[IA64] use snprintf() on features field of /proc/cpuinfo
[linux-2.6/btrfs-unstable.git] / arch / ia64 / kernel / setup.c
blob83c2629e1c4c001cc56bae5fec820863dc9339fb
1 /*
2 * Architecture-specific setup.
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 #include <linux/module.h>
26 #include <linux/init.h>
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
74 extern void ia64_setup_printk_clock(void);
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
79 unsigned long ia64_cycles_per_usec;
80 struct ia64_boot_param *ia64_boot_param;
81 struct screen_info screen_info;
82 unsigned long vga_console_iobase;
83 unsigned long vga_console_membase;
85 static struct resource data_resource = {
86 .name = "Kernel data",
87 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
90 static struct resource code_resource = {
91 .name = "Kernel code",
92 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
94 extern void efi_initialize_iomem_resources(struct resource *,
95 struct resource *);
96 extern char _text[], _end[], _etext[];
98 unsigned long ia64_max_cacheline_size;
100 int dma_get_cache_alignment(void)
102 return ia64_max_cacheline_size;
104 EXPORT_SYMBOL(dma_get_cache_alignment);
106 unsigned long ia64_iobase; /* virtual address for I/O accesses */
107 EXPORT_SYMBOL(ia64_iobase);
108 struct io_space io_space[MAX_IO_SPACES];
109 EXPORT_SYMBOL(io_space);
110 unsigned int num_io_spaces;
113 * "flush_icache_range()" needs to know what processor dependent stride size to use
114 * when it makes i-cache(s) coherent with d-caches.
116 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
117 unsigned long ia64_i_cache_stride_shift = ~0;
120 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
121 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
122 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
123 * address of the second buffer must be aligned to (merge_mask+1) in order to be
124 * mergeable). By default, we assume there is no I/O MMU which can merge physically
125 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
126 * page-size of 2^64.
128 unsigned long ia64_max_iommu_merge_mask = ~0UL;
129 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
132 * We use a special marker for the end of memory and it uses the extra (+1) slot
134 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
135 int num_rsvd_regions __initdata;
139 * Filter incoming memory segments based on the primitive map created from the boot
140 * parameters. Segments contained in the map are removed from the memory ranges. A
141 * caller-specified function is called with the memory ranges that remain after filtering.
142 * This routine does not assume the incoming segments are sorted.
144 int __init
145 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
147 unsigned long range_start, range_end, prev_start;
148 void (*func)(unsigned long, unsigned long, int);
149 int i;
151 #if IGNORE_PFN0
152 if (start == PAGE_OFFSET) {
153 printk(KERN_WARNING "warning: skipping physical page 0\n");
154 start += PAGE_SIZE;
155 if (start >= end) return 0;
157 #endif
159 * lowest possible address(walker uses virtual)
161 prev_start = PAGE_OFFSET;
162 func = arg;
164 for (i = 0; i < num_rsvd_regions; ++i) {
165 range_start = max(start, prev_start);
166 range_end = min(end, rsvd_region[i].start);
168 if (range_start < range_end)
169 call_pernode_memory(__pa(range_start), range_end - range_start, func);
171 /* nothing more available in this segment */
172 if (range_end == end) return 0;
174 prev_start = rsvd_region[i].end;
176 /* end of memory marker allows full processing inside loop body */
177 return 0;
180 static void __init
181 sort_regions (struct rsvd_region *rsvd_region, int max)
183 int j;
185 /* simple bubble sorting */
186 while (max--) {
187 for (j = 0; j < max; ++j) {
188 if (rsvd_region[j].start > rsvd_region[j+1].start) {
189 struct rsvd_region tmp;
190 tmp = rsvd_region[j];
191 rsvd_region[j] = rsvd_region[j + 1];
192 rsvd_region[j + 1] = tmp;
199 * Request address space for all standard resources
201 static int __init register_memory(void)
203 code_resource.start = ia64_tpa(_text);
204 code_resource.end = ia64_tpa(_etext) - 1;
205 data_resource.start = ia64_tpa(_etext);
206 data_resource.end = ia64_tpa(_end) - 1;
207 efi_initialize_iomem_resources(&code_resource, &data_resource);
209 return 0;
212 __initcall(register_memory);
215 * reserve_memory - setup reserved memory areas
217 * Setup the reserved memory areas set aside for the boot parameters,
218 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
219 * see include/asm-ia64/meminit.h if you need to define more.
