bnxt_en: Allow the user to set ethtool stats-block-usecs to 0.
[linux-2.6/btrfs-unstable.git] / kernel / time / tick-broadcast.c
blobb398c2ea69b290cdaec1769b7d11cbc501646652
1 /*
2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
24 #include "tick-internal.h"
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
35 static int tick_broadcast_forced;
37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
39 #ifdef CONFIG_TICK_ONESHOT
40 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
41 static void tick_broadcast_clear_oneshot(int cpu);
42 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
43 #else
44 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
45 static inline void tick_broadcast_clear_oneshot(int cpu) { }
46 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
47 #endif
50 * Debugging: see timer_list.c
52 struct tick_device *tick_get_broadcast_device(void)
54 return &tick_broadcast_device;
57 struct cpumask *tick_get_broadcast_mask(void)
59 return tick_broadcast_mask;
63 * Start the device in periodic mode
65 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
67 if (bc)
68 tick_setup_periodic(bc, 1);
72 * Check, if the device can be utilized as broadcast device:
74 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
75 struct clock_event_device *newdev)
77 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
78 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
79 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
80 return false;
82 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
83 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
84 return false;
86 return !curdev || newdev->rating > curdev->rating;
90 * Conditionally install/replace broadcast device
92 void tick_install_broadcast_device(struct clock_event_device *dev)
94 struct clock_event_device *cur = tick_broadcast_device.evtdev;
96 if (!tick_check_broadcast_device(cur, dev))
97 return;
99 if (!try_module_get(dev->owner))
100 return;
102 clockevents_exchange_device(cur, dev);
103 if (cur)
104 cur->event_handler = clockevents_handle_noop;
105 tick_broadcast_device.evtdev = dev;
106 if (!cpumask_empty(tick_broadcast_mask))
107 tick_broadcast_start_periodic(dev);
109 * Inform all cpus about this. We might be in a situation
110 * where we did not switch to oneshot mode because the per cpu
111 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
112 * of a oneshot capable broadcast device. Without that
113 * notification the systems stays stuck in periodic mode
114 * forever.
116 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
117 tick_clock_notify();
121 * Check, if the device is the broadcast device
123 int tick_is_broadcast_device(struct clock_event_device *dev)
125 return (dev && tick_broadcast_device.evtdev == dev);
128 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
130 int ret = -ENODEV;
132 if (tick_is_broadcast_device(dev)) {
133 raw_spin_lock(&tick_broadcast_lock);
134 ret = __clockevents_update_freq(dev, freq);
135 raw_spin_unlock(&tick_broadcast_lock);
137 return ret;
141 static void err_broadcast(const struct cpumask *mask)
143 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
146 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
148 if (!dev->broadcast)
149 dev->broadcast = tick_broadcast;
150 if (!dev->broadcast) {
151 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
152 dev->name);
153 dev->broadcast = err_broadcast;
158 * Check, if the device is disfunctional and a place holder, which
159 * needs to be handled by the broadcast device.
161 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
163 struct clock_event_device *bc = tick_broadcast_device.evtdev;
164 unsigned long flags;
165 int ret = 0;
167 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
170 * Devices might be registered with both periodic and oneshot
171 * mode disabled. This signals, that the device needs to be
172 * operated from the broadcast device and is a placeholder for
173 * the cpu local device.
175 if (!tick_device_is_functional(dev)) {
176 dev->event_handler = tick_handle_periodic;
177 tick_device_setup_broadcast_func(dev);
178 cpumask_set_cpu(cpu, tick_broadcast_mask);
179 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
180 tick_broadcast_start_periodic(bc);
181 else
182 tick_broadcast_setup_oneshot(bc);
183 ret = 1;
184 } else {
186 * Clear the broadcast bit for this cpu if the
187 * device is not power state affected.
189 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
190 cpumask_clear_cpu(cpu, tick_broadcast_mask);
191 else
192 tick_device_setup_broadcast_func(dev);
195 * Clear the broadcast bit if the CPU is not in
196 * periodic broadcast on state.
