mwifiex: remove redundant reset of cmd_wait_q status
[linux-2.6/btrfs-unstable.git] / fs / ocfs2 / journal.c
blob7c099f7032fdbcc6ce61a53eb7cad23c3a1bac29
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * journal.c
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
35 #include <cluster/masklog.h>
37 #include "ocfs2.h"
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
59 DEFINE_SPINLOCK(trans_inc_lock);
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 int slot,
75 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 int slot_num,
79 struct ocfs2_dinode *la_dinode,
80 struct ocfs2_dinode *tl_dinode,
81 struct ocfs2_quota_recovery *qrec,
82 enum ocfs2_orphan_reco_type orphan_reco_type);
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
86 return __ocfs2_wait_on_mount(osb, 0);
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
91 return __ocfs2_wait_on_mount(osb, 1);
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
99 enum ocfs2_replay_state {
100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE /* Replay was already queued */
105 struct ocfs2_replay_map {
106 unsigned int rm_slots;
107 enum ocfs2_replay_state rm_state;
108 unsigned char rm_replay_slots[0];
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
113 if (!osb->replay_map)
114 return;
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb->replay_map->rm_state == REPLAY_DONE)
118 return;
120 osb->replay_map->rm_state = state;
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
125 struct ocfs2_replay_map *replay_map;
126 int i, node_num;
128 /* If replay map is already set, we don't do it again */
129 if (osb->replay_map)
130 return 0;
132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 (osb->max_slots * sizeof(char)), GFP_KERNEL);
135 if (!replay_map) {
136 mlog_errno(-ENOMEM);
137 return -ENOMEM;
140 spin_lock(&osb->osb_lock);
142 replay_map->rm_slots = osb->max_slots;
143 replay_map->rm_state = REPLAY_UNNEEDED;
145 /* set rm_replay_slots for offline slot(s) */
146 for (i = 0; i < replay_map->rm_slots; i++) {
147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 replay_map->rm_replay_slots[i] = 1;
151 osb->replay_map = replay_map;
152 spin_unlock(&osb->osb_lock);
153 return 0;
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 enum ocfs2_orphan_reco_type orphan_reco_type)
159 struct ocfs2_replay_map *replay_map = osb->replay_map;
160 int i;
162 if (!replay_map)
163 return;
165 if (replay_map->rm_state != REPLAY_NEEDED)
166 return;
168 for (i = 0; i < replay_map->rm_slots; i++)
169 if (replay_map->rm_replay_slots[i])
170 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 NULL, NULL,
172 orphan_reco_type);
173 replay_map->rm_state = REPLAY_DONE;
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
178 struct ocfs2_replay_map *replay_map = osb->replay_map;
180 if (!osb->replay_map)
181 return;
183 kfree(replay_map);
184 osb->replay_map = NULL;
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
189 struct ocfs2_recovery_map *rm;
191 mutex_init(&osb->recovery_lock);
192 osb->disable_recovery = 0;
193 osb->recovery_thread_task = NULL;
194 init_waitqueue_head(&osb->recovery_event);
196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 osb->max_slots * sizeof(unsigned int),
198 GFP_KERNEL);
199 if (!rm) {
200 mlog_errno(-ENOMEM);
201 return -ENOMEM;
204 rm->rm_entries = (unsigned int *)((char *)rm +
205 sizeof(struct ocfs2_recovery_map));
206 osb->recovery_map = rm;
208 return 0;
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
216 mb();
217 return osb->recovery_thread_task != NULL;
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
222 struct ocfs2_recovery_map *rm;
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb->recovery_lock);
227 osb->disable_recovery = 1;
228 mutex_unlock(&osb->recovery_lock);
229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
233 * complete. */
234 flush_workqueue(ocfs2_wq);
237 * Now that recovery is shut down, and the osb is about to be
238 * freed, the osb_lock is not taken here.
240 rm = osb->recovery_map;
241 /* XXX: Should we bug if there are dirty entries? */
243 kfree(rm);
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 unsigned int node_num)
249 int i;
250 struct ocfs2_recovery_map *rm = osb->recovery_map;
252 assert_spin_locked(&osb->osb_lock);
254 for (i = 0; i < rm->rm_used; i++) {
255 if (rm->rm_entries[i] == node_num)
256 return 1;
259 return 0;
262 /* Behaves like test-and-set. Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 unsigned int node_num)
266 struct ocfs2_recovery_map *rm = osb->recovery_map;
268 spin_lock(&osb->osb_lock);
269 if (__ocfs2_recovery_map_test(osb, node_num)) {
270 spin_unlock(&osb->osb_lock);
271 return 1;
274 /* XXX: Can this be exploited? Not from o2dlm... */
275 BUG_ON(rm->rm_used >= osb->max_slots);
277 rm->rm_entries[rm->rm_used] = node_num;
278 rm->rm_used++;
279 spin_unlock(&osb->osb_lock);
281 return 0;
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 unsigned int node_num)
287 int i;
288 struct ocfs2_recovery_map *rm = osb->recovery_map;
290 spin_lock(&osb->osb_lock);
292 for (i = 0; i < rm->rm_used; i++) {
293 if (rm->rm_entries[i] == node_num)
294 break;
297 if (i < rm->rm_used) {
298 /* XXX: be careful with the pointer math */
299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 (rm->rm_used - i - 1) * sizeof(unsigned int));
301 rm->rm_used--;
304 spin_unlock(&osb->osb_lock);
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
309 int status = 0;
310 unsigned int flushed;
311 struct ocfs2_journal *journal = NULL;
313 journal = osb->journal;
315 /* Flush all pending commits and checkpoint the journal. */
316 down_write(&journal->j_trans_barrier);
318 flushed = atomic_read(&journal->j_num_trans);
319 trace_ocfs2_commit_cache_begin(flushed);
320 if (flushed == 0) {
321 up_write(&journal->j_trans_barrier);
322 goto finally;
325 jbd2_journal_lock_updates(journal->j_journal);
326 status = jbd2_journal_flush(journal->j_journal);
327 jbd2_journal_unlock_updates(journal->j_journal);
328 if (status < 0) {
329 up_write(&journal->j_trans_barrier);
330 mlog_errno(status);
331 goto finally;
334 ocfs2_inc_trans_id(journal);
336 flushed = atomic_read(&journal->j_num_trans);
337 atomic_set(&journal->j_num_trans, 0);
338 up_write(&journal->j_trans_barrier);
340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
342 ocfs2_wake_downconvert_thread(osb);
343 wake_up(&journal->j_checkpointed);
344 finally:
345 return status;
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
350 journal_t *journal = osb->journal->j_journal;
351 handle_t *handle;
353 BUG_ON(!osb || !osb->journal->j_journal);
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
365 sb_start_intwrite(osb->sb);
367 down_read(&osb->journal->j_trans_barrier);
369 handle = jbd2_journal_start(journal, max_buffs);
370 if (IS_ERR(handle)) {
371 up_read(&osb->journal->j_trans_barrier);
372 sb_end_intwrite(osb->sb);
374 mlog_errno(PTR_ERR(handle));
376 if (is_journal_aborted(journal)) {
377 ocfs2_abort(osb->sb, "Detected aborted journal");
378 handle = ERR_PTR(-EROFS);
380 } else {
381 if (!ocfs2_mount_local(osb))
382 atomic_inc(&(osb->journal->j_num_trans));
385 return handle;
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 handle_t *handle)
391 int ret, nested;
392 struct ocfs2_journal *journal = osb->journal;
394 BUG_ON(!handle);
396 nested = handle->h_ref > 1;
397 ret = jbd2_journal_stop(handle);
398 if (ret < 0)
399 mlog_errno(ret);
401 if (!nested) {
402 up_read(&journal->j_trans_barrier);
403 sb_end_intwrite(osb->sb);
406 return ret;
410 * 'nblocks' is what you want to add to the current transaction.
