power: reset: corrections for simple syscon reboot driver
[linux-2.6/btrfs-unstable.git] / drivers / usb / dwc2 / hcd_ddma.c
blob3376177e4d3c0c8b1998829ae79a47dcab953a9e
1 /*
2 * hcd_ddma.c - DesignWare HS OTG Controller descriptor DMA routines
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 * This file contains the Descriptor DMA implementation for Host mode
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/spinlock.h>
43 #include <linux/interrupt.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/io.h>
46 #include <linux/slab.h>
47 #include <linux/usb.h>
49 #include <linux/usb/hcd.h>
50 #include <linux/usb/ch11.h>
52 #include "core.h"
53 #include "hcd.h"
55 static u16 dwc2_frame_list_idx(u16 frame)
57 return frame & (FRLISTEN_64_SIZE - 1);
60 static u16 dwc2_desclist_idx_inc(u16 idx, u16 inc, u8 speed)
62 return (idx + inc) &
63 ((speed == USB_SPEED_HIGH ? MAX_DMA_DESC_NUM_HS_ISOC :
64 MAX_DMA_DESC_NUM_GENERIC) - 1);
67 static u16 dwc2_desclist_idx_dec(u16 idx, u16 inc, u8 speed)
69 return (idx - inc) &
70 ((speed == USB_SPEED_HIGH ? MAX_DMA_DESC_NUM_HS_ISOC :
71 MAX_DMA_DESC_NUM_GENERIC) - 1);
74 static u16 dwc2_max_desc_num(struct dwc2_qh *qh)
76 return (qh->ep_type == USB_ENDPOINT_XFER_ISOC &&
77 qh->dev_speed == USB_SPEED_HIGH) ?
78 MAX_DMA_DESC_NUM_HS_ISOC : MAX_DMA_DESC_NUM_GENERIC;
81 static u16 dwc2_frame_incr_val(struct dwc2_qh *qh)
83 return qh->dev_speed == USB_SPEED_HIGH ?
84 (qh->interval + 8 - 1) / 8 : qh->interval;
87 static int dwc2_desc_list_alloc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
88 gfp_t flags)
90 qh->desc_list = dma_alloc_coherent(hsotg->dev,
91 sizeof(struct dwc2_hcd_dma_desc) *
92 dwc2_max_desc_num(qh), &qh->desc_list_dma,
93 flags);
95 if (!qh->desc_list)
96 return -ENOMEM;
98 memset(qh->desc_list, 0,
99 sizeof(struct dwc2_hcd_dma_desc) * dwc2_max_desc_num(qh));
101 qh->n_bytes = kzalloc(sizeof(u32) * dwc2_max_desc_num(qh), flags);
102 if (!qh->n_bytes) {
103 dma_free_coherent(hsotg->dev, sizeof(struct dwc2_hcd_dma_desc)
104 * dwc2_max_desc_num(qh), qh->desc_list,
105 qh->desc_list_dma);
106 qh->desc_list = NULL;
107 return -ENOMEM;
110 return 0;
113 static void dwc2_desc_list_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
115 if (qh->desc_list) {
116 dma_free_coherent(hsotg->dev, sizeof(struct dwc2_hcd_dma_desc)
117 * dwc2_max_desc_num(qh), qh->desc_list,
118 qh->desc_list_dma);
119 qh->desc_list = NULL;
122 kfree(qh->n_bytes);
123 qh->n_bytes = NULL;
126 static int dwc2_frame_list_alloc(struct dwc2_hsotg *hsotg, gfp_t mem_flags)
128 if (hsotg->frame_list)
129 return 0;
131 hsotg->frame_list = dma_alloc_coherent(hsotg->dev,
132 4 * FRLISTEN_64_SIZE,
133 &hsotg->frame_list_dma,
134 mem_flags);
135 if (!hsotg->frame_list)
136 return -ENOMEM;
138 memset(hsotg->frame_list, 0, 4 * FRLISTEN_64_SIZE);
139 return 0;
142 static void dwc2_frame_list_free(struct dwc2_hsotg *hsotg)
144 u32 *frame_list;
145 dma_addr_t frame_list_dma;
146 unsigned long flags;
148 spin_lock_irqsave(&hsotg->lock, flags);
150 if (!hsotg->frame_list) {
151 spin_unlock_irqrestore(&hsotg->lock, flags);
152 return;
155 frame_list = hsotg->frame_list;
156 frame_list_dma = hsotg->frame_list_dma;
157 hsotg->frame_list = NULL;
159 spin_unlock_irqrestore(&hsotg->lock, flags);
161 dma_free_coherent(hsotg->dev, 4 * FRLISTEN_64_SIZE, frame_list,
162 frame_list_dma);
165 static void dwc2_per_sched_enable(struct dwc2_hsotg *hsotg, u32 fr_list_en)
167 u32 hcfg;
168 unsigned long flags;
170 spin_lock_irqsave(&hsotg->lock, flags);
172 hcfg = readl(hsotg->regs + HCFG);
173 if (hcfg & HCFG_PERSCHEDENA) {
174 /* already enabled */
175 spin_unlock_irqrestore(&hsotg->lock, flags);
176 return;
179 writel(hsotg->frame_list_dma, hsotg->regs + HFLBADDR);
181 hcfg &= ~HCFG_FRLISTEN_MASK;
182 hcfg |= fr_list_en | HCFG_PERSCHEDENA;
183 dev_vdbg(hsotg->dev, "Enabling Periodic schedule\n");
184 writel(hcfg, hsotg->regs + HCFG);
186 spin_unlock_irqrestore(&hsotg->lock, flags);
189 static void dwc2_per_sched_disable(struct dwc2_hsotg *hsotg)
191 u32 hcfg;