198 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
199 cpumask_clear_cpu(cpu, tick_broadcast_mask);
201 switch (tick_broadcast_device.mode) {
202 case TICKDEV_MODE_ONESHOT:
204 * If the system is in oneshot mode we can
205 * unconditionally clear the oneshot mask bit,
206 * because the CPU is running and therefore
207 * not in an idle state which causes the power
208 * state affected device to stop. Let the
209 * caller initialize the device.
211 tick_broadcast_clear_oneshot(cpu);
212 ret = 0;
213 break;
215 case TICKDEV_MODE_PERIODIC:
217 * If the system is in periodic mode, check
218 * whether the broadcast device can be
219 * switched off now.
221 if (cpumask_empty(tick_broadcast_mask) && bc)
222 clockevents_shutdown(bc);
224 * If we kept the cpu in the broadcast mask,
225 * tell the caller to leave the per cpu device
226 * in shutdown state. The periodic interrupt
227 * is delivered by the broadcast device, if
228 * the broadcast device exists and is not
229 * hrtimer based.
231 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
232 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
233 break;
234 default:
235 break;
238 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
239 return ret;
242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243 int tick_receive_broadcast(void)
245 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
246 struct clock_event_device *evt = td->evtdev;
248 if (!evt)
249 return -ENODEV;
251 if (!evt->event_handler)
252 return -EINVAL;
254 evt->event_handler(evt);
255 return 0;
257 #endif
260 * Broadcast the event to the cpus, which are set in the mask (mangled).
262 static bool tick_do_broadcast(struct cpumask *mask)
264 int cpu = smp_processor_id();
265 struct tick_device *td;
266 bool local = false;
269 * Check, if the current cpu is in the mask
271 if (cpumask_test_cpu(cpu, mask)) {
272 struct clock_event_device *bc = tick_broadcast_device.evtdev;
274 cpumask_clear_cpu(cpu, mask);
276 * We only run the local handler, if the broadcast
277 * device is not hrtimer based. Otherwise we run into
278 * a hrtimer recursion.
280 * local timer_interrupt()
281 * local_handler()
282 * expire_hrtimers()
283 * bc_handler()
284 * local_handler()
285 * expire_hrtimers()
287 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
290 if (!cpumask_empty(mask)) {
292 * It might be necessary to actually check whether the devices
293 * have different broadcast functions. For now, just use the
294 * one of the first device. This works as long as we have this
295 * misfeature only on x86 (lapic)
297 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
298 td->evtdev->broadcast(mask);
300 return local;
304 * Periodic broadcast:
305 * - invoke the broadcast handlers
307 static bool tick_do_periodic_broadcast(void)
309 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
310 return tick_do_broadcast(tmpmask);
314 * Event handler for periodic broadcast ticks
316 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
318 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
319 bool bc_local;
321 raw_spin_lock(&tick_broadcast_lock);
323 /* Handle spurious interrupts gracefully */
324 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
325 raw_spin_unlock(&tick_broadcast_lock);
326 return;
329 bc_local = tick_do_periodic_broadcast();
331 if (clockevent_state_oneshot(dev)) {
332 ktime_t next = ktime_add(dev->next_event, tick_period);
334 clockevents_program_event(dev, next, true);
336 raw_spin_unlock(&tick_broadcast_lock);
339 * We run the handler of the local cpu after dropping
340 * tick_broadcast_lock because the handler might deadlock when
341 * trying to switch to oneshot mode.
343 if (bc_local)
344 td->evtdev->event_handler(td->evtdev);
348 * tick_broadcast_control - Enable/disable or force broadcast mode
349 * @mode: The selected broadcast mode
351 * Called when the system enters a state where affected tick devices
352 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
354 void tick_broadcast_control(enum tick_broadcast_mode mode)
356 struct clock_event_device *bc, *dev;
357 struct tick_device *td;
358 int cpu, bc_stopped;
359 unsigned long flags;
361 /* Protects also the local clockevent device. */
362 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
363 td = this_cpu_ptr(&tick_cpu_device);
364 dev = td->evtdev;
367 * Is the device not affected by the powerstate ?
