, &pmd->thin_devices);
962 return 0;
965 static void __close_device(struct dm_thin_device *td)
967 --td->open_count;
970 static int __create_thin(struct dm_pool_metadata *pmd,
971 dm_thin_id dev)
973 int r;
974 dm_block_t dev_root;
975 uint64_t key = dev;
976 struct disk_device_details details_le;
977 struct dm_thin_device *td;
978 __le64 value;
980 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
981 &key, &details_le);
982 if (!r)
983 return -EEXIST;
986 * Create an empty btree for the mappings.
988 r = dm_btree_empty(&pmd->bl_info, &dev_root);
989 if (r)
990 return r;
993 * Insert it into the main mapping tree.
995 value = cpu_to_le64(dev_root);
996 __dm_bless_for_disk(&value);
997 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
998 if (r) {
999 dm_btree_del(&pmd->bl_info, dev_root);
1000 return r;
1003 r = __open_device(pmd, dev, 1, &td);
1004 if (r) {
1005 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1006 dm_btree_del(&pmd->bl_info, dev_root);
1007 return r;
1009 __close_device(td);
1011 return r;
1014 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1016 int r = -EINVAL;
1018 down_write(&pmd->root_lock);
1019 if (!pmd->fail_io)
1020 r = __create_thin(pmd, dev);
1021 up_write(&pmd->root_lock);
1023 return r;
1026 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1027 struct dm_thin_device *snap,
1028 dm_thin_id origin, uint32_t time)
1030 int r;
1031 struct dm_thin_device *td;
1033 r = __open_device(pmd, origin, 0, &td);
1034 if (r)
1035 return r;
1037 td->changed = 1;
1038 td->snapshotted_time = time;
1040 snap->mapped_blocks = td->mapped_blocks;
1041 snap->snapshotted_time = time;
1042 __close_device(td);
1044 return 0;
1047 static int __create_snap(struct dm_pool_metadata *pmd,
1048 dm_thin_id dev, dm_thin_id origin)
1050 int r;
1051 dm_block_t origin_root;
1052 uint64_t key = origin, dev_key = dev;
1053 struct dm_thin_device *td;
1054 struct disk_device_details details_le;
1055 __le64 value;
1057 /* check this device is unused */
1058 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1059 &dev_key, &details_le);
1060 if (!r)
1061 return -EEXIST;
1063 /* find the mapping tree for the origin */
1064 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1065 if (r)
1066 return r;
1067 origin_root = le64_to_cpu(value);
1069 /* clone the origin, an inc will do */
1070 dm_tm_inc(pmd->tm, origin_root);
1072 /* insert into the main mapping tree */
1073 value = cpu_to_le64(origin_root);
1074 __dm_bless_for_disk(&value);
1075 key = dev;
1076 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1077 if (r) {
1078 dm_tm_dec(pmd->tm, origin_root);
1079 return r;
1082 pmd->time++;
1084 r = __open_device(pmd, dev, 1, &td);
1085 if (r)
1086 goto bad;
1088 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1089 __close_device(td);
1091 if (r)
1092 goto bad;
1094 return 0;
1096 bad:
1097 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1098 dm_btree_remove(&pmd->details_info, pmd->details_root,
1099 &key, &pmd->details_root);
1100 return r;
1103 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1104 dm_thin_id dev,
1105 dm_thin_id origin)
1107 int r = -EINVAL;
1109 down_write(&pmd->root_lock);
1110 if (!pmd->fail_io)
1111 r = __create_snap(pmd, dev, origin);
1112 up_write(&pmd->root_lock);
1114 return r;
1117 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1119 int r;
1120 uint64_t key = dev;
1121 struct dm_thin_device *td;
1123 /* TODO: failure should mark the transaction invalid */
1124 r = __open_device(pmd, dev, 0, &td);
1125 if (r)
1126 return r;
1128 if (td->open_count > 1) {
1129 __close_device(td);
1130 return -EBUSY;
1133 list_del(&td->list);
1134 kfree(td);
1135 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1136 &key, &pmd->details_root);
1137 if (r)
1138 return r;
1140 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1141 if (r)
1142 return r;
1144 return 0;
1147 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1148 dm_thin_id dev)
1150 int r = -EINVAL;
1152 down_write(&pmd->root_lock);
1153 if (!pmd->fail_io)
1154 r = __delete_device(pmd, dev);
1155 up_write(&pmd->root_lock);
1157 return r;
1160 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1161 uint64_t current_id,
1162 uint64_t new_id)
1164 int r = -EINVAL;
1166 down_write(&pmd->root_lock);
1168 if (pmd->fail_io)
1169 goto out;
1171 if (pmd->trans_id != current_id) {
1172 DMERR("mismatched transaction id");
1173 goto out;
1176 pmd->trans_id = new_id;
1177 r = 0;
1179 out:
1180 up_write(&pmd->root_lock);
1182 return r;
1185 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1186 uint64_t *result)
1188 int r = -EINVAL;
1190 down_read(&pmd->root_lock);
1191 if (!pmd->fail_io) {
1192 *result = pmd->trans_id;
1193 r = 0;
1195 up_read(&pmd->root_lock);
1197 return r;
1200 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1202 int r, inc;
1203 struct thin_disk_superblock *disk_super;
1204 struct dm_block *copy, *sblock;
1205 dm_block_t held_root;
1208 * Copy the superblock.
