Merge remote-tracking branch 'asoc/topic/compress' into asoc-next
[linux-2.6/btrfs-unstable.git] / include / linux / dmaengine.h
blobba5f96db07540dc2897399d98a1b7085cc16a63a
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
24 #include <linux/device.h>
25 #include <linux/err.h>
26 #include <linux/uio.h>
27 #include <linux/bug.h>
28 #include <linux/scatterlist.h>
29 #include <linux/bitmap.h>
30 #include <linux/types.h>
31 #include <asm/page.h>
33 /**
34 * typedef dma_cookie_t - an opaque DMA cookie
36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
38 typedef s32 dma_cookie_t;
39 #define DMA_MIN_COOKIE 1
40 #define DMA_MAX_COOKIE INT_MAX
42 static inline int dma_submit_error(dma_cookie_t cookie)
44 return cookie < 0 ? cookie : 0;
47 /**
48 * enum dma_status - DMA transaction status
49 * @DMA_COMPLETE: transaction completed
50 * @DMA_IN_PROGRESS: transaction not yet processed
51 * @DMA_PAUSED: transaction is paused
52 * @DMA_ERROR: transaction failed
54 enum dma_status {
55 DMA_COMPLETE,
56 DMA_IN_PROGRESS,
57 DMA_PAUSED,
58 DMA_ERROR,
61 /**
62 * enum dma_transaction_type - DMA transaction types/indexes
64 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
65 * automatically set as dma devices are registered.
67 enum dma_transaction_type {
68 DMA_MEMCPY,
69 DMA_XOR,
70 DMA_PQ,
71 DMA_XOR_VAL,
72 DMA_PQ_VAL,
73 DMA_INTERRUPT,
74 DMA_SG,
75 DMA_PRIVATE,
76 DMA_ASYNC_TX,
77 DMA_SLAVE,
78 DMA_CYCLIC,
79 DMA_INTERLEAVE,
80 /* last transaction type for creation of the capabilities mask */
81 DMA_TX_TYPE_END,
84 /**
85 * enum dma_transfer_direction - dma transfer mode and direction indicator
86 * @DMA_MEM_TO_MEM: Async/Memcpy mode
87 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
88 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
89 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
91 enum dma_transfer_direction {
92 DMA_MEM_TO_MEM,
93 DMA_MEM_TO_DEV,
94 DMA_DEV_TO_MEM,
95 DMA_DEV_TO_DEV,
96 DMA_TRANS_NONE,
99 /**
100 * Interleaved Transfer Request
101 * ----------------------------
102 * A chunk is collection of contiguous bytes to be transfered.
103 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
104 * ICGs may or maynot change between chunks.
105 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
106 * that when repeated an integral number of times, specifies the transfer.
107 * A transfer template is specification of a Frame, the number of times
108 * it is to be repeated and other per-transfer attributes.
110 * Practically, a client driver would have ready a template for each
111 * type of transfer it is going to need during its lifetime and
112 * set only 'src_start' and 'dst_start' before submitting the requests.
115 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
116 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
118 * == Chunk size
119 * ... ICG
123 * struct data_chunk - Element of scatter-gather list that makes a frame.
124 * @size: Number of bytes to read from source.
125 * size_dst := fn(op, size_src), so doesn't mean much for destination.
126 * @icg: Number of bytes to jump after last src/dst address of this
127 * chunk and before first src/dst address for next chunk.
128 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
129 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
131 struct data_chunk {
132 size_t size;
133 size_t icg;
137 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
138 * and attributes.
139 * @src_start: Bus address of source for the first chunk.
140 * @dst_start: Bus address of destination for the first chunk.
141 * @dir: Specifies the type of Source and Destination.
142 * @src_inc: If the source address increments after reading from it.
143 * @dst_inc: If the destination address increments after writing to it.
144 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
145 * Otherwise, source is read contiguously (icg ignored).
146 * Ignored if src_inc is false.
147 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
148 * Otherwise, destination is filled contiguously (icg ignored).
149 * Ignored if dst_inc is false.
150 * @numf: Number of frames in this template.
151 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
152 * @sgl: Array of {chunk,icg} pairs that make up a frame.
