ath10k: add tdls support for 10.4 firmwares
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / ath / ath10k / pci.c
bloba697caec657922b41763796591196ec743f49221
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
24 #include "core.h"
25 #include "debug.h"
27 #include "targaddrs.h"
28 #include "bmi.h"
30 #include "hif.h"
31 #include "htc.h"
33 #include "ce.h"
34 #include "pci.h"
36 enum ath10k_pci_reset_mode {
37 ATH10K_PCI_RESET_AUTO = 0,
38 ATH10K_PCI_RESET_WARM_ONLY = 1,
41 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
44 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
47 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
50 /* how long wait to wait for target to initialise, in ms */
51 #define ATH10K_PCI_TARGET_WAIT 3000
52 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
60 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
61 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
62 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
63 {0}
66 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
67 /* QCA988X pre 2.0 chips are not supported because they need some nasty
68 * hacks. ath10k doesn't have them and these devices crash horribly
69 * because of that.
71 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
73 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
74 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
75 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
76 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
79 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
85 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
87 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
89 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
91 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
92 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
94 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
97 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
98 static int ath10k_pci_cold_reset(struct ath10k *ar);
99 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
100 static int ath10k_pci_init_irq(struct ath10k *ar);
101 static int ath10k_pci_deinit_irq(struct ath10k *ar);
102 static int ath10k_pci_request_irq(struct ath10k *ar);
103 static void ath10k_pci_free_irq(struct ath10k *ar);
104 static int ath10k_pci_bmi_wait(struct ath10k *ar,
105 struct ath10k_ce_pipe *tx_pipe,
106 struct ath10k_ce_pipe *rx_pipe,
107 struct bmi_xfer *xfer);
108 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
109 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
111 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
112 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
116 static struct ce_attr host_ce_config_wlan[] = {
117 /* CE0: host->target HTC control and raw streams */
119 .flags = CE_ATTR_FLAGS,
120 .src_nentries = 16,
121 .src_sz_max = 256,
122 .dest_nentries = 0,
123 .send_cb = ath10k_pci_htc_tx_cb,
126 /* CE1: target->host HTT + HTC control */
128 .flags = CE_ATTR_FLAGS,
129 .src_nentries = 0,
130 .src_sz_max = 2048,
131 .dest_nentries = 512,
132 .recv_cb = ath10k_pci_htt_htc_rx_cb,
135 /* CE2: target->host WMI */
137 .flags = CE_ATTR_FLAGS,
138 .src_nentries = 0,
139 .src_sz_max = 2048,
140 .dest_nentries = 128,
141 .recv_cb = ath10k_pci_htc_rx_cb,
144 /* CE3: host->target WMI */
146 .flags = CE_ATTR_FLAGS,
147 .src_nentries = 32,
148 .src_sz_max = 2048,
149 .dest_nentries = 0,
150 .send_cb = ath10k_pci_htc_tx_cb,
153 /* CE4: host->target HTT */
155 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
156 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
157 .src_sz_max = 256,
158 .dest_nentries = 0,
159 .send_cb = ath10k_pci_htt_tx_cb,
162 /* CE5: target->host HTT (HIF->HTT) */
164 .flags = CE_ATTR_FLAGS,
165 .src_nentries = 0,
166 .src_sz_max = 512,
167 .dest_nentries = 512,
168 .recv_cb = ath10k_pci_htt_rx_cb,
171 /* CE6: target autonomous hif_memcpy */
173 .flags = CE_ATTR_FLAGS,
174 .src_nentries = 0,
175 .src_sz_max = 0,
176 .dest_nentries = 0,
179 /* CE7: ce_diag, the Diagnostic Window */
181 .flags = CE_ATTR_FLAGS,
182 .src_nentries = 2,
183 .src_sz_max = DIAG_TRANSFER_LIMIT,
184 .dest_nentries = 2,
187 /* CE8: target->host pktlog */
189 .flags = CE_ATTR_FLAGS,
190 .src_nentries = 0,
191 .src_sz_max = 2048,
192 .dest_nentries = 128,
193 .recv_cb = ath10k_pci_pktlog_rx_cb,
196 /* CE9 target autonomous qcache memcpy */
198 .flags = CE_ATTR_FLAGS,
199 .src_nentries = 0,
200 .src_sz_max = 0,
201 .dest_nentries = 0,
204 /* CE10: target autonomous hif memcpy */
206 .flags = CE_ATTR_FLAGS,
207 .src_nentries = 0,
208 .src_sz_max = 0,
209 .dest_nentries = 0,
212 /* CE11: target autonomous hif memcpy */
214 .flags = CE_ATTR_FLAGS,
215 .src_nentries = 0,
216 .src_sz_max = 0,
217 .dest_nentries = 0,
221 /* Target firmware's Copy Engine configuration. */
222 static struct ce_pipe_config target_ce_config_wlan[] = {
223 /* CE0: host->target HTC control and raw streams */
225 .pipenum = __cpu_to_le32(0),
226 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
227 .nentries = __cpu_to_le32(32),
228 .nbytes_max = __cpu_to_le32(256),
229 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
230 .reserved = __cpu_to_le32(0),
233 /* CE1: target->host HTT + HTC control */
235 .pipenum = __cpu_to_le32(1),
236 .pipedir = __cpu_to_le32(PIPEDIR_IN),
237 .nentries = __cpu_to_le32(32),
238 .nbytes_max = __cpu_to_le32(2048),
239 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
240 .reserved = __cpu_to_le32(0),
243 /* CE2: target->host WMI */
245 .pipenum = __cpu_to_le32(2),
246 .pipedir = __cpu_to_le32(PIPEDIR_IN),
247 .nentries = __cpu_to_le32(64),
248 .nbytes_max = __cpu_to_le32(2048),
249 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
250 .reserved = __cpu_to_le32(0),
253 /* CE3: host->target WMI */
255 .pipenum = __cpu_to_le32(3),
256 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
257 .nentries = __cpu_to_le32(32),
258 .nbytes_max = __cpu_to_le32(2048),
259 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
260 .reserved = __cpu_to_le32(0),
263 /* CE4: host->target HTT */
265 .pipenum = __cpu_to_le32(4),
266 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
267 .nentries = __cpu_to_le32(256),
268 .nbytes_max = __cpu_to_le32(256),
269 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
270 .reserved = __cpu_to_le32(0),
273 /* NB: 50% of src nentries, since tx has 2 frags */
275 /* CE5: target->host HTT (HIF->HTT) */
277 .pipenum = __cpu_to_le32(5),
278 .pipedir = __cpu_to_le32(PIPEDIR_IN),
279 .nentries = __cpu_to_le32(32),
280 .nbytes_max = __cpu_to_le32(512),
281 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
282 .reserved = __cpu_to_le32(0),
285 /* CE6: Reserved for target autonomous hif_memcpy */
287 .pipenum = __cpu_to_le32(6),
288 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
289 .nentries = __cpu_to_le32(32),
290 .nbytes_max = __cpu_to_le32(4096),
291 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
292 .reserved = __cpu_to_le32(0),
295 /* CE7 used only by Host */
297 .pipenum = __cpu_to_le32(7),
298 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
299 .nentries = __cpu_to_le32(0),
300 .nbytes_max = __cpu_to_le32(0),
301 .flags = __cpu_to_le32(0),
302 .reserved = __cpu_to_le32(0),
305 /* CE8 target->host packtlog */
307 .pipenum = __cpu_to_le32(8),
308 .pipedir = __cpu_to_le32(PIPEDIR_IN),
309 .nentries = __cpu_to_le32(64),
310 .nbytes_max = __cpu_to_le32(2048),
311 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
312 .reserved = __cpu_to_le32(0),
315 /* CE9 target autonomous qcache memcpy */
317 .pipenum = __cpu_to_le32(9),
318 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
319 .nentries = __cpu_to_le32(32),
320 .nbytes_max = __cpu_to_le32(2048),
321 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
322 .reserved = __cpu_to_le32(0),
325 /* It not necessary to send target wlan configuration for CE10 & CE11
326 * as these CEs are not actively used in target.
331 * Map from service/endpoint to Copy Engine.
332 * This table is derived from the CE_PCI TABLE, above.
333 * It is passed to the Target at startup for use by firmware.