192 unsigned long flags;
194 spin_lock_irqsave(&hsotg->lock, flags);
196 hcfg = readl(hsotg->regs + HCFG);
197 if (!(hcfg & HCFG_PERSCHEDENA)) {
198 /* already disabled */
199 spin_unlock_irqrestore(&hsotg->lock, flags);
200 return;
203 hcfg &= ~HCFG_PERSCHEDENA;
204 dev_vdbg(hsotg->dev, "Disabling Periodic schedule\n");
205 writel(hcfg, hsotg->regs + HCFG);
207 spin_unlock_irqrestore(&hsotg->lock, flags);
211 * Activates/Deactivates FrameList entries for the channel based on endpoint
212 * servicing period
214 static void dwc2_update_frame_list(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
215 int enable)
217 struct dwc2_host_chan *chan;
218 u16 i, j, inc;
220 if (!hsotg) {
221 pr_err("hsotg = %p\n", hsotg);
222 return;
225 if (!qh->channel) {
226 dev_err(hsotg->dev, "qh->channel = %p\n", qh->channel);
227 return;
230 if (!hsotg->frame_list) {
231 dev_err(hsotg->dev, "hsotg->frame_list = %p\n",
232 hsotg->frame_list);
233 return;
236 chan = qh->channel;
237 inc = dwc2_frame_incr_val(qh);
238 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC)
239 i = dwc2_frame_list_idx(qh->sched_frame);
240 else
241 i = 0;
243 j = i;
244 do {
245 if (enable)
246 hsotg->frame_list[j] |= 1 << chan->hc_num;
247 else
248 hsotg->frame_list[j] &= ~(1 << chan->hc_num);
249 j = (j + inc) & (FRLISTEN_64_SIZE - 1);
250 } while (j != i);
252 if (!enable)
253 return;
255 chan->schinfo = 0;
256 if (chan->speed == USB_SPEED_HIGH && qh->interval) {
257 j = 1;
258 /* TODO - check this */
259 inc = (8 + qh->interval - 1) / qh->interval;
260 for (i = 0; i < inc; i++) {
261 chan->schinfo |= j;
262 j = j << qh->interval;
264 } else {
265 chan->schinfo = 0xff;
269 static void dwc2_release_channel_ddma(struct dwc2_hsotg *hsotg,
270 struct dwc2_qh *qh)
272 struct dwc2_host_chan *chan = qh->channel;
274 if (dwc2_qh_is_non_per(qh)) {
275 if (hsotg->core_params->uframe_sched > 0)
276 hsotg->available_host_channels++;
277 else
278 hsotg->non_periodic_channels--;
279 } else {
280 dwc2_update_frame_list(hsotg, qh, 0);
284 * The condition is added to prevent double cleanup try in case of
285 * device disconnect. See channel cleanup in dwc2_hcd_disconnect().
287 if (chan->qh) {
288 if (!list_empty(&chan->hc_list_entry))
289 list_del(&chan->hc_list_entry);
290 dwc2_hc_cleanup(hsotg, chan);
291 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
292 chan->qh = NULL;
295 qh->channel = NULL;
296 qh->ntd = 0;
298 if (qh->desc_list)
299 memset(qh->desc_list, 0, sizeof(struct dwc2_hcd_dma_desc) *
300 dwc2_max_desc_num(qh));
304 * dwc2_hcd_qh_init_ddma() - Initializes a QH structure's Descriptor DMA
305 * related members
307 * @hsotg: The HCD state structure for the DWC OTG controller
308 * @qh: The QH to init
310 * Return: 0 if successful, negative error code otherwise
312 * Allocates memory for the descriptor list. For the first periodic QH,
313 * allocates memory for the FrameList and enables periodic scheduling.
315 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
316 gfp_t mem_flags)
318 int retval;
320 if (qh->do_split) {
321 dev_err(hsotg->dev,
322 "SPLIT Transfers are not supported in Descriptor DMA mode.\n");
323 retval = -EINVAL;
324 goto err0;
327 retval = dwc2_desc_list_alloc(hsotg, qh, mem_flags);
328 if (retval)
329 goto err0;
331 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC ||
332 qh->ep_type == USB_ENDPOINT_XFER_INT) {
333 if (!hsotg->frame_list) {
334 retval = dwc2_frame_list_alloc(hsotg, mem_flags);
335 if (retval)
336 goto err1;
337 /* Enable periodic schedule on first periodic QH */
338 dwc2_per_sched_enable(hsotg, HCFG_FRLISTEN_64);
342 qh->ntd = 0;
343 return 0;
345 err1:
346 dwc2_desc_list_free(hsotg, qh);
347 err0:
348 return retval;
352 * dwc2_hcd_qh_free_ddma() - Frees a QH structure's Descriptor DMA related
353 * members
355 * @hsotg: The HCD state structure for the DWC OTG controller
356 * @qh: The QH to free
358 * Frees descriptor list memory associated with the QH. If QH is periodic and
359 * the last, frees FrameList memory and disables periodic scheduling.