154 struct dma_interleaved_template {
155 dma_addr_t src_start;
156 dma_addr_t dst_start;
157 enum dma_transfer_direction dir;
158 bool src_inc;
159 bool dst_inc;
160 bool src_sgl;
161 bool dst_sgl;
162 size_t numf;
163 size_t frame_size;
164 struct data_chunk sgl[0];
168 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
169 * control completion, and communicate status.
170 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
171 * this transaction
172 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
173 * acknowledges receipt, i.e. has has a chance to establish any dependency
174 * chains
175 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
176 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
177 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
178 * sources that were the result of a previous operation, in the case of a PQ
179 * operation it continues the calculation with new sources
180 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
181 * on the result of this operation
183 enum dma_ctrl_flags {
184 DMA_PREP_INTERRUPT = (1 << 0),
185 DMA_CTRL_ACK = (1 << 1),
186 DMA_PREP_PQ_DISABLE_P = (1 << 2),
187 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
188 DMA_PREP_CONTINUE = (1 << 4),
189 DMA_PREP_FENCE = (1 << 5),
193 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
194 * on a running channel.
195 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
196 * @DMA_PAUSE: pause ongoing transfers
197 * @DMA_RESUME: resume paused transfer
198 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
199 * that need to runtime reconfigure the slave channels (as opposed to passing
200 * configuration data in statically from the platform). An additional
201 * argument of struct dma_slave_config must be passed in with this
202 * command.
203 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
204 * into external start mode.
206 enum dma_ctrl_cmd {
207 DMA_TERMINATE_ALL,
208 DMA_PAUSE,
209 DMA_RESUME,
210 DMA_SLAVE_CONFIG,
211 FSLDMA_EXTERNAL_START,
215 * enum sum_check_bits - bit position of pq_check_flags
217 enum sum_check_bits {
218 SUM_CHECK_P = 0,
219 SUM_CHECK_Q = 1,
223 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
224 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
225 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
227 enum sum_check_flags {
228 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
229 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
234 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
235 * See linux/cpumask.h
237 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
240 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
241 * @memcpy_count: transaction counter
242 * @bytes_transferred: byte counter
245 struct dma_chan_percpu {
246 /* stats */
247 unsigned long memcpy_count;
248 unsigned long bytes_transferred;
252 * struct dma_chan - devices supply DMA channels, clients use them
253 * @device: ptr to the dma device who supplies this channel, always !%NULL
254 * @cookie: last cookie value returned to client
255 * @completed_cookie: last completed cookie for this channel
256 * @chan_id: channel ID for sysfs
257 * @dev: class device for sysfs
258 * @device_node: used to add this to the device chan list
259 * @local: per-cpu pointer to a struct dma_chan_percpu
260 * @client-count: how many clients are using this channel
261 * @table_count: number of appearances in the mem-to-mem allocation table
262 * @private: private data for certain client-channel associations
264 struct dma_chan {
265 struct dma_device *device;
266 dma_cookie_t cookie;
267 dma_cookie_t completed_cookie;
269 /* sysfs */
270 int chan_id;
271 struct dma_chan_dev *dev;
273 struct list_head device_node;
274 struct dma_chan_percpu __percpu *local;
275 int client_count;
276 int table_count;
277 void *private;
281 * struct dma_chan_dev - relate sysfs device node to backing channel device
282 * @chan - driver channel device
283 * @device - sysfs device
284 * @dev_id - parent dma_device dev_id
285 * @idr_ref - reference count to gate release of dma_device dev_id
287 struct dma_chan_dev {
288 struct dma_chan *chan;
289 struct device device;
290 int dev_id;
291 atomic_t *idr_ref;
295 * enum dma_slave_buswidth - defines bus with of the DMA slave
296 * device, source or target buses
298 enum dma_slave_buswidth {
299 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
300 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
301 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
302 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
303 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
307 * struct dma_slave_config - dma slave channel runtime config
308 * @direction: whether the data shall go in or out on this slave
309 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
310 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
311 * need to differentiate source and target addresses.
312 * @src_addr: this is the physical address where DMA slave data
313 * should be read (RX), if the source is memory this argument is
314 * ignored.
315 * @dst_addr: this is the physical address where DMA slave data
316 * should be written (TX), if the source is memory this argument
317 * is ignored.
318 * @src_addr_width: this is the width in bytes of the source (RX)
319 * register where DMA data shall be read. If the source
320 * is memory this may be ignored depending on architecture.
321 * Legal values: 1, 2, 4, 8.