335 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
337 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
338 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
339 __cpu_to_le32(3),
342 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
343 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
344 __cpu_to_le32(2),
347 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
348 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
349 __cpu_to_le32(3),
352 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
353 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
354 __cpu_to_le32(2),
357 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
358 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
359 __cpu_to_le32(3),
362 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
363 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
364 __cpu_to_le32(2),
367 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
368 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
369 __cpu_to_le32(3),
372 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
373 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
374 __cpu_to_le32(2),
377 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
378 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
379 __cpu_to_le32(3),
382 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
383 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
384 __cpu_to_le32(2),
387 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
388 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
389 __cpu_to_le32(0),
392 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
393 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
394 __cpu_to_le32(1),
396 { /* not used */
397 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
398 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
399 __cpu_to_le32(0),
401 { /* not used */
402 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
403 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
404 __cpu_to_le32(1),
407 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
408 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
409 __cpu_to_le32(4),
412 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
413 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
414 __cpu_to_le32(5),
417 /* (Additions here) */
419 { /* must be last */
420 __cpu_to_le32(0),
421 __cpu_to_le32(0),
422 __cpu_to_le32(0),
426 static bool ath10k_pci_is_awake(struct ath10k *ar)
428 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
429 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
430 RTC_STATE_ADDRESS);
432 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
435 static void __ath10k_pci_wake(struct ath10k *ar)
437 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
439 lockdep_assert_held(&ar_pci->ps_lock);
441 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
442 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
444 iowrite32(PCIE_SOC_WAKE_V_MASK,
445 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
446 PCIE_SOC_WAKE_ADDRESS);
449 static void __ath10k_pci_sleep(struct ath10k *ar)
451 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
453 lockdep_assert_held(&ar_pci->ps_lock);
455 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
456 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
458 iowrite32(PCIE_SOC_WAKE_RESET,
459 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
460 PCIE_SOC_WAKE_ADDRESS);
461 ar_pci->ps_awake = false;
464 static int ath10k_pci_wake_wait(struct ath10k *ar)
466 int tot_delay = 0;
467 int curr_delay = 5;
469 while (tot_delay < PCIE_WAKE_TIMEOUT) {
470 if (ath10k_pci_is_awake(ar)) {
471 if (tot_delay > PCIE_WAKE_LATE_US)
472 ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
473 tot_delay / 1000);
474 return 0;
477 udelay(curr_delay);
478 tot_delay += curr_delay;
480 if (curr_delay < 50)
481 curr_delay += 5;
484 return -ETIMEDOUT;
487 static int ath10k_pci_force_wake(struct ath10k *ar)
489 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
490 unsigned long flags;
491 int ret = 0;
493 if (ar_pci->pci_ps)
494 return ret;
496 spin_lock_irqsave(&ar_pci->ps_lock, flags);
498 if (!ar_pci->ps_awake) {
499 iowrite32(PCIE_SOC_WAKE_V_MASK,
500 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
501 PCIE_SOC_WAKE_ADDRESS);
503 ret = ath10k_pci_wake_wait(ar);
504 if (ret == 0)
505 ar_pci->ps_awake = true;
508 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
510 return ret;
513 static void ath10k_pci_force_sleep(struct ath10k *ar)
515 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
516 unsigned long flags;
518 spin_lock_irqsave(&ar_pci->ps_lock, flags);
520 iowrite32(PCIE_SOC_WAKE_RESET,
521 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
522 PCIE_SOC_WAKE_ADDRESS);
523 ar_pci->ps_awake = false;
525 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
528 static int ath10k_pci_wake(struct ath10k *ar)
530 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
531 unsigned long flags;
532 int ret = 0;
534 if (ar_pci->pci_ps == 0)
535 return ret;
537 spin_lock_irqsave(&ar_pci->ps_lock, flags);
539 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
540 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
542 /* This function can be called very frequently. To avoid excessive
543 * CPU stalls for MMIO reads use a cache var to hold the device state.
545 if (!ar_pci->ps_awake) {
546 __ath10k_pci_wake(ar);
548 ret = ath10k_pci_wake_wait(ar);
549 if (ret == 0)
550 ar_pci->ps_awake = true;
553 if (ret == 0) {
554 ar_pci->ps_wake_refcount++;
555 WARN_ON(ar_pci->ps_wake_refcount == 0);
558 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
560 return ret;
563 static void ath10k_pci_sleep(struct ath10k *ar)
565 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
566 unsigned long flags;
568 if (ar_pci->pci_ps == 0)
569 return;
571 spin_lock_irqsave(&ar_pci->ps_lock, flags);
573 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
574 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
576 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
577 goto skip;
579 ar_pci->ps_wake_refcount--;
581 mod_timer(&ar_pci->ps_timer, jiffies +
582 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
584 skip:
585 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
588 static void ath10k_pci_ps_timer(unsigned long ptr)
590 struct ath10k *ar = (void *)ptr;
591 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
592 unsigned long flags;
594 spin_lock_irqsave(&ar_pci->ps_lock, flags);
596 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
597 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
599 if (ar_pci->ps_wake_refcount > 0)
600 goto skip;
602 __ath10k_pci_sleep(ar);
604 skip:
605 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
608 static void ath10k_pci_sleep_sync(struct ath10k *ar)
610 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
611 unsigned long flags;
613 if (ar_pci->pci_ps == 0) {
614 ath10k_pci_force_sleep(ar);
615 return;
618 del_timer_sync(&ar_pci->ps_timer);
620 spin_lock_irqsave(&ar_pci->ps_lock, flags);
621 WARN_ON(ar_pci->ps_wake_refcount > 0);
622 __ath10k_pci_sleep(ar);
623 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
626 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
628 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
629 int ret;
631 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
632 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
633 offset, offset + sizeof(value), ar_pci->mem_len);
634 return;
637 ret = ath10k_pci_wake(ar);
638 if (ret) {
639 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
640 value, offset, ret);
641 return;
644 iowrite32(value, ar_pci->mem + offset);
645 ath10k_pci_sleep(ar);
648 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
650 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
651 u32 val;
652 int ret;
654 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
655 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
656 offset, offset + sizeof(val), ar_pci->mem_len);
657 return 0;
660 ret = ath10k_pci_wake(ar);
661 if (ret) {
662 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
663 offset, ret);
664 return 0xffffffff;
667 val = ioread32(ar_pci->mem + offset);
668 ath10k_pci_sleep(ar);
670 return val;
673 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
675 struct ath10k_ce *ce = ath10k_ce_priv(ar);
677 ce->bus_ops->write32(ar, offset, value);
680 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
682 struct ath10k_ce *ce = ath10k_ce_priv(ar);
684 return ce->bus_ops->read32(ar, offset);
687 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
689 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
692 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
694 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
697 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
699 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
702 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
704 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
707 bool ath10k_pci_irq_pending(struct ath10k *ar)
709 u32 cause;
711 /* Check if the shared legacy irq is for us */
712 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
713 PCIE_INTR_CAUSE_ADDRESS);
714 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
715 return true;
717 return false;
720 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
722 /* IMPORTANT: INTR_CLR register has to be set after
723 * INTR_ENABLE is set to 0, otherwise interrupt can not be
724 * really cleared.
726 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
728 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
729 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
731 /* IMPORTANT: this extra read transaction is required to
732 * flush the posted write buffer.
734 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
735 PCIE_INTR_ENABLE_ADDRESS);
738 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
740 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
741 PCIE_INTR_ENABLE_ADDRESS,
742 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
744 /* IMPORTANT: this extra read transaction is required to
745 * flush the posted write buffer.
747 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
748 PCIE_INTR_ENABLE_ADDRESS);
751 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
753 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
755 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
756 return "msi";
758 return "legacy";
761 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
763 struct ath10k *ar = pipe->hif_ce_state;
764 struct ath10k_ce *ce = ath10k_ce_priv(ar);
765 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
766 struct sk_buff *skb;
767 dma_addr_t paddr;
768 int ret;
770 skb = dev_alloc_skb(pipe->buf_sz);
771 if (!skb)
772 return -ENOMEM;
774 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
776 paddr = dma_map_single(ar->dev, skb->data,
777 skb->len + skb_tailroom(skb),
778 DMA_FROM_DEVICE);
779 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
780 ath10k_warn(ar, "failed to dma map pci rx buf\n");
781 dev_kfree_skb_any(skb);
782 return -EIO;
785 ATH10K_SKB_RXCB(skb)->paddr = paddr;
787 spin_lock_bh(&ce->ce_lock);
788 ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
789 spin_unlock_bh(&ce->ce_lock);
790 if (ret) {
791 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
792 DMA_FROM_DEVICE);
793 dev_kfree_skb_any(skb);
794 return ret;
797 return 0;
800 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
802 struct ath10k *ar = pipe->hif_ce_state;
803 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
804 struct ath10k_ce *ce = ath10k_ce_priv(ar);
805 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
806 int ret, num;
808 if (pipe->buf_sz == 0)
809 return;
811 if (!ce_pipe->dest_ring)
812 return;
814 spin_lock_bh(&ce->ce_lock);
815 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
816 spin_unlock_bh(&ce->ce_lock);
818 while (num >= 0) {
819 ret = __ath10k_pci_rx_post_buf(pipe);
820 if (ret) {
821 if (ret == -ENOSPC)
822 break;
823 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
824 mod_timer(&ar_pci->rx_post_retry, jiffies +
825 ATH10K_PCI_RX_POST_RETRY_MS);
826 break;
828 num--;
832 void ath10k_pci_rx_post(struct ath10k *ar)
834 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
835 int i;
837 for (i = 0; i < CE_COUNT; i++)
838 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
841 void ath10k_pci_rx_replenish_retry(unsigned long ptr)
843 struct ath10k *ar = (void *)ptr;
845 ath10k_pci_rx_post(ar);
848 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
850 u32 val = 0, region = addr & 0xfffff;
852 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
853 & 0x7ff) << 21;
854 val |= 0x100000 | region;
855 return val;
858 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
860 u32 val = 0, region = addr & 0xfffff;
862 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
863 val |= 0x100000 | region;
864 return val;
867 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
869 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
871 if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
872 return -ENOTSUPP;
874 return ar_pci->targ_cpu_to_ce_addr(ar, addr);
878 * Diagnostic read/write access is provided for startup/config/debug usage.
879 * Caller must guarantee proper alignment, when applicable, and single user
880 * at any moment.
882 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
883 int nbytes)
885 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
886 struct ath10k_ce *ce = ath10k_ce_priv(ar);
887 int ret = 0;
888 u32 *buf;
889 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
890 struct ath10k_ce_pipe *ce_diag;
891 /* Host buffer address in CE space */
892 u32 ce_data;
893 dma_addr_t ce_data_base = 0;
894 void *data_buf = NULL;
895 int i;
897 spin_lock_bh(&ce->ce_lock);
899 ce_diag = ar_pci->ce_diag;
902 * Allocate a temporary bounce buffer to hold caller's data
903 * to be DMA'ed from Target. This guarantees
904 * 1) 4-byte alignment
905 * 2) Buffer in DMA-able space
907 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
909 data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
910 alloc_nbytes,
911 &ce_data_base,
912 GFP_ATOMIC);
914 if (!data_buf) {
915 ret = -ENOMEM;
916 goto done;
919 remaining_bytes = nbytes;
920 ce_data = ce_data_base;
921 while (remaining_bytes) {
922 nbytes = min_t(unsigned int, remaining_bytes,
923 DIAG_TRANSFER_LIMIT);
925 ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
926 if (ret != 0)
927 goto done;
929 /* Request CE to send from Target(!) address to Host buffer */
931 * The address supplied by the caller is in the
932 * Target CPU virtual address space.