412 * This might call jbd2_journal_restart() which will commit dirty buffers
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
428 int status, old_nblocks;
430 BUG_ON(!handle);
431 BUG_ON(nblocks < 0);
433 if (!nblocks)
434 return 0;
436 old_nblocks = handle->h_buffer_credits;
438 trace_ocfs2_extend_trans(old_nblocks, nblocks);
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 status = 1;
442 #else
443 status = jbd2_journal_extend(handle, nblocks);
444 if (status < 0) {
445 mlog_errno(status);
446 goto bail;
448 #endif
450 if (status > 0) {
451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 status = jbd2_journal_restart(handle,
453 old_nblocks + nblocks);
454 if (status < 0) {
455 mlog_errno(status);
456 goto bail;
460 status = 0;
461 bail:
462 return status;
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
473 int status, old_nblks;
475 BUG_ON(!handle);
477 old_nblks = handle->h_buffer_credits;
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
480 if (old_nblks < thresh)
481 return 0;
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
495 bail:
496 return status;
500 struct ocfs2_triggers {
501 struct jbd2_buffer_trigger_type ot_triggers;
502 int ot_offset;
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
507 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 struct buffer_head *bh,
512 void *data, size_t size)
514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
517 * We aren't guaranteed to have the superblock here, so we
518 * must unconditionally compute the ecc data.
519 * __ocfs2_journal_access() will only set the triggers if
520 * metaecc is enabled.
522 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 struct buffer_head *bh,
531 void *data, size_t size)
533 struct ocfs2_disk_dqtrailer *dqt =
534 ocfs2_block_dqtrailer(size, data);
537 * We aren't guaranteed to have the superblock here, so we
538 * must unconditionally compute the ecc data.
539 * __ocfs2_journal_access() will only set the triggers if
540 * metaecc is enabled.
542 ocfs2_block_check_compute(data, size, &dqt->dq_check);
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 struct buffer_head *bh,
551 void *data, size_t size)
553 struct ocfs2_dir_block_trailer *trailer =
554 ocfs2_dir_trailer_from_size(size, data);
557 * We aren't guaranteed to have the superblock here, so we
558 * must unconditionally compute the ecc data.
559 * __ocfs2_journal_access() will only set the triggers if
560 * metaecc is enabled.
562 ocfs2_block_check_compute(data, size, &trailer->db_check);
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 struct buffer_head *bh)
568 mlog(ML_ERROR,
569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
570 "bh->b_blocknr = %llu\n",
571 (unsigned long)bh,
572 (unsigned long long)bh->b_blocknr);
574 ocfs2_error(bh->b_bdev->bd_super,
575 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
578 static struct ocfs2_triggers di_triggers = {
579 .ot_triggers = {
580 .t_frozen = ocfs2_frozen_trigger,
581 .t_abort = ocfs2_abort_trigger,
583 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
586 static struct ocfs2_triggers eb_triggers = {
587 .ot_triggers = {
588 .t_frozen = ocfs2_frozen_trigger,
589 .t_abort = ocfs2_abort_trigger,
591 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
594 static struct ocfs2_triggers rb_triggers = {
595 .ot_triggers = {
596 .t_frozen = ocfs2_frozen_trigger,
597 .t_abort = ocfs2_abort_trigger,
599 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
602 static struct ocfs2_triggers gd_triggers = {
603 .ot_triggers = {
604 .t_frozen = ocfs2_frozen_trigger,
605 .t_abort = ocfs2_abort_trigger,
607 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
610 static struct ocfs2_triggers db_triggers = {
611 .ot_triggers = {
612 .t_frozen = ocfs2_db_frozen_trigger,
613 .t_abort = ocfs2_abort_trigger,
617 static struct ocfs2_triggers xb_triggers = {
618 .ot_triggers = {
619 .t_frozen = ocfs2_frozen_trigger,
620 .t_abort = ocfs2_abort_trigger,
622 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
625 static struct ocfs2_triggers dq_triggers = {
626 .ot_triggers = {
627 .t_frozen = ocfs2_dq_frozen_trigger,
628 .t_abort = ocfs2_abort_trigger,
632 static struct ocfs2_triggers dr_triggers = {
633 .ot_triggers = {
634 .t_frozen = ocfs2_frozen_trigger,
635 .t_abort = ocfs2_abort_trigger,
637 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
640 static struct ocfs2_triggers dl_triggers = {
641 .ot_triggers = {
642 .t_frozen = ocfs2_frozen_trigger,
643 .t_abort = ocfs2_abort_trigger,
645 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
648 static int __ocfs2_journal_access(handle_t *handle,
649 struct ocfs2_caching_info *ci,
650 struct buffer_head *bh,
651 struct ocfs2_triggers *triggers,
652 int type)
654 int status;
655 struct ocfs2_super *osb =
656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
658 BUG_ON(!ci || !ci->ci_ops);
659 BUG_ON(!handle);
660 BUG_ON(!bh);
662 trace_ocfs2_journal_access(
663 (unsigned long long)ocfs2_metadata_cache_owner(ci),
664 (unsigned long long)bh->b_blocknr, type, bh->b_size);
666 /* we can safely remove this assertion after testing. */
667 if (!buffer_uptodate(bh)) {
668 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669 mlog(ML_ERROR, "b_blocknr=%llu\n",
670 (unsigned long long)bh->b_blocknr);
671 BUG();
674 /* Set the current transaction information on the ci so
675 * that the locking code knows whether it can drop it's locks
676 * on this ci or not. We're protected from the commit
677 * thread updating the current transaction id until
678 * ocfs2_commit_trans() because ocfs2_start_trans() took
679 * j_trans_barrier for us. */
680 ocfs2_set_ci_lock_trans(osb->journal, ci);
682 ocfs2_metadata_cache_io_lock(ci);
683 switch (type) {
684 case OCFS2_JOURNAL_ACCESS_CREATE:
685 case OCFS2_JOURNAL_ACCESS_WRITE:
686 status = jbd2_journal_get_write_access(handle, bh);
687 break;
689 case OCFS2_JOURNAL_ACCESS_UNDO:
690 status = jbd2_journal_get_undo_access(handle, bh);
691 break;
693 default:
694 status = -EINVAL;
695 mlog(ML_ERROR, "Unknown access type!\n");
697 if (!status && ocfs2_meta_ecc(osb) && triggers)
698 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
699 ocfs2_metadata_cache_io_unlock(ci);
701 if (status < 0)
702 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
703 status, type);
705 return status;
708 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
709 struct buffer_head *bh, int type)
711 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
714 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
715 struct buffer_head *bh, int type)
717 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
720 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