322 * @dst_addr_width: same as src_addr_width but for destination
323 * target (TX) mutatis mutandis.
324 * @src_maxburst: the maximum number of words (note: words, as in
325 * units of the src_addr_width member, not bytes) that can be sent
326 * in one burst to the device. Typically something like half the
327 * FIFO depth on I/O peripherals so you don't overflow it. This
328 * may or may not be applicable on memory sources.
329 * @dst_maxburst: same as src_maxburst but for destination target
330 * mutatis mutandis.
331 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
332 * with 'true' if peripheral should be flow controller. Direction will be
333 * selected at Runtime.
334 * @slave_id: Slave requester id. Only valid for slave channels. The dma
335 * slave peripheral will have unique id as dma requester which need to be
336 * pass as slave config.
338 * This struct is passed in as configuration data to a DMA engine
339 * in order to set up a certain channel for DMA transport at runtime.
340 * The DMA device/engine has to provide support for an additional
341 * command in the channel config interface, DMA_SLAVE_CONFIG
342 * and this struct will then be passed in as an argument to the
343 * DMA engine device_control() function.
345 * The rationale for adding configuration information to this struct
346 * is as follows: if it is likely that most DMA slave controllers in
347 * the world will support the configuration option, then make it
348 * generic. If not: if it is fixed so that it be sent in static from
349 * the platform data, then prefer to do that. Else, if it is neither
350 * fixed at runtime, nor generic enough (such as bus mastership on
351 * some CPU family and whatnot) then create a custom slave config
352 * struct and pass that, then make this config a member of that
353 * struct, if applicable.
355 struct dma_slave_config {
356 enum dma_transfer_direction direction;
357 dma_addr_t src_addr;
358 dma_addr_t dst_addr;
359 enum dma_slave_buswidth src_addr_width;
360 enum dma_slave_buswidth dst_addr_width;
361 u32 src_maxburst;
362 u32 dst_maxburst;
363 bool device_fc;
364 unsigned int slave_id;
368 * enum dma_residue_granularity - Granularity of the reported transfer residue
369 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
370 * DMA channel is only able to tell whether a descriptor has been completed or
371 * not, which means residue reporting is not supported by this channel. The
372 * residue field of the dma_tx_state field will always be 0.
373 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
374 * completed segment of the transfer (For cyclic transfers this is after each
375 * period). This is typically implemented by having the hardware generate an
376 * interrupt after each transferred segment and then the drivers updates the
377 * outstanding residue by the size of the segment. Another possibility is if
378 * the hardware supports scatter-gather and the segment descriptor has a field
379 * which gets set after the segment has been completed. The driver then counts
380 * the number of segments without the flag set to compute the residue.
381 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
382 * burst. This is typically only supported if the hardware has a progress
383 * register of some sort (E.g. a register with the current read/write address
384 * or a register with the amount of bursts/beats/bytes that have been
385 * transferred or still need to be transferred).
387 enum dma_residue_granularity {
388 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
389 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
390 DMA_RESIDUE_GRANULARITY_BURST = 2,
393 /* struct dma_slave_caps - expose capabilities of a slave channel only
395 * @src_addr_widths: bit mask of src addr widths the channel supports
396 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
397 * @directions: bit mask of slave direction the channel supported
398 * since the enum dma_transfer_direction is not defined as bits for each
399 * type of direction, the dma controller should fill (1 << <TYPE>) and same
400 * should be checked by controller as well
401 * @cmd_pause: true, if pause and thereby resume is supported
402 * @cmd_terminate: true, if terminate cmd is supported
403 * @residue_granularity: granularity of the reported transfer residue
405 struct dma_slave_caps {
406 u32 src_addr_widths;
407 u32 dstn_addr_widths;
408 u32 directions;
409 bool cmd_pause;
410 bool cmd_terminate;
411 enum dma_residue_granularity residue_granularity;
414 static inline const char *dma_chan_name(struct dma_chan *chan)
416 return dev_name(&chan->dev->device);
419 void dma_chan_cleanup(struct kref *kref);
422 * typedef dma_filter_fn - callback filter for dma_request_channel
423 * @chan: channel to be reviewed
424 * @filter_param: opaque parameter passed through dma_request_channel
426 * When this optional parameter is specified in a call to dma_request_channel a
427 * suitable channel is passed to this routine for further dispositioning before
428 * being returned. Where 'suitable' indicates a non-busy channel that
429 * satisfies the given capability mask. It returns 'true' to indicate that the
430 * channel is suitable.