934 * In order to use this address with the diagnostic CE,
935 * convert it from Target CPU virtual address space
936 * to CE address space
938 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
940 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
942 if (ret)
943 goto done;
945 i = 0;
946 while (ath10k_ce_completed_send_next_nolock(ce_diag,
947 NULL) != 0) {
948 mdelay(1);
949 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
950 ret = -EBUSY;
951 goto done;
955 i = 0;
956 while (ath10k_ce_completed_recv_next_nolock(ce_diag,
957 (void **)&buf,
958 &completed_nbytes)
959 != 0) {
960 mdelay(1);
962 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
963 ret = -EBUSY;
964 goto done;
968 if (nbytes != completed_nbytes) {
969 ret = -EIO;
970 goto done;
973 if (*buf != ce_data) {
974 ret = -EIO;
975 goto done;
978 remaining_bytes -= nbytes;
979 memcpy(data, data_buf, nbytes);
981 address += nbytes;
982 data += nbytes;
985 done:
987 if (data_buf)
988 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
989 ce_data_base);
991 spin_unlock_bh(&ce->ce_lock);
993 return ret;
996 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
998 __le32 val = 0;
999 int ret;
1001 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1002 *value = __le32_to_cpu(val);
1004 return ret;
1007 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1008 u32 src, u32 len)
1010 u32 host_addr, addr;
1011 int ret;
1013 host_addr = host_interest_item_address(src);
1015 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1016 if (ret != 0) {
1017 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1018 src, ret);
1019 return ret;
1022 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1023 if (ret != 0) {
1024 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1025 addr, len, ret);
1026 return ret;
1029 return 0;
1032 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \
1033 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1035 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1036 const void *data, int nbytes)
1038 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1039 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1040 int ret = 0;
1041 u32 *buf;
1042 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1043 struct ath10k_ce_pipe *ce_diag;
1044 void *data_buf = NULL;
1045 u32 ce_data; /* Host buffer address in CE space */
1046 dma_addr_t ce_data_base = 0;
1047 int i;
1049 spin_lock_bh(&ce->ce_lock);
1051 ce_diag = ar_pci->ce_diag;
1054 * Allocate a temporary bounce buffer to hold caller's data
1055 * to be DMA'ed to Target. This guarantees
1056 * 1) 4-byte alignment
1057 * 2) Buffer in DMA-able space
1059 orig_nbytes = nbytes;
1060 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1061 orig_nbytes,
1062 &ce_data_base,
1063 GFP_ATOMIC);
1064 if (!data_buf) {
1065 ret = -ENOMEM;
1066 goto done;
1069 /* Copy caller's data to allocated DMA buf */
1070 memcpy(data_buf, data, orig_nbytes);
1073 * The address supplied by the caller is in the
1074 * Target CPU virtual address space.
1076 * In order to use this address with the diagnostic CE,
1077 * convert it from
1078 * Target CPU virtual address space
1079 * to
1080 * CE address space
1082 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1084 remaining_bytes = orig_nbytes;
1085 ce_data = ce_data_base;
1086 while (remaining_bytes) {
1087 /* FIXME: check cast */
1088 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1090 /* Set up to receive directly into Target(!) address */
1091 ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1092 if (ret != 0)
1093 goto done;
1096 * Request CE to send caller-supplied data that
1097 * was copied to bounce buffer to Target(!) address.
1099 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1100 nbytes, 0, 0);
1101 if (ret != 0)
1102 goto done;
1104 i = 0;
1105 while (ath10k_ce_completed_send_next_nolock(ce_diag,
1106 NULL) != 0) {
1107 mdelay(1);
1109 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1110 ret = -EBUSY;
1111 goto done;
1115 i = 0;
1116 while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1117 (void **)&buf,
1118 &completed_nbytes)
1119 != 0) {
1120 mdelay(1);
1122 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1123 ret = -EBUSY;
1124 goto done;
1128 if (nbytes != completed_nbytes) {
1129 ret = -EIO;
1130 goto done;
1133 if (*buf != address) {
1134 ret = -EIO;
1135 goto done;
1138 remaining_bytes -= nbytes;
1139 address += nbytes;
1140 ce_data += nbytes;
1143 done:
1144 if (data_buf) {
1145 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1146 ce_data_base);
1149 if (ret != 0)
1150 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1151 address, ret);
1153 spin_unlock_bh(&ce->ce_lock);
1155 return ret;
1158 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1160 __le32 val = __cpu_to_le32(value);
1162 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1165 /* Called by lower (CE) layer when a send to Target completes. */
1166 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1168 struct ath10k *ar = ce_state->ar;
1169 struct sk_buff_head list;
1170 struct sk_buff *skb;
1172 __skb_queue_head_init(&list);
1173 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1174 /* no need to call tx completion for NULL pointers */
1175 if (skb == NULL)
1176 continue;
1178 __skb_queue_tail(&list, skb);
1181 while ((skb = __skb_dequeue(&list)))
1182 ath10k_htc_tx_completion_handler(ar, skb);
1185 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1186 void (*callback)(struct ath10k *ar,
1187 struct sk_buff *skb))
1189 struct ath10k *ar = ce_state->ar;
1190 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1191 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1192 struct sk_buff *skb;
1193 struct sk_buff_head list;
1194 void *transfer_context;
1195 unsigned int nbytes, max_nbytes;
1197 __skb_queue_head_init(&list);
1198 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1199 &nbytes) == 0) {
1200 skb = transfer_context;
1201 max_nbytes = skb->len + skb_tailroom(skb);
1202 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1203 max_nbytes, DMA_FROM_DEVICE);
1205 if (unlikely(max_nbytes < nbytes)) {
1206 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1207 nbytes, max_nbytes);
1208 dev_kfree_skb_any(skb);
1209 continue;
1212 skb_put(skb, nbytes);
1213 __skb_queue_tail(&list, skb);
1216 while ((skb = __skb_dequeue(&list))) {
1217 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1218 ce_state->id, skb->len);
1219 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1220 skb->data, skb->len);
1222 callback(ar, skb);
1225 ath10k_pci_rx_post_pipe(pipe_info);
1228 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1229 void (*callback)(struct ath10k *ar,
1230 struct sk_buff *skb))
1232 struct ath10k *ar = ce_state->ar;
1233 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1234 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1235 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1236 struct sk_buff *skb;
1237 struct sk_buff_head list;
1238 void *transfer_context;
1239 unsigned int nbytes, max_nbytes, nentries;
1240 int orig_len;
1242 /* No need to aquire ce_lock for CE5, since this is the only place CE5
1243 * is processed other than init and deinit. Before releasing CE5
1244 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1246 __skb_queue_head_init(&list);
1247 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1248 &nbytes) == 0) {
1249 skb = transfer_context;
1250 max_nbytes = skb->len + skb_tailroom(skb);
1252 if (unlikely(max_nbytes < nbytes)) {
1253 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1254 nbytes, max_nbytes);
1255 continue;
1258 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1259 max_nbytes, DMA_FROM_DEVICE);
1260 skb_put(skb, nbytes);
1261 __skb_queue_tail(&list, skb);
1264 nentries = skb_queue_len(&list);
1265 while ((skb = __skb_dequeue(&list))) {
1266 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1267 ce_state->id, skb->len);
1268 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1269 skb->data, skb->len);
1271 orig_len = skb->len;
1272 callback(ar, skb);
1273 skb_push(skb, orig_len - skb->len);
1274 skb_reset_tail_pointer(skb);
1275 skb_trim(skb, 0);
1277 /*let device gain the buffer again*/
1278 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1279 skb->len + skb_tailroom(skb),
1280 DMA_FROM_DEVICE);
1282 ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1285 /* Called by lower (CE) layer when data is received from the Target. */
1286 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1288 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1291 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1293 /* CE4 polling needs to be done whenever CE pipe which transports
1294 * HTT Rx (target->host) is processed.
1296 ath10k_ce_per_engine_service(ce_state->ar, 4);
1298 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1301 /* Called by lower (CE) layer when data is received from the Target.
1302 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1304 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1306 ath10k_pci_process_rx_cb(ce_state,
1307 ath10k_htt_rx_pktlog_completion_handler);
1310 /* Called by lower (CE) layer when a send to HTT Target completes. */
1311 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1313 struct ath10k *ar = ce_state->ar;
1314 struct sk_buff *skb;
1316 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1317 /* no need to call tx completion for NULL pointers */
1318 if (!skb)
1319 continue;
1321 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1322 skb->len, DMA_TO_DEVICE);
1323 ath10k_htt_hif_tx_complete(ar, skb);
1327 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1329 skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1330 ath10k_htt_t2h_msg_handler(ar, skb);
1333 /* Called by lower (CE) layer when HTT data is received from the Target. */
1334 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1336 /* CE4 polling needs to be done whenever CE pipe which transports
1337 * HTT Rx (target->host) is processed.