369 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
370 goto out;
372 if (!tick_device_is_functional(dev))
373 goto out;
375 cpu = smp_processor_id();
376 bc = tick_broadcast_device.evtdev;
377 bc_stopped = cpumask_empty(tick_broadcast_mask);
379 switch (mode) {
380 case TICK_BROADCAST_FORCE:
381 tick_broadcast_forced = 1;
382 case TICK_BROADCAST_ON:
383 cpumask_set_cpu(cpu, tick_broadcast_on);
384 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
386 * Only shutdown the cpu local device, if:
388 * - the broadcast device exists
389 * - the broadcast device is not a hrtimer based one
390 * - the broadcast device is in periodic mode to
391 * avoid a hickup during switch to oneshot mode
393 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
394 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
395 clockevents_shutdown(dev);
397 break;
399 case TICK_BROADCAST_OFF:
400 if (tick_broadcast_forced)
401 break;
402 cpumask_clear_cpu(cpu, tick_broadcast_on);
403 if (!tick_device_is_functional(dev))
404 break;
405 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
406 if (tick_broadcast_device.mode ==
407 TICKDEV_MODE_PERIODIC)
408 tick_setup_periodic(dev, 0);
410 break;
413 if (bc) {
414 if (cpumask_empty(tick_broadcast_mask)) {
415 if (!bc_stopped)
416 clockevents_shutdown(bc);
417 } else if (bc_stopped) {
418 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
419 tick_broadcast_start_periodic(bc);
420 else
421 tick_broadcast_setup_oneshot(bc);
424 out:
425 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
427 EXPORT_SYMBOL_GPL(tick_broadcast_control);
430 * Set the periodic handler depending on broadcast on/off
432 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
434 if (!broadcast)
435 dev->event_handler = tick_handle_periodic;
436 else
437 dev->event_handler = tick_handle_periodic_broadcast;
440 #ifdef CONFIG_HOTPLUG_CPU
442 * Remove a CPU from broadcasting
444 void tick_shutdown_broadcast(unsigned int cpu)
446 struct clock_event_device *bc;
447 unsigned long flags;
449 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
451 bc = tick_broadcast_device.evtdev;
452 cpumask_clear_cpu(cpu, tick_broadcast_mask);
453 cpumask_clear_cpu(cpu, tick_broadcast_on);
455 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
456 if (bc && cpumask_empty(tick_broadcast_mask))
457 clockevents_shutdown(bc);
460 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
462 #endif
464 void tick_suspend_broadcast(void)
466 struct clock_event_device *bc;
467 unsigned long flags;
469 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
471 bc = tick_broadcast_device.evtdev;
472 if (bc)
473 clockevents_shutdown(bc);
475 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
479 * This is called from tick_resume_local() on a resuming CPU. That's
480 * called from the core resume function, tick_unfreeze() and the magic XEN
481 * resume hackery.
483 * In none of these cases the broadcast device mode can change and the
484 * bit of the resuming CPU in the broadcast mask is safe as well.