361 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
363 dwc2_desc_list_free(hsotg, qh);
366 * Channel still assigned due to some reasons.
367 * Seen on Isoc URB dequeue. Channel halted but no subsequent
368 * ChHalted interrupt to release the channel. Afterwards
369 * when it comes here from endpoint disable routine
370 * channel remains assigned.
372 if (qh->channel)
373 dwc2_release_channel_ddma(hsotg, qh);
375 if ((qh->ep_type == USB_ENDPOINT_XFER_ISOC ||
376 qh->ep_type == USB_ENDPOINT_XFER_INT) &&
377 (hsotg->core_params->uframe_sched > 0 ||
378 !hsotg->periodic_channels) && hsotg->frame_list) {
379 dwc2_per_sched_disable(hsotg);
380 dwc2_frame_list_free(hsotg);
384 static u8 dwc2_frame_to_desc_idx(struct dwc2_qh *qh, u16 frame_idx)
386 if (qh->dev_speed == USB_SPEED_HIGH)
387 /* Descriptor set (8 descriptors) index which is 8-aligned */
388 return (frame_idx & ((MAX_DMA_DESC_NUM_HS_ISOC / 8) - 1)) * 8;
389 else
390 return frame_idx & (MAX_DMA_DESC_NUM_GENERIC - 1);
394 * Determine starting frame for Isochronous transfer.
395 * Few frames skipped to prevent race condition with HC.
397 static u16 dwc2_calc_starting_frame(struct dwc2_hsotg *hsotg,
398 struct dwc2_qh *qh, u16 *skip_frames)
400 u16 frame;
402 hsotg->frame_number = dwc2_hcd_get_frame_number(hsotg);
404 /* sched_frame is always frame number (not uFrame) both in FS and HS! */
407 * skip_frames is used to limit activated descriptors number
408 * to avoid the situation when HC services the last activated
409 * descriptor firstly.
410 * Example for FS:
411 * Current frame is 1, scheduled frame is 3. Since HC always fetches
412 * the descriptor corresponding to curr_frame+1, the descriptor
413 * corresponding to frame 2 will be fetched. If the number of
414 * descriptors is max=64 (or greather) the list will be fully programmed
415 * with Active descriptors and it is possible case (rare) that the
416 * latest descriptor(considering rollback) corresponding to frame 2 will
417 * be serviced first. HS case is more probable because, in fact, up to
418 * 11 uframes (16 in the code) may be skipped.
420 if (qh->dev_speed == USB_SPEED_HIGH) {
422 * Consider uframe counter also, to start xfer asap. If half of
423 * the frame elapsed skip 2 frames otherwise just 1 frame.
424 * Starting descriptor index must be 8-aligned, so if the
425 * current frame is near to complete the next one is skipped as
426 * well.
428 if (dwc2_micro_frame_num(hsotg->frame_number) >= 5) {
429 *skip_frames = 2 * 8;
430 frame = dwc2_frame_num_inc(hsotg->frame_number,
431 *skip_frames);
432 } else {
433 *skip_frames = 1 * 8;
434 frame = dwc2_frame_num_inc(hsotg->frame_number,
435 *skip_frames);
438 frame = dwc2_full_frame_num(frame);
439 } else {
441 * Two frames are skipped for FS - the current and the next.
442 * But for descriptor programming, 1 frame (descriptor) is
443 * enough, see example above.
445 *skip_frames = 1;
446 frame = dwc2_frame_num_inc(hsotg->frame_number, 2);
449 return frame;
453 * Calculate initial descriptor index for isochronous transfer based on
454 * scheduled frame
456 static u16 dwc2_recalc_initial_desc_idx(struct dwc2_hsotg *hsotg,
457 struct dwc2_qh *qh)
459 u16 frame, fr_idx, fr_idx_tmp, skip_frames;
462 * With current ISOC processing algorithm the channel is being released
463 * when no more QTDs in the list (qh->ntd == 0). Thus this function is
464 * called only when qh->ntd == 0 and qh->channel == 0.
466 * So qh->channel != NULL branch is not used and just not removed from
467 * the source file. It is required for another possible approach which
468 * is, do not disable and release the channel when ISOC session
469 * completed, just move QH to inactive schedule until new QTD arrives.
470 * On new QTD, the QH moved back to 'ready' schedule, starting frame and
471 * therefore starting desc_index are recalculated. In this case channel
472 * is released only on ep_disable.
476 * Calculate starting descriptor index. For INTERRUPT endpoint it is
477 * always 0.