1210 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1211 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1212 &sb_validator, &copy, &inc);
1213 if (r)
1214 return r;
1216 BUG_ON(!inc);
1218 held_root = dm_block_location(copy);
1219 disk_super = dm_block_data(copy);
1221 if (le64_to_cpu(disk_super->held_root)) {
1222 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1224 dm_tm_dec(pmd->tm, held_root);
1225 dm_tm_unlock(pmd->tm, copy);
1226 return -EBUSY;
1230 * Wipe the spacemap since we're not publishing this.
1232 memset(&disk_super->data_space_map_root, 0,
1233 sizeof(disk_super->data_space_map_root));
1234 memset(&disk_super->metadata_space_map_root, 0,
1235 sizeof(disk_super->metadata_space_map_root));
1238 * Increment the data structures that need to be preserved.
1240 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1241 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1242 dm_tm_unlock(pmd->tm, copy);
1245 * Write the held root into the superblock.
1247 r = superblock_lock(pmd, &sblock);
1248 if (r) {
1249 dm_tm_dec(pmd->tm, held_root);
1250 return r;
1253 disk_super = dm_block_data(sblock);
1254 disk_super->held_root = cpu_to_le64(held_root);
1255 dm_bm_unlock(sblock);
1256 return 0;
1259 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1261 int r = -EINVAL;
1263 down_write(&pmd->root_lock);
1264 if (!pmd->fail_io)
1265 r = __reserve_metadata_snap(pmd);
1266 up_write(&pmd->root_lock);
1268 return r;
1271 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1273 int r;
1274 struct thin_disk_superblock *disk_super;
1275 struct dm_block *sblock, *copy;
1276 dm_block_t held_root;
1278 r = superblock_lock(pmd, &sblock);
1279 if (r)
1280 return r;
1282 disk_super = dm_block_data(sblock);
1283 held_root = le64_to_cpu(disk_super->held_root);
1284 disk_super->held_root = cpu_to_le64(0);
1286 dm_bm_unlock(sblock);
1288 if (!held_root) {
1289 DMWARN("No pool metadata snapshot found: nothing to release.");
1290 return -EINVAL;
1293 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1294 if (r)
1295 return r;
1297 disk_super = dm_block_data(copy);
1298 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1299 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1300 dm_sm_dec_block(pmd->metadata_sm, held_root);
1302 return dm_tm_unlock(pmd->tm, copy);
1305 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1307 int r = -EINVAL;
1309 down_write(&pmd->root_lock);
1310 if (!pmd->fail_io)
1311 r = __release_metadata_snap(pmd);
1312 up_write(&pmd->root_lock);
1314 return r;
1317 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1318 dm_block_t *result)
1320 int r;
1321 struct thin_disk_superblock *disk_super;
1322 struct dm_block *sblock;
1324 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1325 &sb_validator, &sblock);
1326 if (r)
1327 return r;
1329 disk_super = dm_block_data(sblock);
1330 *result = le64_to_cpu(disk_super->held_root);
1332 return dm_bm_unlock(sblock);
1335 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1336 dm_block_t *result)
1338 int r = -EINVAL;
1340 down_read(&pmd->root_lock);
1341 if (!pmd->fail_io)
1342 r = __get_metadata_snap(pmd, result);
1343 up_read(&pmd->root_lock);
1345 return r;
1348 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1349 struct dm_thin_device **td)
1351 int r = -EINVAL;
1353 down_write(&pmd->root_lock);
1354 if (!pmd->fail_io)
1355 r = __open_device(pmd, dev, 0, td);
1356 up_write(&pmd->root_lock);
1358 return r;
1361 int dm_pool_close_thin_device(struct dm_thin_device *td)
1363 down_write(&td->pmd->root_lock);
1364 __close_device(td);
1365 up_write(&td->pmd->root_lock);
1367 return 0;
1370 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1372 return td->id;
1376 * Check whether @time (of block creation) is older than @td's last snapshot.