486 bool tick_resume_check_broadcast(void)
488 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
489 return false;
490 else
491 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
494 void tick_resume_broadcast(void)
496 struct clock_event_device *bc;
497 unsigned long flags;
499 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
501 bc = tick_broadcast_device.evtdev;
503 if (bc) {
504 clockevents_tick_resume(bc);
506 switch (tick_broadcast_device.mode) {
507 case TICKDEV_MODE_PERIODIC:
508 if (!cpumask_empty(tick_broadcast_mask))
509 tick_broadcast_start_periodic(bc);
510 break;
511 case TICKDEV_MODE_ONESHOT:
512 if (!cpumask_empty(tick_broadcast_mask))
513 tick_resume_broadcast_oneshot(bc);
514 break;
517 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
520 #ifdef CONFIG_TICK_ONESHOT
522 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
523 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
524 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
527 * Exposed for debugging: see timer_list.c
529 struct cpumask *tick_get_broadcast_oneshot_mask(void)
531 return tick_broadcast_oneshot_mask;
535 * Called before going idle with interrupts disabled. Checks whether a
536 * broadcast event from the other core is about to happen. We detected
537 * that in tick_broadcast_oneshot_control(). The callsite can use this
538 * to avoid a deep idle transition as we are about to get the
539 * broadcast IPI right away.
541 int tick_check_broadcast_expired(void)
543 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
547 * Set broadcast interrupt affinity
549 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
550 const struct cpumask *cpumask)
552 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
553 return;
555 if (cpumask_equal(bc->cpumask, cpumask))
556 return;
558 bc->cpumask = cpumask;
559 irq_set_affinity(bc->irq, bc->cpumask);
562 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
563 ktime_t expires)
565 if (!clockevent_state_oneshot(bc))
566 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
568 clockevents_program_event(bc, expires, 1);
569 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
572 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
574 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
578 * Called from irq_enter() when idle was interrupted to reenable the
579 * per cpu device.
581 void tick_check_oneshot_broadcast_this_cpu(void)
583 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
584 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
587 * We might be in the middle of switching over from
588 * periodic to oneshot. If the CPU has not yet
589 * switched over, leave the device alone.
591 if (td->mode == TICKDEV_MODE_ONESHOT) {
592 clockevents_switch_state(td->evtdev,
593 CLOCK_EVT_STATE_ONESHOT);
599 * Handle oneshot mode broadcasting
601 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
603 struct tick_device *td;
604 ktime_t now, next_event;
605 int cpu, next_cpu = 0;
606 bool bc_local;
608 raw_spin_lock(&tick_broadcast_lock);
609 dev->next_event = KTIME_MAX;
610 next_event = KTIME_MAX;
611 cpumask_clear(tmpmask);
612 now = ktime_get();
613 /* Find all expired events */
614 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
615 td = &per_cpu(tick_cpu_device, cpu);
616 if (td->evtdev->next_event <= now) {
617 cpumask_set_cpu(cpu, tmpmask);
619 * Mark the remote cpu in the pending mask, so
620 * it can avoid reprogramming the cpu local
621 * timer in tick_broadcast_oneshot_control().
623 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
624 } else if (td->evtdev->next_event < next_event) {
625 next_event = td->evtdev->next_event;
626 next_cpu = cpu;
631 * Remove the current cpu from the pending mask. The event is
632 * delivered immediately in tick_do_broadcast() !
634 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
636 /* Take care of enforced broadcast requests */
637 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
638 cpumask_clear(tick_broadcast_force_mask);
641 * Sanity check. Catch the case where we try to broadcast to
642 * offline cpus.
644 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
645 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
648 * Wakeup the cpus which have an expired event.
650 bc_local = tick_do_broadcast(tmpmask);
653 * Two reasons for reprogram:
655 * - The global event did not expire any CPU local
656 * events. This happens in dyntick mode, as the maximum PIT
657 * delta is quite small.
659 * - There are pending events on sleeping CPUs which were not
660 * in the event mask
662 if (next_event != KTIME_MAX)
663 tick_broadcast_set_event(dev, next_cpu, next_event);
665 raw_spin_unlock(&tick_broadcast_lock);
667 if (bc_local) {
668 td = this_cpu_ptr(&tick_cpu_device);
669 td->evtdev->event_handler(td->evtdev);
673 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
675 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
676 return 0;
677 if (bc->next_event == KTIME_MAX)
678 return 0;
679 return bc->bound_on == cpu ? -EBUSY : 0;
682 static void broadcast_shutdown_local(struct clock_event_device *bc,
683 struct clock_event_device *dev)
686 * For hrtimer based broadcasting we cannot shutdown the cpu
687 * local device if our own event is the first one to expire or
688 * if we own the broadcast timer.