479 if (qh->channel) {
480 frame = dwc2_calc_starting_frame(hsotg, qh, &skip_frames);
482 * Calculate initial descriptor index based on FrameList current
483 * bitmap and servicing period
485 fr_idx_tmp = dwc2_frame_list_idx(frame);
486 fr_idx = (FRLISTEN_64_SIZE +
487 dwc2_frame_list_idx(qh->sched_frame) - fr_idx_tmp)
488 % dwc2_frame_incr_val(qh);
489 fr_idx = (fr_idx + fr_idx_tmp) % FRLISTEN_64_SIZE;
490 } else {
491 qh->sched_frame = dwc2_calc_starting_frame(hsotg, qh,
492 &skip_frames);
493 fr_idx = dwc2_frame_list_idx(qh->sched_frame);
496 qh->td_first = qh->td_last = dwc2_frame_to_desc_idx(qh, fr_idx);
498 return skip_frames;
501 #define ISOC_URB_GIVEBACK_ASAP
503 #define MAX_ISOC_XFER_SIZE_FS 1023
504 #define MAX_ISOC_XFER_SIZE_HS 3072
505 #define DESCNUM_THRESHOLD 4
507 static void dwc2_fill_host_isoc_dma_desc(struct dwc2_hsotg *hsotg,
508 struct dwc2_qtd *qtd,
509 struct dwc2_qh *qh, u32 max_xfer_size,
510 u16 idx)
512 struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[idx];
513 struct dwc2_hcd_iso_packet_desc *frame_desc;
515 memset(dma_desc, 0, sizeof(*dma_desc));
516 frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last];
518 if (frame_desc->length > max_xfer_size)
519 qh->n_bytes[idx] = max_xfer_size;
520 else
521 qh->n_bytes[idx] = frame_desc->length;
523 dma_desc->buf = (u32)(qtd->urb->dma + frame_desc->offset);
524 dma_desc->status = qh->n_bytes[idx] << HOST_DMA_ISOC_NBYTES_SHIFT &
525 HOST_DMA_ISOC_NBYTES_MASK;
527 #ifdef ISOC_URB_GIVEBACK_ASAP
528 /* Set IOC for each descriptor corresponding to last frame of URB */
529 if (qtd->isoc_frame_index_last == qtd->urb->packet_count)
530 dma_desc->status |= HOST_DMA_IOC;
531 #endif
533 qh->ntd++;
534 qtd->isoc_frame_index_last++;
537 static void dwc2_init_isoc_dma_desc(struct dwc2_hsotg *hsotg,
538 struct dwc2_qh *qh, u16 skip_frames)
540 struct dwc2_qtd *qtd;
541 u32 max_xfer_size;
542 u16 idx, inc, n_desc, ntd_max = 0;
544 idx = qh->td_last;
545 inc = qh->interval;
546 n_desc = 0;
548 if (qh->interval) {
549 ntd_max = (dwc2_max_desc_num(qh) + qh->interval - 1) /
550 qh->interval;
551 if (skip_frames && !qh->channel)
552 ntd_max -= skip_frames / qh->interval;
555 max_xfer_size = qh->dev_speed == USB_SPEED_HIGH ?
556 MAX_ISOC_XFER_SIZE_HS : MAX_ISOC_XFER_SIZE_FS;
558 list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) {
559 while (qh->ntd < ntd_max && qtd->isoc_frame_index_last <
560 qtd->urb->packet_count) {
561 if (n_desc > 1)
562 qh->desc_list[n_desc - 1].status |= HOST_DMA_A;
563 dwc2_fill_host_isoc_dma_desc(hsotg, qtd, qh,
564 max_xfer_size, idx);
565 idx = dwc2_desclist_idx_inc(idx, inc, qh->dev_speed);
566 n_desc++;
568 qtd->in_process = 1;
571 qh->td_last = idx;
573 #ifdef ISOC_URB_GIVEBACK_ASAP
574 /* Set IOC for last descriptor if descriptor list is full */
575 if (qh->ntd == ntd_max) {
576 idx = dwc2_desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
577 qh->desc_list[idx].status |= HOST_DMA_IOC;
579 #else
581 * Set IOC bit only for one descriptor. Always try to be ahead of HW
582 * processing, i.e. on IOC generation driver activates next descriptor
583 * but core continues to process descriptors following the one with IOC
584 * set.
587 if (n_desc > DESCNUM_THRESHOLD)
589 * Move IOC "up". Required even if there is only one QTD
590 * in the list, because QTDs might continue to be queued,
591 * but during the activation it was only one queued.
592 * Actually more than one QTD might be in the list if this
593 * function called from XferCompletion - QTDs was queued during
594 * HW processing of the previous descriptor chunk.
