ip6gre: Add support for basic offloads offloads excluding GSO
[linux-2.6/btrfs-unstable.git] / drivers / atm / horizon.c
blob527bbd595e3796debc2c0e2d60ea0a8e3f504df3
1 /*
2 Madge Horizon ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
24 IMPORTANT NOTE: Madge Networks no longer makes the adapters
25 supported by this driver and makes no commitment to maintain it.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/wait.h>
44 #include <linux/slab.h>
46 #include <asm/io.h>
47 #include <linux/atomic.h>
48 #include <asm/uaccess.h>
49 #include <asm/string.h>
50 #include <asm/byteorder.h>
52 #include "horizon.h"
54 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
55 #define description_string "Madge ATM Horizon [Ultra] driver"
56 #define version_string "1.2.1"
58 static inline void __init show_version (void) {
59 printk ("%s version %s\n", description_string, version_string);
64 CREDITS
66 Driver and documentation by:
68 Chris Aston Madge Networks
69 Giuliano Procida Madge Networks
70 Simon Benham Madge Networks
71 Simon Johnson Madge Networks
72 Various Others Madge Networks
74 Some inspiration taken from other drivers by:
76 Alexandru Cucos UTBv
77 Kari Mettinen University of Helsinki
78 Werner Almesberger EPFL LRC
80 Theory of Operation
82 I Hardware, detection, initialisation and shutdown.
84 1. Supported Hardware
86 This driver should handle all variants of the PCI Madge ATM adapters
87 with the Horizon chipset. These are all PCI cards supporting PIO, BM
88 DMA and a form of MMIO (registers only, not internal RAM).
90 The driver is only known to work with SONET and UTP Horizon Ultra
91 cards at 155Mb/s. However, code is in place to deal with both the
92 original Horizon and 25Mb/s operation.
94 There are two revisions of the Horizon ASIC: the original and the
95 Ultra. Details of hardware bugs are in section III.
97 The ASIC version can be distinguished by chip markings but is NOT
98 indicated by the PCI revision (all adapters seem to have PCI rev 1).
100 I believe that:
102 Horizon => Collage 25 PCI Adapter (UTP and STP)
103 Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
104 Ambassador x => Collage 155 PCI Server (completely different)
106 Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
107 have a Madge B154 plus glue logic serializer. I have also found a
108 really ancient version of this with slightly different glue. It
109 comes with the revision 0 (140-025-01) ASIC.
111 Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
112 output (UTP) or an HP HFBR 5205 output (SONET). It has either
113 Madge's SAMBA framer or a SUNI-lite device (early versions). It
114 comes with the revision 1 (140-027-01) ASIC.
116 2. Detection
118 All Horizon-based cards present with the same PCI Vendor and Device
119 IDs. The standard Linux 2.2 PCI API is used to locate any cards and
120 to enable bus-mastering (with appropriate latency).
122 ATM_LAYER_STATUS in the control register distinguishes between the
123 two possible physical layers (25 and 155). It is not clear whether
124 the 155 cards can also operate at 25Mbps. We rely on the fact that a
125 card operates at 155 if and only if it has the newer Horizon Ultra
126 ASIC.
128 For 155 cards the two possible framers are probed for and then set
129 up for loop-timing.
131 3. Initialisation
133 The card is reset and then put into a known state. The physical
134 layer is configured for normal operation at the appropriate speed;
135 in the case of the 155 cards, the framer is initialised with
136 line-based timing; the internal RAM is zeroed and the allocation of
137 buffers for RX and TX is made; the Burnt In Address is read and
138 copied to the ATM ESI; various policy settings for RX (VPI bits,
139 unknown VCs, oam cells) are made. Ideally all policy items should be
140 configurable at module load (if not actually on-demand), however,
141 only the vpi vs vci bit allocation can be specified at insmod.
143 4. Shutdown
145 This is in response to module_cleaup. No VCs are in use and the card
146 should be idle; it is reset.
148 II Driver software (as it should be)
150 0. Traffic Parameters
152 The traffic classes (not an enumeration) are currently: ATM_NONE (no
153 traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
154 (compatible with everything). Together with (perhaps only some of)
155 the following items they make up the traffic specification.
157 struct atm_trafprm {
158 unsigned char traffic_class; traffic class (ATM_UBR, ...)
159 int max_pcr; maximum PCR in cells per second
160 int pcr; desired PCR in cells per second
161 int min_pcr; minimum PCR in cells per second
162 int max_cdv; maximum CDV in microseconds
163 int max_sdu; maximum SDU in bytes
166 Note that these denote bandwidth available not bandwidth used; the
167 possibilities according to ATMF are:
169 Real Time (cdv and max CDT given)
171 CBR(pcr) pcr bandwidth always available
172 rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
174 Non Real Time
176 nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
177 UBR()
178 ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too
180 mbs is max burst size (bucket)
181 pcr and scr have associated cdvt values
182 mcr is like scr but has no cdtv
183 cdtv may differ at each hop
185 Some of the above items are qos items (as opposed to traffic
186 parameters). We have nothing to do with qos. All except ABR can have
187 their traffic parameters converted to GCRA parameters. The GCRA may
188 be implemented as a (real-number) leaky bucket. The GCRA can be used
189 in complicated ways by switches and in simpler ways by end-stations.
190 It can be used both to filter incoming cells and shape out-going
191 cells.
193 ATM Linux actually supports:
195 ATM_NONE() (no traffic in this direction)
196 ATM_UBR(max_frame_size)
197 ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
199 0 or ATM_MAX_PCR are used to indicate maximum available PCR
201 A traffic specification consists of the AAL type and separate
202 traffic specifications for either direction. In ATM Linux it is:
204 struct atm_qos {
205 struct atm_trafprm txtp;
206 struct atm_trafprm rxtp;
207 unsigned char aal;
210 AAL types are:
212 ATM_NO_AAL AAL not specified
213 ATM_AAL0 "raw" ATM cells
214 ATM_AAL1 AAL1 (CBR)
215 ATM_AAL2 AAL2 (VBR)
216 ATM_AAL34 AAL3/4 (data)
217 ATM_AAL5 AAL5 (data)
218 ATM_SAAL signaling AAL
220 The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
221 it does not implement AAL 3/4 SAR and it has a different notion of
222 "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
223 supported by this driver.
225 The Horizon has limited support for ABR (including UBR), VBR and
226 CBR. Each TX channel has a bucket (containing up to 31 cell units)
227 and two timers (PCR and SCR) associated with it that can be used to
228 govern cell emissions and host notification (in the case of ABR this
229 is presumably so that RM cells may be emitted at appropriate times).
230 The timers may either be disabled or may be set to any of 240 values
231 (determined by the clock crystal, a fixed (?) per-device divider, a
232 configurable divider and a configurable timer preload value).
234 At the moment only UBR and CBR are supported by the driver. VBR will
235 be supported as soon as ATM for Linux supports it. ABR support is
236 very unlikely as RM cell handling is completely up to the driver.
238 1. TX (TX channel setup and TX transfer)
240 The TX half of the driver owns the TX Horizon registers. The TX
241 component in the IRQ handler is the BM completion handler. This can
242 only be entered when tx_busy is true (enforced by hardware). The
243 other TX component can only be entered when tx_busy is false
244 (enforced by driver). So TX is single-threaded.
246 Apart from a minor optimisation to not re-select the last channel,
247 the TX send component works as follows:
249 Atomic test and set tx_busy until we succeed; we should implement
250 some sort of timeout so that tx_busy will never be stuck at true.
252 If no TX channel is set up for this VC we wait for an idle one (if
253 necessary) and set it up.
255 At this point we have a TX channel ready for use. We wait for enough
256 buffers to become available then start a TX transmit (set the TX
257 descriptor, schedule transfer, exit).
259 The IRQ component handles TX completion (stats, free buffer, tx_busy
260 unset, exit). We also re-schedule further transfers for the same
261 frame if needed.
263 TX setup in more detail:
265 TX open is a nop, the relevant information is held in the hrz_vcc
266 (vcc->dev_data) structure and is "cached" on the card.
268 TX close gets the TX lock and clears the channel from the "cache".
270 2. RX (Data Available and RX transfer)
272 The RX half of the driver owns the RX registers. There are two RX
273 components in the IRQ handler: the data available handler deals with
274 fresh data that has arrived on the card, the BM completion handler
275 is very similar to the TX completion handler. The data available
276 handler grabs the rx_lock and it is only released once the data has
277 been discarded or completely transferred to the host. The BM
278 completion handler only runs when the lock is held; the data
279 available handler is locked out over the same period.
281 Data available on the card triggers an interrupt. If the data is not
282 suitable for our existing RX channels or we cannot allocate a buffer
283 it is flushed. Otherwise an RX receive is scheduled. Multiple RX
284 transfers may be scheduled for the same frame.
286 RX setup in more detail:
288 RX open...
289 RX close...
291 III Hardware Bugs
293 0. Byte vs Word addressing of adapter RAM.
295 A design feature; see the .h file (especially the memory map).
297 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
299 The host must not start a transmit direction transfer at a
300 non-four-byte boundary in host memory. Instead the host should
301 perform a byte, or a two byte, or one byte followed by two byte
302 transfer in order to start the rest of the transfer on a four byte
303 boundary. RX is OK.
305 Simultaneous transmit and receive direction bus master transfers are
306 not allowed.
308 The simplest solution to these two is to always do PIO (never DMA)
309 in the TX direction on the original Horizon. More complicated
310 solutions are likely to hurt my brain.
312 2. Loss of buffer on close VC
314 When a VC is being closed, the buffer associated with it is not
315 returned to the pool. The host must store the reference to this
316 buffer and when opening a new VC then give it to that new VC.
318 The host intervention currently consists of stacking such a buffer
319 pointer at VC close and checking the stack at VC open.