721 struct buffer_head *bh, int type)
723 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
724 type);
727 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
728 struct buffer_head *bh, int type)
730 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
733 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
734 struct buffer_head *bh, int type)
736 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
739 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
740 struct buffer_head *bh, int type)
742 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
745 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
746 struct buffer_head *bh, int type)
748 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
751 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
752 struct buffer_head *bh, int type)
754 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
757 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
758 struct buffer_head *bh, int type)
760 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
763 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
764 struct buffer_head *bh, int type)
766 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
769 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
771 int status;
773 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
775 status = jbd2_journal_dirty_metadata(handle, bh);
776 if (status) {
777 mlog_errno(status);
778 if (!is_handle_aborted(handle)) {
779 journal_t *journal = handle->h_transaction->t_journal;
780 struct super_block *sb = bh->b_bdev->bd_super;
782 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
783 "Aborting transaction and journal.\n");
784 handle->h_err = status;
785 jbd2_journal_abort_handle(handle);
786 jbd2_journal_abort(journal, status);
787 ocfs2_abort(sb, "Journal already aborted.\n");
792 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
794 void ocfs2_set_journal_params(struct ocfs2_super *osb)
796 journal_t *journal = osb->journal->j_journal;
797 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
799 if (osb->osb_commit_interval)
800 commit_interval = osb->osb_commit_interval;
802 write_lock(&journal->j_state_lock);
803 journal->j_commit_interval = commit_interval;
804 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
805 journal->j_flags |= JBD2_BARRIER;
806 else
807 journal->j_flags &= ~JBD2_BARRIER;
808 write_unlock(&journal->j_state_lock);
811 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
813 int status = -1;
814 struct inode *inode = NULL; /* the journal inode */
815 journal_t *j_journal = NULL;
816 struct ocfs2_dinode *di = NULL;
817 struct buffer_head *bh = NULL;
818 struct ocfs2_super *osb;
819 int inode_lock = 0;
821 BUG_ON(!journal);
823 osb = journal->j_osb;
825 /* already have the inode for our journal */
826 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
827 osb->slot_num);
828 if (inode == NULL) {
829 status = -EACCES;
830 mlog_errno(status);
831 goto done;
833 if (is_bad_inode(inode)) {
834 mlog(ML_ERROR, "access error (bad inode)\n");
835 iput(inode);
836 inode = NULL;
837 status = -EACCES;
838 goto done;
841 SET_INODE_JOURNAL(inode);
842 OCFS2_I(inode)->ip_open_count++;
844 /* Skip recovery waits here - journal inode metadata never
845 * changes in a live cluster so it can be considered an
846 * exception to the rule. */
847 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
848 if (status < 0) {
849 if (status != -ERESTARTSYS)
850 mlog(ML_ERROR, "Could not get lock on journal!\n");
851 goto done;
854 inode_lock = 1;
855 di = (struct ocfs2_dinode *)bh->b_data;
857 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
858 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
859 i_size_read(inode));
860 status = -EINVAL;
861 goto done;
864 trace_ocfs2_journal_init(i_size_read(inode),
865 (unsigned long long)inode->i_blocks,
866 OCFS2_I(inode)->ip_clusters);
868 /* call the kernels journal init function now */
869 j_journal = jbd2_journal_init_inode(inode);
870 if (j_journal == NULL) {
871 mlog(ML_ERROR, "Linux journal layer error\n");
872 status = -EINVAL;
873 goto done;
876 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
878 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
879 OCFS2_JOURNAL_DIRTY_FL);
881 journal->j_journal = j_journal;
882 journal->j_inode = inode;
883 journal->j_bh = bh;
885 ocfs2_set_journal_params(osb);
887 journal->j_state = OCFS2_JOURNAL_LOADED;
889 status = 0;
890 done:
891 if (status < 0) {
892 if (inode_lock)
893 ocfs2_inode_unlock(inode, 1);
894 brelse(bh);
895 if (inode) {
896 OCFS2_I(inode)->ip_open_count--;
897 iput(inode);
901 return status;
904 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
906 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
909 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
911 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
914 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
915 int dirty, int replayed)
917 int status;
918 unsigned int flags;
919 struct ocfs2_journal *journal = osb->journal;
920 struct buffer_head *bh = journal->j_bh;
921 struct ocfs2_dinode *fe;
923 fe = (struct ocfs2_dinode *)bh->b_data;
925 /* The journal bh on the osb always comes from ocfs2_journal_init()
926 * and was validated there inside ocfs2_inode_lock_full(). It's a
927 * code bug if we mess it up. */
928 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
930 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
931 if (dirty)
932 flags |= OCFS2_JOURNAL_DIRTY_FL;
933 else
934 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
935 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
937 if (replayed)
938 ocfs2_bump_recovery_generation(fe);
940 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
941 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
942 if (status < 0)
943 mlog_errno(status);
945 return status;
949 * If the journal has been kmalloc'd it needs to be freed after this
950 * call.
952 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
954 struct ocfs2_journal *journal = NULL;
955 int status = 0;
956 struct inode *inode = NULL;
957 int num_running_trans = 0;
959 BUG_ON(!osb);
961 journal = osb->journal;
962 if (!journal)
963 goto done;
965 inode = journal->j_inode;
967 if (journal->j_state != OCFS2_JOURNAL_LOADED)
968 goto done;
970 /* need to inc inode use count - jbd2_journal_destroy will iput. */
971 if (!igrab(inode))
972 BUG();
974 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
975 trace_ocfs2_journal_shutdown(num_running_trans);
977 /* Do a commit_cache here. It will flush our journal, *and*
978 * release any locks that are still held.
979 * set the SHUTDOWN flag and release the trans lock.