596 idx = dwc2_desclist_idx_dec(idx, inc * ((qh->ntd + 1) / 2),
597 qh->dev_speed);
598 else
600 * Set the IOC for the latest descriptor if either number of
601 * descriptors is not greater than threshold or no more new
602 * descriptors activated
604 idx = dwc2_desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
606 qh->desc_list[idx].status |= HOST_DMA_IOC;
607 #endif
609 if (n_desc) {
610 qh->desc_list[n_desc - 1].status |= HOST_DMA_A;
611 if (n_desc > 1)
612 qh->desc_list[0].status |= HOST_DMA_A;
616 static void dwc2_fill_host_dma_desc(struct dwc2_hsotg *hsotg,
617 struct dwc2_host_chan *chan,
618 struct dwc2_qtd *qtd, struct dwc2_qh *qh,
619 int n_desc)
621 struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[n_desc];
622 int len = chan->xfer_len;
624 if (len > MAX_DMA_DESC_SIZE - (chan->max_packet - 1))
625 len = MAX_DMA_DESC_SIZE - (chan->max_packet - 1);
627 if (chan->ep_is_in) {
628 int num_packets;
630 if (len > 0 && chan->max_packet)
631 num_packets = (len + chan->max_packet - 1)
632 / chan->max_packet;
633 else
634 /* Need 1 packet for transfer length of 0 */
635 num_packets = 1;
637 /* Always program an integral # of packets for IN transfers */
638 len = num_packets * chan->max_packet;
641 dma_desc->status = len << HOST_DMA_NBYTES_SHIFT & HOST_DMA_NBYTES_MASK;
642 qh->n_bytes[n_desc] = len;
644 if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL &&
645 qtd->control_phase == DWC2_CONTROL_SETUP)
646 dma_desc->status |= HOST_DMA_SUP;
648 dma_desc->buf = (u32)chan->xfer_dma;
651 * Last (or only) descriptor of IN transfer with actual size less
652 * than MaxPacket
654 if (len > chan->xfer_len) {
655 chan->xfer_len = 0;
656 } else {
657 chan->xfer_dma += len;
658 chan->xfer_len -= len;
662 static void dwc2_init_non_isoc_dma_desc(struct dwc2_hsotg *hsotg,
663 struct dwc2_qh *qh)
665 struct dwc2_qtd *qtd;
666 struct dwc2_host_chan *chan = qh->channel;
667 int n_desc = 0;
669 dev_vdbg(hsotg->dev, "%s(): qh=%p dma=%08lx len=%d\n", __func__, qh,
670 (unsigned long)chan->xfer_dma, chan->xfer_len);
673 * Start with chan->xfer_dma initialized in assign_and_init_hc(), then
674 * if SG transfer consists of multiple URBs, this pointer is re-assigned
675 * to the buffer of the currently processed QTD. For non-SG request
676 * there is always one QTD active.
679 list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) {
680 dev_vdbg(hsotg->dev, "qtd=%p\n", qtd);
682 if (n_desc) {
683 /* SG request - more than 1 QTD */
684 chan->xfer_dma = qtd->urb->dma +
685 qtd->urb->actual_length;
686 chan->xfer_len = qtd->urb->length -
687 qtd->urb->actual_length;
688 dev_vdbg(hsotg->dev, "buf=%08lx len=%d\n",
689 (unsigned long)chan->xfer_dma, chan->xfer_len);
692 qtd->n_desc = 0;
693 do {
694 if (n_desc > 1) {
695 qh->desc_list[n_desc - 1].status |= HOST_DMA_A;
696 dev_vdbg(hsotg->dev,
697 "set A bit in desc %d (%p)\n",
698 n_desc - 1,
699 &qh->desc_list[n_desc - 1]);
701 dwc2_fill_host_dma_desc(hsotg, chan, qtd, qh, n_desc);
702 dev_vdbg(hsotg->dev,
703 "desc %d (%p) buf=%08x status=%08x\n",
704 n_desc, &qh->desc_list[n_desc],
705 qh->desc_list[n_desc].buf,
706 qh->desc_list[n_desc].status);
707 qtd->n_desc++;
708 n_desc++;
709 } while (chan->xfer_len > 0 &&
710 n_desc != MAX_DMA_DESC_NUM_GENERIC);
712 dev_vdbg(hsotg->dev, "n_desc=%d\n", n_desc);
713 qtd->in_process = 1;
714 if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL)
715 break;
716 if (n_desc == MAX_DMA_DESC_NUM_GENERIC)
717 break;
720 if (n_desc) {
721 qh->desc_list[n_desc - 1].status |=
722 HOST_DMA_IOC | HOST_DMA_EOL | HOST_DMA_A;
723 dev_vdbg(hsotg->dev, "set IOC/EOL/A bits in desc %d (%p)\n",
724 n_desc - 1, &qh->desc_list[n_desc - 1]);
725 if (n_desc > 1) {
726 qh->desc_list[0].status |= HOST_DMA_A;
727 dev_vdbg(hsotg->dev, "set A bit in desc 0 (%p)\n",
728 &qh->desc_list[0]);
730 chan->ntd = n_desc;
735 * dwc2_hcd_start_xfer_ddma() - Starts a transfer in Descriptor DMA mode
737 * @hsotg: The HCD state structure for the DWC OTG controller
738 * @qh: The QH to init
740 * Return: 0 if successful, negative error code otherwise
742 * For Control and Bulk endpoints, initializes descriptor list and starts the
743 * transfer. For Interrupt and Isochronous endpoints, initializes descriptor
744 * list then updates FrameList, marking appropriate entries as active.
746 * For Isochronous endpoints the starting descriptor index is calculated based
747 * on the scheduled frame, but only on the first transfer descriptor within a
748 * session. Then the transfer is started via enabling the channel.
750 * For Isochronous endpoints the channel is not halted on XferComplete
751 * interrupt so remains assigned to the endpoint(QH) until session is done.