321 3. Failure to close a VC
323 If a VC is currently receiving a frame then closing the VC may fail
324 and the frame continues to be received.
326 The solution is to make sure any received frames are flushed when
327 ready. This is currently done just before the solution to 2.
329 4. PCI bus (original Horizon only, fixed in Ultra)
331 Reading from the data port prior to initialisation will hang the PCI
332 bus. Just don't do that then! We don't.
334 IV To Do List
336 . Timer code may be broken.
338 . Allow users to specify buffer allocation split for TX and RX.
340 . Deal once and for all with buggy VC close.
342 . Handle interrupted and/or non-blocking operations.
344 . Change some macros to functions and move from .h to .c.
346 . Try to limit the number of TX frames each VC may have queued, in
347 order to reduce the chances of TX buffer exhaustion.
349 . Implement VBR (bucket and timers not understood) and ABR (need to
350 do RM cells manually); also no Linux support for either.
352 . Implement QoS changes on open VCs (involves extracting parts of VC open
353 and close into separate functions and using them to make changes).
357 /********** globals **********/
359 static void do_housekeeping (unsigned long arg);
361 static unsigned short debug = 0;
362 static unsigned short vpi_bits = 0;
363 static int max_tx_size = 9000;
364 static int max_rx_size = 9000;
365 static unsigned char pci_lat = 0;
367 /********** access functions **********/
369 /* Read / Write Horizon registers */
370 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
371 outl (cpu_to_le32 (data), dev->iobase + reg);
374 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
375 return le32_to_cpu (inl (dev->iobase + reg));
378 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
379 outw (cpu_to_le16 (data), dev->iobase + reg);
382 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
383 return le16_to_cpu (inw (dev->iobase + reg));
386 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
387 outsb (dev->iobase + reg, addr, len);
390 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
391 insb (dev->iobase + reg, addr, len);
394 /* Read / Write to a given address in Horizon buffer memory.
395 Interrupts must be disabled between the address register and data
396 port accesses as these must form an atomic operation. */
397 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
398 // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
399 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
400 wr_regl (dev, MEMORY_PORT_OFF, data);
403 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
404 // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
405 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
406 return rd_regl (dev, MEMORY_PORT_OFF);
409 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
410 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
411 wr_regl (dev, MEMORY_PORT_OFF, data);
414 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
415 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
416 return rd_regl (dev, MEMORY_PORT_OFF);
419 /********** specialised access functions **********/
421 /* RX */
423 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
424 wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
425 return;
428 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
429 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
431 return;
434 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
435 wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
436 return;
439 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
440 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
442 return;
445 /* TX */
447 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
448 wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
449 return;
452 /* Update or query one configuration parameter of a particular channel. */
454 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
455 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
456 chan * TX_CHANNEL_CONFIG_MULT | mode);
457 wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
458 return;
461 /********** dump functions **********/
463 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
464 #ifdef DEBUG_HORIZON
465 unsigned int i;
466 unsigned char * data = skb->data;
467 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
468 for (i=0; i<skb->len && i < 256;i++)
469 PRINTDM (DBG_DATA, "%02x ", data[i]);
470 PRINTDE (DBG_DATA,"");
471 #else
472 (void) prefix;
473 (void) vc;
474 (void) skb;
475 #endif
476 return;
479 static inline void dump_regs (hrz_dev * dev) {
480 #ifdef DEBUG_HORIZON
481 PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
482 PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
483 PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
484 PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
485 PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
486 PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
487 #else
488 (void) dev;
489 #endif
490 return;
493 static inline void dump_framer (hrz_dev * dev) {
494 #ifdef DEBUG_HORIZON
495 unsigned int i;
496 PRINTDB (DBG_REGS, "framer registers:");
497 for (i = 0; i < 0x10; ++i)
498 PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
499 PRINTDE (DBG_REGS,"");
500 #else
501 (void) dev;
502 #endif
503 return;
506 /********** VPI/VCI <-> (RX) channel conversions **********/
508 /* RX channels are 10 bit integers, these fns are quite paranoid */
510 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
511 unsigned short vci_bits = 10 - vpi_bits;
512 if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
513 *channel = vpi<<vci_bits | vci;
514 return *channel ? 0 : -EINVAL;
516 return -EINVAL;
519 /********** decode RX queue entries **********/
521 static inline u16 rx_q_entry_to_length (u32 x) {
522 return x & RX_Q_ENTRY_LENGTH_MASK;
525 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
526 return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
529 /* Cell Transmit Rate Values
531 * the cell transmit rate (cells per sec) can be set to a variety of
532 * different values by specifying two parameters: a timer preload from
533 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
534 * an exponent from 0 to 14; the special value 15 disables the timer).
536 * cellrate = baserate / (preload * 2^divider)
538 * The maximum cell rate that can be specified is therefore just the
539 * base rate. Halving the preload is equivalent to adding 1 to the
540 * divider and so values 1 to 8 of the preload are redundant except
541 * in the case of a maximal divider (14).
543 * Given a desired cell rate, an algorithm to determine the preload
544 * and divider is:
546 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
547 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
548 * if x <= 16 then set p = x, d = 0 (high rates), done
549 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
550 * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
551 * we find the range (n will be between 1 and 14), set d = n
552 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
554 * The algorithm used below is a minor variant of the above.
556 * The base rate is derived from the oscillator frequency (Hz) using a
557 * fixed divider:
559 * baserate = freq / 32 in the case of some Unknown Card
560 * baserate = freq / 8 in the case of the Horizon 25
561 * baserate = freq / 8 in the case of the Horizon Ultra 155
563 * The Horizon cards have oscillators and base rates as follows:
565 * Card Oscillator Base Rate
566 * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
567 * Horizon 25 32 MHz 4 MHz
568 * Horizon Ultra 155 40 MHz 5 MHz
570 * The following defines give the base rates in Hz. These were
571 * previously a factor of 100 larger, no doubt someone was using
572 * cps*100.
575 #define BR_UKN 1031250l
576 #define BR_HRZ 4000000l
577 #define BR_ULT 5000000l
579 // d is an exponent
580 #define CR_MIND 0
581 #define CR_MAXD 14
583 // p ranges from 1 to a power of 2
584 #define CR_MAXPEXP 4
586 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
587 u16 * bits, unsigned int * actual)
589 // note: rounding the rate down means rounding 'p' up
590 const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
592 u32 div = CR_MIND;
593 u32 pre;
595 // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
596 // the tests below. We could think harder about exact possibilities
597 // of failure...
599 unsigned long br_man = br;
600 unsigned int br_exp = 0;
602 PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
603 r == round_up ? "up" : r == round_down ? "down" : "nearest");
605 // avoid div by zero
606 if (!c) {
607 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
608 return -EINVAL;
611 while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
612 br_man = br_man >> 1;
613 ++br_exp;
615 // (br >>br_exp) <<br_exp == br and
616 // br_exp <= CR_MAXPEXP+CR_MIND
618 if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
619 // Equivalent to: B <= (c << (MAXPEXP+MIND))
620 // take care of rounding
621 switch (r) {
622 case round_down:
623 pre = DIV_ROUND_UP(br, c<<div);
624 // but p must be non-zero
625 if (!pre)
626 pre = 1;
627 break;
628 case round_nearest:
629 pre = DIV_ROUND_CLOSEST(br, c<<div);
630 // but p must be non-zero
631 if (!pre)
632 pre = 1;
633 break;
634 default: /* round_up */
635 pre = br/(c<<div);
636 // but p must be non-zero
637 if (!pre)
638 return -EINVAL;
640 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
641 goto got_it;
644 // at this point we have
645 // d == MIND and (c << (MAXPEXP+MIND)) < B
646 while (div < CR_MAXD) {
647 div++;
648 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
649 // Equivalent to: B <= (c << (MAXPEXP+d))
650 // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
651 // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
652 // MAXP/2 < B/c2^d <= MAXP
653 // take care of rounding
654 switch (r) {
655 case round_down:
656 pre = DIV_ROUND_UP(br, c<<div);
657 break;
658 case round_nearest:
659 pre = DIV_ROUND_CLOSEST(br, c<<div);
660 break;
661 default: /* round_up */
662 pre = br/(c<<div);
664 PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
665 goto got_it;
668 // at this point we have
669 // d == MAXD and (c << (MAXPEXP+MAXD)) < B
670 // but we cannot go any higher
671 // take care of rounding
672 if (r == round_down)
673 return -EINVAL;
674 pre = 1 << CR_MAXPEXP;
675 PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
676 got_it:
677 // paranoia
678 if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
679 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
680 div, pre);
681 return -EINVAL;
682 } else {
683 if (bits)
684 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
685 if (actual) {
686 *actual = DIV_ROUND_UP(br, pre<<div);
687 PRINTD (DBG_QOS, "actual rate: %u", *actual);
689 return 0;
693 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
694 u16 * bit_pattern, unsigned int * actual) {
695 unsigned int my_actual;
697 PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
698 c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
700 if (!actual)
701 // actual rate is not returned
702 actual = &my_actual;
704 if (make_rate (dev, c, round_nearest, bit_pattern, actual))
705 // should never happen as round_nearest always succeeds
706 return -1;
708 if (c - tol <= *actual && *actual <= c + tol)
709 // within tolerance
710 return 0;
711 else
712 // intolerant, try rounding instead
713 return make_rate (dev, c, r, bit_pattern, actual);
716 /********** Listen on a VC **********/
718 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
719 // is there any guarantee that we don't get two simulataneous
720 // identical calls of this function from different processes? yes
721 // rate_lock
722 unsigned long flags;
723 u32 channel_type; // u16?