980 * the commit thread will take the trans lock for us below. */
981 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
983 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
984 * drop the trans_lock (which we want to hold until we
985 * completely destroy the journal. */
986 if (osb->commit_task) {
987 /* Wait for the commit thread */
988 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
989 kthread_stop(osb->commit_task);
990 osb->commit_task = NULL;
993 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
995 if (ocfs2_mount_local(osb)) {
996 jbd2_journal_lock_updates(journal->j_journal);
997 status = jbd2_journal_flush(journal->j_journal);
998 jbd2_journal_unlock_updates(journal->j_journal);
999 if (status < 0)
1000 mlog_errno(status);
1003 if (status == 0) {
1005 * Do not toggle if flush was unsuccessful otherwise
1006 * will leave dirty metadata in a "clean" journal
1008 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1009 if (status < 0)
1010 mlog_errno(status);
1013 /* Shutdown the kernel journal system */
1014 jbd2_journal_destroy(journal->j_journal);
1015 journal->j_journal = NULL;
1017 OCFS2_I(inode)->ip_open_count--;
1019 /* unlock our journal */
1020 ocfs2_inode_unlock(inode, 1);
1022 brelse(journal->j_bh);
1023 journal->j_bh = NULL;
1025 journal->j_state = OCFS2_JOURNAL_FREE;
1027 // up_write(&journal->j_trans_barrier);
1028 done:
1029 if (inode)
1030 iput(inode);
1033 static void ocfs2_clear_journal_error(struct super_block *sb,
1034 journal_t *journal,
1035 int slot)
1037 int olderr;
1039 olderr = jbd2_journal_errno(journal);
1040 if (olderr) {
1041 mlog(ML_ERROR, "File system error %d recorded in "
1042 "journal %u.\n", olderr, slot);
1043 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1044 sb->s_id);
1046 jbd2_journal_ack_err(journal);
1047 jbd2_journal_clear_err(journal);
1051 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1053 int status = 0;
1054 struct ocfs2_super *osb;
1056 BUG_ON(!journal);
1058 osb = journal->j_osb;
1060 status = jbd2_journal_load(journal->j_journal);
1061 if (status < 0) {
1062 mlog(ML_ERROR, "Failed to load journal!\n");
1063 goto done;
1066 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1068 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1069 if (status < 0) {
1070 mlog_errno(status);
1071 goto done;
1074 /* Launch the commit thread */
1075 if (!local) {
1076 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1077 "ocfs2cmt");
1078 if (IS_ERR(osb->commit_task)) {
1079 status = PTR_ERR(osb->commit_task);
1080 osb->commit_task = NULL;
1081 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1082 "error=%d", status);
1083 goto done;
1085 } else
1086 osb->commit_task = NULL;
1088 done:
1089 return status;
1093 /* 'full' flag tells us whether we clear out all blocks or if we just
1094 * mark the journal clean */
1095 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1097 int status;
1099 BUG_ON(!journal);
1101 status = jbd2_journal_wipe(journal->j_journal, full);
1102 if (status < 0) {
1103 mlog_errno(status);
1104 goto bail;
1107 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1108 if (status < 0)
1109 mlog_errno(status);
1111 bail:
1112 return status;
1115 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1117 int empty;
1118 struct ocfs2_recovery_map *rm = osb->recovery_map;
1120 spin_lock(&osb->osb_lock);
1121 empty = (rm->rm_used == 0);
1122 spin_unlock(&osb->osb_lock);
1124 return empty;
1127 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1129 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1133 * JBD Might read a cached version of another nodes journal file. We
1134 * don't want this as this file changes often and we get no
1135 * notification on those changes. The only way to be sure that we've
1136 * got the most up to date version of those blocks then is to force
1137 * read them off disk. Just searching through the buffer cache won't
1138 * work as there may be pages backing this file which are still marked
1139 * up to date. We know things can't change on this file underneath us
1140 * as we have the lock by now :)
1142 static int ocfs2_force_read_journal(struct inode *inode)
1144 int status = 0;
1145 int i;
1146 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1147 #define CONCURRENT_JOURNAL_FILL 32ULL
1148 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1150 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1152 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1153 v_blkno = 0;
1154 while (v_blkno < num_blocks) {
1155 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1156 &p_blkno, &p_blocks, NULL);
1157 if (status < 0) {
1158 mlog_errno(status);
1159 goto bail;
1162 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1163 p_blocks = CONCURRENT_JOURNAL_FILL;
1165 /* We are reading journal data which should not
1166 * be put in the uptodate cache */
1167 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1168 p_blkno, p_blocks, bhs);
1169 if (status < 0) {
1170 mlog_errno(status);
1171 goto bail;
1174 for(i = 0; i < p_blocks; i++) {
1175 brelse(bhs[i]);
1176 bhs[i] = NULL;
1179 v_blkno += p_blocks;
1182 bail:
1183 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1184 brelse(bhs[i]);
1185 return status;
1188 struct ocfs2_la_recovery_item {
1189 struct list_head lri_list;
1190 int lri_slot;
1191 struct ocfs2_dinode *lri_la_dinode;
1192 struct ocfs2_dinode *lri_tl_dinode;
1193 struct ocfs2_quota_recovery *lri_qrec;
1194 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1197 /* Does the second half of the recovery process. By this point, the
1198 * node is marked clean and can actually be considered recovered,
1199 * hence it's no longer in the recovery map, but there's still some
1200 * cleanup we can do which shouldn't happen within the recovery thread
1201 * as locking in that context becomes very difficult if we are to take
1202 * recovering nodes into account.
1204 * NOTE: This function can and will sleep on recovery of other nodes
1205 * during cluster locking, just like any other ocfs2 process.
1207 void ocfs2_complete_recovery(struct work_struct *work)
1209 int ret = 0;
1210 struct ocfs2_journal *journal =
1211 container_of(work, struct ocfs2_journal, j_recovery_work);
1212 struct ocfs2_super *osb = journal->j_osb;
1213 struct ocfs2_dinode *la_dinode, *tl_dinode;
1214 struct ocfs2_la_recovery_item *item, *n;
1215 struct ocfs2_quota_recovery *qrec;
1216 enum ocfs2_orphan_reco_type orphan_reco_type;
1217 LIST_HEAD(tmp_la_list);
1219 trace_ocfs2_complete_recovery(
1220 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1222 spin_lock(&journal->j_lock);
1223 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1224 spin_unlock(&journal->j_lock);
1226 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1227 list_del_init(&item->lri_list);
1229 ocfs2_wait_on_quotas(osb);
1231 la_dinode = item->lri_la_dinode;
1232 tl_dinode = item->lri_tl_dinode;
1233 qrec = item->lri_qrec;
1234 orphan_reco_type = item->lri_orphan_reco_type;
1236 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1237 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1238 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1239 qrec);
1241 if (la_dinode) {
1242 ret = ocfs2_complete_local_alloc_recovery(osb,
1243 la_dinode);
1244 if (ret < 0)
1245 mlog_errno(ret);
1247 kfree(la_dinode);
1250 if (tl_dinode) {
1251 ret = ocfs2_complete_truncate_log_recovery(osb,
1252 tl_dinode);
1253 if (ret < 0)
1254 mlog_errno(ret);
1256 kfree(tl_dinode);
1259 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1260 orphan_reco_type);
1261 if (ret < 0)
1262 mlog_errno(ret);
1264 if (qrec) {
1265 ret = ocfs2_finish_quota_recovery(osb, qrec,
1266 item->lri_slot);
1267 if (ret < 0)
1268 mlog_errno(ret);
1269 /* Recovery info is already freed now */
1272 kfree(item);
1275 trace_ocfs2_complete_recovery_end(ret);
1278 /* NOTE: This function always eats your references to la_dinode and
1279 * tl_dinode, either manually on error, or by passing them to
1280 * ocfs2_complete_recovery */
1281 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1282 int slot_num,
1283 struct ocfs2_dinode *la_dinode,
1284 struct ocfs2_dinode *tl_dinode,