690 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
691 if (broadcast_needs_cpu(bc, smp_processor_id()))
692 return;
693 if (dev->next_event < bc->next_event)
694 return;
696 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
699 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
701 struct clock_event_device *bc, *dev;
702 int cpu, ret = 0;
703 ktime_t now;
706 * If there is no broadcast device, tell the caller not to go
707 * into deep idle.
709 if (!tick_broadcast_device.evtdev)
710 return -EBUSY;
712 dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
714 raw_spin_lock(&tick_broadcast_lock);
715 bc = tick_broadcast_device.evtdev;
716 cpu = smp_processor_id();
718 if (state == TICK_BROADCAST_ENTER) {
720 * If the current CPU owns the hrtimer broadcast
721 * mechanism, it cannot go deep idle and we do not add
722 * the CPU to the broadcast mask. We don't have to go
723 * through the EXIT path as the local timer is not
724 * shutdown.
726 ret = broadcast_needs_cpu(bc, cpu);
727 if (ret)
728 goto out;
731 * If the broadcast device is in periodic mode, we
732 * return.
734 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
735 /* If it is a hrtimer based broadcast, return busy */
736 if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
737 ret = -EBUSY;
738 goto out;
741 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
742 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
744 /* Conditionally shut down the local timer. */
745 broadcast_shutdown_local(bc, dev);
748 * We only reprogram the broadcast timer if we
749 * did not mark ourself in the force mask and
750 * if the cpu local event is earlier than the
751 * broadcast event. If the current CPU is in
752 * the force mask, then we are going to be
753 * woken by the IPI right away; we return
754 * busy, so the CPU does not try to go deep
755 * idle.
757 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
758 ret = -EBUSY;
759 } else if (dev->next_event < bc->next_event) {
760 tick_broadcast_set_event(bc, cpu, dev->next_event);
762 * In case of hrtimer broadcasts the
763 * programming might have moved the
764 * timer to this cpu. If yes, remove
765 * us from the broadcast mask and
766 * return busy.
768 ret = broadcast_needs_cpu(bc, cpu);
769 if (ret) {
770 cpumask_clear_cpu(cpu,
771 tick_broadcast_oneshot_mask);
775 } else {
776 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
777 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
779 * The cpu which was handling the broadcast
780 * timer marked this cpu in the broadcast
781 * pending mask and fired the broadcast
782 * IPI. So we are going to handle the expired
783 * event anyway via the broadcast IPI
784 * handler. No need to reprogram the timer
785 * with an already expired event.
787 if (cpumask_test_and_clear_cpu(cpu,
788 tick_broadcast_pending_mask))
789 goto out;
792 * Bail out if there is no next event.
794 if (dev->next_event == KTIME_MAX)
795 goto out;
797 * If the pending bit is not set, then we are
798 * either the CPU handling the broadcast
799 * interrupt or we got woken by something else.
801 * We are not longer in the broadcast mask, so
802 * if the cpu local expiry time is already
803 * reached, we would reprogram the cpu local
804 * timer with an already expired event.
806 * This can lead to a ping-pong when we return
807 * to idle and therefor rearm the broadcast
808 * timer before the cpu local timer was able
809 * to fire. This happens because the forced
810 * reprogramming makes sure that the event
811 * will happen in the future and depending on
812 * the min_delta setting this might be far
813 * enough out that the ping-pong starts.
815 * If the cpu local next_event has expired
816 * then we know that the broadcast timer
817 * next_event has expired as well and
818 * broadcast is about to be handled. So we
819 * avoid reprogramming and enforce that the
820 * broadcast handler, which did not run yet,
821 * will invoke the cpu local handler.
823 * We cannot call the handler directly from
824 * here, because we might be in a NOHZ phase
825 * and we did not go through the irq_enter()
826 * nohz fixups.