725 u16 buf_ptr = RX_CHANNEL_IDLE;
727 rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
729 PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
731 spin_lock_irqsave (&dev->mem_lock, flags);
732 channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
733 spin_unlock_irqrestore (&dev->mem_lock, flags);
735 // very serious error, should never occur
736 if (channel_type != RX_CHANNEL_DISABLED) {
737 PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
738 return -EBUSY; // clean up?
741 // Give back spare buffer
742 if (dev->noof_spare_buffers) {
743 buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
744 PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
745 // should never occur
746 if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
747 // but easy to recover from
748 PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
749 buf_ptr = RX_CHANNEL_IDLE;
751 } else {
752 PRINTD (DBG_VCC, "using IDLE buffer pointer");
755 // Channel is currently disabled so change its status to idle
757 // do we really need to save the flags again?
758 spin_lock_irqsave (&dev->mem_lock, flags);
760 wr_mem (dev, &rx_desc->wr_buf_type,
761 buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
762 if (buf_ptr != RX_CHANNEL_IDLE)
763 wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
765 spin_unlock_irqrestore (&dev->mem_lock, flags);
767 // rxer->rate = make_rate (qos->peak_cells);
769 PRINTD (DBG_FLOW, "hrz_open_rx ok");
771 return 0;
774 #if 0
775 /********** change vc rate for a given vc **********/
777 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
778 rxer->rate = make_rate (qos->peak_cells);
780 #endif
782 /********** free an skb (as per ATM device driver documentation) **********/
784 static void hrz_kfree_skb (struct sk_buff * skb) {
785 if (ATM_SKB(skb)->vcc->pop) {
786 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
787 } else {
788 dev_kfree_skb_any (skb);
792 /********** cancel listen on a VC **********/
794 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
795 unsigned long flags;
797 u32 value;
799 u32 r1, r2;
801 rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
803 int was_idle = 0;
805 spin_lock_irqsave (&dev->mem_lock, flags);
806 value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
807 spin_unlock_irqrestore (&dev->mem_lock, flags);
809 if (value == RX_CHANNEL_DISABLED) {
810 // I suppose this could happen once we deal with _NONE traffic properly
811 PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
812 return;
814 if (value == RX_CHANNEL_IDLE)
815 was_idle = 1;
817 spin_lock_irqsave (&dev->mem_lock, flags);
819 for (;;) {
820 wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
822 if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
823 break;
825 was_idle = 0;
828 if (was_idle) {
829 spin_unlock_irqrestore (&dev->mem_lock, flags);
830 return;
833 WAIT_FLUSH_RX_COMPLETE(dev);
835 // XXX Is this all really necessary? We can rely on the rx_data_av
836 // handler to discard frames that remain queued for delivery. If the
837 // worry is that immediately reopening the channel (perhaps by a
838 // different process) may cause some data to be mis-delivered then
839 // there may still be a simpler solution (such as busy-waiting on
840 // rx_busy once the channel is disabled or before a new one is
841 // opened - does this leave any holes?). Arguably setting up and
842 // tearing down the TX and RX halves of each virtual circuit could
843 // most safely be done within ?x_busy protected regions.
845 // OK, current changes are that Simon's marker is disabled and we DO
846 // look for NULL rxer elsewhere. The code here seems flush frames
847 // and then remember the last dead cell belonging to the channel
848 // just disabled - the cell gets relinked at the next vc_open.
849 // However, when all VCs are closed or only a few opened there are a
850 // handful of buffers that are unusable.
852 // Does anyone feel like documenting spare_buffers properly?
853 // Does anyone feel like fixing this in a nicer way?
855 // Flush any data which is left in the channel
856 for (;;) {
857 // Change the rx channel port to something different to the RX
858 // channel we are trying to close to force Horizon to flush the rx
859 // channel read and write pointers.
861 u16 other = vc^(RX_CHANS/2);
863 SELECT_RX_CHANNEL (dev, other);
864 WAIT_UPDATE_COMPLETE (dev);
866 r1 = rd_mem (dev, &rx_desc->rd_buf_type);
868 // Select this RX channel. Flush doesn't seem to work unless we
869 // select an RX channel before hand
871 SELECT_RX_CHANNEL (dev, vc);
872 WAIT_UPDATE_COMPLETE (dev);
874 // Attempt to flush a frame on this RX channel
876 FLUSH_RX_CHANNEL (dev, vc);
877 WAIT_FLUSH_RX_COMPLETE (dev);
879 // Force Horizon to flush rx channel read and write pointers as before
881 SELECT_RX_CHANNEL (dev, other);
882 WAIT_UPDATE_COMPLETE (dev);
884 r2 = rd_mem (dev, &rx_desc->rd_buf_type);
886 PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
888 if (r1 == r2) {
889 dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
890 break;
894 #if 0
896 rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
897 rx_q_entry * rd_ptr = dev->rx_q_entry;
899 PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
901 while (rd_ptr != wr_ptr) {
902 u32 x = rd_mem (dev, (HDW *) rd_ptr);
904 if (vc == rx_q_entry_to_rx_channel (x)) {
905 x |= SIMONS_DODGEY_MARKER;
907 PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
909 wr_mem (dev, (HDW *) rd_ptr, x);
912 if (rd_ptr == dev->rx_q_wrap)
913 rd_ptr = dev->rx_q_reset;
914 else
915 rd_ptr++;
918 #endif
920 spin_unlock_irqrestore (&dev->mem_lock, flags);
922 return;
925 /********** schedule RX transfers **********/
927 // Note on tail recursion: a GCC developer said that it is not likely
928 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
929 // are sure it does as you may otherwise overflow the kernel stack.
931 // giving this fn a return value would help GCC, allegedly
933 static void rx_schedule (hrz_dev * dev, int irq) {
934 unsigned int rx_bytes;
936 int pio_instead = 0;
937 #ifndef TAILRECURSIONWORKS
938 pio_instead = 1;
939 while (pio_instead) {
940 #endif
941 // bytes waiting for RX transfer
942 rx_bytes = dev->rx_bytes;
944 #if 0
945 spin_count = 0;
946 while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
947 PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
948 if (++spin_count > 10) {
949 PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
950 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
951 clear_bit (rx_busy, &dev->flags);
952 hrz_kfree_skb (dev->rx_skb);
953 return;
956 #endif
958 // this code follows the TX code but (at the moment) there is only
959 // one region - the skb itself. I don't know if this will change,
960 // but it doesn't hurt to have the code here, disabled.
962 if (rx_bytes) {
963 // start next transfer within same region
964 if (rx_bytes <= MAX_PIO_COUNT) {
965 PRINTD (DBG_RX|DBG_BUS, "(pio)");
966 pio_instead = 1;
968 if (rx_bytes <= MAX_TRANSFER_COUNT) {
969 PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
970 dev->rx_bytes = 0;
971 } else {
972 PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
973 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
974 rx_bytes = MAX_TRANSFER_COUNT;
976 } else {
977 // rx_bytes == 0 -- we're between regions
978 // regions remaining to transfer
979 #if 0
980 unsigned int rx_regions = dev->rx_regions;
981 #else
982 unsigned int rx_regions = 0;
983 #endif
985 if (rx_regions) {
986 #if 0
987 // start a new region
988 dev->rx_addr = dev->rx_iovec->iov_base;
989 rx_bytes = dev->rx_iovec->iov_len;
990 ++dev->rx_iovec;
991 dev->rx_regions = rx_regions - 1;
993 if (rx_bytes <= MAX_PIO_COUNT) {
994 PRINTD (DBG_RX|DBG_BUS, "(pio)");
995 pio_instead = 1;
997 if (rx_bytes <= MAX_TRANSFER_COUNT) {
998 PRINTD (DBG_RX|DBG_BUS, "(full region)");
999 dev->rx_bytes = 0;
1000 } else {
1001 PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1002 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1003 rx_bytes = MAX_TRANSFER_COUNT;
1005 #endif
1006 } else {
1007 // rx_regions == 0
1008 // that's all folks - end of frame
1009 struct sk_buff * skb = dev->rx_skb;
1010 // dev->rx_iovec = 0;
1012 FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1014 dump_skb ("<<<", dev->rx_channel, skb);
1016 PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1019 struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1020 // VC layer stats
1021 atomic_inc(&vcc->stats->rx);
1022 __net_timestamp(skb);
1023 // end of our responsibility
1024 vcc->push (vcc, skb);
1029 // note: writing RX_COUNT clears any interrupt condition
1030 if (rx_bytes) {
1031 if (pio_instead) {
1032 if (irq)
1033 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1034 rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1035 } else {
1036 wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1037 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1039 dev->rx_addr += rx_bytes;
1040 } else {
1041 if (irq)
1042 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1043 // allow another RX thread to start
1044 YELLOW_LED_ON(dev);
1045 clear_bit (rx_busy, &dev->flags);
1046 PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1049 #ifdef TAILRECURSIONWORKS
1050 // and we all bless optimised tail calls
1051 if (pio_instead)
1052 return rx_schedule (dev, 0);
1053 return;
1054 #else
1055 // grrrrrrr!