221 void __init
222 reserve_memory (void)
224 int n = 0;
227 * none of the entries in this table overlap
229 rsvd_region[n].start = (unsigned long) ia64_boot_param;
230 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
231 n++;
233 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
234 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
235 n++;
237 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
238 rsvd_region[n].end = (rsvd_region[n].start
239 + strlen(__va(ia64_boot_param->command_line)) + 1);
240 n++;
242 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
243 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
244 n++;
246 #ifdef CONFIG_BLK_DEV_INITRD
247 if (ia64_boot_param->initrd_start) {
248 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
249 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
250 n++;
252 #endif
254 efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
255 n++;
257 #ifdef CONFIG_KEXEC
258 /* crashkernel=size@offset specifies the size to reserve for a crash
259 * kernel. If offset is 0, then it is determined automatically.
260 * By reserving this memory we guarantee that linux never set's it
261 * up as a DMA target.Useful for holding code to do something
262 * appropriate after a kernel panic.
265 char *from = strstr(saved_command_line, "crashkernel=");
266 unsigned long base, size;
267 if (from) {
268 size = memparse(from + 12, &from);
269 if (*from == '@')
270 base = memparse(from+1, &from);
271 else
272 base = 0;
273 if (size) {
274 if (!base) {
275 sort_regions(rsvd_region, n);
276 base = kdump_find_rsvd_region(size,
277 rsvd_region, n);
279 if (base != ~0UL) {
280 rsvd_region[n].start =
281 (unsigned long)__va(base);
282 rsvd_region[n].end =
283 (unsigned long)__va(base + size);
284 n++;
285 crashk_res.start = base;
286 crashk_res.end = base + size - 1;
290 efi_memmap_res.start = ia64_boot_param->efi_memmap;
291 efi_memmap_res.end = efi_memmap_res.start +
292 ia64_boot_param->efi_memmap_size;
293 boot_param_res.start = __pa(ia64_boot_param);
294 boot_param_res.end = boot_param_res.start +
295 sizeof(*ia64_boot_param);
297 #endif
298 /* end of memory marker */
299 rsvd_region[n].start = ~0UL;
300 rsvd_region[n].end = ~0UL;
301 n++;
303 num_rsvd_regions = n;
304 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
306 sort_regions(rsvd_region, num_rsvd_regions);
311 * find_initrd - get initrd parameters from the boot parameter structure
313 * Grab the initrd start and end from the boot parameter struct given us by
314 * the boot loader.
316 void __init
317 find_initrd (void)
319 #ifdef CONFIG_BLK_DEV_INITRD
320 if (ia64_boot_param->initrd_start) {
321 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
322 initrd_end = initrd_start+ia64_boot_param->initrd_size;
324 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
325 initrd_start, ia64_boot_param->initrd_size);
327 #endif
330 static void __init
331 io_port_init (void)
333 unsigned long phys_iobase;
336 * Set `iobase' based on the EFI memory map or, failing that, the
337 * value firmware left in ar.k0.
339 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
340 * the port's virtual address, so ia32_load_state() loads it with a
341 * user virtual address. But in ia64 mode, glibc uses the
342 * *physical* address in ar.k0 to mmap the appropriate area from
343 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
344 * cases, user-mode can only use the legacy 0-64K I/O port space.
346 * ar.k0 is not involved in kernel I/O port accesses, which can use
347 * any of the I/O port spaces and are done via MMIO using the
348 * virtual mmio_base from the appropriate io_space[].
350 phys_iobase = efi_get_iobase();
351 if (!phys_iobase) {
352 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
353 printk(KERN_INFO "No I/O port range found in EFI memory map, "
354 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
356 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
357 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
359 /* setup legacy IO port space */
360 io_space[0].mmio_base = ia64_iobase;
361 io_space[0].sparse = 1;
362 num_io_spaces = 1;
366 * early_console_setup - setup debugging console
368 * Consoles started here require little enough setup that we can start using
369 * them very early in the boot process, either right after the machine
370 * vector initialization, or even before if the drivers can detect their hw.