1285 struct ocfs2_quota_recovery *qrec,
1286 enum ocfs2_orphan_reco_type orphan_reco_type)
1288 struct ocfs2_la_recovery_item *item;
1290 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1291 if (!item) {
1292 /* Though we wish to avoid it, we are in fact safe in
1293 * skipping local alloc cleanup as fsck.ocfs2 is more
1294 * than capable of reclaiming unused space. */
1295 kfree(la_dinode);
1296 kfree(tl_dinode);
1298 if (qrec)
1299 ocfs2_free_quota_recovery(qrec);
1301 mlog_errno(-ENOMEM);
1302 return;
1305 INIT_LIST_HEAD(&item->lri_list);
1306 item->lri_la_dinode = la_dinode;
1307 item->lri_slot = slot_num;
1308 item->lri_tl_dinode = tl_dinode;
1309 item->lri_qrec = qrec;
1310 item->lri_orphan_reco_type = orphan_reco_type;
1312 spin_lock(&journal->j_lock);
1313 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1314 queue_work(ocfs2_wq, &journal->j_recovery_work);
1315 spin_unlock(&journal->j_lock);
1318 /* Called by the mount code to queue recovery the last part of
1319 * recovery for it's own and offline slot(s). */
1320 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1322 struct ocfs2_journal *journal = osb->journal;
1324 if (ocfs2_is_hard_readonly(osb))
1325 return;
1327 /* No need to queue up our truncate_log as regular cleanup will catch
1328 * that */
1329 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1330 osb->local_alloc_copy, NULL, NULL,
1331 ORPHAN_NEED_TRUNCATE);
1332 ocfs2_schedule_truncate_log_flush(osb, 0);
1334 osb->local_alloc_copy = NULL;
1335 osb->dirty = 0;
1337 /* queue to recover orphan slots for all offline slots */
1338 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1339 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1340 ocfs2_free_replay_slots(osb);
1343 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1345 if (osb->quota_rec) {
1346 ocfs2_queue_recovery_completion(osb->journal,
1347 osb->slot_num,
1348 NULL,
1349 NULL,
1350 osb->quota_rec,
1351 ORPHAN_NEED_TRUNCATE);
1352 osb->quota_rec = NULL;
1356 static int __ocfs2_recovery_thread(void *arg)
1358 int status, node_num, slot_num;
1359 struct ocfs2_super *osb = arg;
1360 struct ocfs2_recovery_map *rm = osb->recovery_map;
1361 int *rm_quota = NULL;
1362 int rm_quota_used = 0, i;
1363 struct ocfs2_quota_recovery *qrec;
1365 status = ocfs2_wait_on_mount(osb);
1366 if (status < 0) {
1367 goto bail;
1370 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1371 if (!rm_quota) {
1372 status = -ENOMEM;
1373 goto bail;
1375 restart:
1376 status = ocfs2_super_lock(osb, 1);
1377 if (status < 0) {
1378 mlog_errno(status);
1379 goto bail;
1382 status = ocfs2_compute_replay_slots(osb);
1383 if (status < 0)
1384 mlog_errno(status);
1386 /* queue recovery for our own slot */
1387 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1388 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1390 spin_lock(&osb->osb_lock);
1391 while (rm->rm_used) {
1392 /* It's always safe to remove entry zero, as we won't
1393 * clear it until ocfs2_recover_node() has succeeded. */
1394 node_num = rm->rm_entries[0];
1395 spin_unlock(&osb->osb_lock);
1396 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1397 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1398 if (slot_num == -ENOENT) {
1399 status = 0;
1400 goto skip_recovery;
1403 /* It is a bit subtle with quota recovery. We cannot do it
1404 * immediately because we have to obtain cluster locks from
1405 * quota files and we also don't want to just skip it because
1406 * then quota usage would be out of sync until some node takes
1407 * the slot. So we remember which nodes need quota recovery
1408 * and when everything else is done, we recover quotas. */
1409 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1410 if (i == rm_quota_used)
1411 rm_quota[rm_quota_used++] = slot_num;
1413 status = ocfs2_recover_node(osb, node_num, slot_num);
1414 skip_recovery:
1415 if (!status) {
1416 ocfs2_recovery_map_clear(osb, node_num);
1417 } else {
1418 mlog(ML_ERROR,
1419 "Error %d recovering node %d on device (%u,%u)!\n",
1420 status, node_num,
1421 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1422 mlog(ML_ERROR, "Volume requires unmount.\n");
1425 spin_lock(&osb->osb_lock);
1427 spin_unlock(&osb->osb_lock);
1428 trace_ocfs2_recovery_thread_end(status);
1430 /* Refresh all journal recovery generations from disk */
1431 status = ocfs2_check_journals_nolocks(osb);
1432 status = (status == -EROFS) ? 0 : status;
1433 if (status < 0)
1434 mlog_errno(status);
1436 /* Now it is right time to recover quotas... We have to do this under
1437 * superblock lock so that no one can start using the slot (and crash)
1438 * before we recover it */
1439 for (i = 0; i < rm_quota_used; i++) {
1440 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1441 if (IS_ERR(qrec)) {
1442 status = PTR_ERR(qrec);
1443 mlog_errno(status);
1444 continue;
1446 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1447 NULL, NULL, qrec,
1448 ORPHAN_NEED_TRUNCATE);
1451 ocfs2_super_unlock(osb, 1);
1453 /* queue recovery for offline slots */
1454 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1456 bail:
1457 mutex_lock(&osb->recovery_lock);
1458 if (!status && !ocfs2_recovery_completed(osb)) {
1459 mutex_unlock(&osb->recovery_lock);
1460 goto restart;
1463 ocfs2_free_replay_slots(osb);
1464 osb->recovery_thread_task = NULL;
1465 mb(); /* sync with ocfs2_recovery_thread_running */
1466 wake_up(&osb->recovery_event);
1468 mutex_unlock(&osb->recovery_lock);
1470 kfree(rm_quota);
1472 /* no one is callint kthread_stop() for us so the kthread() api
1473 * requires that we call do_exit(). And it isn't exported, but
1474 * complete_and_exit() seems to be a minimal wrapper around it. */
1475 complete_and_exit(NULL, status);
1478 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1480 mutex_lock(&osb->recovery_lock);
1482 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1483 osb->disable_recovery, osb->recovery_thread_task,
1484 osb->disable_recovery ?
1485 -1 : ocfs2_recovery_map_set(osb, node_num));
1487 if (osb->disable_recovery)
1488 goto out;
1490 if (osb->recovery_thread_task)
1491 goto out;
1493 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1494 "ocfs2rec");
1495 if (IS_ERR(osb->recovery_thread_task)) {
1496 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1497 osb->recovery_thread_task = NULL;
1500 out:
1501 mutex_unlock(&osb->recovery_lock);
1502 wake_up(&osb->recovery_event);
1505 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1506 int slot_num,
1507 struct buffer_head **bh,
1508 struct inode **ret_inode)
1510 int status = -EACCES;
1511 struct inode *inode = NULL;
1513 BUG_ON(slot_num >= osb->max_slots);
1515 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1516 slot_num);
1517 if (!inode || is_bad_inode(inode)) {
1518 mlog_errno(status);
1519 goto bail;
1521 SET_INODE_JOURNAL(inode);
1523 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1524 if (status < 0) {
1525 mlog_errno(status);
1526 goto bail;
1529 status = 0;
1531 bail:
1532 if (inode) {
1533 if (status || !ret_inode)
1534 iput(inode);
1535 else
1536 *ret_inode = inode;
1538 return status;
1541 /* Does the actual journal replay and marks the journal inode as
1542 * clean. Will only replay if the journal inode is marked dirty. */
1543 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1544 int node_num,
1545 int slot_num)
1547 int status;
1548 int got_lock = 0;
1549 unsigned int flags;
1550 struct inode *inode = NULL;
1551 struct ocfs2_dinode *fe;
1552 journal_t *journal = NULL;
1553 struct buffer_head *bh = NULL;
1554 u32 slot_reco_gen;
1556 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1557 if (status) {
1558 mlog_errno(status);
1559 goto done;
1562 fe = (struct ocfs2_dinode *)bh->b_data;
1563 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1564 brelse(bh);
1565 bh = NULL;
1568 * As the fs recovery is asynchronous, there is a small chance that
1569 * another node mounted (and recovered) the slot before the recovery
1570 * thread could get the lock. To handle that, we dirty read the journal
1571 * inode for that slot to get the recovery generation. If it is
1572 * different than what we expected, the slot has been recovered.