1377 * If so then the associated block is shared with the last snapshot device.
1378 * Any block on a device created *after* the device last got snapshotted is
1379 * necessarily not shared.
1381 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1383 return td->snapshotted_time > time;
1386 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1387 int can_block, struct dm_thin_lookup_result *result)
1389 int r = -EINVAL;
1390 uint64_t block_time = 0;
1391 __le64 value;
1392 struct dm_pool_metadata *pmd = td->pmd;
1393 dm_block_t keys[2] = { td->id, block };
1394 struct dm_btree_info *info;
1396 if (can_block) {
1397 down_read(&pmd->root_lock);
1398 info = &pmd->info;
1399 } else if (down_read_trylock(&pmd->root_lock))
1400 info = &pmd->nb_info;
1401 else
1402 return -EWOULDBLOCK;
1404 if (pmd->fail_io)
1405 goto out;
1407 r = dm_btree_lookup(info, pmd->root, keys, &value);
1408 if (!r)
1409 block_time = le64_to_cpu(value);
1411 out:
1412 up_read(&pmd->root_lock);
1414 if (!r) {
1415 dm_block_t exception_block;
1416 uint32_t exception_time;
1417 unpack_block_time(block_time, &exception_block,
1418 &exception_time);
1419 result->block = exception_block;
1420 result->shared = __snapshotted_since(td, exception_time);
1423 return r;
1426 static int __insert(struct dm_thin_device *td, dm_block_t block,
1427 dm_block_t data_block)
1429 int r, inserted;
1430 __le64 value;
1431 struct dm_pool_metadata *pmd = td->pmd;
1432 dm_block_t keys[2] = { td->id, block };
1434 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1435 __dm_bless_for_disk(&value);
1437 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1438 &pmd->root, &inserted);
1439 if (r)
1440 return r;
1442 td->changed = 1;
1443 if (inserted)
1444 td->mapped_blocks++;
1446 return 0;
1449 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1450 dm_block_t data_block)
1452 int r = -EINVAL;
1454 down_write(&td->pmd->root_lock);
1455 if (!td->pmd->fail_io)
1456 r = __insert(td, block, data_block);
1457 up_write(&td->pmd->root_lock);
1459 return r;
1462 static int __remove(struct dm_thin_device *td, dm_block_t block)
1464 int r;
1465 struct dm_pool_metadata *pmd = td->pmd;
1466 dm_block_t keys[2] = { td->id, block };
1468 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1469 if (r)
1470 return r;
1472 td->mapped_blocks--;
1473 td->changed = 1;
1475 return 0;
1478 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1480 int r = -EINVAL;
1482 down_write(&td->pmd->root_lock);
1483 if (!td->pmd->fail_io)
1484 r = __remove(td, block);
1485 up_write(&td->pmd->root_lock);
1487 return r;
1490 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1492 int r;
1493 uint32_t ref_count;
1495 down_read(&pmd->root_lock);
1496 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1497 if (!r)
1498 *result = (ref_count != 0);
1499 up_read(&pmd->root_lock);
1501 return r;
1504 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1506 int r;
1508 down_read(&td->pmd->root_lock);
1509 r = td->changed;
1510 up_read(&td->pmd->root_lock);
1512 return r;
1515 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1517 bool r = false;
1518 struct dm_thin_device *td, *tmp;
1520 down_read(&pmd->root_lock);
1521 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1522 if (td->changed) {
1523 r = td->changed;
1524 break;
1527 up_read(&pmd->root_lock);
1529 return r;
1532 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1534 bool r;
1536 down_read(&td->pmd->root_lock);
1537 r = td->aborted_with_changes;
1538 up_read(&td->pmd->root_lock);
1540 return r;
1543 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1545 int r = -EINVAL;
1547 down_write(&pmd->root_lock);
1548 if (!pmd->fail_io)
1549 r = dm_sm_new_block(pmd->data_sm, result);
1550 up_write(&pmd->root_lock);
1552 return r;
1555 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1557 int r = -EINVAL;
1559 down_write(&pmd->root_lock);
1560 if (pmd->fail_io)
1561 goto out;
1563 r = __commit_transaction(pmd);
1564 if (r <= 0)
1565 goto out;
1568 * Open the next transaction.