372 * Returns non-zero if a console couldn't be setup.
374 static inline int __init
375 early_console_setup (char *cmdline)
377 int earlycons = 0;
379 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
381 extern int sn_serial_console_early_setup(void);
382 if (!sn_serial_console_early_setup())
383 earlycons++;
385 #endif
386 #ifdef CONFIG_EFI_PCDP
387 if (!efi_setup_pcdp_console(cmdline))
388 earlycons++;
389 #endif
390 #ifdef CONFIG_SERIAL_8250_CONSOLE
391 if (!early_serial_console_init(cmdline))
392 earlycons++;
393 #endif
395 return (earlycons) ? 0 : -1;
398 static inline void
399 mark_bsp_online (void)
401 #ifdef CONFIG_SMP
402 /* If we register an early console, allow CPU 0 to printk */
403 cpu_set(smp_processor_id(), cpu_online_map);
404 #endif
407 #ifdef CONFIG_SMP
408 static void __init
409 check_for_logical_procs (void)
411 pal_logical_to_physical_t info;
412 s64 status;
414 status = ia64_pal_logical_to_phys(0, &info);
415 if (status == -1) {
416 printk(KERN_INFO "No logical to physical processor mapping "
417 "available\n");
418 return;
420 if (status) {
421 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
422 status);
423 return;
426 * Total number of siblings that BSP has. Though not all of them
427 * may have booted successfully. The correct number of siblings
428 * booted is in info.overview_num_log.
430 smp_num_siblings = info.overview_tpc;
431 smp_num_cpucores = info.overview_cpp;
433 #endif
435 static __initdata int nomca;
436 static __init int setup_nomca(char *s)
438 nomca = 1;
439 return 0;
441 early_param("nomca", setup_nomca);
443 #ifdef CONFIG_PROC_VMCORE
444 /* elfcorehdr= specifies the location of elf core header
445 * stored by the crashed kernel.
447 static int __init parse_elfcorehdr(char *arg)
449 if (!arg)
450 return -EINVAL;
452 elfcorehdr_addr = memparse(arg, &arg);
453 return 0;
455 early_param("elfcorehdr", parse_elfcorehdr);
456 #endif /* CONFIG_PROC_VMCORE */
458 void __init
459 setup_arch (char **cmdline_p)
461 unw_init();
463 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
465 *cmdline_p = __va(ia64_boot_param->command_line);
466 strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
468 efi_init();
469 io_port_init();
471 parse_early_param();
473 #ifdef CONFIG_IA64_GENERIC
474 machvec_init(NULL);
475 #endif
477 if (early_console_setup(*cmdline_p) == 0)
478 mark_bsp_online();
480 #ifdef CONFIG_ACPI
481 /* Initialize the ACPI boot-time table parser */
482 acpi_table_init();
483 # ifdef CONFIG_ACPI_NUMA
484 acpi_numa_init();
485 # endif
486 #else
487 # ifdef CONFIG_SMP
488 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
489 # endif
490 #endif /* CONFIG_APCI_BOOT */
492 find_memory();
494 /* process SAL system table: */
495 ia64_sal_init(__va(efi.sal_systab));
497 ia64_setup_printk_clock();
499 #ifdef CONFIG_SMP
500 cpu_physical_id(0) = hard_smp_processor_id();
502 cpu_set(0, cpu_sibling_map[0]);
503 cpu_set(0, cpu_core_map[0]);
505 check_for_logical_procs();
506 if (smp_num_cpucores > 1)
507 printk(KERN_INFO
508 "cpu package is Multi-Core capable: number of cores=%d\n",
509 smp_num_cpucores);
510 if (smp_num_siblings > 1)
511 printk(KERN_INFO
512 "cpu package is Multi-Threading capable: number of siblings=%d\n",
513 smp_num_siblings);
514 #endif
516 cpu_init(); /* initialize the bootstrap CPU */
517 mmu_context_init(); /* initialize context_id bitmap */
519 check_sal_cache_flush();
521 #ifdef CONFIG_ACPI
522 acpi_boot_init();
523 #endif
525 #ifdef CONFIG_VT
526 if (!conswitchp) {
527 # if defined(CONFIG_DUMMY_CONSOLE)
528 conswitchp = &dummy_con;
529 # endif
530 # if defined(CONFIG_VGA_CONSOLE)
532 * Non-legacy systems may route legacy VGA MMIO range to system
533 * memory. vga_con probes the MMIO hole, so memory looks like
534 * a VGA device to it. The EFI memory map can tell us if it's
535 * memory so we can avoid this problem.