753 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
755 /* Channel is already assigned */
756 struct dwc2_host_chan *chan = qh->channel;
757 u16 skip_frames = 0;
759 switch (chan->ep_type) {
760 case USB_ENDPOINT_XFER_CONTROL:
761 case USB_ENDPOINT_XFER_BULK:
762 dwc2_init_non_isoc_dma_desc(hsotg, qh);
763 dwc2_hc_start_transfer_ddma(hsotg, chan);
764 break;
765 case USB_ENDPOINT_XFER_INT:
766 dwc2_init_non_isoc_dma_desc(hsotg, qh);
767 dwc2_update_frame_list(hsotg, qh, 1);
768 dwc2_hc_start_transfer_ddma(hsotg, chan);
769 break;
770 case USB_ENDPOINT_XFER_ISOC:
771 if (!qh->ntd)
772 skip_frames = dwc2_recalc_initial_desc_idx(hsotg, qh);
773 dwc2_init_isoc_dma_desc(hsotg, qh, skip_frames);
775 if (!chan->xfer_started) {
776 dwc2_update_frame_list(hsotg, qh, 1);
779 * Always set to max, instead of actual size. Otherwise
780 * ntd will be changed with channel being enabled. Not
781 * recommended.
783 chan->ntd = dwc2_max_desc_num(qh);
785 /* Enable channel only once for ISOC */
786 dwc2_hc_start_transfer_ddma(hsotg, chan);
789 break;
790 default:
791 break;
795 #define DWC2_CMPL_DONE 1
796 #define DWC2_CMPL_STOP 2
798 static int dwc2_cmpl_host_isoc_dma_desc(struct dwc2_hsotg *hsotg,
799 struct dwc2_host_chan *chan,
800 struct dwc2_qtd *qtd,
801 struct dwc2_qh *qh, u16 idx)
803 struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[idx];
804 struct dwc2_hcd_iso_packet_desc *frame_desc;
805 u16 remain = 0;
806 int rc = 0;
808 if (!qtd->urb)
809 return -EINVAL;
811 frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last];
812 dma_desc->buf = (u32)(qtd->urb->dma + frame_desc->offset);
813 if (chan->ep_is_in)
814 remain = (dma_desc->status & HOST_DMA_ISOC_NBYTES_MASK) >>
815 HOST_DMA_ISOC_NBYTES_SHIFT;
817 if ((dma_desc->status & HOST_DMA_STS_MASK) == HOST_DMA_STS_PKTERR) {
819 * XactError, or unable to complete all the transactions
820 * in the scheduled micro-frame/frame, both indicated by
821 * HOST_DMA_STS_PKTERR
823 qtd->urb->error_count++;
824 frame_desc->actual_length = qh->n_bytes[idx] - remain;
825 frame_desc->status = -EPROTO;
826 } else {
827 /* Success */
828 frame_desc->actual_length = qh->n_bytes[idx] - remain;
829 frame_desc->status = 0;
832 if (++qtd->isoc_frame_index == qtd->urb->packet_count) {
834 * urb->status is not used for isoc transfers here. The
835 * individual frame_desc status are used instead.
837 dwc2_host_complete(hsotg, qtd, 0);
838 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
841 * This check is necessary because urb_dequeue can be called
842 * from urb complete callback (sound driver for example). All
843 * pending URBs are dequeued there, so no need for further
844 * processing.
846 if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE)
847 return -1;
848 rc = DWC2_CMPL_DONE;
851 qh->ntd--;
853 /* Stop if IOC requested descriptor reached */
854 if (dma_desc->status & HOST_DMA_IOC)
855 rc = DWC2_CMPL_STOP;
857 return rc;
860 static void dwc2_complete_isoc_xfer_ddma(struct dwc2_hsotg *hsotg,
861 struct dwc2_host_chan *chan,
862 enum dwc2_halt_status halt_status)
864 struct dwc2_hcd_iso_packet_desc *frame_desc;
865 struct dwc2_qtd *qtd, *qtd_tmp;
866 struct dwc2_qh *qh;
867 u16 idx;
868 int rc;
870 qh = chan->qh;
871 idx = qh->td_first;
873 if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) {
874 list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry)
875 qtd->in_process = 0;
876 return;
879 if (halt_status == DWC2_HC_XFER_AHB_ERR ||
880 halt_status == DWC2_HC_XFER_BABBLE_ERR) {
882 * Channel is halted in these error cases, considered as serious
883 * issues.
884 * Complete all URBs marking all frames as failed, irrespective
885 * whether some of the descriptors (frames) succeeded or not.
886 * Pass error code to completion routine as well, to update
887 * urb->status, some of class drivers might use it to stop
888 * queing transfer requests.
890 int err = halt_status == DWC2_HC_XFER_AHB_ERR ?