1339 ath10k_ce_per_engine_service(ce_state->ar, 4);
1341 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1344 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1345 struct ath10k_hif_sg_item *items, int n_items)
1347 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1348 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1349 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1350 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1351 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1352 unsigned int nentries_mask;
1353 unsigned int sw_index;
1354 unsigned int write_index;
1355 int err, i = 0;
1357 spin_lock_bh(&ce->ce_lock);
1359 nentries_mask = src_ring->nentries_mask;
1360 sw_index = src_ring->sw_index;
1361 write_index = src_ring->write_index;
1363 if (unlikely(CE_RING_DELTA(nentries_mask,
1364 write_index, sw_index - 1) < n_items)) {
1365 err = -ENOBUFS;
1366 goto err;
1369 for (i = 0; i < n_items - 1; i++) {
1370 ath10k_dbg(ar, ATH10K_DBG_PCI,
1371 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1372 i, items[i].paddr, items[i].len, n_items);
1373 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1374 items[i].vaddr, items[i].len);
1376 err = ath10k_ce_send_nolock(ce_pipe,
1377 items[i].transfer_context,
1378 items[i].paddr,
1379 items[i].len,
1380 items[i].transfer_id,
1381 CE_SEND_FLAG_GATHER);
1382 if (err)
1383 goto err;
1386 /* `i` is equal to `n_items -1` after for() */
1388 ath10k_dbg(ar, ATH10K_DBG_PCI,
1389 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1390 i, items[i].paddr, items[i].len, n_items);
1391 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1392 items[i].vaddr, items[i].len);
1394 err = ath10k_ce_send_nolock(ce_pipe,
1395 items[i].transfer_context,
1396 items[i].paddr,
1397 items[i].len,
1398 items[i].transfer_id,
1400 if (err)
1401 goto err;
1403 spin_unlock_bh(&ce->ce_lock);
1404 return 0;
1406 err:
1407 for (; i > 0; i--)
1408 __ath10k_ce_send_revert(ce_pipe);
1410 spin_unlock_bh(&ce->ce_lock);
1411 return err;
1414 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1415 size_t buf_len)
1417 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1420 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1422 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1424 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1426 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1429 static void ath10k_pci_dump_registers(struct ath10k *ar,
1430 struct ath10k_fw_crash_data *crash_data)
1432 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1433 int i, ret;
1435 lockdep_assert_held(&ar->data_lock);
1437 ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1438 hi_failure_state,
1439 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1440 if (ret) {
1441 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1442 return;
1445 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1447 ath10k_err(ar, "firmware register dump:\n");
1448 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1449 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1451 __le32_to_cpu(reg_dump_values[i]),
1452 __le32_to_cpu(reg_dump_values[i + 1]),
1453 __le32_to_cpu(reg_dump_values[i + 2]),
1454 __le32_to_cpu(reg_dump_values[i + 3]));
1456 if (!crash_data)
1457 return;
1459 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1460 crash_data->registers[i] = reg_dump_values[i];
1463 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1465 struct ath10k_fw_crash_data *crash_data;
1466 char uuid[50];
1468 spin_lock_bh(&ar->data_lock);
1470 ar->stats.fw_crash_counter++;
1472 crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1474 if (crash_data)
1475 scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1476 else
1477 scnprintf(uuid, sizeof(uuid), "n/a");
1479 ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1480 ath10k_print_driver_info(ar);
1481 ath10k_pci_dump_registers(ar, crash_data);
1482 ath10k_ce_dump_registers(ar, crash_data);
1484 spin_unlock_bh(&ar->data_lock);
1486 queue_work(ar->workqueue, &ar->restart_work);
1489 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1490 int force)
1492 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1494 if (!force) {
1495 int resources;
1497 * Decide whether to actually poll for completions, or just
1498 * wait for a later chance.
1499 * If there seem to be plenty of resources left, then just wait
1500 * since checking involves reading a CE register, which is a
1501 * relatively expensive operation.
1503 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1506 * If at least 50% of the total resources are still available,
1507 * don't bother checking again yet.
1509 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1510 return;
1512 ath10k_ce_per_engine_service(ar, pipe);
1515 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1517 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1519 del_timer_sync(&ar_pci->rx_post_retry);
1522 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1523 u8 *ul_pipe, u8 *dl_pipe)
1525 const struct service_to_pipe *entry;
1526 bool ul_set = false, dl_set = false;
1527 int i;
1529 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1531 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1532 entry = &target_service_to_ce_map_wlan[i];
1534 if (__le32_to_cpu(entry->service_id) != service_id)
1535 continue;
1537 switch (__le32_to_cpu(entry->pipedir)) {
1538 case PIPEDIR_NONE:
1539 break;
1540 case PIPEDIR_IN:
1541 WARN_ON(dl_set);
1542 *dl_pipe = __le32_to_cpu(entry->pipenum);
1543 dl_set = true;
1544 break;
1545 case PIPEDIR_OUT:
1546 WARN_ON(ul_set);
1547 *ul_pipe = __le32_to_cpu(entry->pipenum);
1548 ul_set = true;
1549 break;
1550 case PIPEDIR_INOUT:
1551 WARN_ON(dl_set);
1552 WARN_ON(ul_set);
1553 *dl_pipe = __le32_to_cpu(entry->pipenum);
1554 *ul_pipe = __le32_to_cpu(entry->pipenum);
1555 dl_set = true;
1556 ul_set = true;
1557 break;
1561 if (WARN_ON(!ul_set || !dl_set))
1562 return -ENOENT;
1564 return 0;
1567 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1568 u8 *ul_pipe, u8 *dl_pipe)
1570 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1572 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1573 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1574 ul_pipe, dl_pipe);
1577 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1579 u32 val;
1581 switch (ar->hw_rev) {
1582 case ATH10K_HW_QCA988X:
1583 case ATH10K_HW_QCA9887:
1584 case ATH10K_HW_QCA6174:
1585 case ATH10K_HW_QCA9377:
1586 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1587 CORE_CTRL_ADDRESS);
1588 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1589 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1590 CORE_CTRL_ADDRESS, val);
1591 break;
1592 case ATH10K_HW_QCA99X0:
1593 case ATH10K_HW_QCA9984:
1594 case ATH10K_HW_QCA9888:
1595 case ATH10K_HW_QCA4019:
1596 /* TODO: Find appropriate register configuration for QCA99X0
1597 * to mask irq/MSI.
1599 break;
1600 case ATH10K_HW_WCN3990:
1601 break;
1605 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1607 u32 val;
1609 switch (ar->hw_rev) {
1610 case ATH10K_HW_QCA988X:
1611 case ATH10K_HW_QCA9887:
1612 case ATH10K_HW_QCA6174:
1613 case ATH10K_HW_QCA9377:
1614 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1615 CORE_CTRL_ADDRESS);
1616 val |= CORE_CTRL_PCIE_REG_31_MASK;
1617 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1618 CORE_CTRL_ADDRESS, val);
1619 break;
1620 case ATH10K_HW_QCA99X0:
1621 case ATH10K_HW_QCA9984:
1622 case ATH10K_HW_QCA9888:
1623 case ATH10K_HW_QCA4019:
1624 /* TODO: Find appropriate register configuration for QCA99X0
1625 * to unmask irq/MSI.
1627 break;
1628 case ATH10K_HW_WCN3990:
1629 break;
1633 static void ath10k_pci_irq_disable(struct ath10k *ar)
1635 ath10k_ce_disable_interrupts(ar);
1636 ath10k_pci_disable_and_clear_legacy_irq(ar);
1637 ath10k_pci_irq_msi_fw_mask(ar);
1640 static void ath10k_pci_irq_sync(struct ath10k *ar)
1642 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1644 synchronize_irq(ar_pci->pdev->irq);
1647 static void ath10k_pci_irq_enable(struct ath10k *ar)
1649 ath10k_ce_enable_interrupts(ar);
1650 ath10k_pci_enable_legacy_irq(ar);
1651 ath10k_pci_irq_msi_fw_unmask(ar);
1654 static int ath10k_pci_hif_start(struct ath10k *ar)
1656 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1658 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1660 napi_enable(&ar->napi);
1662 ath10k_pci_irq_enable(ar);
1663 ath10k_pci_rx_post(ar);
1665 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1666 ar_pci->link_ctl);
1668 return 0;
1671 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1673 struct ath10k *ar;
1674 struct ath10k_ce_pipe *ce_pipe;
1675 struct ath10k_ce_ring *ce_ring;
1676 struct sk_buff *skb;
1677 int i;
1679 ar = pci_pipe->hif_ce_state;
1680 ce_pipe = pci_pipe->ce_hdl;
1681 ce_ring = ce_pipe->dest_ring;
1683 if (!ce_ring)
1684 return;
1686 if (!pci_pipe->buf_sz)
1687 return;
1689 for (i = 0; i < ce_ring->nentries; i++) {
1690 skb = ce_ring->per_transfer_context[i];
1691 if (!skb)
1692 continue;
1694 ce_ring->per_transfer_context[i] = NULL;
1696 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1697 skb->len + skb_tailroom(skb),
1698 DMA_FROM_DEVICE);
1699 dev_kfree_skb_any(skb);
1703 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1705 struct ath10k *ar;
1706 struct ath10k_ce_pipe *ce_pipe;
1707 struct ath10k_ce_ring *ce_ring;
1708 struct sk_buff *skb;
1709 int i;
1711 ar = pci_pipe->hif_ce_state;
1712 ce_pipe = pci_pipe->ce_hdl;
1713 ce_ring = ce_pipe->src_ring;
1715 if (!ce_ring)
1716 return;
1718 if (!pci_pipe->buf_sz)
1719 return;
1721 for (i = 0; i < ce_ring->nentries; i++) {
1722 skb = ce_ring->per_transfer_context[i];
1723 if (!skb)
1724 continue;
1726 ce_ring->per_transfer_context[i] = NULL;
1728 ath10k_htc_tx_completion_handler(ar, skb);
1733 * Cleanup residual buffers for device shutdown:
1734 * buffers that were enqueued for receive
1735 * buffers that were to be sent
1736 * Note: Buffers that had completed but which were
1737 * not yet processed are on a completion queue. They
1738 * are handled when the completion thread shuts down.
1740 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1742 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1743 int pipe_num;
1745 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1746 struct ath10k_pci_pipe *pipe_info;
1748 pipe_info = &ar_pci->pipe_info[pipe_num];
1749 ath10k_pci_rx_pipe_cleanup(pipe_info);
1750 ath10k_pci_tx_pipe_cleanup(pipe_info);
1754 void ath10k_pci_ce_deinit(struct ath10k *ar)
1756 int i;
1758 for (i = 0; i < CE_COUNT; i++)
1759 ath10k_ce_deinit_pipe(ar, i);
1762 void ath10k_pci_flush(struct ath10k *ar)
1764 ath10k_pci_rx_retry_sync(ar);
1765 ath10k_pci_buffer_cleanup(ar);
1768 static void ath10k_pci_hif_stop(struct ath10k *ar)
1770 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1771 unsigned long flags;
1773 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1775 /* Most likely the device has HTT Rx ring configured. The only way to
1776 * prevent the device from accessing (and possible corrupting) host
1777 * memory is to reset the chip now.
1779 * There's also no known way of masking MSI interrupts on the device.
1780 * For ranged MSI the CE-related interrupts can be masked. However
1781 * regardless how many MSI interrupts are assigned the first one
1782 * is always used for firmware indications (crashes) and cannot be
1783 * masked. To prevent the device from asserting the interrupt reset it
1784 * before proceeding with cleanup.