537 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
538 conswitchp = &vga_con;
539 # endif
541 #endif
543 /* enable IA-64 Machine Check Abort Handling unless disabled */
544 if (!nomca)
545 ia64_mca_init();
547 platform_setup(cmdline_p);
548 paging_init();
552 * Display cpu info for all cpu's.
554 static int
555 show_cpuinfo (struct seq_file *m, void *v)
557 #ifdef CONFIG_SMP
558 # define lpj c->loops_per_jiffy
559 # define cpunum c->cpu
560 #else
561 # define lpj loops_per_jiffy
562 # define cpunum 0
563 #endif
564 static struct {
565 unsigned long mask;
566 const char *feature_name;
567 } feature_bits[] = {
568 { 1UL << 0, "branchlong" },
569 { 1UL << 1, "spontaneous deferral"},
570 { 1UL << 2, "16-byte atomic ops" }
572 char features[128], *cp, *sep;
573 struct cpuinfo_ia64 *c = v;
574 unsigned long mask;
575 unsigned long proc_freq;
576 int i, size;
578 mask = c->features;
580 /* build the feature string: */
581 memcpy(features, "standard", 9);
582 cp = features;
583 size = sizeof(features);
584 sep = "";
585 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
586 if (mask & feature_bits[i].mask) {
587 cp += snprintf(cp, size, "%s%s", sep,
588 feature_bits[i].feature_name),
589 sep = ", ";
590 mask &= ~feature_bits[i].mask;
591 size = sizeof(features) - (cp - features);
594 if (mask && size > 1) {
595 /* print unknown features as a hex value */
596 snprintf(cp, size, "%s0x%lx", sep, mask);
599 proc_freq = cpufreq_quick_get(cpunum);
600 if (!proc_freq)
601 proc_freq = c->proc_freq / 1000;
603 seq_printf(m,
604 "processor : %d\n"
605 "vendor : %s\n"
606 "arch : IA-64\n"
607 "family : %u\n"
608 "model : %u\n"
609 "model name : %s\n"
610 "revision : %u\n"
611 "archrev : %u\n"
612 "features : %s\n"
613 "cpu number : %lu\n"
614 "cpu regs : %u\n"
615 "cpu MHz : %lu.%06lu\n"
616 "itc MHz : %lu.%06lu\n"
617 "BogoMIPS : %lu.%02lu\n",
618 cpunum, c->vendor, c->family, c->model,
619 c->model_name, c->revision, c->archrev,
620 features, c->ppn, c->number,
621 proc_freq / 1000, proc_freq % 1000,
622 c->itc_freq / 1000000, c->itc_freq % 1000000,
623 lpj*HZ/500000, (lpj*HZ/5000) % 100);
624 #ifdef CONFIG_SMP
625 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
626 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
627 seq_printf(m,
628 "physical id: %u\n"
629 "core id : %u\n"
630 "thread id : %u\n",
631 c->socket_id, c->core_id, c->thread_id);
632 #endif
633 seq_printf(m,"\n");
635 return 0;
638 static void *
639 c_start (struct seq_file *m, loff_t *pos)
641 #ifdef CONFIG_SMP
642 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
643 ++*pos;
644 #endif
645 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
648 static void *
649 c_next (struct seq_file *m, void *v, loff_t *pos)
651 ++*pos;
652 return c_start(m, pos);
655 static void
656 c_stop (struct seq_file *m, void *v)
660 struct seq_operations cpuinfo_op = {
661 .start = c_start,
662 .next = c_next,
663 .stop = c_stop,
664 .show = show_cpuinfo
667 static char brandname[128];
669 static char * __cpuinit
670 get_model_name(__u8 family, __u8 model)
672 char brand[128];
674 memcpy(brand, "Unknown", 8);
675 if (ia64_pal_get_brand_info(brand)) {
676 if (family == 0x7)
677 memcpy(brand, "Merced", 7);
678 else if (family == 0x1f) switch (model) {
679 case 0: memcpy(brand, "McKinley", 9); break;
680 case 1: memcpy(brand, "Madison", 8); break;
681 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
684 if (brandname[0] == '\0')
685 return strcpy(brandname, brand);
686 else if (strcmp(brandname, brand) == 0)
687 return brandname;
688 else
689 return kstrdup(brand, GFP_KERNEL);
692 static void __cpuinit
693 identify_cpu (struct cpuinfo_ia64 *c)
695 union {
696 unsigned long bits[5];