432 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
434 typedef void (*dma_async_tx_callback)(void *dma_async_param);
436 struct dmaengine_unmap_data {
437 u8 to_cnt;
438 u8 from_cnt;
439 u8 bidi_cnt;
440 struct device *dev;
441 struct kref kref;
442 size_t len;
443 dma_addr_t addr[0];
447 * struct dma_async_tx_descriptor - async transaction descriptor
448 * ---dma generic offload fields---
449 * @cookie: tracking cookie for this transaction, set to -EBUSY if
450 * this tx is sitting on a dependency list
451 * @flags: flags to augment operation preparation, control completion, and
452 * communicate status
453 * @phys: physical address of the descriptor
454 * @chan: target channel for this operation
455 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
456 * @callback: routine to call after this operation is complete
457 * @callback_param: general parameter to pass to the callback routine
458 * ---async_tx api specific fields---
459 * @next: at completion submit this descriptor
460 * @parent: pointer to the next level up in the dependency chain
461 * @lock: protect the parent and next pointers
463 struct dma_async_tx_descriptor {
464 dma_cookie_t cookie;
465 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
466 dma_addr_t phys;
467 struct dma_chan *chan;
468 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
469 dma_async_tx_callback callback;
470 void *callback_param;
471 struct dmaengine_unmap_data *unmap;
472 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
473 struct dma_async_tx_descriptor *next;
474 struct dma_async_tx_descriptor *parent;
475 spinlock_t lock;
476 #endif
479 #ifdef CONFIG_DMA_ENGINE
480 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
481 struct dmaengine_unmap_data *unmap)
483 kref_get(&unmap->kref);
484 tx->unmap = unmap;
487 struct dmaengine_unmap_data *
488 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
489 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
490 #else
491 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
492 struct dmaengine_unmap_data *unmap)
495 static inline struct dmaengine_unmap_data *
496 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
498 return NULL;
500 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
503 #endif
505 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
507 if (tx->unmap) {
508 dmaengine_unmap_put(tx->unmap);
509 tx->unmap = NULL;
513 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
514 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
517 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
520 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
522 BUG();
524 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
527 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
530 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
532 return NULL;
534 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
536 return NULL;
539 #else
540 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
542 spin_lock_bh(&txd->lock);
544 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
546 spin_unlock_bh(&txd->lock);
548 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
550 txd->next = next;
551 next->parent = txd;
553 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
555 txd->parent = NULL;
557 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
559 txd->next = NULL;
561 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
563 return txd->parent;
565 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
567 return txd->next;
569 #endif
572 * struct dma_tx_state - filled in to report the status of
573 * a transfer.
574 * @last: last completed DMA cookie
575 * @used: last issued DMA cookie (i.e. the one in progress)
576 * @residue: the remaining number of bytes left to transmit
577 * on the selected transfer for states DMA_IN_PROGRESS and
578 * DMA_PAUSED if this is implemented in the driver, else 0
580 struct dma_tx_state {
581 dma_cookie_t last;
582 dma_cookie_t used;
583 u32 residue;
587 * struct dma_device - info on the entity supplying DMA services
588 * @chancnt: how many DMA channels are supported
589 * @privatecnt: how many DMA channels are requested by dma_request_channel
590 * @channels: the list of struct dma_chan
591 * @global_node: list_head for global dma_device_list
592 * @cap_mask: one or more dma_capability flags
593 * @max_xor: maximum number of xor sources, 0 if no capability
594 * @max_pq: maximum number of PQ sources and PQ-continue capability
595 * @copy_align: alignment shift for memcpy operations
596 * @xor_align: alignment shift for xor operations
597 * @pq_align: alignment shift for pq operations
598 * @fill_align: alignment shift for memset operations
599 * @dev_id: unique device ID
600 * @dev: struct device reference for dma mapping api
601 * @device_alloc_chan_resources: allocate resources and return the
602 * number of allocated descriptors
603 * @device_free_chan_resources: release DMA channel's resources
604 * @device_prep_dma_memcpy: prepares a memcpy operation
605 * @device_prep_dma_xor: prepares a xor operation
606 * @device_prep_dma_xor_val: prepares a xor validation operation
607 * @device_prep_dma_pq: prepares a pq operation
608 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
609 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
610 * @device_prep_slave_sg: prepares a slave dma operation
611 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
612 * The function takes a buffer of size buf_len. The callback function will
613 * be called after period_len bytes have been transferred.