1786 ath10k_pci_safe_chip_reset(ar);
1788 ath10k_pci_irq_disable(ar);
1789 ath10k_pci_irq_sync(ar);
1790 ath10k_pci_flush(ar);
1791 napi_synchronize(&ar->napi);
1792 napi_disable(&ar->napi);
1794 spin_lock_irqsave(&ar_pci->ps_lock, flags);
1795 WARN_ON(ar_pci->ps_wake_refcount > 0);
1796 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1799 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1800 void *req, u32 req_len,
1801 void *resp, u32 *resp_len)
1803 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1804 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1805 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1806 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1807 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1808 dma_addr_t req_paddr = 0;
1809 dma_addr_t resp_paddr = 0;
1810 struct bmi_xfer xfer = {};
1811 void *treq, *tresp = NULL;
1812 int ret = 0;
1814 might_sleep();
1816 if (resp && !resp_len)
1817 return -EINVAL;
1819 if (resp && resp_len && *resp_len == 0)
1820 return -EINVAL;
1822 treq = kmemdup(req, req_len, GFP_KERNEL);
1823 if (!treq)
1824 return -ENOMEM;
1826 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1827 ret = dma_mapping_error(ar->dev, req_paddr);
1828 if (ret) {
1829 ret = -EIO;
1830 goto err_dma;
1833 if (resp && resp_len) {
1834 tresp = kzalloc(*resp_len, GFP_KERNEL);
1835 if (!tresp) {
1836 ret = -ENOMEM;
1837 goto err_req;
1840 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1841 DMA_FROM_DEVICE);
1842 ret = dma_mapping_error(ar->dev, resp_paddr);
1843 if (ret) {
1844 ret = -EIO;
1845 goto err_req;
1848 xfer.wait_for_resp = true;
1849 xfer.resp_len = 0;
1851 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1854 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1855 if (ret)
1856 goto err_resp;
1858 ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
1859 if (ret) {
1860 u32 unused_buffer;
1861 unsigned int unused_nbytes;
1862 unsigned int unused_id;
1864 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1865 &unused_nbytes, &unused_id);
1866 } else {
1867 /* non-zero means we did not time out */
1868 ret = 0;
1871 err_resp:
1872 if (resp) {
1873 u32 unused_buffer;
1875 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1876 dma_unmap_single(ar->dev, resp_paddr,
1877 *resp_len, DMA_FROM_DEVICE);
1879 err_req:
1880 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1882 if (ret == 0 && resp_len) {
1883 *resp_len = min(*resp_len, xfer.resp_len);
1884 memcpy(resp, tresp, xfer.resp_len);
1886 err_dma:
1887 kfree(treq);
1888 kfree(tresp);
1890 return ret;
1893 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1895 struct bmi_xfer *xfer;
1897 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1898 return;
1900 xfer->tx_done = true;
1903 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1905 struct ath10k *ar = ce_state->ar;
1906 struct bmi_xfer *xfer;
1907 unsigned int nbytes;
1909 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1910 &nbytes))
1911 return;
1913 if (WARN_ON_ONCE(!xfer))
1914 return;
1916 if (!xfer->wait_for_resp) {
1917 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1918 return;
1921 xfer->resp_len = nbytes;
1922 xfer->rx_done = true;
1925 static int ath10k_pci_bmi_wait(struct ath10k *ar,
1926 struct ath10k_ce_pipe *tx_pipe,
1927 struct ath10k_ce_pipe *rx_pipe,
1928 struct bmi_xfer *xfer)
1930 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1931 unsigned long started = jiffies;
1932 unsigned long dur;
1933 int ret;
1935 while (time_before_eq(jiffies, timeout)) {
1936 ath10k_pci_bmi_send_done(tx_pipe);
1937 ath10k_pci_bmi_recv_data(rx_pipe);
1939 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
1940 ret = 0;
1941 goto out;
1944 schedule();
1947 ret = -ETIMEDOUT;
1949 out:
1950 dur = jiffies - started;
1951 if (dur > HZ)
1952 ath10k_dbg(ar, ATH10K_DBG_BMI,
1953 "bmi cmd took %lu jiffies hz %d ret %d\n",
1954 dur, HZ, ret);
1955 return ret;
1959 * Send an interrupt to the device to wake up the Target CPU
1960 * so it has an opportunity to notice any changed state.
1962 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1964 u32 addr, val;
1966 addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
1967 val = ath10k_pci_read32(ar, addr);
1968 val |= CORE_CTRL_CPU_INTR_MASK;
1969 ath10k_pci_write32(ar, addr, val);
1971 return 0;
1974 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1976 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1978 switch (ar_pci->pdev->device) {
1979 case QCA988X_2_0_DEVICE_ID:
1980 case QCA99X0_2_0_DEVICE_ID:
1981 case QCA9888_2_0_DEVICE_ID:
1982 case QCA9984_1_0_DEVICE_ID:
1983 case QCA9887_1_0_DEVICE_ID:
1984 return 1;
1985 case QCA6164_2_1_DEVICE_ID:
1986 case QCA6174_2_1_DEVICE_ID:
1987 switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1988 case QCA6174_HW_1_0_CHIP_ID_REV:
1989 case QCA6174_HW_1_1_CHIP_ID_REV:
1990 case QCA6174_HW_2_1_CHIP_ID_REV:
1991 case QCA6174_HW_2_2_CHIP_ID_REV:
1992 return 3;
1993 case QCA6174_HW_1_3_CHIP_ID_REV:
1994 return 2;
1995 case QCA6174_HW_3_0_CHIP_ID_REV:
1996 case QCA6174_HW_3_1_CHIP_ID_REV:
1997 case QCA6174_HW_3_2_CHIP_ID_REV:
1998 return 9;
2000 break;
2001 case QCA9377_1_0_DEVICE_ID:
2002 return 4;
2005 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2006 return 1;
2009 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2011 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2013 return ce->bus_ops->get_num_banks(ar);
2016 int ath10k_pci_init_config(struct ath10k *ar)
2018 u32 interconnect_targ_addr;
2019 u32 pcie_state_targ_addr = 0;
2020 u32 pipe_cfg_targ_addr = 0;
2021 u32 svc_to_pipe_map = 0;
2022 u32 pcie_config_flags = 0;
2023 u32 ealloc_value;
2024 u32 ealloc_targ_addr;
2025 u32 flag2_value;
2026 u32 flag2_targ_addr;
2027 int ret = 0;
2029 /* Download to Target the CE Config and the service-to-CE map */
2030 interconnect_targ_addr =
2031 host_interest_item_address(HI_ITEM(hi_interconnect_state));
2033 /* Supply Target-side CE configuration */
2034 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2035 &pcie_state_targ_addr);
2036 if (ret != 0) {
2037 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2038 return ret;
2041 if (pcie_state_targ_addr == 0) {
2042 ret = -EIO;
2043 ath10k_err(ar, "Invalid pcie state addr\n");
2044 return ret;
2047 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2048 offsetof(struct pcie_state,
2049 pipe_cfg_addr)),
2050 &pipe_cfg_targ_addr);
2051 if (ret != 0) {
2052 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2053 return ret;
2056 if (pipe_cfg_targ_addr == 0) {
2057 ret = -EIO;
2058 ath10k_err(ar, "Invalid pipe cfg addr\n");
2059 return ret;
2062 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2063 target_ce_config_wlan,
2064 sizeof(struct ce_pipe_config) *
2065 NUM_TARGET_CE_CONFIG_WLAN);
2067 if (ret != 0) {
2068 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2069 return ret;
2072 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2073 offsetof(struct pcie_state,
2074 svc_to_pipe_map)),
2075 &svc_to_pipe_map);
2076 if (ret != 0) {
2077 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2078 return ret;
2081 if (svc_to_pipe_map == 0) {
2082 ret = -EIO;
2083 ath10k_err(ar, "Invalid svc_to_pipe map\n");
2084 return ret;
2087 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2088 target_service_to_ce_map_wlan,
2089 sizeof(target_service_to_ce_map_wlan));
2090 if (ret != 0) {
2091 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2092 return ret;
2095 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2096 offsetof(struct pcie_state,
2097 config_flags)),
2098 &pcie_config_flags);
2099 if (ret != 0) {
2100 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2101 return ret;
2104 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2106 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2107 offsetof(struct pcie_state,
2108 config_flags)),
2109 pcie_config_flags);
2110 if (ret != 0) {
2111 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2112 return ret;
2115 /* configure early allocation */
2116 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2118 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2119 if (ret != 0) {
2120 ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2121 return ret;
2124 /* first bank is switched to IRAM */
2125 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2126 HI_EARLY_ALLOC_MAGIC_MASK);
2127 ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2128 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2129 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2131 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2132 if (ret != 0) {
2133 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2134 return ret;
2137 /* Tell Target to proceed with initialization */
2138 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2140 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2141 if (ret != 0) {
2142 ath10k_err(ar, "Failed to get option val: %d\n", ret);
2143 return ret;
2146 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2148 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2149 if (ret != 0) {
2150 ath10k_err(ar, "Failed to set option val: %d\n", ret);
2151 return ret;
2154 return 0;
2157 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2159 struct ce_attr *attr;
2160 struct ce_pipe_config *config;
2162 /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2163 * since it is currently used for other feature.