697 struct {
698 /* id 0 & 1: */
699 char vendor[16];
701 /* id 2 */
702 u64 ppn; /* processor serial number */
704 /* id 3: */
705 unsigned number : 8;
706 unsigned revision : 8;
707 unsigned model : 8;
708 unsigned family : 8;
709 unsigned archrev : 8;
710 unsigned reserved : 24;
712 /* id 4: */
713 u64 features;
714 } field;
715 } cpuid;
716 pal_vm_info_1_u_t vm1;
717 pal_vm_info_2_u_t vm2;
718 pal_status_t status;
719 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
720 int i;
721 for (i = 0; i < 5; ++i)
722 cpuid.bits[i] = ia64_get_cpuid(i);
724 memcpy(c->vendor, cpuid.field.vendor, 16);
725 #ifdef CONFIG_SMP
726 c->cpu = smp_processor_id();
728 /* below default values will be overwritten by identify_siblings()
729 * for Multi-Threading/Multi-Core capable cpu's
731 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
732 c->socket_id = -1;
734 identify_siblings(c);
735 #endif
736 c->ppn = cpuid.field.ppn;
737 c->number = cpuid.field.number;
738 c->revision = cpuid.field.revision;
739 c->model = cpuid.field.model;
740 c->family = cpuid.field.family;
741 c->archrev = cpuid.field.archrev;
742 c->features = cpuid.field.features;
743 c->model_name = get_model_name(c->family, c->model);
745 status = ia64_pal_vm_summary(&vm1, &vm2);
746 if (status == PAL_STATUS_SUCCESS) {
747 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
748 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
750 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
751 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
754 void
755 setup_per_cpu_areas (void)
757 /* start_kernel() requires this... */
758 #ifdef CONFIG_ACPI_HOTPLUG_CPU
759 prefill_possible_map();
760 #endif
764 * Calculate the max. cache line size.
766 * In addition, the minimum of the i-cache stride sizes is calculated for
767 * "flush_icache_range()".
769 static void __cpuinit
770 get_max_cacheline_size (void)
772 unsigned long line_size, max = 1;
773 unsigned int cache_size = 0;
774 u64 l, levels, unique_caches;
775 pal_cache_config_info_t cci;
776 s64 status;
778 status = ia64_pal_cache_summary(&levels, &unique_caches);
779 if (status != 0) {
780 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
781 __FUNCTION__, status);
782 max = SMP_CACHE_BYTES;
783 /* Safest setup for "flush_icache_range()" */
784 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
785 goto out;
788 for (l = 0; l < levels; ++l) {
789 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
790 &cci);
791 if (status != 0) {
792 printk(KERN_ERR
793 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
794 __FUNCTION__, l, status);
795 max = SMP_CACHE_BYTES;
796 /* The safest setup for "flush_icache_range()" */
797 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
798 cci.pcci_unified = 1;
800 line_size = 1 << cci.pcci_line_size;
801 if (line_size > max)
802 max = line_size;
803 if (cache_size < cci.pcci_cache_size)
804 cache_size = cci.pcci_cache_size;
805 if (!cci.pcci_unified) {
806 status = ia64_pal_cache_config_info(l,
807 /* cache_type (instruction)= */ 1,
808 &cci);
809 if (status != 0) {
810 printk(KERN_ERR
811 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
812 __FUNCTION__, l, status);
813 /* The safest setup for "flush_icache_range()" */
814 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
817 if (cci.pcci_stride < ia64_i_cache_stride_shift)
818 ia64_i_cache_stride_shift = cci.pcci_stride;
820 out:
821 #ifdef CONFIG_SMP
822 max_cache_size = max(max_cache_size, cache_size);
823 #endif
824 if (max > ia64_max_cacheline_size)
825 ia64_max_cacheline_size = max;
829 * cpu_init() initializes state that is per-CPU. This function acts
830 * as a 'CPU state barrier', nothing should get across.