1570 r = __begin_transaction(pmd);
1571 out:
1572 up_write(&pmd->root_lock);
1573 return r;
1576 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1578 struct dm_thin_device *td;
1580 list_for_each_entry(td, &pmd->thin_devices, list)
1581 td->aborted_with_changes = td->changed;
1584 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1586 int r = -EINVAL;
1588 down_write(&pmd->root_lock);
1589 if (pmd->fail_io)
1590 goto out;
1592 __set_abort_with_changes_flags(pmd);
1593 __destroy_persistent_data_objects(pmd);
1594 r = __create_persistent_data_objects(pmd, false);
1595 if (r)
1596 pmd->fail_io = true;
1598 out:
1599 up_write(&pmd->root_lock);
1601 return r;
1604 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1606 int r = -EINVAL;
1608 down_read(&pmd->root_lock);
1609 if (!pmd->fail_io)
1610 r = dm_sm_get_nr_free(pmd->data_sm, result);
1611 up_read(&pmd->root_lock);
1613 return r;
1616 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1617 dm_block_t *result)
1619 int r = -EINVAL;
1621 down_read(&pmd->root_lock);
1622 if (!pmd->fail_io)
1623 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1624 up_read(&pmd->root_lock);
1626 return r;
1629 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1630 dm_block_t *result)
1632 int r = -EINVAL;
1634 down_read(&pmd->root_lock);
1635 if (!pmd->fail_io)
1636 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1637 up_read(&pmd->root_lock);
1639 return r;
1642 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1644 down_read(&pmd->root_lock);
1645 *result = pmd->data_block_size;
1646 up_read(&pmd->root_lock);
1648 return 0;
1651 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1653 int r = -EINVAL;
1655 down_read(&pmd->root_lock);
1656 if (!pmd->fail_io)
1657 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1658 up_read(&pmd->root_lock);
1660 return r;
1663 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1665 int r = -EINVAL;
1666 struct dm_pool_metadata *pmd = td->pmd;
1668 down_read(&pmd->root_lock);
1669 if (!pmd->fail_io) {
1670 *result = td->mapped_blocks;
1671 r = 0;
1673 up_read(&pmd->root_lock);
1675 return r;
1678 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1680 int r;
1681 __le64 value_le;
1682 dm_block_t thin_root;
1683 struct dm_pool_metadata *pmd = td->pmd;
1685 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1686 if (r)
1687 return r;
1689 thin_root = le64_to_cpu(value_le);
1691 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1694 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1695 dm_block_t *result)
1697 int r = -EINVAL;
1698 struct dm_pool_metadata *pmd = td->pmd;
1700 down_read(&pmd->root_lock);
1701 if (!pmd->fail_io)
1702 r = __highest_block(td, result);
1703 up_read(&pmd->root_lock);
1705 return r;
1708 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1710 int r;
1711 dm_block_t old_count;
1713 r = dm_sm_get_nr_blocks(sm, &old_count);
1714 if (r)
1715 return r;
1717 if (new_count == old_count)
1718 return 0;
1720 if (new_count < old_count) {
1721 DMERR("cannot reduce size of space map");
1722 return -EINVAL;
1725 return dm_sm_extend(sm, new_count - old_count);
1728 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1730 int r = -EINVAL;
1732 down_write(&pmd->root_lock);
1733 if (!pmd->fail_io)
1734 r = __resize_space_map(pmd->data_sm, new_count);
1735 up_write(&pmd->root_lock);
1737 return r;
1740 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1742 int r = -EINVAL;
1744 down_write(&pmd->root_lock);
1745 if (!pmd->fail_io)
1746 r = __resize_space_map(pmd->metadata_sm, new_count);
1747 up_write(&pmd->root_lock);
1749 return r;
1752 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1754 down_write(&pmd->root_lock);
1755 pmd->read_only = true;
1756 dm_bm_set_read_only(pmd->bm);
1757 up_write(&pmd->root_lock);
1760 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1762 down_write(&pmd->root_lock);
1763 pmd->read_only = false;
1764 dm_bm_set_read_write(pmd->bm);
1765 up_write(&pmd->root_lock);
1768 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1769 dm_block_t threshold,
1770 dm_sm_threshold_fn fn,
1771 void *context)
1773 int r;
1775 down_write(&pmd->root_lock);
1776 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1777 up_write(&pmd->root_lock);
1779 return r;
1782 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1784 int r;
1785 struct dm_block *sblock;
1786 struct thin_disk_superblock *disk_super;
1788 down_write(&pmd->root_lock);
1789 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1791 r = superblock_lock(pmd, &sblock);
1792 if (r) {
1793 DMERR("couldn't read superblock");
1794 goto out;
1797 disk_super = dm_block_data(sblock);
1798 disk_super->flags = cpu_to_le32(pmd->flags);
1800 dm_bm_unlock(sblock);
1801 out:
1802 up_write(&pmd->root_lock);
1803 return r;
1806 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1808 bool needs_check;
1810 down_read(&pmd->root_lock);
1811 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
1812 up_read(&pmd->root_lock);
1814 return needs_check;