2166 /* Override Host's Copy Engine 5 configuration */
2167 attr = &host_ce_config_wlan[5];
2168 attr->src_sz_max = 0;
2169 attr->dest_nentries = 0;
2171 /* Override Target firmware's Copy Engine configuration */
2172 config = &target_ce_config_wlan[5];
2173 config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2174 config->nbytes_max = __cpu_to_le32(2048);
2176 /* Map from service/endpoint to Copy Engine */
2177 target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2180 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2182 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2183 struct ath10k_pci_pipe *pipe;
2184 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2185 int i, ret;
2187 for (i = 0; i < CE_COUNT; i++) {
2188 pipe = &ar_pci->pipe_info[i];
2189 pipe->ce_hdl = &ce->ce_states[i];
2190 pipe->pipe_num = i;
2191 pipe->hif_ce_state = ar;
2193 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2194 if (ret) {
2195 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2196 i, ret);
2197 return ret;
2200 /* Last CE is Diagnostic Window */
2201 if (i == CE_DIAG_PIPE) {
2202 ar_pci->ce_diag = pipe->ce_hdl;
2203 continue;
2206 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2209 return 0;
2212 void ath10k_pci_free_pipes(struct ath10k *ar)
2214 int i;
2216 for (i = 0; i < CE_COUNT; i++)
2217 ath10k_ce_free_pipe(ar, i);
2220 int ath10k_pci_init_pipes(struct ath10k *ar)
2222 int i, ret;
2224 for (i = 0; i < CE_COUNT; i++) {
2225 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2226 if (ret) {
2227 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2228 i, ret);
2229 return ret;
2233 return 0;
2236 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2238 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2239 FW_IND_EVENT_PENDING;
2242 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2244 u32 val;
2246 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2247 val &= ~FW_IND_EVENT_PENDING;
2248 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2251 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2253 u32 val;
2255 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2256 return (val == 0xffffffff);
2259 /* this function effectively clears target memory controller assert line */
2260 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2262 u32 val;
2264 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2265 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2266 val | SOC_RESET_CONTROL_SI0_RST_MASK);
2267 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2269 msleep(10);
2271 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2272 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2273 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2274 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2276 msleep(10);
2279 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2281 u32 val;
2283 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2285 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2286 SOC_RESET_CONTROL_ADDRESS);
2287 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2288 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2291 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2293 u32 val;
2295 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2296 SOC_RESET_CONTROL_ADDRESS);
2298 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2299 val | SOC_RESET_CONTROL_CE_RST_MASK);
2300 msleep(10);
2301 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2302 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2305 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2307 u32 val;
2309 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2310 SOC_LF_TIMER_CONTROL0_ADDRESS);
2311 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2312 SOC_LF_TIMER_CONTROL0_ADDRESS,
2313 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2316 static int ath10k_pci_warm_reset(struct ath10k *ar)
2318 int ret;
2320 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2322 spin_lock_bh(&ar->data_lock);
2323 ar->stats.fw_warm_reset_counter++;
2324 spin_unlock_bh(&ar->data_lock);
2326 ath10k_pci_irq_disable(ar);
2328 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2329 * were to access copy engine while host performs copy engine reset
2330 * then it is possible for the device to confuse pci-e controller to
2331 * the point of bringing host system to a complete stop (i.e. hang).
2333 ath10k_pci_warm_reset_si0(ar);
2334 ath10k_pci_warm_reset_cpu(ar);
2335 ath10k_pci_init_pipes(ar);
2336 ath10k_pci_wait_for_target_init(ar);
2338 ath10k_pci_warm_reset_clear_lf(ar);
2339 ath10k_pci_warm_reset_ce(ar);
2340 ath10k_pci_warm_reset_cpu(ar);
2341 ath10k_pci_init_pipes(ar);
2343 ret = ath10k_pci_wait_for_target_init(ar);
2344 if (ret) {
2345 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2346 return ret;
2349 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2351 return 0;
2354 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2356 ath10k_pci_irq_disable(ar);
2357 return ath10k_pci_qca99x0_chip_reset(ar);
2360 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2362 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2364 if (!ar_pci->pci_soft_reset)
2365 return -ENOTSUPP;
2367 return ar_pci->pci_soft_reset(ar);
2370 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2372 int i, ret;
2373 u32 val;
2375 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2377 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2378 * It is thus preferred to use warm reset which is safer but may not be
2379 * able to recover the device from all possible fail scenarios.
2381 * Warm reset doesn't always work on first try so attempt it a few
2382 * times before giving up.
2384 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2385 ret = ath10k_pci_warm_reset(ar);
2386 if (ret) {
2387 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2388 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2389 ret);
2390 continue;
2393 /* FIXME: Sometimes copy engine doesn't recover after warm
2394 * reset. In most cases this needs cold reset. In some of these
2395 * cases the device is in such a state that a cold reset may
2396 * lock up the host.
2398 * Reading any host interest register via copy engine is
2399 * sufficient to verify if device is capable of booting
2400 * firmware blob.
2402 ret = ath10k_pci_init_pipes(ar);
2403 if (ret) {
2404 ath10k_warn(ar, "failed to init copy engine: %d\n",
2405 ret);
2406 continue;
2409 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2410 &val);
2411 if (ret) {
2412 ath10k_warn(ar, "failed to poke copy engine: %d\n",
2413 ret);
2414 continue;
2417 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2418 return 0;
2421 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2422 ath10k_warn(ar, "refusing cold reset as requested\n");
2423 return -EPERM;
2426 ret = ath10k_pci_cold_reset(ar);
2427 if (ret) {
2428 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2429 return ret;
2432 ret = ath10k_pci_wait_for_target_init(ar);
2433 if (ret) {
2434 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2435 ret);
2436 return ret;
2439 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2441 return 0;
2444 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2446 int ret;
2448 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2450 /* FIXME: QCA6174 requires cold + warm reset to work. */
2452 ret = ath10k_pci_cold_reset(ar);
2453 if (ret) {
2454 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2455 return ret;
2458 ret = ath10k_pci_wait_for_target_init(ar);
2459 if (ret) {
2460 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2461 ret);
2462 return ret;
2465 ret = ath10k_pci_warm_reset(ar);
2466 if (ret) {
2467 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2468 return ret;
2471 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2473 return 0;
2476 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2478 int ret;
2480 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2482 ret = ath10k_pci_cold_reset(ar);
2483 if (ret) {
2484 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2485 return ret;
2488 ret = ath10k_pci_wait_for_target_init(ar);
2489 if (ret) {
2490 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2491 ret);
2492 return ret;
2495 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2497 return 0;
2500 static int ath10k_pci_chip_reset(struct ath10k *ar)
2502 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2504 if (WARN_ON(!ar_pci->pci_hard_reset))
2505 return -ENOTSUPP;
2507 return ar_pci->pci_hard_reset(ar);
2510 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2512 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2513 int ret;
2515 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2517 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2518 &ar_pci->link_ctl);
2519 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2520 ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2523 * Bring the target up cleanly.
2525 * The target may be in an undefined state with an AUX-powered Target
2526 * and a Host in WoW mode. If the Host crashes, loses power, or is
2527 * restarted (without unloading the driver) then the Target is left
2528 * (aux) powered and running. On a subsequent driver load, the Target
2529 * is in an unexpected state. We try to catch that here in order to
2530 * reset the Target and retry the probe.
2532 ret = ath10k_pci_chip_reset(ar);
2533 if (ret) {
2534 if (ath10k_pci_has_fw_crashed(ar)) {
2535 ath10k_warn(ar, "firmware crashed during chip reset\n");
2536 ath10k_pci_fw_crashed_clear(ar);
2537 ath10k_pci_fw_crashed_dump(ar);
2540 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2541 goto err_sleep;
2544 ret = ath10k_pci_init_pipes(ar);
2545 if (ret) {
2546 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2547 goto err_sleep;
2550 ret = ath10k_pci_init_config(ar);
2551 if (ret) {
2552 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2553 goto err_ce;
2556 ret = ath10k_pci_wake_target_cpu(ar);
2557 if (ret) {
2558 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2559 goto err_ce;
2562 return 0;
2564 err_ce:
2565 ath10k_pci_ce_deinit(ar);
2567 err_sleep:
2568 return ret;
2571 void ath10k_pci_hif_power_down(struct ath10k *ar)
2573 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2575 /* Currently hif_power_up performs effectively a reset and hif_stop
2576 * resets the chip as well so there's no point in resetting here.
2580 #ifdef CONFIG_PM
2582 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2584 /* The grace timer can still be counting down and ar->ps_awake be true.
2585 * It is known that the device may be asleep after resuming regardless
2586 * of the SoC powersave state before suspending. Hence make sure the
2587 * device is asleep before proceeding.
2589 ath10k_pci_sleep_sync(ar);
2591 return 0;
2594 static int ath10k_pci_hif_resume(struct ath10k *ar)
2596 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2597 struct pci_dev *pdev = ar_pci->pdev;
2598 u32 val;
2599 int ret = 0;
2601 ret = ath10k_pci_force_wake(ar);
2602 if (ret) {
2603 ath10k_err(ar, "failed to wake up target: %d\n", ret);
2604 return ret;
2607 /* Suspend/Resume resets the PCI configuration space, so we have to
2608 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2609 * from interfering with C3 CPU state. pci_restore_state won't help
2610 * here since it only restores the first 64 bytes pci config header.