891 -EIO : -EOVERFLOW;
893 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
894 qtd_list_entry) {
895 if (qtd->urb) {
896 for (idx = 0; idx < qtd->urb->packet_count;
897 idx++) {
898 frame_desc = &qtd->urb->iso_descs[idx];
899 frame_desc->status = err;
902 dwc2_host_complete(hsotg, qtd, err);
905 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
908 return;
911 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) {
912 if (!qtd->in_process)
913 break;
914 do {
915 rc = dwc2_cmpl_host_isoc_dma_desc(hsotg, chan, qtd, qh,
916 idx);
917 if (rc < 0)
918 return;
919 idx = dwc2_desclist_idx_inc(idx, qh->interval,
920 chan->speed);
921 if (rc == DWC2_CMPL_STOP)
922 goto stop_scan;
923 if (rc == DWC2_CMPL_DONE)
924 break;
925 } while (idx != qh->td_first);
928 stop_scan:
929 qh->td_first = idx;
932 static int dwc2_update_non_isoc_urb_state_ddma(struct dwc2_hsotg *hsotg,
933 struct dwc2_host_chan *chan,
934 struct dwc2_qtd *qtd,
935 struct dwc2_hcd_dma_desc *dma_desc,
936 enum dwc2_halt_status halt_status,
937 u32 n_bytes, int *xfer_done)
939 struct dwc2_hcd_urb *urb = qtd->urb;
940 u16 remain = 0;
942 if (chan->ep_is_in)
943 remain = (dma_desc->status & HOST_DMA_NBYTES_MASK) >>
944 HOST_DMA_NBYTES_SHIFT;
946 dev_vdbg(hsotg->dev, "remain=%d dwc2_urb=%p\n", remain, urb);
948 if (halt_status == DWC2_HC_XFER_AHB_ERR) {
949 dev_err(hsotg->dev, "EIO\n");
950 urb->status = -EIO;
951 return 1;
954 if ((dma_desc->status & HOST_DMA_STS_MASK) == HOST_DMA_STS_PKTERR) {
955 switch (halt_status) {
956 case DWC2_HC_XFER_STALL:
957 dev_vdbg(hsotg->dev, "Stall\n");
958 urb->status = -EPIPE;
959 break;
960 case DWC2_HC_XFER_BABBLE_ERR:
961 dev_err(hsotg->dev, "Babble\n");
962 urb->status = -EOVERFLOW;
963 break;
964 case DWC2_HC_XFER_XACT_ERR:
965 dev_err(hsotg->dev, "XactErr\n");
966 urb->status = -EPROTO;
967 break;
968 default:
969 dev_err(hsotg->dev,
970 "%s: Unhandled descriptor error status (%d)\n",
971 __func__, halt_status);
972 break;
974 return 1;
977 if (dma_desc->status & HOST_DMA_A) {
978 dev_vdbg(hsotg->dev,
979 "Active descriptor encountered on channel %d\n",
980 chan->hc_num);
981 return 0;
984 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL) {
985 if (qtd->control_phase == DWC2_CONTROL_DATA) {
986 urb->actual_length += n_bytes - remain;
987 if (remain || urb->actual_length >= urb->length) {
989 * For Control Data stage do not set urb->status
990 * to 0, to prevent URB callback. Set it when
991 * Status phase is done. See below.
993 *xfer_done = 1;
995 } else if (qtd->control_phase == DWC2_CONTROL_STATUS) {
996 urb->status = 0;
997 *xfer_done = 1;
999 /* No handling for SETUP stage */
1000 } else {
1001 /* BULK and INTR */
1002 urb->actual_length += n_bytes - remain;
1003 dev_vdbg(hsotg->dev, "length=%d actual=%d\n", urb->length,
1004 urb->actual_length);
1005 if (remain || urb->actual_length >= urb->length) {
1006 urb->status = 0;
1007 *xfer_done = 1;
1011 return 0;
1014 static int dwc2_process_non_isoc_desc(struct dwc2_hsotg *hsotg,
1015 struct dwc2_host_chan *chan,
1016 int chnum, struct dwc2_qtd *qtd,
1017 int desc_num,
1018 enum dwc2_halt_status halt_status,
1019 int *xfer_done)
1021 struct dwc2_qh *qh = chan->qh;
1022 struct dwc2_hcd_urb *urb = qtd->urb;
1023 struct dwc2_hcd_dma_desc *dma_desc;
1024 u32 n_bytes;
1025 int failed;
1027 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1029 if (!urb)
1030 return -EINVAL;
1032 dma_desc = &qh->desc_list[desc_num];
1033 n_bytes = qh->n_bytes[desc_num];
1034 dev_vdbg(hsotg->dev,
1035 "qtd=%p dwc2_urb=%p desc_num=%d desc=%p n_bytes=%d\n",
1036 qtd, urb, desc_num, dma_desc, n_bytes);
1037 failed = dwc2_update_non_isoc_urb_state_ddma(hsotg, chan, qtd, dma_desc,
1038 halt_status, n_bytes,
1039 xfer_done);
1040 if (failed || (*xfer_done && urb->status != -EINPROGRESS)) {
1041 dwc2_host_complete(hsotg, qtd, urb->status);
1042 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1043 dev_vdbg(hsotg->dev, "failed=%1x xfer_done=%1x status=%08x\n",
1044 failed, *xfer_done, urb->status);
1045 return failed;
1048 if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL) {
1049 switch (qtd->control_phase) {
1050 case DWC2_CONTROL_SETUP:
1051 if (urb->length > 0)
1052 qtd->control_phase = DWC2_CONTROL_DATA;
1053 else
1054 qtd->control_phase = DWC2_CONTROL_STATUS;
1055 dev_vdbg(hsotg->dev,
1056 " Control setup transaction done\n");
1057 break;
1058 case DWC2_CONTROL_DATA:
1059 if (*xfer_done) {
1060 qtd->control_phase = DWC2_CONTROL_STATUS;
1061 dev_vdbg(hsotg->dev,
1062 " Control data transfer done\n");
1063 } else if (desc_num + 1 == qtd->n_desc) {
1065 * Last descriptor for Control data stage which
1066 * is not completed yet
1068 dwc2_hcd_save_data_toggle(hsotg, chan, chnum,
1069 qtd);
1071 break;
1072 default:
1073 break;
1077 return 0;
1080 static void dwc2_complete_non_isoc_xfer_ddma(struct dwc2_hsotg *hsotg,
1081 struct dwc2_host_chan *chan,
1082 int chnum,
1083 enum dwc2_halt_status halt_status)
1085 struct list_head *qtd_item, *qtd_tmp;
1086 struct dwc2_qh *qh = chan->qh;
1087 struct dwc2_qtd *qtd = NULL;
1088 int xfer_done;
1089 int desc_num = 0;
1091 if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) {
1092 list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry)
1093 qtd->in_process = 0;
1094 return;
1097 list_for_each_safe(qtd_item, qtd_tmp, &qh->qtd_list) {
1098 int i;
1100 qtd = list_entry(qtd_item, struct dwc2_qtd, qtd_list_entry);
1101 xfer_done = 0;
1103 for (i = 0; i < qtd->n_desc; i++) {
1104 if (dwc2_process_non_isoc_desc(hsotg, chan, chnum, qtd,
1105 desc_num, halt_status,
1106 &xfer_done)) {
1107 qtd = NULL;
1108 break;
1110 desc_num++;
1114 if (qh->ep_type != USB_ENDPOINT_XFER_CONTROL) {
1116 * Resetting the data toggle for bulk and interrupt endpoints
1117 * in case of stall. See handle_hc_stall_intr().