614 * @device_prep_interleaved_dma: Transfer expression in a generic way.
615 * @device_control: manipulate all pending operations on a channel, returns
616 * zero or error code
617 * @device_tx_status: poll for transaction completion, the optional
618 * txstate parameter can be supplied with a pointer to get a
619 * struct with auxiliary transfer status information, otherwise the call
620 * will just return a simple status code
621 * @device_issue_pending: push pending transactions to hardware
622 * @device_slave_caps: return the slave channel capabilities
624 struct dma_device {
626 unsigned int chancnt;
627 unsigned int privatecnt;
628 struct list_head channels;
629 struct list_head global_node;
630 dma_cap_mask_t cap_mask;
631 unsigned short max_xor;
632 unsigned short max_pq;
633 u8 copy_align;
634 u8 xor_align;
635 u8 pq_align;
636 u8 fill_align;
637 #define DMA_HAS_PQ_CONTINUE (1 << 15)
639 int dev_id;
640 struct device *dev;
642 int (*device_alloc_chan_resources)(struct dma_chan *chan);
643 void (*device_free_chan_resources)(struct dma_chan *chan);
645 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
646 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
647 size_t len, unsigned long flags);
648 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
649 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
650 unsigned int src_cnt, size_t len, unsigned long flags);
651 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
652 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
653 size_t len, enum sum_check_flags *result, unsigned long flags);
654 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
655 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
656 unsigned int src_cnt, const unsigned char *scf,
657 size_t len, unsigned long flags);
658 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
659 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
660 unsigned int src_cnt, const unsigned char *scf, size_t len,
661 enum sum_check_flags *pqres, unsigned long flags);
662 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
663 struct dma_chan *chan, unsigned long flags);
664 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
665 struct dma_chan *chan,
666 struct scatterlist *dst_sg, unsigned int dst_nents,
667 struct scatterlist *src_sg, unsigned int src_nents,
668 unsigned long flags);
670 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
671 struct dma_chan *chan, struct scatterlist *sgl,
672 unsigned int sg_len, enum dma_transfer_direction direction,
673 unsigned long flags, void *context);
674 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
675 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
676 size_t period_len, enum dma_transfer_direction direction,
677 unsigned long flags, void *context);
678 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
679 struct dma_chan *chan, struct dma_interleaved_template *xt,
680 unsigned long flags);
681 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
682 unsigned long arg);
684 enum dma_status (*device_tx_status)(struct dma_chan *chan,
685 dma_cookie_t cookie,
686 struct dma_tx_state *txstate);
687 void (*device_issue_pending)(struct dma_chan *chan);
688 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
691 static inline int dmaengine_device_control(struct dma_chan *chan,
692 enum dma_ctrl_cmd cmd,
693 unsigned long arg)
695 if (chan->device->device_control)
696 return chan->device->device_control(chan, cmd, arg);
698 return -ENOSYS;
701 static inline int dmaengine_slave_config(struct dma_chan *chan,
702 struct dma_slave_config *config)
704 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
705 (unsigned long)config);
708 static inline bool is_slave_direction(enum dma_transfer_direction direction)
710 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
713 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
714 struct dma_chan *chan, dma_addr_t buf, size_t len,
715 enum dma_transfer_direction dir, unsigned long flags)
717 struct scatterlist sg;
718 sg_init_table(&sg, 1);
719 sg_dma_address(&sg) = buf;
720 sg_dma_len(&sg) = len;
722 return chan->device->device_prep_slave_sg(chan, &sg, 1,
723 dir, flags, NULL);
726 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
727 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
728 enum dma_transfer_direction dir, unsigned long flags)
730 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
731 dir, flags, NULL);
734 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
735 struct rio_dma_ext;
736 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
737 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
738 enum dma_transfer_direction dir, unsigned long flags,
739 struct rio_dma_ext *rio_ext)
741 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
742 dir, flags, rio_ext);
744 #endif
746 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
747 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
748 size_t period_len, enum dma_transfer_direction dir,
749 unsigned long flags)
751 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
752 period_len, dir, flags, NULL);
755 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
756 struct dma_chan *chan, struct dma_interleaved_template *xt,
757 unsigned long flags)
759 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
762 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
764 if (!chan || !caps)
765 return -EINVAL;
767 /* check if the channel supports slave transactions */
768 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
769 return -ENXIO;
771 if (chan->device->device_slave_caps)
772 return chan->device->device_slave_caps(chan, caps);
774 return -ENXIO;
777 static inline int dmaengine_terminate_all(struct dma_chan *chan)
779 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