1056 irq = 0;
1058 return;
1059 #endif
1062 /********** handle RX bus master complete events **********/
1064 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1065 if (test_bit (rx_busy, &dev->flags)) {
1066 rx_schedule (dev, 1);
1067 } else {
1068 PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1069 // clear interrupt condition on adapter
1070 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1072 return;
1075 /********** (queue to) become the next TX thread **********/
1077 static int tx_hold (hrz_dev * dev) {
1078 PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1079 wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1080 PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1081 if (signal_pending (current))
1082 return -1;
1083 PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1084 return 0;
1087 /********** allow another TX thread to start **********/
1089 static inline void tx_release (hrz_dev * dev) {
1090 clear_bit (tx_busy, &dev->flags);
1091 PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1092 wake_up_interruptible (&dev->tx_queue);
1095 /********** schedule TX transfers **********/
1097 static void tx_schedule (hrz_dev * const dev, int irq) {
1098 unsigned int tx_bytes;
1100 int append_desc = 0;
1102 int pio_instead = 0;
1103 #ifndef TAILRECURSIONWORKS
1104 pio_instead = 1;
1105 while (pio_instead) {
1106 #endif
1107 // bytes in current region waiting for TX transfer
1108 tx_bytes = dev->tx_bytes;
1110 #if 0
1111 spin_count = 0;
1112 while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1113 PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1114 if (++spin_count > 10) {
1115 PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1116 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1117 tx_release (dev);
1118 hrz_kfree_skb (dev->tx_skb);
1119 return;
1122 #endif
1124 if (tx_bytes) {
1125 // start next transfer within same region
1126 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1127 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1128 pio_instead = 1;
1130 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1131 PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1132 if (!dev->tx_iovec) {
1133 // end of last region
1134 append_desc = 1;
1136 dev->tx_bytes = 0;
1137 } else {
1138 PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1139 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1140 tx_bytes = MAX_TRANSFER_COUNT;
1142 } else {
1143 // tx_bytes == 0 -- we're between regions
1144 // regions remaining to transfer
1145 unsigned int tx_regions = dev->tx_regions;
1147 if (tx_regions) {
1148 // start a new region
1149 dev->tx_addr = dev->tx_iovec->iov_base;
1150 tx_bytes = dev->tx_iovec->iov_len;
1151 ++dev->tx_iovec;
1152 dev->tx_regions = tx_regions - 1;
1154 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1155 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1156 pio_instead = 1;
1158 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1159 PRINTD (DBG_TX|DBG_BUS, "(full region)");
1160 dev->tx_bytes = 0;
1161 } else {
1162 PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1163 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1164 tx_bytes = MAX_TRANSFER_COUNT;
1166 } else {
1167 // tx_regions == 0
1168 // that's all folks - end of frame
1169 struct sk_buff * skb = dev->tx_skb;
1170 dev->tx_iovec = NULL;
1172 // VC layer stats
1173 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1175 // free the skb
1176 hrz_kfree_skb (skb);
1180 // note: writing TX_COUNT clears any interrupt condition
1181 if (tx_bytes) {
1182 if (pio_instead) {
1183 if (irq)
1184 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1185 wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1186 if (append_desc)
1187 wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1188 } else {
1189 wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1190 if (append_desc)
1191 wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1192 wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1193 append_desc
1194 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1195 : tx_bytes);
1197 dev->tx_addr += tx_bytes;
1198 } else {
1199 if (irq)
1200 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201 YELLOW_LED_ON(dev);
1202 tx_release (dev);
1205 #ifdef TAILRECURSIONWORKS
1206 // and we all bless optimised tail calls
1207 if (pio_instead)
1208 return tx_schedule (dev, 0);
1209 return;
1210 #else
1211 // grrrrrrr!
1212 irq = 0;
1214 return;
1215 #endif
1218 /********** handle TX bus master complete events **********/
1220 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1221 if (test_bit (tx_busy, &dev->flags)) {
1222 tx_schedule (dev, 1);
1223 } else {
1224 PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1225 // clear interrupt condition on adapter
1226 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1228 return;
1231 /********** move RX Q pointer to next item in circular buffer **********/
1233 // called only from IRQ sub-handler
1234 static u32 rx_queue_entry_next (hrz_dev * dev) {
1235 u32 rx_queue_entry;
1236 spin_lock (&dev->mem_lock);
1237 rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1238 if (dev->rx_q_entry == dev->rx_q_wrap)
1239 dev->rx_q_entry = dev->rx_q_reset;
1240 else
1241 dev->rx_q_entry++;
1242 wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1243 spin_unlock (&dev->mem_lock);
1244 return rx_queue_entry;
1247 /********** handle RX data received by device **********/
1249 // called from IRQ handler
1250 static void rx_data_av_handler (hrz_dev * dev) {
1251 u32 rx_queue_entry;
1252 u32 rx_queue_entry_flags;
1253 u16 rx_len;
1254 u16 rx_channel;
1256 PRINTD (DBG_FLOW, "hrz_data_av_handler");
1258 // try to grab rx lock (not possible during RX bus mastering)
1259 if (test_and_set_bit (rx_busy, &dev->flags)) {
1260 PRINTD (DBG_RX, "locked out of rx lock");
1261 return;
1263 PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1264 // lock is cleared if we fail now, o/w after bus master completion
1266 YELLOW_LED_OFF(dev);
1268 rx_queue_entry = rx_queue_entry_next (dev);
1270 rx_len = rx_q_entry_to_length (rx_queue_entry);
1271 rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1273 WAIT_FLUSH_RX_COMPLETE (dev);
1275 SELECT_RX_CHANNEL (dev, rx_channel);
1277 PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1278 rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1280 if (!rx_len) {
1281 // (at least) bus-mastering breaks if we try to handle a
1282 // zero-length frame, besides AAL5 does not support them
1283 PRINTK (KERN_ERR, "zero-length frame!");
1284 rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1287 if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1288 PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1290 if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1291 struct atm_vcc * atm_vcc;
1293 PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1295 atm_vcc = dev->rxer[rx_channel];
1296 // if no vcc is assigned to this channel, we should drop the frame
1297 // (is this what SIMONS etc. was trying to achieve?)
1299 if (atm_vcc) {
1301 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1303 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1305 struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1306 if (skb) {
1307 // remember this so we can push it later
1308 dev->rx_skb = skb;
1309 // remember this so we can flush it later
1310 dev->rx_channel = rx_channel;
1312 // prepare socket buffer
1313 skb_put (skb, rx_len);
1314 ATM_SKB(skb)->vcc = atm_vcc;
1316 // simple transfer
1317 // dev->rx_regions = 0;
1318 // dev->rx_iovec = 0;
1319 dev->rx_bytes = rx_len;
1320 dev->rx_addr = skb->data;
1321 PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1322 skb->data, rx_len);
1324 // do the business
1325 rx_schedule (dev, 0);
1326 return;
1328 } else {
1329 PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1332 } else {
1333 PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1334 // do we count this?
1337 } else {
1338 PRINTK (KERN_WARNING, "dropped over-size frame");
1339 // do we count this?
1342 } else {
1343 PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1344 // do we count this?
1347 } else {
1348 // Wait update complete ? SPONG
1351 // RX was aborted
1352 YELLOW_LED_ON(dev);
1354 FLUSH_RX_CHANNEL (dev,rx_channel);
1355 clear_bit (rx_busy, &dev->flags);
1357 return;
1360 /********** interrupt handler **********/
1362 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1364 hrz_dev *dev = dev_id;
1365 u32 int_source;
1366 unsigned int irq_ok;
1368 PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1370 // definitely for us
1371 irq_ok = 0;
1372 while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1373 & INTERESTING_INTERRUPTS)) {
1374 // In the interests of fairness, the handlers below are
1375 // called in sequence and without immediate return to the head of
1376 // the while loop. This is only of issue for slow hosts (or when
1377 // debugging messages are on). Really slow hosts may find a fast
1378 // sender keeps them permanently in the IRQ handler. :(
1380 // (only an issue for slow hosts) RX completion goes before
1381 // rx_data_av as the former implies rx_busy and so the latter
1382 // would just abort. If it reschedules another transfer
1383 // (continuing the same frame) then it will not clear rx_busy.
1385 // (only an issue for slow hosts) TX completion goes before RX
1386 // data available as it is a much shorter routine - there is the
1387 // chance that any further transfers it schedules will be complete
1388 // by the time of the return to the head of the while loop
1390 if (int_source & RX_BUS_MASTER_COMPLETE) {
1391 ++irq_ok;
1392 PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1393 rx_bus_master_complete_handler (dev);
1395 if (int_source & TX_BUS_MASTER_COMPLETE) {
1396 ++irq_ok;
1397 PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1398 tx_bus_master_complete_handler (dev);
1400 if (int_source & RX_DATA_AV) {
1401 ++irq_ok;
1402 PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1403 rx_data_av_handler (dev);
1406 if (irq_ok) {
1407 PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1408 } else {
1409 PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1412 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1413 if (irq_ok)
1414 return IRQ_HANDLED;
1415 return IRQ_NONE;
1418 /********** housekeeping **********/
1420 static void do_housekeeping (unsigned long arg) {
1421 // just stats at the moment
1422 hrz_dev * dev = (hrz_dev *) arg;
1424 // collect device-specific (not driver/atm-linux) stats here
1425 dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1426 dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1427 dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1428 dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1430 mod_timer (&dev->housekeeping, jiffies + HZ/10);
1432 return;
1435 /********** find an idle channel for TX and set it up **********/
1437 // called with tx_busy set
1438 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1439 unsigned short idle_channels;
1440 short tx_channel = -1;
1441 unsigned int spin_count;
1442 PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1444 // better would be to fail immediately, the caller can then decide whether
1445 // to wait or drop (depending on whether this is UBR etc.)
1446 spin_count = 0;
1447 while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1448 PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1449 // delay a bit here
1450 if (++spin_count > 100) {
1451 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1452 return -EBUSY;
1456 // got an idle channel
1458 // tx_idle ensures we look for idle channels in RR order
1459 int chan = dev->tx_idle;
1461 int keep_going = 1;
1462 while (keep_going) {
1463 if (idle_channels & (1<<chan)) {
1464 tx_channel = chan;
1465 keep_going = 0;
1467 ++chan;
1468 if (chan == TX_CHANS)
1469 chan = 0;
1472 dev->tx_idle = chan;
1475 // set up the channel we found
1477 // Initialise the cell header in the transmit channel descriptor
1478 // a.k.a. prepare the channel and remember that we have done so.
1480 tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1481 u32 rd_ptr;
1482 u32 wr_ptr;
1483 u16 channel = vcc->channel;
1485 unsigned long flags;
1486 spin_lock_irqsave (&dev->mem_lock, flags);
1488 // Update the transmit channel record.