1119 if (halt_status == DWC2_HC_XFER_STALL)
1120 qh->data_toggle = DWC2_HC_PID_DATA0;
1121 else if (qtd)
1122 dwc2_hcd_save_data_toggle(hsotg, chan, chnum, qtd);
1125 if (halt_status == DWC2_HC_XFER_COMPLETE) {
1126 if (chan->hcint & HCINTMSK_NYET) {
1128 * Got a NYET on the last transaction of the transfer.
1129 * It means that the endpoint should be in the PING
1130 * state at the beginning of the next transfer.
1132 qh->ping_state = 1;
1138 * dwc2_hcd_complete_xfer_ddma() - Scans the descriptor list, updates URB's
1139 * status and calls completion routine for the URB if it's done. Called from
1140 * interrupt handlers.
1142 * @hsotg: The HCD state structure for the DWC OTG controller
1143 * @chan: Host channel the transfer is completed on
1144 * @chnum: Index of Host channel registers
1145 * @halt_status: Reason the channel is being halted or just XferComplete
1146 * for isochronous transfers
1148 * Releases the channel to be used by other transfers.
1149 * In case of Isochronous endpoint the channel is not halted until the end of
1150 * the session, i.e. QTD list is empty.
1151 * If periodic channel released the FrameList is updated accordingly.
1152 * Calls transaction selection routines to activate pending transfers.
1154 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
1155 struct dwc2_host_chan *chan, int chnum,
1156 enum dwc2_halt_status halt_status)
1158 struct dwc2_qh *qh = chan->qh;
1159 int continue_isoc_xfer = 0;
1160 enum dwc2_transaction_type tr_type;
1162 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1163 dwc2_complete_isoc_xfer_ddma(hsotg, chan, halt_status);
1165 /* Release the channel if halted or session completed */
1166 if (halt_status != DWC2_HC_XFER_COMPLETE ||
1167 list_empty(&qh->qtd_list)) {
1168 /* Halt the channel if session completed */
1169 if (halt_status == DWC2_HC_XFER_COMPLETE)
1170 dwc2_hc_halt(hsotg, chan, halt_status);
1171 dwc2_release_channel_ddma(hsotg, qh);
1172 dwc2_hcd_qh_unlink(hsotg, qh);
1173 } else {
1174 /* Keep in assigned schedule to continue transfer */
1175 list_move(&qh->qh_list_entry,
1176 &hsotg->periodic_sched_assigned);
1177 continue_isoc_xfer = 1;
1180 * Todo: Consider the case when period exceeds FrameList size.
1181 * Frame Rollover interrupt should be used.
1183 } else {
1185 * Scan descriptor list to complete the URB(s), then release
1186 * the channel
1188 dwc2_complete_non_isoc_xfer_ddma(hsotg, chan, chnum,
1189 halt_status);
1190 dwc2_release_channel_ddma(hsotg, qh);
1191 dwc2_hcd_qh_unlink(hsotg, qh);
1193 if (!list_empty(&qh->qtd_list)) {
1195 * Add back to inactive non-periodic schedule on normal
1196 * completion
1198 dwc2_hcd_qh_add(hsotg, qh);
1202 tr_type = dwc2_hcd_select_transactions(hsotg);
1203 if (tr_type != DWC2_TRANSACTION_NONE || continue_isoc_xfer) {
1204 if (continue_isoc_xfer) {
1205 if (tr_type == DWC2_TRANSACTION_NONE)
1206 tr_type = DWC2_TRANSACTION_PERIODIC;
1207 else if (tr_type == DWC2_TRANSACTION_NON_PERIODIC)
1208 tr_type = DWC2_TRANSACTION_ALL;
1210 dwc2_hcd_queue_transactions(hsotg, tr_type);