2612 pci_read_config_dword(pdev, 0x40, &val);
2613 if ((val & 0x0000ff00) != 0)
2614 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2616 return ret;
2618 #endif
2620 static bool ath10k_pci_validate_cal(void *data, size_t size)
2622 __le16 *cal_words = data;
2623 u16 checksum = 0;
2624 size_t i;
2626 if (size % 2 != 0)
2627 return false;
2629 for (i = 0; i < size / 2; i++)
2630 checksum ^= le16_to_cpu(cal_words[i]);
2632 return checksum == 0xffff;
2635 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2637 /* Enable SI clock */
2638 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2640 /* Configure GPIOs for I2C operation */
2641 ath10k_pci_write32(ar,
2642 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2643 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2644 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2645 GPIO_PIN0_CONFIG) |
2646 SM(1, GPIO_PIN0_PAD_PULL));
2648 ath10k_pci_write32(ar,
2649 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2650 4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2651 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2652 SM(1, GPIO_PIN0_PAD_PULL));
2654 ath10k_pci_write32(ar,
2655 GPIO_BASE_ADDRESS +
2656 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2657 1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2659 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2660 ath10k_pci_write32(ar,
2661 SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2662 SM(1, SI_CONFIG_ERR_INT) |
2663 SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2664 SM(1, SI_CONFIG_I2C) |
2665 SM(1, SI_CONFIG_POS_SAMPLE) |
2666 SM(1, SI_CONFIG_INACTIVE_DATA) |
2667 SM(1, SI_CONFIG_INACTIVE_CLK) |
2668 SM(8, SI_CONFIG_DIVIDER));
2671 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2673 u32 reg;
2674 int wait_limit;
2676 /* set device select byte and for the read operation */
2677 reg = QCA9887_EEPROM_SELECT_READ |
2678 SM(addr, QCA9887_EEPROM_ADDR_LO) |
2679 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2680 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2682 /* write transmit data, transfer length, and START bit */
2683 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2684 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2685 SM(4, SI_CS_TX_CNT));
2687 /* wait max 1 sec */
2688 wait_limit = 100000;
2690 /* wait for SI_CS_DONE_INT */
2691 do {
2692 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2693 if (MS(reg, SI_CS_DONE_INT))
2694 break;
2696 wait_limit--;
2697 udelay(10);
2698 } while (wait_limit > 0);
2700 if (!MS(reg, SI_CS_DONE_INT)) {
2701 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2702 addr);
2703 return -ETIMEDOUT;
2706 /* clear SI_CS_DONE_INT */
2707 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2709 if (MS(reg, SI_CS_DONE_ERR)) {
2710 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2711 return -EIO;
2714 /* extract receive data */
2715 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2716 *out = reg;
2718 return 0;
2721 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2722 size_t *data_len)
2724 u8 *caldata = NULL;
2725 size_t calsize, i;
2726 int ret;
2728 if (!QCA_REV_9887(ar))
2729 return -EOPNOTSUPP;
2731 calsize = ar->hw_params.cal_data_len;
2732 caldata = kmalloc(calsize, GFP_KERNEL);
2733 if (!caldata)
2734 return -ENOMEM;
2736 ath10k_pci_enable_eeprom(ar);
2738 for (i = 0; i < calsize; i++) {
2739 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2740 if (ret)
2741 goto err_free;
2744 if (!ath10k_pci_validate_cal(caldata, calsize))
2745 goto err_free;
2747 *data = caldata;
2748 *data_len = calsize;
2750 return 0;
2752 err_free:
2753 kfree(caldata);
2755 return -EINVAL;
2758 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2759 .tx_sg = ath10k_pci_hif_tx_sg,
2760 .diag_read = ath10k_pci_hif_diag_read,
2761 .diag_write = ath10k_pci_diag_write_mem,
2762 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
2763 .start = ath10k_pci_hif_start,
2764 .stop = ath10k_pci_hif_stop,
2765 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
2766 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
2767 .send_complete_check = ath10k_pci_hif_send_complete_check,
2768 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
2769 .power_up = ath10k_pci_hif_power_up,
2770 .power_down = ath10k_pci_hif_power_down,
2771 .read32 = ath10k_pci_read32,
2772 .write32 = ath10k_pci_write32,
2773 #ifdef CONFIG_PM
2774 .suspend = ath10k_pci_hif_suspend,
2775 .resume = ath10k_pci_hif_resume,
2776 #endif
2777 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom,
2781 * Top-level interrupt handler for all PCI interrupts from a Target.
2782 * When a block of MSI interrupts is allocated, this top-level handler
2783 * is not used; instead, we directly call the correct sub-handler.
2785 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2787 struct ath10k *ar = arg;
2788 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2789 int ret;
2791 if (ath10k_pci_has_device_gone(ar))
2792 return IRQ_NONE;
2794 ret = ath10k_pci_force_wake(ar);
2795 if (ret) {
2796 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2797 return IRQ_NONE;
2800 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
2801 !ath10k_pci_irq_pending(ar))
2802 return IRQ_NONE;
2804 ath10k_pci_disable_and_clear_legacy_irq(ar);
2805 ath10k_pci_irq_msi_fw_mask(ar);
2806 napi_schedule(&ar->napi);
2808 return IRQ_HANDLED;
2811 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
2813 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2814 int done = 0;
2816 if (ath10k_pci_has_fw_crashed(ar)) {
2817 ath10k_pci_fw_crashed_clear(ar);
2818 ath10k_pci_fw_crashed_dump(ar);
2819 napi_complete(ctx);
2820 return done;
2823 ath10k_ce_per_engine_service_any(ar);
2825 done = ath10k_htt_txrx_compl_task(ar, budget);
2827 if (done < budget) {
2828 napi_complete_done(ctx, done);
2829 /* In case of MSI, it is possible that interrupts are received
2830 * while NAPI poll is inprogress. So pending interrupts that are
2831 * received after processing all copy engine pipes by NAPI poll
2832 * will not be handled again. This is causing failure to
2833 * complete boot sequence in x86 platform. So before enabling
2834 * interrupts safer to check for pending interrupts for
2835 * immediate servicing.
2837 if (ath10k_ce_interrupt_summary(ar)) {
2838 napi_reschedule(ctx);
2839 goto out;
2841 ath10k_pci_enable_legacy_irq(ar);
2842 ath10k_pci_irq_msi_fw_unmask(ar);
2845 out:
2846 return done;
2849 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2851 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2852 int ret;
2854 ret = request_irq(ar_pci->pdev->irq,
2855 ath10k_pci_interrupt_handler,
2856 IRQF_SHARED, "ath10k_pci", ar);
2857 if (ret) {
2858 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2859 ar_pci->pdev->irq, ret);
2860 return ret;
2863 return 0;
2866 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2868 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2869 int ret;
2871 ret = request_irq(ar_pci->pdev->irq,
2872 ath10k_pci_interrupt_handler,
2873 IRQF_SHARED, "ath10k_pci", ar);
2874 if (ret) {
2875 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2876 ar_pci->pdev->irq, ret);
2877 return ret;
2880 return 0;
2883 static int ath10k_pci_request_irq(struct ath10k *ar)
2885 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2887 switch (ar_pci->oper_irq_mode) {
2888 case ATH10K_PCI_IRQ_LEGACY:
2889 return ath10k_pci_request_irq_legacy(ar);
2890 case ATH10K_PCI_IRQ_MSI:
2891 return ath10k_pci_request_irq_msi(ar);
2892 default:
2893 return -EINVAL;
2897 static void ath10k_pci_free_irq(struct ath10k *ar)
2899 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2901 free_irq(ar_pci->pdev->irq, ar);
2904 void ath10k_pci_init_napi(struct ath10k *ar)
2906 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
2907 ATH10K_NAPI_BUDGET);
2910 static int ath10k_pci_init_irq(struct ath10k *ar)
2912 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2913 int ret;
2915 ath10k_pci_init_napi(ar);
2917 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2918 ath10k_info(ar, "limiting irq mode to: %d\n",
2919 ath10k_pci_irq_mode);
2921 /* Try MSI */
2922 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2923 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2924 ret = pci_enable_msi(ar_pci->pdev);
2925 if (ret == 0)
2926 return 0;
2928 /* fall-through */
2931 /* Try legacy irq
2933 * A potential race occurs here: The CORE_BASE write
2934 * depends on target correctly decoding AXI address but
2935 * host won't know when target writes BAR to CORE_CTRL.
2936 * This write might get lost if target has NOT written BAR.
2937 * For now, fix the race by repeating the write in below
2938 * synchronization checking.
2940 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2942 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2943 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2945 return 0;
2948 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2950 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2954 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2956 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2958 switch (ar_pci->oper_irq_mode) {
2959 case ATH10K_PCI_IRQ_LEGACY:
2960 ath10k_pci_deinit_irq_legacy(ar);
2961 break;
2962 default:
2963 pci_disable_msi(ar_pci->pdev);
2964 break;
2967 return 0;
2970 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2972 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2973 unsigned long timeout;
2974 u32 val;
2976 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2978 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2980 do {
2981 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2983 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2984 val);
2986 /* target should never return this */
2987 if (val == 0xffffffff)
2988 continue;
2990 /* the device has crashed so don't bother trying anymore */
2991 if (val & FW_IND_EVENT_PENDING)
2992 break;
2994 if (val & FW_IND_INITIALIZED)
2995 break;
2997 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2998 /* Fix potential race by repeating CORE_BASE writes */
2999 ath10k_pci_enable_legacy_irq(ar);
3001 mdelay(10);
3002 } while (time_before(jiffies, timeout));
3004 ath10k_pci_disable_and_clear_legacy_irq(ar);
3005 ath10k_pci_irq_msi_fw_mask(ar);
3007 if (val == 0xffffffff) {
3008 ath10k_err(ar, "failed to read device register, device is gone\n");
3009 return -EIO;
3012 if (val & FW_IND_EVENT_PENDING) {
3013 ath10k_warn(ar, "device has crashed during init\n");
3014 return -ECOMM;
3017 if (!(val & FW_IND_INITIALIZED)) {
3018 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3019 val);
3020 return -ETIMEDOUT;
3023 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3024 return 0;
3027 static int ath10k_pci_cold_reset(struct ath10k *ar)
3029 u32 val;
3031 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3033 spin_lock_bh(&ar->data_lock);
3035 ar->stats.fw_cold_reset_counter++;
3037 spin_unlock_bh(&ar->data_lock);
3039 /* Put Target, including PCIe, into RESET. */
3040 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3041 val |= 1;
3042 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3044 /* After writing into SOC_GLOBAL_RESET to put device into
3045 * reset and pulling out of reset pcie may not be stable
3046 * for any immediate pcie register access and cause bus error,
3047 * add delay before any pcie access request to fix this issue.