1489 dev->tx_channel_record[tx_channel] = channel;
1491 // xBR channel
1492 update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1493 vcc->tx_xbr_bits);
1495 // Update the PCR counter preload value etc.
1496 update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1497 vcc->tx_pcr_bits);
1499 #if 0
1500 if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1501 // SCR timer
1502 update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1503 vcc->tx_scr_bits);
1505 // Bucket size...
1506 update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1507 vcc->tx_bucket_bits);
1509 // ... and fullness
1510 update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1511 vcc->tx_bucket_bits);
1513 #endif
1515 // Initialise the read and write buffer pointers
1516 rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1517 wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1519 // idle TX channels should have identical pointers
1520 if (rd_ptr != wr_ptr) {
1521 PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1522 // spin_unlock... return -E...
1523 // I wonder if gcc would get rid of one of the pointer aliases
1525 PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1526 rd_ptr, wr_ptr);
1528 switch (vcc->aal) {
1529 case aal0:
1530 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1531 rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1532 wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1533 break;
1534 case aal34:
1535 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1536 rd_ptr |= CHANNEL_TYPE_AAL3_4;
1537 wr_ptr |= CHANNEL_TYPE_AAL3_4;
1538 break;
1539 case aal5:
1540 rd_ptr |= CHANNEL_TYPE_AAL5;
1541 wr_ptr |= CHANNEL_TYPE_AAL5;
1542 // Initialise the CRC
1543 wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1544 break;
1547 wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1548 wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1550 // Write the Cell Header
1551 // Payload Type, CLP and GFC would go here if non-zero
1552 wr_mem (dev, &tx_desc->cell_header, channel);
1554 spin_unlock_irqrestore (&dev->mem_lock, flags);
1557 return tx_channel;
1560 /********** send a frame **********/
1562 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1563 unsigned int spin_count;
1564 int free_buffers;
1565 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1566 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1567 u16 channel = vcc->channel;
1569 u32 buffers_required;
1571 /* signed for error return */
1572 short tx_channel;
1574 PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1575 channel, skb->data, skb->len);
1577 dump_skb (">>>", channel, skb);
1579 if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1580 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1581 hrz_kfree_skb (skb);
1582 return -EIO;
1585 // don't understand this
1586 ATM_SKB(skb)->vcc = atm_vcc;
1588 if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1589 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1590 hrz_kfree_skb (skb);
1591 return -EIO;
1594 if (!channel) {
1595 PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1596 hrz_kfree_skb (skb);
1597 return -EIO;
1600 #if 0
1602 // where would be a better place for this? housekeeping?
1603 u16 status;
1604 pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1605 if (status & PCI_STATUS_REC_MASTER_ABORT) {
1606 PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1607 status &= ~PCI_STATUS_REC_MASTER_ABORT;
1608 pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1609 if (test_bit (tx_busy, &dev->flags)) {
1610 hrz_kfree_skb (dev->tx_skb);
1611 tx_release (dev);
1615 #endif
1617 #ifdef DEBUG_HORIZON
1618 /* wey-hey! */
1619 if (channel == 1023) {
1620 unsigned int i;
1621 unsigned short d = 0;
1622 char * s = skb->data;
1623 if (*s++ == 'D') {
1624 for (i = 0; i < 4; ++i)
1625 d = (d << 4) | hex_to_bin(*s++);
1626 PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1629 #endif
1631 // wait until TX is free and grab lock
1632 if (tx_hold (dev)) {
1633 hrz_kfree_skb (skb);
1634 return -ERESTARTSYS;
1637 // Wait for enough space to be available in transmit buffer memory.
1639 // should be number of cells needed + 2 (according to hardware docs)
1640 // = ((framelen+8)+47) / 48 + 2
1641 // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1642 buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1644 // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1645 spin_count = 0;
1646 while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1647 PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1648 free_buffers, buffers_required);
1649 // what is the appropriate delay? implement a timeout? (depending on line speed?)
1650 // mdelay (1);
1651 // what happens if we kill (current_pid, SIGKILL) ?
1652 schedule();
1653 if (++spin_count > 1000) {
1654 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1655 free_buffers, buffers_required);
1656 tx_release (dev);
1657 hrz_kfree_skb (skb);
1658 return -ERESTARTSYS;
1662 // Select a channel to transmit the frame on.
1663 if (channel == dev->last_vc) {
1664 PRINTD (DBG_TX, "last vc hack: hit");
1665 tx_channel = dev->tx_last;
1666 } else {
1667 PRINTD (DBG_TX, "last vc hack: miss");
1668 // Are we currently transmitting this VC on one of the channels?
1669 for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1670 if (dev->tx_channel_record[tx_channel] == channel) {
1671 PRINTD (DBG_TX, "vc already on channel: hit");
1672 break;
1674 if (tx_channel == TX_CHANS) {
1675 PRINTD (DBG_TX, "vc already on channel: miss");
1676 // Find and set up an idle channel.
1677 tx_channel = setup_idle_tx_channel (dev, vcc);
1678 if (tx_channel < 0) {
1679 PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1680 tx_release (dev);
1681 return tx_channel;
1685 PRINTD (DBG_TX, "got channel");
1686 SELECT_TX_CHANNEL(dev, tx_channel);
1688 dev->last_vc = channel;
1689 dev->tx_last = tx_channel;
1692 PRINTD (DBG_TX, "using channel %u", tx_channel);
1694 YELLOW_LED_OFF(dev);
1696 // TX start transfer
1699 unsigned int tx_len = skb->len;
1700 unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1701 // remember this so we can free it later
1702 dev->tx_skb = skb;
1704 if (tx_iovcnt) {
1705 // scatter gather transfer
1706 dev->tx_regions = tx_iovcnt;
1707 dev->tx_iovec = NULL; /* @@@ needs rewritten */
1708 dev->tx_bytes = 0;
1709 PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1710 skb->data, tx_len);
1711 tx_release (dev);
1712 hrz_kfree_skb (skb);
1713 return -EIO;
1714 } else {
1715 // simple transfer
1716 dev->tx_regions = 0;
1717 dev->tx_iovec = NULL;
1718 dev->tx_bytes = tx_len;
1719 dev->tx_addr = skb->data;
1720 PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1721 skb->data, tx_len);
1724 // and do the business
1725 tx_schedule (dev, 0);
1729 return 0;
1732 /********** reset a card **********/
1734 static void hrz_reset (const hrz_dev * dev) {
1735 u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1737 // why not set RESET_HORIZON to one and wait for the card to
1738 // reassert that bit as zero? Like so:
1739 control_0_reg = control_0_reg & RESET_HORIZON;
1740 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1741 while (control_0_reg & RESET_HORIZON)
1742 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1744 // old reset code retained:
1745 wr_regl (dev, CONTROL_0_REG, control_0_reg |
1746 RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1747 // just guessing here
1748 udelay (1000);
1750 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1753 /********** read the burnt in address **********/
1755 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1757 wr_regl (dev, CONTROL_0_REG, ctrl);
1758 udelay (5);
1761 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1763 // DI must be valid around rising SK edge
1764 WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1765 WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1768 static u16 read_bia(const hrz_dev *dev, u16 addr)
1770 u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1772 const unsigned int addr_bits = 6;
1773 const unsigned int data_bits = 16;
1775 unsigned int i;
1777 u16 res;
1779 ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1780 WRITE_IT_WAIT(dev, ctrl);
1782 // wake Serial EEPROM and send 110 (READ) command
1783 ctrl |= (SEEPROM_CS | SEEPROM_DI);
1784 CLOCK_IT(dev, ctrl);
1786 ctrl |= SEEPROM_DI;
1787 CLOCK_IT(dev, ctrl);
1789 ctrl &= ~SEEPROM_DI;
1790 CLOCK_IT(dev, ctrl);
1792 for (i=0; i<addr_bits; i++) {
1793 if (addr & (1 << (addr_bits-1)))
1794 ctrl |= SEEPROM_DI;
1795 else
1796 ctrl &= ~SEEPROM_DI;
1798 CLOCK_IT(dev, ctrl);
1800 addr = addr << 1;
1803 // we could check that we have DO = 0 here
1804 ctrl &= ~SEEPROM_DI;
1806 res = 0;
1807 for (i=0;i<data_bits;i++) {
1808 res = res >> 1;
1810 CLOCK_IT(dev, ctrl);
1812 if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1813 res |= (1 << (data_bits-1));
1816 ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1817 WRITE_IT_WAIT(dev, ctrl);
1819 return res;
1822 /********** initialise a card **********/
1824 static int hrz_init(hrz_dev *dev)
1826 int onefivefive;
1828 u16 chan;
1830 int buff_count;
1832 HDW * mem;
1834 cell_buf * tx_desc;
1835 cell_buf * rx_desc;
1837 u32 ctrl;
1839 ctrl = rd_regl (dev, CONTROL_0_REG);
1840 PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1841 onefivefive = ctrl & ATM_LAYER_STATUS;
1843 if (onefivefive)
1844 printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1845 else
1846 printk (DEV_LABEL ": Horizon (at 25 MBps)");
1848 printk (":");
1849 // Reset the card to get everything in a known state
1851 printk (" reset");
1852 hrz_reset (dev);
1854 // Clear all the buffer memory
1856 printk (" clearing memory");
1858 for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1859 wr_mem (dev, mem, 0);
1861 printk (" tx channels");
1863 // All transmit eight channels are set up as AAL5 ABR channels with
1864 // a 16us cell spacing. Why?
1866 // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1867 // buffer at 110h etc.