1573 * If not, it needs recovery.
1575 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1576 trace_ocfs2_replay_journal_recovered(slot_num,
1577 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1578 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1579 status = -EBUSY;
1580 goto done;
1583 /* Continue with recovery as the journal has not yet been recovered */
1585 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1586 if (status < 0) {
1587 trace_ocfs2_replay_journal_lock_err(status);
1588 if (status != -ERESTARTSYS)
1589 mlog(ML_ERROR, "Could not lock journal!\n");
1590 goto done;
1592 got_lock = 1;
1594 fe = (struct ocfs2_dinode *) bh->b_data;
1596 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1597 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1599 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1600 trace_ocfs2_replay_journal_skip(node_num);
1601 /* Refresh recovery generation for the slot */
1602 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1603 goto done;
1606 /* we need to run complete recovery for offline orphan slots */
1607 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1609 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1610 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1611 MINOR(osb->sb->s_dev));
1613 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1615 status = ocfs2_force_read_journal(inode);
1616 if (status < 0) {
1617 mlog_errno(status);
1618 goto done;
1621 journal = jbd2_journal_init_inode(inode);
1622 if (journal == NULL) {
1623 mlog(ML_ERROR, "Linux journal layer error\n");
1624 status = -EIO;
1625 goto done;
1628 status = jbd2_journal_load(journal);
1629 if (status < 0) {
1630 mlog_errno(status);
1631 if (!igrab(inode))
1632 BUG();
1633 jbd2_journal_destroy(journal);
1634 goto done;
1637 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1639 /* wipe the journal */
1640 jbd2_journal_lock_updates(journal);
1641 status = jbd2_journal_flush(journal);
1642 jbd2_journal_unlock_updates(journal);
1643 if (status < 0)
1644 mlog_errno(status);
1646 /* This will mark the node clean */
1647 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1648 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1649 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1651 /* Increment recovery generation to indicate successful recovery */
1652 ocfs2_bump_recovery_generation(fe);
1653 osb->slot_recovery_generations[slot_num] =
1654 ocfs2_get_recovery_generation(fe);
1656 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1657 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1658 if (status < 0)
1659 mlog_errno(status);
1661 if (!igrab(inode))
1662 BUG();
1664 jbd2_journal_destroy(journal);
1666 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1667 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1668 MINOR(osb->sb->s_dev));
1669 done:
1670 /* drop the lock on this nodes journal */
1671 if (got_lock)
1672 ocfs2_inode_unlock(inode, 1);
1674 if (inode)
1675 iput(inode);
1677 brelse(bh);
1679 return status;
1683 * Do the most important parts of node recovery:
1684 * - Replay it's journal
1685 * - Stamp a clean local allocator file
1686 * - Stamp a clean truncate log
1687 * - Mark the node clean
1689 * If this function completes without error, a node in OCFS2 can be
1690 * said to have been safely recovered. As a result, failure during the
1691 * second part of a nodes recovery process (local alloc recovery) is
1692 * far less concerning.
1694 static int ocfs2_recover_node(struct ocfs2_super *osb,
1695 int node_num, int slot_num)
1697 int status = 0;
1698 struct ocfs2_dinode *la_copy = NULL;
1699 struct ocfs2_dinode *tl_copy = NULL;
1701 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1703 /* Should not ever be called to recover ourselves -- in that
1704 * case we should've called ocfs2_journal_load instead. */
1705 BUG_ON(osb->node_num == node_num);
1707 status = ocfs2_replay_journal(osb, node_num, slot_num);
1708 if (status < 0) {
1709 if (status == -EBUSY) {
1710 trace_ocfs2_recover_node_skip(slot_num, node_num);
1711 status = 0;
1712 goto done;
1714 mlog_errno(status);
1715 goto done;
1718 /* Stamp a clean local alloc file AFTER recovering the journal... */
1719 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1720 if (status < 0) {
1721 mlog_errno(status);
1722 goto done;
1725 /* An error from begin_truncate_log_recovery is not
1726 * serious enough to warrant halting the rest of
1727 * recovery. */
1728 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1729 if (status < 0)
1730 mlog_errno(status);
1732 /* Likewise, this would be a strange but ultimately not so
1733 * harmful place to get an error... */
1734 status = ocfs2_clear_slot(osb, slot_num);
1735 if (status < 0)
1736 mlog_errno(status);
1738 /* This will kfree the memory pointed to by la_copy and tl_copy */
1739 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1740 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1742 status = 0;
1743 done:
1745 return status;
1748 /* Test node liveness by trylocking his journal. If we get the lock,
1749 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1750 * still alive (we couldn't get the lock) and < 0 on error. */
1751 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1752 int slot_num)
1754 int status, flags;
1755 struct inode *inode = NULL;
1757 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1758 slot_num);
1759 if (inode == NULL) {
1760 mlog(ML_ERROR, "access error\n");
1761 status = -EACCES;
1762 goto bail;
1764 if (is_bad_inode(inode)) {
1765 mlog(ML_ERROR, "access error (bad inode)\n");
1766 iput(inode);
1767 inode = NULL;
1768 status = -EACCES;
1769 goto bail;
1771 SET_INODE_JOURNAL(inode);
1773 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1774 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1775 if (status < 0) {
1776 if (status != -EAGAIN)
1777 mlog_errno(status);
1778 goto bail;
1781 ocfs2_inode_unlock(inode, 1);
1782 bail:
1783 if (inode)
1784 iput(inode);
1786 return status;
1789 /* Call this underneath ocfs2_super_lock. It also assumes that the
1790 * slot info struct has been updated from disk. */
1791 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1793 unsigned int node_num;
1794 int status, i;
1795 u32 gen;
1796 struct buffer_head *bh = NULL;
1797 struct ocfs2_dinode *di;
1799 /* This is called with the super block cluster lock, so we
1800 * know that the slot map can't change underneath us. */
1802 for (i = 0; i < osb->max_slots; i++) {
1803 /* Read journal inode to get the recovery generation */
1804 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1805 if (status) {
1806 mlog_errno(status);
1807 goto bail;
1809 di = (struct ocfs2_dinode *)bh->b_data;
1810 gen = ocfs2_get_recovery_generation(di);
1811 brelse(bh);
1812 bh = NULL;
1814 spin_lock(&osb->osb_lock);
1815 osb->slot_recovery_generations[i] = gen;
1817 trace_ocfs2_mark_dead_nodes(i,
1818 osb->slot_recovery_generations[i]);
1820 if (i == osb->slot_num) {
1821 spin_unlock(&osb->osb_lock);
1822 continue;
1825 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1826 if (status == -ENOENT) {
1827 spin_unlock(&osb->osb_lock);
1828 continue;
1831 if (__ocfs2_recovery_map_test(osb, node_num)) {
1832 spin_unlock(&osb->osb_lock);
1833 continue;
1835 spin_unlock(&osb->osb_lock);
1837 /* Ok, we have a slot occupied by another node which
1838 * is not in the recovery map. We trylock his journal
1839 * file here to test if he's alive. */
1840 status = ocfs2_trylock_journal(osb, i);
1841 if (!status) {
1842 /* Since we're called from mount, we know that
1843 * the recovery thread can't race us on
1844 * setting / checking the recovery bits. */
1845 ocfs2_recovery_thread(osb, node_num);
1846 } else if ((status < 0) && (status != -EAGAIN)) {
1847 mlog_errno(status);
1848 goto bail;
1852 status = 0;
1853 bail:
1854 return status;
1858 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1859 * randomness to the timeout to minimize multple nodes firing the timer at the
1860 * same time.