782 static inline int dmaengine_pause(struct dma_chan *chan)
784 return dmaengine_device_control(chan, DMA_PAUSE, 0);
787 static inline int dmaengine_resume(struct dma_chan *chan)
789 return dmaengine_device_control(chan, DMA_RESUME, 0);
792 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
793 dma_cookie_t cookie, struct dma_tx_state *state)
795 return chan->device->device_tx_status(chan, cookie, state);
798 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
800 return desc->tx_submit(desc);
803 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
805 size_t mask;
807 if (!align)
808 return true;
809 mask = (1 << align) - 1;
810 if (mask & (off1 | off2 | len))
811 return false;
812 return true;
815 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
816 size_t off2, size_t len)
818 return dmaengine_check_align(dev->copy_align, off1, off2, len);
821 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
822 size_t off2, size_t len)
824 return dmaengine_check_align(dev->xor_align, off1, off2, len);
827 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
828 size_t off2, size_t len)
830 return dmaengine_check_align(dev->pq_align, off1, off2, len);
833 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
834 size_t off2, size_t len)
836 return dmaengine_check_align(dev->fill_align, off1, off2, len);
839 static inline void
840 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
842 dma->max_pq = maxpq;
843 if (has_pq_continue)
844 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
847 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
849 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
852 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
854 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
856 return (flags & mask) == mask;
859 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
861 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
864 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
866 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
869 /* dma_maxpq - reduce maxpq in the face of continued operations
870 * @dma - dma device with PQ capability
871 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
873 * When an engine does not support native continuation we need 3 extra
874 * source slots to reuse P and Q with the following coefficients:
875 * 1/ {00} * P : remove P from Q', but use it as a source for P'
876 * 2/ {01} * Q : use Q to continue Q' calculation
877 * 3/ {00} * Q : subtract Q from P' to cancel (2)
879 * In the case where P is disabled we only need 1 extra source:
880 * 1/ {01} * Q : use Q to continue Q' calculation
882 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
884 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
885 return dma_dev_to_maxpq(dma);
886 else if (dmaf_p_disabled_continue(flags))
887 return dma_dev_to_maxpq(dma) - 1;
888 else if (dmaf_continue(flags))
889 return dma_dev_to_maxpq(dma) - 3;
890 BUG();
893 /* --- public DMA engine API --- */
895 #ifdef CONFIG_DMA_ENGINE
896 void dmaengine_get(void);
897 void dmaengine_put(void);
898 #else
899 static inline void dmaengine_get(void)
902 static inline void dmaengine_put(void)
905 #endif
907 #ifdef CONFIG_NET_DMA
908 #define net_dmaengine_get() dmaengine_get()
909 #define net_dmaengine_put() dmaengine_put()
910 #else
911 static inline void net_dmaengine_get(void)
914 static inline void net_dmaengine_put(void)
917 #endif
919 #ifdef CONFIG_ASYNC_TX_DMA
920 #define async_dmaengine_get() dmaengine_get()
921 #define async_dmaengine_put() dmaengine_put()
922 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
923 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
924 #else
925 #define async_dma_find_channel(type) dma_find_channel(type)
926 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
927 #else
928 static inline void async_dmaengine_get(void)
931 static inline void async_dmaengine_put(void)
934 static inline struct dma_chan *
935 async_dma_find_channel(enum dma_transaction_type type)
937 return NULL;
939 #endif /* CONFIG_ASYNC_TX_DMA */
941 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
942 void *dest, void *src, size_t len);
943 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
944 struct page *page, unsigned int offset, void *kdata, size_t len);
945 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
946 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
947 unsigned int src_off, size_t len);
948 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
949 struct dma_chan *chan);
951 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
953 tx->flags |= DMA_CTRL_ACK;
956 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
958 tx->flags &= ~DMA_CTRL_ACK;
961 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
963 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
966 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
967 static inline void
968 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
970 set_bit(tx_type, dstp->bits);
973 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
974 static inline void
975 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
977 clear_bit(tx_type, dstp->bits);
980 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
981 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
983 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
986 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
987 static inline int
988 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
990 return test_bit(tx_type, srcp->bits);
993 #define for_each_dma_cap_mask(cap, mask) \
994 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
997 * dma_async_issue_pending - flush pending transactions to HW
998 * @chan: target DMA channel
1000 * This allows drivers to push copies to HW in batches,
1001 * reducing MMIO writes where possible.