1869 for (chan = 0; chan < TX_CHANS; ++chan) {
1870 tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1871 cell_buf * buf = &memmap->inittxbufs[chan];
1873 // initialise the read and write buffer pointers
1874 wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1875 wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1877 // set the status of the initial buffers to empty
1878 wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1881 // Use space bufn3 at the moment for tx buffers
1883 printk (" tx buffers");
1885 tx_desc = memmap->bufn3;
1887 wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1889 for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1890 wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1891 tx_desc++;
1894 wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1896 // Initialise the transmit free buffer count
1897 wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1899 printk (" rx channels");
1901 // Initialise all of the receive channels to be AAL5 disabled with
1902 // an interrupt threshold of 0
1904 for (chan = 0; chan < RX_CHANS; ++chan) {
1905 rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1907 wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1910 printk (" rx buffers");
1912 // Use space bufn4 at the moment for rx buffers
1914 rx_desc = memmap->bufn4;
1916 wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1918 for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1919 wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1921 rx_desc++;
1924 wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1926 // Initialise the receive free buffer count
1927 wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1929 // Initialize Horizons registers
1931 // TX config
1932 wr_regw (dev, TX_CONFIG_OFF,
1933 ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1935 // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1936 wr_regw (dev, RX_CONFIG_OFF,
1937 DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1939 // RX line config
1940 wr_regw (dev, RX_LINE_CONFIG_OFF,
1941 LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1943 // Set the max AAL5 cell count to be just enough to contain the
1944 // largest AAL5 frame that the user wants to receive
1945 wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1946 DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1948 // Enable receive
1949 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1951 printk (" control");
1953 // Drive the OE of the LEDs then turn the green LED on
1954 ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1955 wr_regl (dev, CONTROL_0_REG, ctrl);
1957 // Test for a 155-capable card
1959 if (onefivefive) {
1960 // Select 155 mode... make this a choice (or: how do we detect
1961 // external line speed and switch?)
1962 ctrl |= ATM_LAYER_SELECT;
1963 wr_regl (dev, CONTROL_0_REG, ctrl);
1965 // test SUNI-lite vs SAMBA
1967 // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1968 // they will always be zero for the SAMBA. Ha! Bloody hardware
1969 // engineers. It'll never work.
1971 if (rd_framer (dev, 0) & 0x00f0) {
1972 // SUNI
1973 printk (" SUNI");
1975 // Reset, just in case
1976 wr_framer (dev, 0x00, 0x0080);
1977 wr_framer (dev, 0x00, 0x0000);
1979 // Configure transmit FIFO
1980 wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1982 // Set line timed mode
1983 wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1984 } else {
1985 // SAMBA
1986 printk (" SAMBA");
1988 // Reset, just in case
1989 wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1990 wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1992 // Turn off diagnostic loopback and enable line-timed mode
1993 wr_framer (dev, 0, 0x0002);
1995 // Turn on transmit outputs
1996 wr_framer (dev, 2, 0x0B80);
1998 } else {
1999 // Select 25 mode
2000 ctrl &= ~ATM_LAYER_SELECT;
2002 // Madge B154 setup
2003 // none required?
2006 printk (" LEDs");
2008 GREEN_LED_ON(dev);
2009 YELLOW_LED_ON(dev);
2011 printk (" ESI=");
2014 u16 b = 0;
2015 int i;
2016 u8 * esi = dev->atm_dev->esi;
2018 // in the card I have, EEPROM
2019 // addresses 0, 1, 2 contain 0
2020 // addresess 5, 6 etc. contain ffff
2021 // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2022 // the read_bia routine gets the BIA in Ethernet bit order
2024 for (i=0; i < ESI_LEN; ++i) {
2025 if (i % 2 == 0)
2026 b = read_bia (dev, i/2 + 2);
2027 else
2028 b = b >> 8;
2029 esi[i] = b & 0xFF;
2030 printk ("%02x", esi[i]);
2034 // Enable RX_Q and ?X_COMPLETE interrupts only
2035 wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2036 printk (" IRQ on");
2038 printk (".\n");
2040 return onefivefive;
2043 /********** check max_sdu **********/
2045 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2046 PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2048 switch (aal) {
2049 case aal0:
2050 if (!(tp->max_sdu)) {
2051 PRINTD (DBG_QOS, "defaulting max_sdu");
2052 tp->max_sdu = ATM_AAL0_SDU;
2053 } else if (tp->max_sdu != ATM_AAL0_SDU) {
2054 PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2055 return -EINVAL;
2057 break;
2058 case aal34:
2059 if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2060 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2061 tp->max_sdu = ATM_MAX_AAL34_PDU;
2063 break;
2064 case aal5:
2065 if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2066 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2067 tp->max_sdu = max_frame_size;
2069 break;
2071 return 0;
2074 /********** check pcr **********/
2076 // something like this should be part of ATM Linux
2077 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2078 // we are assuming non-UBR, and non-special values of pcr
2079 if (tp->min_pcr == ATM_MAX_PCR)
2080 PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2081 else if (tp->min_pcr < 0)
2082 PRINTD (DBG_QOS, "luser gave negative min_pcr");
2083 else if (tp->min_pcr && tp->min_pcr > pcr)
2084 PRINTD (DBG_QOS, "pcr less than min_pcr");
2085 else
2086 // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2087 // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2088 // [this would get rid of next two conditionals]
2089 if ((0) && tp->max_pcr == ATM_MAX_PCR)
2090 PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2091 else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2092 PRINTD (DBG_QOS, "luser gave negative max_pcr");
2093 else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2094 PRINTD (DBG_QOS, "pcr greater than max_pcr");
2095 else {
2096 // each limit unspecified or not violated
2097 PRINTD (DBG_QOS, "xBR(pcr) OK");
2098 return 0;
2100 PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2101 pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2102 return -EINVAL;
2105 /********** open VC **********/
2107 static int hrz_open (struct atm_vcc *atm_vcc)
2109 int error;
2110 u16 channel;
2112 struct atm_qos * qos;
2113 struct atm_trafprm * txtp;
2114 struct atm_trafprm * rxtp;
2116 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2117 hrz_vcc vcc;
2118 hrz_vcc * vccp; // allocated late
2119 short vpi = atm_vcc->vpi;
2120 int vci = atm_vcc->vci;
2121 PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2123 #ifdef ATM_VPI_UNSPEC
2124 // UNSPEC is deprecated, remove this code eventually
2125 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2126 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2127 return -EINVAL;
2129 #endif
2131 error = vpivci_to_channel (&channel, vpi, vci);
2132 if (error) {
2133 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2134 return error;
2137 vcc.channel = channel;
2138 // max speed for the moment
2139 vcc.tx_rate = 0x0;
2141 qos = &atm_vcc->qos;
2143 // check AAL and remember it
2144 switch (qos->aal) {
2145 case ATM_AAL0:
2146 // we would if it were 48 bytes and not 52!
2147 PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2148 vcc.aal = aal0;
2149 break;
2150 case ATM_AAL34:
2151 // we would if I knew how do the SAR!
2152 PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2153 vcc.aal = aal34;
2154 break;
2155 case ATM_AAL5:
2156 PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2157 vcc.aal = aal5;
2158 break;
2159 default:
2160 PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2161 return -EINVAL;
2164 // TX traffic parameters
2166 // there are two, interrelated problems here: 1. the reservation of
2167 // PCR is not a binary choice, we are given bounds and/or a
2168 // desirable value; 2. the device is only capable of certain values,
2169 // most of which are not integers. It is almost certainly acceptable
2170 // to be off by a maximum of 1 to 10 cps.
2172 // Pragmatic choice: always store an integral PCR as that which has
2173 // been allocated, even if we allocate a little (or a lot) less,
2174 // after rounding. The actual allocation depends on what we can
2175 // manage with our rate selection algorithm. The rate selection
2176 // algorithm is given an integral PCR and a tolerance and told
2177 // whether it should round the value up or down if the tolerance is
2178 // exceeded; it returns: a) the actual rate selected (rounded up to
2179 // the nearest integer), b) a bit pattern to feed to the timer
2180 // register, and c) a failure value if no applicable rate exists.
2182 // Part of the job is done by atm_pcr_goal which gives us a PCR
2183 // specification which says: EITHER grab the maximum available PCR
2184 // (and perhaps a lower bound which we musn't pass), OR grab this
2185 // amount, rounding down if you have to (and perhaps a lower bound
2186 // which we musn't pass) OR grab this amount, rounding up if you
2187 // have to (and perhaps an upper bound which we musn't pass). If any
2188 // bounds ARE passed we fail. Note that rounding is only rounding to
2189 // match device limitations, we do not round down to satisfy
2190 // bandwidth availability even if this would not violate any given
2191 // lower bound.
2193 // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2194 // (say) so this is not even a binary fixpoint cell rate (but this
2195 // device can do it). To avoid this sort of hassle we use a
2196 // tolerance parameter (currently fixed at 10 cps).
2198 PRINTD (DBG_QOS, "TX:");
2200 txtp = &qos->txtp;
2202 // set up defaults for no traffic
2203 vcc.tx_rate = 0;
2204 // who knows what would actually happen if you try and send on this?
2205 vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2206 vcc.tx_pcr_bits = CLOCK_DISABLE;
2207 #if 0
2208 vcc.tx_scr_bits = CLOCK_DISABLE;
2209 vcc.tx_bucket_bits = 0;
2210 #endif
2212 if (txtp->traffic_class != ATM_NONE) {
2213 error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2214 if (error) {
2215 PRINTD (DBG_QOS, "TX max_sdu check failed");
2216 return error;
2219 switch (txtp->traffic_class) {
2220 case ATM_UBR: {
2221 // we take "the PCR" as a rate-cap
2222 // not reserved
2223 vcc.tx_rate = 0;
2224 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2225 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2226 break;
2228 #if 0
2229 case ATM_ABR: {
2230 // reserve min, allow up to max
2231 vcc.tx_rate = 0; // ?