1862 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1864 unsigned long time;
1866 get_random_bytes(&time, sizeof(time));
1867 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1868 return msecs_to_jiffies(time);
1872 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1873 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1874 * is done to catch any orphans that are left over in orphan directories.
1876 * It scans all slots, even ones that are in use. It does so to handle the
1877 * case described below:
1879 * Node 1 has an inode it was using. The dentry went away due to memory
1880 * pressure. Node 1 closes the inode, but it's on the free list. The node
1881 * has the open lock.
1882 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1883 * but node 1 has no dentry and doesn't get the message. It trylocks the
1884 * open lock, sees that another node has a PR, and does nothing.
1885 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1886 * open lock, sees the PR still, and does nothing.
1887 * Basically, we have to trigger an orphan iput on node 1. The only way
1888 * for this to happen is if node 1 runs node 2's orphan dir.
1890 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1891 * seconds. It gets an EX lock on os_lockres and checks sequence number
1892 * stored in LVB. If the sequence number has changed, it means some other
1893 * node has done the scan. This node skips the scan and tracks the
1894 * sequence number. If the sequence number didn't change, it means a scan
1895 * hasn't happened. The node queues a scan and increments the
1896 * sequence number in the LVB.
1898 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1900 struct ocfs2_orphan_scan *os;
1901 int status, i;
1902 u32 seqno = 0;
1904 os = &osb->osb_orphan_scan;
1906 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1907 goto out;
1909 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1910 atomic_read(&os->os_state));
1912 status = ocfs2_orphan_scan_lock(osb, &seqno);
1913 if (status < 0) {
1914 if (status != -EAGAIN)
1915 mlog_errno(status);
1916 goto out;
1919 /* Do no queue the tasks if the volume is being umounted */
1920 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1921 goto unlock;
1923 if (os->os_seqno != seqno) {
1924 os->os_seqno = seqno;
1925 goto unlock;
1928 for (i = 0; i < osb->max_slots; i++)
1929 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1930 NULL, ORPHAN_NO_NEED_TRUNCATE);
1932 * We queued a recovery on orphan slots, increment the sequence
1933 * number and update LVB so other node will skip the scan for a while
1935 seqno++;
1936 os->os_count++;
1937 os->os_scantime = CURRENT_TIME;
1938 unlock:
1939 ocfs2_orphan_scan_unlock(osb, seqno);
1940 out:
1941 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1942 atomic_read(&os->os_state));
1943 return;
1946 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1947 static void ocfs2_orphan_scan_work(struct work_struct *work)
1949 struct ocfs2_orphan_scan *os;
1950 struct ocfs2_super *osb;
1952 os = container_of(work, struct ocfs2_orphan_scan,
1953 os_orphan_scan_work.work);
1954 osb = os->os_osb;
1956 mutex_lock(&os->os_lock);
1957 ocfs2_queue_orphan_scan(osb);
1958 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1959 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1960 ocfs2_orphan_scan_timeout());
1961 mutex_unlock(&os->os_lock);
1964 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1966 struct ocfs2_orphan_scan *os;
1968 os = &osb->osb_orphan_scan;
1969 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1970 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1971 mutex_lock(&os->os_lock);
1972 cancel_delayed_work(&os->os_orphan_scan_work);
1973 mutex_unlock(&os->os_lock);
1977 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1979 struct ocfs2_orphan_scan *os;
1981 os = &osb->osb_orphan_scan;
1982 os->os_osb = osb;
1983 os->os_count = 0;
1984 os->os_seqno = 0;
1985 mutex_init(&os->os_lock);
1986 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1989 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1991 struct ocfs2_orphan_scan *os;
1993 os = &osb->osb_orphan_scan;
1994 os->os_scantime = CURRENT_TIME;
1995 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1996 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1997 else {
1998 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1999 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
2000 ocfs2_orphan_scan_timeout());
2004 struct ocfs2_orphan_filldir_priv {
2005 struct dir_context ctx;
2006 struct inode *head;
2007 struct ocfs2_super *osb;
2010 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2011 int name_len, loff_t pos, u64 ino,
2012 unsigned type)
2014 struct ocfs2_orphan_filldir_priv *p =
2015 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2016 struct inode *iter;
2018 if (name_len == 1 && !strncmp(".", name, 1))
2019 return 0;
2020 if (name_len == 2 && !strncmp("..", name, 2))
2021 return 0;
2023 /* Skip bad inodes so that recovery can continue */
2024 iter = ocfs2_iget(p->osb, ino,
2025 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2026 if (IS_ERR(iter))
2027 return 0;
2029 /* Skip inodes which are already added to recover list, since dio may
2030 * happen concurrently with unlink/rename */
2031 if (OCFS2_I(iter)->ip_next_orphan) {
2032 iput(iter);
2033 return 0;
2036 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2037 /* No locking is required for the next_orphan queue as there
2038 * is only ever a single process doing orphan recovery. */
2039 OCFS2_I(iter)->ip_next_orphan = p->head;
2040 p->head = iter;
2042 return 0;
2045 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2046 int slot,
2047 struct inode **head)
2049 int status;
2050 struct inode *orphan_dir_inode = NULL;
2051 struct ocfs2_orphan_filldir_priv priv = {
2052 .ctx.actor = ocfs2_orphan_filldir,
2053 .osb = osb,
2054 .head = *head
2057 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2058 ORPHAN_DIR_SYSTEM_INODE,
2059 slot);
2060 if (!orphan_dir_inode) {
2061 status = -ENOENT;
2062 mlog_errno(status);
2063 return status;
2066 mutex_lock(&orphan_dir_inode->i_mutex);
2067 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2068 if (status < 0) {
2069 mlog_errno(status);
2070 goto out;
2073 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2074 if (status) {
2075 mlog_errno(status);
2076 goto out_cluster;
2079 *head = priv.head;
2081 out_cluster:
2082 ocfs2_inode_unlock(orphan_dir_inode, 0);
2083 out:
2084 mutex_unlock(&orphan_dir_inode->i_mutex);
2085 iput(orphan_dir_inode);
2086 return status;
2089 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2090 int slot)
2092 int ret;
2094 spin_lock(&osb->osb_lock);
2095 ret = !osb->osb_orphan_wipes[slot];
2096 spin_unlock(&osb->osb_lock);
2097 return ret;
2100 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2101 int slot)
2103 spin_lock(&osb->osb_lock);
2104 /* Mark ourselves such that new processes in delete_inode()
2105 * know to quit early. */
2106 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2107 while (osb->osb_orphan_wipes[slot]) {
2108 /* If any processes are already in the middle of an
2109 * orphan wipe on this dir, then we need to wait for
2110 * them. */
2111 spin_unlock(&osb->osb_lock);
2112 wait_event_interruptible(osb->osb_wipe_event,
2113 ocfs2_orphan_recovery_can_continue(osb, slot));
2114 spin_lock(&osb->osb_lock);
2116 spin_unlock(&osb->osb_lock);
2119 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2120 int slot)
2122 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2126 * Orphan recovery. Each mounted node has it's own orphan dir which we
2127 * must run during recovery. Our strategy here is to build a list of
2128 * the inodes in the orphan dir and iget/iput them. The VFS does
2129 * (most) of the rest of the work.