832 void __cpuinit
833 cpu_init (void)
835 extern void __cpuinit ia64_mmu_init (void *);
836 unsigned long num_phys_stacked;
837 pal_vm_info_2_u_t vmi;
838 unsigned int max_ctx;
839 struct cpuinfo_ia64 *cpu_info;
840 void *cpu_data;
842 cpu_data = per_cpu_init();
845 * We set ar.k3 so that assembly code in MCA handler can compute
846 * physical addresses of per cpu variables with a simple:
847 * phys = ar.k3 + &per_cpu_var
849 ia64_set_kr(IA64_KR_PER_CPU_DATA,
850 ia64_tpa(cpu_data) - (long) __per_cpu_start);
852 get_max_cacheline_size();
855 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
856 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
857 * depends on the data returned by identify_cpu(). We break the dependency by
858 * accessing cpu_data() through the canonical per-CPU address.
860 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
861 identify_cpu(cpu_info);
863 #ifdef CONFIG_MCKINLEY
865 # define FEATURE_SET 16
866 struct ia64_pal_retval iprv;
868 if (cpu_info->family == 0x1f) {
869 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
870 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
871 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
872 (iprv.v1 | 0x80), FEATURE_SET, 0);
875 #endif
877 /* Clear the stack memory reserved for pt_regs: */
878 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
880 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
883 * Initialize the page-table base register to a global
884 * directory with all zeroes. This ensure that we can handle
885 * TLB-misses to user address-space even before we created the
886 * first user address-space. This may happen, e.g., due to
887 * aggressive use of lfetch.fault.
889 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
892 * Initialize default control register to defer speculative faults except
893 * for those arising from TLB misses, which are not deferred. The
894 * kernel MUST NOT depend on a particular setting of these bits (in other words,
895 * the kernel must have recovery code for all speculative accesses). Turn on
896 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
897 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
898 * be fine).
900 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
901 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
902 atomic_inc(&init_mm.mm_count);
903 current->active_mm = &init_mm;
904 if (current->mm)
905 BUG();
907 ia64_mmu_init(ia64_imva(cpu_data));
908 ia64_mca_cpu_init(ia64_imva(cpu_data));
910 #ifdef CONFIG_IA32_SUPPORT
911 ia32_cpu_init();
912 #endif
914 /* Clear ITC to eliminiate sched_clock() overflows in human time. */
915 ia64_set_itc(0);
917 /* disable all local interrupt sources: */
918 ia64_set_itv(1 << 16);
919 ia64_set_lrr0(1 << 16);
920 ia64_set_lrr1(1 << 16);
921 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
922 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
924 /* clear TPR & XTP to enable all interrupt classes: */
925 ia64_setreg(_IA64_REG_CR_TPR, 0);
926 #ifdef CONFIG_SMP
927 normal_xtp();
928 #endif
930 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
931 if (ia64_pal_vm_summary(NULL, &vmi) == 0)
932 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
933 else {
934 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
935 max_ctx = (1U << 15) - 1; /* use architected minimum */
937 while (max_ctx < ia64_ctx.max_ctx) {
938 unsigned int old = ia64_ctx.max_ctx;
939 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
940 break;
943 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
944 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
945 "stacked regs\n");
946 num_phys_stacked = 96;
948 /* size of physical stacked register partition plus 8 bytes: */
949 __get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
950 platform_cpu_init();
951 pm_idle = default_idle;
955 * On SMP systems, when the scheduler does migration-cost autodetection,
956 * it needs a way to flush as much of the CPU's caches as possible.
958 void sched_cacheflush(void)
960 ia64_sal_cache_flush(3);
963 void __init
964 check_bugs (void)
966 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
967 (unsigned long) __end___mckinley_e9_bundles);
970 static int __init run_dmi_scan(void)
972 dmi_scan_machine();
973 return 0;
975 core_initcall(run_dmi_scan);