2232 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2233 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2234 break;
2236 #endif
2237 case ATM_CBR: {
2238 int pcr = atm_pcr_goal (txtp);
2239 rounding r;
2240 if (!pcr) {
2241 // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2242 // should really have: once someone gets unlimited bandwidth
2243 // that no more non-UBR channels can be opened until the
2244 // unlimited one closes?? For the moment, round_down means
2245 // greedy people actually get something and not nothing
2246 r = round_down;
2247 // slight race (no locking) here so we may get -EAGAIN
2248 // later; the greedy bastards would deserve it :)
2249 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2250 pcr = dev->tx_avail;
2251 } else if (pcr < 0) {
2252 r = round_down;
2253 pcr = -pcr;
2254 } else {
2255 r = round_up;
2257 error = make_rate_with_tolerance (dev, pcr, r, 10,
2258 &vcc.tx_pcr_bits, &vcc.tx_rate);
2259 if (error) {
2260 PRINTD (DBG_QOS, "could not make rate from TX PCR");
2261 return error;
2263 // not really clear what further checking is needed
2264 error = atm_pcr_check (txtp, vcc.tx_rate);
2265 if (error) {
2266 PRINTD (DBG_QOS, "TX PCR failed consistency check");
2267 return error;
2269 vcc.tx_xbr_bits = CBR_RATE_TYPE;
2270 break;
2272 #if 0
2273 case ATM_VBR: {
2274 int pcr = atm_pcr_goal (txtp);
2275 // int scr = atm_scr_goal (txtp);
2276 int scr = pcr/2; // just for fun
2277 unsigned int mbs = 60; // just for fun
2278 rounding pr;
2279 rounding sr;
2280 unsigned int bucket;
2281 if (!pcr) {
2282 pr = round_nearest;
2283 pcr = 1<<30;
2284 } else if (pcr < 0) {
2285 pr = round_down;
2286 pcr = -pcr;
2287 } else {
2288 pr = round_up;
2290 error = make_rate_with_tolerance (dev, pcr, pr, 10,
2291 &vcc.tx_pcr_bits, 0);
2292 if (!scr) {
2293 // see comments for PCR with CBR above
2294 sr = round_down;
2295 // slight race (no locking) here so we may get -EAGAIN
2296 // later; the greedy bastards would deserve it :)
2297 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2298 scr = dev->tx_avail;
2299 } else if (scr < 0) {
2300 sr = round_down;
2301 scr = -scr;
2302 } else {
2303 sr = round_up;
2305 error = make_rate_with_tolerance (dev, scr, sr, 10,
2306 &vcc.tx_scr_bits, &vcc.tx_rate);
2307 if (error) {
2308 PRINTD (DBG_QOS, "could not make rate from TX SCR");
2309 return error;
2311 // not really clear what further checking is needed
2312 // error = atm_scr_check (txtp, vcc.tx_rate);
2313 if (error) {
2314 PRINTD (DBG_QOS, "TX SCR failed consistency check");
2315 return error;
2317 // bucket calculations (from a piece of paper...) cell bucket
2318 // capacity must be largest integer smaller than m(p-s)/p + 1
2319 // where m = max burst size, p = pcr, s = scr
2320 bucket = mbs*(pcr-scr)/pcr;
2321 if (bucket*pcr != mbs*(pcr-scr))
2322 bucket += 1;
2323 if (bucket > BUCKET_MAX_SIZE) {
2324 PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2325 bucket, BUCKET_MAX_SIZE);
2326 bucket = BUCKET_MAX_SIZE;
2328 vcc.tx_xbr_bits = VBR_RATE_TYPE;
2329 vcc.tx_bucket_bits = bucket;
2330 break;
2332 #endif
2333 default: {
2334 PRINTD (DBG_QOS, "unsupported TX traffic class");
2335 return -EINVAL;
2340 // RX traffic parameters
2342 PRINTD (DBG_QOS, "RX:");
2344 rxtp = &qos->rxtp;
2346 // set up defaults for no traffic
2347 vcc.rx_rate = 0;
2349 if (rxtp->traffic_class != ATM_NONE) {
2350 error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2351 if (error) {
2352 PRINTD (DBG_QOS, "RX max_sdu check failed");
2353 return error;
2355 switch (rxtp->traffic_class) {
2356 case ATM_UBR: {
2357 // not reserved
2358 break;
2360 #if 0
2361 case ATM_ABR: {
2362 // reserve min
2363 vcc.rx_rate = 0; // ?
2364 break;
2366 #endif
2367 case ATM_CBR: {
2368 int pcr = atm_pcr_goal (rxtp);
2369 if (!pcr) {
2370 // slight race (no locking) here so we may get -EAGAIN
2371 // later; the greedy bastards would deserve it :)
2372 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2373 pcr = dev->rx_avail;
2374 } else if (pcr < 0) {
2375 pcr = -pcr;
2377 vcc.rx_rate = pcr;
2378 // not really clear what further checking is needed
2379 error = atm_pcr_check (rxtp, vcc.rx_rate);
2380 if (error) {
2381 PRINTD (DBG_QOS, "RX PCR failed consistency check");
2382 return error;
2384 break;
2386 #if 0
2387 case ATM_VBR: {
2388 // int scr = atm_scr_goal (rxtp);
2389 int scr = 1<<16; // just for fun
2390 if (!scr) {
2391 // slight race (no locking) here so we may get -EAGAIN
2392 // later; the greedy bastards would deserve it :)
2393 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2394 scr = dev->rx_avail;
2395 } else if (scr < 0) {
2396 scr = -scr;
2398 vcc.rx_rate = scr;
2399 // not really clear what further checking is needed
2400 // error = atm_scr_check (rxtp, vcc.rx_rate);
2401 if (error) {
2402 PRINTD (DBG_QOS, "RX SCR failed consistency check");
2403 return error;
2405 break;
2407 #endif
2408 default: {
2409 PRINTD (DBG_QOS, "unsupported RX traffic class");
2410 return -EINVAL;
2416 // late abort useful for diagnostics
2417 if (vcc.aal != aal5) {
2418 PRINTD (DBG_QOS, "AAL not supported");
2419 return -EINVAL;
2422 // get space for our vcc stuff and copy parameters into it
2423 vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2424 if (!vccp) {
2425 PRINTK (KERN_ERR, "out of memory!");
2426 return -ENOMEM;
2428 *vccp = vcc;
2430 // clear error and grab cell rate resource lock
2431 error = 0;
2432 spin_lock (&dev->rate_lock);
2434 if (vcc.tx_rate > dev->tx_avail) {
2435 PRINTD (DBG_QOS, "not enough TX PCR left");
2436 error = -EAGAIN;
2439 if (vcc.rx_rate > dev->rx_avail) {
2440 PRINTD (DBG_QOS, "not enough RX PCR left");
2441 error = -EAGAIN;
2444 if (!error) {
2445 // really consume cell rates
2446 dev->tx_avail -= vcc.tx_rate;
2447 dev->rx_avail -= vcc.rx_rate;
2448 PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2449 vcc.tx_rate, vcc.rx_rate);
2452 // release lock and exit on error
2453 spin_unlock (&dev->rate_lock);
2454 if (error) {
2455 PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2456 kfree (vccp);
2457 return error;
2460 // this is "immediately before allocating the connection identifier
2461 // in hardware" - so long as the next call does not fail :)
2462 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2464 // any errors here are very serious and should never occur
2466 if (rxtp->traffic_class != ATM_NONE) {
2467 if (dev->rxer[channel]) {
2468 PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2469 error = -EBUSY;
2471 if (!error)
2472 error = hrz_open_rx (dev, channel);
2473 if (error) {
2474 kfree (vccp);
2475 return error;
2477 // this link allows RX frames through
2478 dev->rxer[channel] = atm_vcc;
2481 // success, set elements of atm_vcc
2482 atm_vcc->dev_data = (void *) vccp;
2484 // indicate readiness
2485 set_bit(ATM_VF_READY,&atm_vcc->flags);
2487 return 0;
2490 /********** close VC **********/
2492 static void hrz_close (struct atm_vcc * atm_vcc) {
2493 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2494 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2495 u16 channel = vcc->channel;
2496 PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2498 // indicate unreadiness
2499 clear_bit(ATM_VF_READY,&atm_vcc->flags);
2501 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2502 unsigned int i;
2504 // let any TX on this channel that has started complete
2505 // no restart, just keep trying
2506 while (tx_hold (dev))
2508 // remove record of any tx_channel having been setup for this channel
2509 for (i = 0; i < TX_CHANS; ++i)
2510 if (dev->tx_channel_record[i] == channel) {
2511 dev->tx_channel_record[i] = -1;
2512 break;
2514 if (dev->last_vc == channel)
2515 dev->tx_last = -1;
2516 tx_release (dev);
2519 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2520 // disable RXing - it tries quite hard
2521 hrz_close_rx (dev, channel);
2522 // forget the vcc - no more skbs will be pushed
2523 if (atm_vcc != dev->rxer[channel])
2524 PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2525 "arghhh! we're going to die!",
2526 atm_vcc, dev->rxer[channel]);
2527 dev->rxer[channel] = NULL;
2530 // atomically release our rate reservation
2531 spin_lock (&dev->rate_lock);
2532 PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2533 vcc->tx_rate, vcc->rx_rate);
2534 dev->tx_avail += vcc->tx_rate;
2535 dev->rx_avail += vcc->rx_rate;
2536 spin_unlock (&dev->rate_lock);
2538 // free our structure
2539 kfree (vcc);
2540 // say the VPI/VCI is free again
2541 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2544 #if 0
2545 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2546 void *optval, int optlen) {
2547 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2548 PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2549 switch (level) {
2550 case SOL_SOCKET:
2551 switch (optname) {
2552 // case SO_BCTXOPT:
2553 // break;
2554 // case SO_BCRXOPT:
2555 // break;
2556 default:
2557 return -ENOPROTOOPT;
2559 break;
2561 return -EINVAL;
2564 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2565 void *optval, unsigned int optlen) {
2566 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2567 PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2568 switch (level) {
2569 case SOL_SOCKET:
2570 switch (optname) {