2131 * Orphan recovery can happen at any time, not just mount so we have a
2132 * couple of extra considerations.
2134 * - We grab as many inodes as we can under the orphan dir lock -
2135 * doing iget() outside the orphan dir risks getting a reference on
2136 * an invalid inode.
2137 * - We must be sure not to deadlock with other processes on the
2138 * system wanting to run delete_inode(). This can happen when they go
2139 * to lock the orphan dir and the orphan recovery process attempts to
2140 * iget() inside the orphan dir lock. This can be avoided by
2141 * advertising our state to ocfs2_delete_inode().
2143 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2144 int slot,
2145 enum ocfs2_orphan_reco_type orphan_reco_type)
2147 int ret = 0;
2148 struct inode *inode = NULL;
2149 struct inode *iter;
2150 struct ocfs2_inode_info *oi;
2151 struct buffer_head *di_bh = NULL;
2152 struct ocfs2_dinode *di = NULL;
2154 trace_ocfs2_recover_orphans(slot);
2156 ocfs2_mark_recovering_orphan_dir(osb, slot);
2157 ret = ocfs2_queue_orphans(osb, slot, &inode);
2158 ocfs2_clear_recovering_orphan_dir(osb, slot);
2160 /* Error here should be noted, but we want to continue with as
2161 * many queued inodes as we've got. */
2162 if (ret)
2163 mlog_errno(ret);
2165 while (inode) {
2166 oi = OCFS2_I(inode);
2167 trace_ocfs2_recover_orphans_iput(
2168 (unsigned long long)oi->ip_blkno);
2170 iter = oi->ip_next_orphan;
2171 oi->ip_next_orphan = NULL;
2173 ret = ocfs2_rw_lock(inode, 1);
2174 if (ret < 0) {
2175 mlog_errno(ret);
2176 goto next;
2179 * We need to take and drop the inode lock to
2180 * force read inode from disk.
2182 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2183 if (ret) {
2184 mlog_errno(ret);
2185 goto unlock_rw;
2188 di = (struct ocfs2_dinode *)di_bh->b_data;
2190 if (inode->i_nlink == 0) {
2191 spin_lock(&oi->ip_lock);
2192 /* Set the proper information to get us going into
2193 * ocfs2_delete_inode. */
2194 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2195 spin_unlock(&oi->ip_lock);
2196 } else if ((orphan_reco_type == ORPHAN_NEED_TRUNCATE) &&
2197 (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL))) {
2198 ret = ocfs2_truncate_file(inode, di_bh,
2199 i_size_read(inode));
2200 if (ret < 0) {
2201 if (ret != -ENOSPC)
2202 mlog_errno(ret);
2203 goto unlock_inode;
2206 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 0, 0);
2207 if (ret)
2208 mlog_errno(ret);
2210 wake_up(&OCFS2_I(inode)->append_dio_wq);
2211 } /* else if ORPHAN_NO_NEED_TRUNCATE, do nothing */
2212 unlock_inode:
2213 ocfs2_inode_unlock(inode, 1);
2214 unlock_rw:
2215 ocfs2_rw_unlock(inode, 1);
2216 next:
2217 iput(inode);
2218 brelse(di_bh);
2219 di_bh = NULL;
2220 inode = iter;
2223 return ret;
2226 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2228 /* This check is good because ocfs2 will wait on our recovery
2229 * thread before changing it to something other than MOUNTED
2230 * or DISABLED. */
2231 wait_event(osb->osb_mount_event,
2232 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2233 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2234 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2236 /* If there's an error on mount, then we may never get to the
2237 * MOUNTED flag, but this is set right before
2238 * dismount_volume() so we can trust it. */
2239 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2240 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2241 mlog(0, "mount error, exiting!\n");
2242 return -EBUSY;
2245 return 0;
2248 static int ocfs2_commit_thread(void *arg)
2250 int status;
2251 struct ocfs2_super *osb = arg;
2252 struct ocfs2_journal *journal = osb->journal;
2254 /* we can trust j_num_trans here because _should_stop() is only set in
2255 * shutdown and nobody other than ourselves should be able to start
2256 * transactions. committing on shutdown might take a few iterations
2257 * as final transactions put deleted inodes on the list */
2258 while (!(kthread_should_stop() &&
2259 atomic_read(&journal->j_num_trans) == 0)) {
2261 wait_event_interruptible(osb->checkpoint_event,
2262 atomic_read(&journal->j_num_trans)
2263 || kthread_should_stop());
2265 status = ocfs2_commit_cache(osb);
2266 if (status < 0) {
2267 static unsigned long abort_warn_time;
2269 /* Warn about this once per minute */
2270 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2271 mlog(ML_ERROR, "status = %d, journal is "
2272 "already aborted.\n", status);
2274 * After ocfs2_commit_cache() fails, j_num_trans has a
2275 * non-zero value. Sleep here to avoid a busy-wait
2276 * loop.
2278 msleep_interruptible(1000);
2281 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2282 mlog(ML_KTHREAD,
2283 "commit_thread: %u transactions pending on "
2284 "shutdown\n",
2285 atomic_read(&journal->j_num_trans));
2289 return 0;
2292 /* Reads all the journal inodes without taking any cluster locks. Used
2293 * for hard readonly access to determine whether any journal requires
2294 * recovery. Also used to refresh the recovery generation numbers after
2295 * a journal has been recovered by another node.
2297 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2299 int ret = 0;
2300 unsigned int slot;
2301 struct buffer_head *di_bh = NULL;
2302 struct ocfs2_dinode *di;
2303 int journal_dirty = 0;
2305 for(slot = 0; slot < osb->max_slots; slot++) {
2306 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2307 if (ret) {
2308 mlog_errno(ret);
2309 goto out;
2312 di = (struct ocfs2_dinode *) di_bh->b_data;
2314 osb->slot_recovery_generations[slot] =
2315 ocfs2_get_recovery_generation(di);
2317 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2318 OCFS2_JOURNAL_DIRTY_FL)
2319 journal_dirty = 1;
2321 brelse(di_bh);
2322 di_bh = NULL;
2325 out:
2326 if (journal_dirty)
2327 ret = -EROFS;
2328 return ret;