1003 static inline void dma_async_issue_pending(struct dma_chan *chan)
1005 chan->device->device_issue_pending(chan);
1009 * dma_async_is_tx_complete - poll for transaction completion
1010 * @chan: DMA channel
1011 * @cookie: transaction identifier to check status of
1012 * @last: returns last completed cookie, can be NULL
1013 * @used: returns last issued cookie, can be NULL
1015 * If @last and @used are passed in, upon return they reflect the driver
1016 * internal state and can be used with dma_async_is_complete() to check
1017 * the status of multiple cookies without re-checking hardware state.
1019 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1020 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1022 struct dma_tx_state state;
1023 enum dma_status status;
1025 status = chan->device->device_tx_status(chan, cookie, &state);
1026 if (last)
1027 *last = state.last;
1028 if (used)
1029 *used = state.used;
1030 return status;
1034 * dma_async_is_complete - test a cookie against chan state
1035 * @cookie: transaction identifier to test status of
1036 * @last_complete: last know completed transaction
1037 * @last_used: last cookie value handed out
1039 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1040 * the test logic is separated for lightweight testing of multiple cookies
1042 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1043 dma_cookie_t last_complete, dma_cookie_t last_used)
1045 if (last_complete <= last_used) {
1046 if ((cookie <= last_complete) || (cookie > last_used))
1047 return DMA_COMPLETE;
1048 } else {
1049 if ((cookie <= last_complete) && (cookie > last_used))
1050 return DMA_COMPLETE;
1052 return DMA_IN_PROGRESS;
1055 static inline void
1056 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1058 if (st) {
1059 st->last = last;
1060 st->used = used;
1061 st->residue = residue;
1065 #ifdef CONFIG_DMA_ENGINE
1066 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1067 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1068 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1069 void dma_issue_pending_all(void);
1070 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1071 dma_filter_fn fn, void *fn_param);
1072 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1073 const char *name);
1074 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1075 void dma_release_channel(struct dma_chan *chan);
1076 #else
1077 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1079 return NULL;
1081 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1083 return DMA_COMPLETE;
1085 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1087 return DMA_COMPLETE;
1089 static inline void dma_issue_pending_all(void)
1092 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1093 dma_filter_fn fn, void *fn_param)
1095 return NULL;
1097 static inline struct dma_chan *dma_request_slave_channel_reason(
1098 struct device *dev, const char *name)
1100 return ERR_PTR(-ENODEV);
1102 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1103 const char *name)
1105 return NULL;
1107 static inline void dma_release_channel(struct dma_chan *chan)
1110 #endif
1112 /* --- DMA device --- */
1114 int dma_async_device_register(struct dma_device *device);
1115 void dma_async_device_unregister(struct dma_device *device);
1116 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1117 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1118 struct dma_chan *net_dma_find_channel(void);
1119 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1120 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1121 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1123 static inline struct dma_chan
1124 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1125 dma_filter_fn fn, void *fn_param,
1126 struct device *dev, char *name)
1128 struct dma_chan *chan;
1130 chan = dma_request_slave_channel(dev, name);
1131 if (chan)
1132 return chan;
1134 return __dma_request_channel(mask, fn, fn_param);
1137 /* --- Helper iov-locking functions --- */
1139 struct dma_page_list {
1140 char __user *base_address;
1141 int nr_pages;
1142 struct page **pages;
1145 struct dma_pinned_list {
1146 int nr_iovecs;
1147 struct dma_page_list page_list[0];
1150 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1151 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1153 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1154 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1155 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1156 struct dma_pinned_list *pinned_list, struct page *page,
1157 unsigned int offset, size_t len);
1159 #endif /* DMAENGINE_H */