828 now = ktime_get();
829 if (dev->next_event <= now) {
830 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
831 goto out;
834 * We got woken by something else. Reprogram
835 * the cpu local timer device.
837 tick_program_event(dev->next_event, 1);
840 out:
841 raw_spin_unlock(&tick_broadcast_lock);
842 return ret;
846 * Reset the one shot broadcast for a cpu
848 * Called with tick_broadcast_lock held
850 static void tick_broadcast_clear_oneshot(int cpu)
852 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
853 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
856 static void tick_broadcast_init_next_event(struct cpumask *mask,
857 ktime_t expires)
859 struct tick_device *td;
860 int cpu;
862 for_each_cpu(cpu, mask) {
863 td = &per_cpu(tick_cpu_device, cpu);
864 if (td->evtdev)
865 td->evtdev->next_event = expires;
870 * tick_broadcast_setup_oneshot - setup the broadcast device
872 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
874 int cpu = smp_processor_id();
876 if (!bc)
877 return;
879 /* Set it up only once ! */
880 if (bc->event_handler != tick_handle_oneshot_broadcast) {
881 int was_periodic = clockevent_state_periodic(bc);
883 bc->event_handler = tick_handle_oneshot_broadcast;
886 * We must be careful here. There might be other CPUs
887 * waiting for periodic broadcast. We need to set the
888 * oneshot_mask bits for those and program the
889 * broadcast device to fire.
891 cpumask_copy(tmpmask, tick_broadcast_mask);
892 cpumask_clear_cpu(cpu, tmpmask);
893 cpumask_or(tick_broadcast_oneshot_mask,
894 tick_broadcast_oneshot_mask, tmpmask);
896 if (was_periodic && !cpumask_empty(tmpmask)) {
897 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
898 tick_broadcast_init_next_event(tmpmask,
899 tick_next_period);
900 tick_broadcast_set_event(bc, cpu, tick_next_period);
901 } else
902 bc->next_event = KTIME_MAX;
903 } else {
905 * The first cpu which switches to oneshot mode sets
906 * the bit for all other cpus which are in the general
907 * (periodic) broadcast mask. So the bit is set and
908 * would prevent the first broadcast enter after this
909 * to program the bc device.
911 tick_broadcast_clear_oneshot(cpu);
916 * Select oneshot operating mode for the broadcast device
918 void tick_broadcast_switch_to_oneshot(void)
920 struct clock_event_device *bc;
921 unsigned long flags;
923 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
925 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
926 bc = tick_broadcast_device.evtdev;
927 if (bc)
928 tick_broadcast_setup_oneshot(bc);
930 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
933 #ifdef CONFIG_HOTPLUG_CPU
934 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
936 struct clock_event_device *bc;
937 unsigned long flags;
939 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
940 bc = tick_broadcast_device.evtdev;
942 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
943 /* This moves the broadcast assignment to this CPU: */
944 clockevents_program_event(bc, bc->next_event, 1);
946 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
950 * Remove a dead CPU from broadcasting
952 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
954 unsigned long flags;
956 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
959 * Clear the broadcast masks for the dead cpu, but do not stop
960 * the broadcast device!
962 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
963 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
964 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
966 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
968 #endif
971 * Check, whether the broadcast device is in one shot mode
973 int tick_broadcast_oneshot_active(void)
975 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
979 * Check whether the broadcast device supports oneshot.
981 bool tick_broadcast_oneshot_available(void)
983 struct clock_event_device *bc = tick_broadcast_device.evtdev;
985 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
988 #else
989 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
991 struct clock_event_device *bc = tick_broadcast_device.evtdev;
993 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
994 return -EBUSY;
996 return 0;
998 #endif
1000 void __init tick_broadcast_init(void)
1002 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1003 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1004 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1005 #ifdef CONFIG_TICK_ONESHOT
1006 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1007 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1008 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1009 #endif