2571 // case SO_BCTXOPT:
2572 // break;
2573 // case SO_BCRXOPT:
2574 // break;
2575 default:
2576 return -ENOPROTOOPT;
2578 break;
2580 return -EINVAL;
2582 #endif
2584 #if 0
2585 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2586 hrz_dev * dev = HRZ_DEV(atm_dev);
2587 PRINTD (DBG_FLOW, "hrz_ioctl");
2588 return -1;
2591 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2592 hrz_dev * dev = HRZ_DEV(atm_dev);
2593 PRINTD (DBG_FLOW, "hrz_phy_get");
2594 return 0;
2597 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2598 unsigned long addr) {
2599 hrz_dev * dev = HRZ_DEV(atm_dev);
2600 PRINTD (DBG_FLOW, "hrz_phy_put");
2603 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2604 hrz_dev * dev = HRZ_DEV(vcc->dev);
2605 PRINTD (DBG_FLOW, "hrz_change_qos");
2606 return -1;
2608 #endif
2610 /********** proc file contents **********/
2612 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2613 hrz_dev * dev = HRZ_DEV(atm_dev);
2614 int left = *pos;
2615 PRINTD (DBG_FLOW, "hrz_proc_read");
2617 /* more diagnostics here? */
2619 #if 0
2620 if (!left--) {
2621 unsigned int count = sprintf (page, "vbr buckets:");
2622 unsigned int i;
2623 for (i = 0; i < TX_CHANS; ++i)
2624 count += sprintf (page, " %u/%u",
2625 query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2626 query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2627 count += sprintf (page+count, ".\n");
2628 return count;
2630 #endif
2632 if (!left--)
2633 return sprintf (page,
2634 "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2635 dev->tx_cell_count, dev->rx_cell_count,
2636 dev->hec_error_count, dev->unassigned_cell_count);
2638 if (!left--)
2639 return sprintf (page,
2640 "free cell buffers: TX %hu, RX %hu+%hu.\n",
2641 rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2642 rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2643 dev->noof_spare_buffers);
2645 if (!left--)
2646 return sprintf (page,
2647 "cps remaining: TX %u, RX %u\n",
2648 dev->tx_avail, dev->rx_avail);
2650 return 0;
2653 static const struct atmdev_ops hrz_ops = {
2654 .open = hrz_open,
2655 .close = hrz_close,
2656 .send = hrz_send,
2657 .proc_read = hrz_proc_read,
2658 .owner = THIS_MODULE,
2661 static int hrz_probe(struct pci_dev *pci_dev,
2662 const struct pci_device_id *pci_ent)
2664 hrz_dev * dev;
2665 int err = 0;
2667 // adapter slot free, read resources from PCI configuration space
2668 u32 iobase = pci_resource_start (pci_dev, 0);
2669 u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2670 unsigned int irq;
2671 unsigned char lat;
2673 PRINTD (DBG_FLOW, "hrz_probe");
2675 if (pci_enable_device(pci_dev))
2676 return -EINVAL;
2678 /* XXX DEV_LABEL is a guess */
2679 if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2680 err = -EINVAL;
2681 goto out_disable;
2684 dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2685 if (!dev) {
2686 // perhaps we should be nice: deregister all adapters and abort?
2687 PRINTD(DBG_ERR, "out of memory");
2688 err = -ENOMEM;
2689 goto out_release;
2692 pci_set_drvdata(pci_dev, dev);
2694 // grab IRQ and install handler - move this someplace more sensible
2695 irq = pci_dev->irq;
2696 if (request_irq(irq,
2697 interrupt_handler,
2698 IRQF_SHARED, /* irqflags guess */
2699 DEV_LABEL, /* name guess */
2700 dev)) {
2701 PRINTD(DBG_WARN, "request IRQ failed!");
2702 err = -EINVAL;
2703 goto out_free;
2706 PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2707 iobase, irq, membase);
2709 dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2710 NULL);
2711 if (!(dev->atm_dev)) {
2712 PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2713 err = -EINVAL;
2714 goto out_free_irq;
2717 PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2718 dev->atm_dev->number, dev, dev->atm_dev);
2719 dev->atm_dev->dev_data = (void *) dev;
2720 dev->pci_dev = pci_dev;
2722 // enable bus master accesses
2723 pci_set_master(pci_dev);
2725 // frobnicate latency (upwards, usually)
2726 pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2727 if (pci_lat) {
2728 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2729 "changing", lat, pci_lat);
2730 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2731 } else if (lat < MIN_PCI_LATENCY) {
2732 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2733 "increasing", lat, MIN_PCI_LATENCY);
2734 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2737 dev->iobase = iobase;
2738 dev->irq = irq;
2739 dev->membase = membase;
2741 dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2742 dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2744 // these next three are performance hacks
2745 dev->last_vc = -1;
2746 dev->tx_last = -1;
2747 dev->tx_idle = 0;
2749 dev->tx_regions = 0;
2750 dev->tx_bytes = 0;
2751 dev->tx_skb = NULL;
2752 dev->tx_iovec = NULL;
2754 dev->tx_cell_count = 0;
2755 dev->rx_cell_count = 0;
2756 dev->hec_error_count = 0;
2757 dev->unassigned_cell_count = 0;
2759 dev->noof_spare_buffers = 0;
2762 unsigned int i;
2763 for (i = 0; i < TX_CHANS; ++i)
2764 dev->tx_channel_record[i] = -1;
2767 dev->flags = 0;
2769 // Allocate cell rates and remember ASIC version
2770 // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2771 // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2772 // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2774 if (hrz_init(dev)) {
2775 // to be really pedantic, this should be ATM_OC3c_PCR
2776 dev->tx_avail = ATM_OC3_PCR;
2777 dev->rx_avail = ATM_OC3_PCR;
2778 set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2779 } else {
2780 dev->tx_avail = ((25600000/8)*26)/(27*53);
2781 dev->rx_avail = ((25600000/8)*26)/(27*53);
2782 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2785 // rate changes spinlock
2786 spin_lock_init(&dev->rate_lock);
2788 // on-board memory access spinlock; we want atomic reads and
2789 // writes to adapter memory (handles IRQ and SMP)
2790 spin_lock_init(&dev->mem_lock);
2792 init_waitqueue_head(&dev->tx_queue);
2794 // vpi in 0..4, vci in 6..10
2795 dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2796 dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2798 init_timer(&dev->housekeeping);
2799 dev->housekeeping.function = do_housekeeping;
2800 dev->housekeeping.data = (unsigned long) dev;
2801 mod_timer(&dev->housekeeping, jiffies);
2803 out:
2804 return err;
2806 out_free_irq:
2807 free_irq(dev->irq, dev);
2808 out_free:
2809 kfree(dev);
2810 out_release:
2811 release_region(iobase, HRZ_IO_EXTENT);
2812 out_disable:
2813 pci_disable_device(pci_dev);
2814 goto out;
2817 static void hrz_remove_one(struct pci_dev *pci_dev)
2819 hrz_dev *dev;
2821 dev = pci_get_drvdata(pci_dev);
2823 PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2824 del_timer_sync(&dev->housekeeping);
2825 hrz_reset(dev);
2826 atm_dev_deregister(dev->atm_dev);
2827 free_irq(dev->irq, dev);
2828 release_region(dev->iobase, HRZ_IO_EXTENT);
2829 kfree(dev);
2831 pci_disable_device(pci_dev);
2834 static void __init hrz_check_args (void) {
2835 #ifdef DEBUG_HORIZON
2836 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2837 #else
2838 if (debug)
2839 PRINTK (KERN_NOTICE, "no debug support in this image");
2840 #endif
2842 if (vpi_bits > HRZ_MAX_VPI)
2843 PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2844 vpi_bits = HRZ_MAX_VPI);
2846 if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2847 PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2848 max_tx_size = TX_AAL5_LIMIT);
2850 if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2851 PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2852 max_rx_size = RX_AAL5_LIMIT);
2854 return;
2857 MODULE_AUTHOR(maintainer_string);
2858 MODULE_DESCRIPTION(description_string);
2859 MODULE_LICENSE("GPL");
2860 module_param(debug, ushort, 0644);
2861 module_param(vpi_bits, ushort, 0);
2862 module_param(max_tx_size, int, 0);
2863 module_param(max_rx_size, int, 0);
2864 module_param(pci_lat, byte, 0);
2865 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2866 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2867 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2868 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2869 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2871 static struct pci_device_id hrz_pci_tbl[] = {
2872 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2873 0, 0, 0 },
2874 { 0, }
2877 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2879 static struct pci_driver hrz_driver = {
2880 .name = "horizon",
2881 .probe = hrz_probe,
2882 .remove = hrz_remove_one,
2883 .id_table = hrz_pci_tbl,
2886 /********** module entry **********/
2888 static int __init hrz_module_init (void) {
2889 // sanity check - cast is needed since printk does not support %Zu
2890 if (sizeof(struct MEMMAP) != 128*1024/4) {
2891 PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2892 (unsigned long) sizeof(struct MEMMAP));
2893 return -ENOMEM;
2896 show_version();
2898 // check arguments
2899 hrz_check_args();
2901 // get the juice
2902 return pci_register_driver(&hrz_driver);
2905 /********** module exit **********/
2907 static void __exit hrz_module_exit (void) {
2908 PRINTD (DBG_FLOW, "cleanup_module");
2910 pci_unregister_driver(&hrz_driver);
2913 module_init(hrz_module_init);
2914 module_exit(hrz_module_exit);