3049 msleep(20);
3051 /* Pull Target, including PCIe, out of RESET. */
3052 val &= ~1;
3053 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3055 msleep(20);
3057 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3059 return 0;
3062 static int ath10k_pci_claim(struct ath10k *ar)
3064 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3065 struct pci_dev *pdev = ar_pci->pdev;
3066 int ret;
3068 pci_set_drvdata(pdev, ar);
3070 ret = pci_enable_device(pdev);
3071 if (ret) {
3072 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3073 return ret;
3076 ret = pci_request_region(pdev, BAR_NUM, "ath");
3077 if (ret) {
3078 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3079 ret);
3080 goto err_device;
3083 /* Target expects 32 bit DMA. Enforce it. */
3084 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3085 if (ret) {
3086 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3087 goto err_region;
3090 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3091 if (ret) {
3092 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3093 ret);
3094 goto err_region;
3097 pci_set_master(pdev);
3099 /* Arrange for access to Target SoC registers. */
3100 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3101 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3102 if (!ar_pci->mem) {
3103 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3104 ret = -EIO;
3105 goto err_master;
3108 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3109 return 0;
3111 err_master:
3112 pci_clear_master(pdev);
3114 err_region:
3115 pci_release_region(pdev, BAR_NUM);
3117 err_device:
3118 pci_disable_device(pdev);
3120 return ret;
3123 static void ath10k_pci_release(struct ath10k *ar)
3125 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3126 struct pci_dev *pdev = ar_pci->pdev;
3128 pci_iounmap(pdev, ar_pci->mem);
3129 pci_release_region(pdev, BAR_NUM);
3130 pci_clear_master(pdev);
3131 pci_disable_device(pdev);
3134 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3136 const struct ath10k_pci_supp_chip *supp_chip;
3137 int i;
3138 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3140 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3141 supp_chip = &ath10k_pci_supp_chips[i];
3143 if (supp_chip->dev_id == dev_id &&
3144 supp_chip->rev_id == rev_id)
3145 return true;
3148 return false;
3151 int ath10k_pci_setup_resource(struct ath10k *ar)
3153 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3154 struct ath10k_ce *ce = ath10k_ce_priv(ar);
3155 int ret;
3157 spin_lock_init(&ce->ce_lock);
3158 spin_lock_init(&ar_pci->ps_lock);
3160 setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3161 (unsigned long)ar);
3163 if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3164 ath10k_pci_override_ce_config(ar);
3166 ret = ath10k_pci_alloc_pipes(ar);
3167 if (ret) {
3168 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3169 ret);
3170 return ret;
3173 return 0;
3176 void ath10k_pci_release_resource(struct ath10k *ar)
3178 ath10k_pci_rx_retry_sync(ar);
3179 netif_napi_del(&ar->napi);
3180 ath10k_pci_ce_deinit(ar);
3181 ath10k_pci_free_pipes(ar);
3184 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3185 .read32 = ath10k_bus_pci_read32,
3186 .write32 = ath10k_bus_pci_write32,
3187 .get_num_banks = ath10k_pci_get_num_banks,
3190 static int ath10k_pci_probe(struct pci_dev *pdev,
3191 const struct pci_device_id *pci_dev)
3193 int ret = 0;
3194 struct ath10k *ar;
3195 struct ath10k_pci *ar_pci;
3196 enum ath10k_hw_rev hw_rev;
3197 u32 chip_id;
3198 bool pci_ps;
3199 int (*pci_soft_reset)(struct ath10k *ar);
3200 int (*pci_hard_reset)(struct ath10k *ar);
3201 u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3203 switch (pci_dev->device) {
3204 case QCA988X_2_0_DEVICE_ID:
3205 hw_rev = ATH10K_HW_QCA988X;
3206 pci_ps = false;
3207 pci_soft_reset = ath10k_pci_warm_reset;
3208 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3209 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3210 break;
3211 case QCA9887_1_0_DEVICE_ID:
3212 hw_rev = ATH10K_HW_QCA9887;
3213 pci_ps = false;
3214 pci_soft_reset = ath10k_pci_warm_reset;
3215 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3216 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3217 break;
3218 case QCA6164_2_1_DEVICE_ID:
3219 case QCA6174_2_1_DEVICE_ID:
3220 hw_rev = ATH10K_HW_QCA6174;
3221 pci_ps = true;
3222 pci_soft_reset = ath10k_pci_warm_reset;
3223 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3224 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3225 break;
3226 case QCA99X0_2_0_DEVICE_ID:
3227 hw_rev = ATH10K_HW_QCA99X0;
3228 pci_ps = false;
3229 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3230 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3231 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3232 break;
3233 case QCA9984_1_0_DEVICE_ID:
3234 hw_rev = ATH10K_HW_QCA9984;
3235 pci_ps = false;
3236 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3237 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3238 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3239 break;
3240 case QCA9888_2_0_DEVICE_ID:
3241 hw_rev = ATH10K_HW_QCA9888;
3242 pci_ps = false;
3243 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3244 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3245 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3246 break;
3247 case QCA9377_1_0_DEVICE_ID:
3248 hw_rev = ATH10K_HW_QCA9377;
3249 pci_ps = true;
3250 pci_soft_reset = NULL;
3251 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3252 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3253 break;
3254 default:
3255 WARN_ON(1);
3256 return -ENOTSUPP;
3259 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3260 hw_rev, &ath10k_pci_hif_ops);
3261 if (!ar) {
3262 dev_err(&pdev->dev, "failed to allocate core\n");
3263 return -ENOMEM;
3266 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3267 pdev->vendor, pdev->device,
3268 pdev->subsystem_vendor, pdev->subsystem_device);
3270 ar_pci = ath10k_pci_priv(ar);
3271 ar_pci->pdev = pdev;
3272 ar_pci->dev = &pdev->dev;
3273 ar_pci->ar = ar;
3274 ar->dev_id = pci_dev->device;
3275 ar_pci->pci_ps = pci_ps;
3276 ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3277 ar_pci->pci_soft_reset = pci_soft_reset;
3278 ar_pci->pci_hard_reset = pci_hard_reset;
3279 ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3280 ar->ce_priv = &ar_pci->ce;
3282 ar->id.vendor = pdev->vendor;
3283 ar->id.device = pdev->device;
3284 ar->id.subsystem_vendor = pdev->subsystem_vendor;
3285 ar->id.subsystem_device = pdev->subsystem_device;
3287 setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3288 (unsigned long)ar);
3290 ret = ath10k_pci_setup_resource(ar);
3291 if (ret) {
3292 ath10k_err(ar, "failed to setup resource: %d\n", ret);
3293 goto err_core_destroy;
3296 ret = ath10k_pci_claim(ar);
3297 if (ret) {
3298 ath10k_err(ar, "failed to claim device: %d\n", ret);
3299 goto err_free_pipes;
3302 ret = ath10k_pci_force_wake(ar);
3303 if (ret) {
3304 ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3305 goto err_sleep;
3308 ath10k_pci_ce_deinit(ar);
3309 ath10k_pci_irq_disable(ar);
3311 ret = ath10k_pci_init_irq(ar);
3312 if (ret) {
3313 ath10k_err(ar, "failed to init irqs: %d\n", ret);
3314 goto err_sleep;
3317 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3318 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3319 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3321 ret = ath10k_pci_request_irq(ar);
3322 if (ret) {
3323 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3324 goto err_deinit_irq;
3327 ret = ath10k_pci_chip_reset(ar);
3328 if (ret) {
3329 ath10k_err(ar, "failed to reset chip: %d\n", ret);
3330 goto err_free_irq;
3333 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3334 if (chip_id == 0xffffffff) {
3335 ath10k_err(ar, "failed to get chip id\n");
3336 goto err_free_irq;
3339 if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3340 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3341 pdev->device, chip_id);
3342 goto err_free_irq;
3345 ret = ath10k_core_register(ar, chip_id);
3346 if (ret) {
3347 ath10k_err(ar, "failed to register driver core: %d\n", ret);
3348 goto err_free_irq;
3351 return 0;
3353 err_free_irq:
3354 ath10k_pci_free_irq(ar);
3355 ath10k_pci_rx_retry_sync(ar);
3357 err_deinit_irq:
3358 ath10k_pci_deinit_irq(ar);
3360 err_sleep:
3361 ath10k_pci_sleep_sync(ar);
3362 ath10k_pci_release(ar);
3364 err_free_pipes:
3365 ath10k_pci_free_pipes(ar);
3367 err_core_destroy:
3368 ath10k_core_destroy(ar);
3370 return ret;
3373 static void ath10k_pci_remove(struct pci_dev *pdev)
3375 struct ath10k *ar = pci_get_drvdata(pdev);
3376 struct ath10k_pci *ar_pci;
3378 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3380 if (!ar)
3381 return;
3383 ar_pci = ath10k_pci_priv(ar);
3385 if (!ar_pci)
3386 return;
3388 ath10k_core_unregister(ar);
3389 ath10k_pci_free_irq(ar);
3390 ath10k_pci_deinit_irq(ar);
3391 ath10k_pci_release_resource(ar);
3392 ath10k_pci_sleep_sync(ar);
3393 ath10k_pci_release(ar);
3394 ath10k_core_destroy(ar);
3397 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3399 static struct pci_driver ath10k_pci_driver = {
3400 .name = "ath10k_pci",
3401 .id_table = ath10k_pci_id_table,
3402 .probe = ath10k_pci_probe,
3403 .remove = ath10k_pci_remove,
3406 static int __init ath10k_pci_init(void)
3408 int ret;
3410 ret = pci_register_driver(&ath10k_pci_driver);
3411 if (ret)
3412 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3413 ret);
3415 ret = ath10k_ahb_init();
3416 if (ret)
3417 printk(KERN_ERR "ahb init failed: %d\n", ret);
3419 return ret;
3421 module_init(ath10k_pci_init);
3423 static void __exit ath10k_pci_exit(void)
3425 pci_unregister_driver(&ath10k_pci_driver);
3426 ath10k_ahb_exit();
3429 module_exit(ath10k_pci_exit);
3431 MODULE_AUTHOR("Qualcomm Atheros");
3432 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3433 MODULE_LICENSE("Dual BSD/GPL");
3435 /* QCA988x 2.0 firmware files */
3436 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3437 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3438 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3439 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3440 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3441 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3443 /* QCA9887 1.0 firmware files */
3444 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3445 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3446 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3448 /* QCA6174 2.1 firmware files */
3449 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3450 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3451 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3452 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3454 /* QCA6174 3.1 firmware files */
3455 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3456 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3457 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3458 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3459 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3461 /* QCA9377 1.0 firmware files */
3462 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3463 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);