bcma: fill core details for every device
[linux-2.6/btrfs-unstable.git] / mm / migrate.c
blob01439953abf548690ac17f1b994511b587e9326a
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
46 #include "internal.h"
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
61 lru_add_drain_all();
63 return 0;
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
69 lru_add_drain();
71 return 0;
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
82 void putback_movable_pages(struct list_head *l)
84 struct page *page;
85 struct page *page2;
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
103 * Restore a potential migration pte to a working pte entry
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
124 ptep = pte_offset_map(pmd, addr);
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
131 ptl = pte_lockptr(mm, pmd);
134 spin_lock(ptl);
135 pte = *ptep;
136 if (!is_swap_pte(pte))
137 goto unlock;
139 entry = pte_to_swp_entry(pte);
141 if (!is_migration_entry(entry) ||
142 migration_entry_to_page(entry) != old)
143 goto unlock;
145 get_page(new);
146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 if (pte_swp_soft_dirty(*ptep))
148 pte = pte_mksoft_dirty(pte);
150 /* Recheck VMA as permissions can change since migration started */
151 if (is_write_migration_entry(entry))
152 pte = maybe_mkwrite(pte, vma);
154 #ifdef CONFIG_HUGETLB_PAGE
155 if (PageHuge(new)) {
156 pte = pte_mkhuge(pte);
157 pte = arch_make_huge_pte(pte, vma, new, 0);
159 #endif
160 flush_dcache_page(new);
161 set_pte_at(mm, addr, ptep, pte);
163 if (PageHuge(new)) {
164 if (PageAnon(new))
165 hugepage_add_anon_rmap(new, vma, addr);
166 else
167 page_dup_rmap(new);
168 } else if (PageAnon(new))
169 page_add_anon_rmap(new, vma, addr);
170 else
171 page_add_file_rmap(new);
173 /* No need to invalidate - it was non-present before */
174 update_mmu_cache(vma, addr, ptep);
175 unlock:
176 pte_unmap_unlock(ptep, ptl);
177 out:
178 return SWAP_AGAIN;
182 * Congratulations to trinity for discovering this bug.
183 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
184 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
185 * replace the specified range by file ptes throughout (maybe populated after).
186 * If page migration finds a page within that range, while it's still located
187 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
188 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
189 * But if the migrating page is in a part of the vma outside the range to be
190 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
191 * deal with it. Fortunately, this part of the vma is of course still linear,
192 * so we just need to use linear location on the nonlinear list.
194 static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
195 struct address_space *mapping, void *arg)
197 struct vm_area_struct *vma;
198 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
199 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
200 unsigned long addr;
202 list_for_each_entry(vma,
203 &mapping->i_mmap_nonlinear, shared.nonlinear) {
205 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
206 if (addr >= vma->vm_start && addr < vma->vm_end)
207 remove_migration_pte(page, vma, addr, arg);
209 return SWAP_AGAIN;
213 * Get rid of all migration entries and replace them by
214 * references to the indicated page.
216 static void remove_migration_ptes(struct page *old, struct page *new)
218 struct rmap_walk_control rwc = {
219 .rmap_one = remove_migration_pte,
220 .arg = old,
221 .file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
224 rmap_walk(new, &rwc);
228 * Something used the pte of a page under migration. We need to
229 * get to the page and wait until migration is finished.
230 * When we return from this function the fault will be retried.
232 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
233 spinlock_t *ptl)
235 pte_t pte;
236 swp_entry_t entry;
237 struct page *page;
239 spin_lock(ptl);
240 pte = *ptep;
241 if (!is_swap_pte(pte))
242 goto out;
244 entry = pte_to_swp_entry(pte);
245 if (!is_migration_entry(entry))
246 goto out;
248 page = migration_entry_to_page(entry);
251 * Once radix-tree replacement of page migration started, page_count
252 * *must* be zero. And, we don't want to call wait_on_page_locked()
253 * against a page without get_page().
254 * So, we use get_page_unless_zero(), here. Even failed, page fault
255 * will occur again.
257 if (!get_page_unless_zero(page))
258 goto out;
259 pte_unmap_unlock(ptep, ptl);
260 wait_on_page_locked(page);
261 put_page(page);
262 return;
263 out:
264 pte_unmap_unlock(ptep, ptl);
267 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
268 unsigned long address)
270 spinlock_t *ptl = pte_lockptr(mm, pmd);
271 pte_t *ptep = pte_offset_map(pmd, address);
272 __migration_entry_wait(mm, ptep, ptl);
275 void migration_entry_wait_huge(struct vm_area_struct *vma,
276 struct mm_struct *mm, pte_t *pte)
278 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
279 __migration_entry_wait(mm, pte, ptl);
282 #ifdef CONFIG_BLOCK
283 /* Returns true if all buffers are successfully locked */
284 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
285 enum migrate_mode mode)
287 struct buffer_head *bh = head;
289 /* Simple case, sync compaction */
290 if (mode != MIGRATE_ASYNC) {
291 do {
292 get_bh(bh);
293 lock_buffer(bh);
294 bh = bh->b_this_page;
296 } while (bh != head);
298 return true;
301 /* async case, we cannot block on lock_buffer so use trylock_buffer */
302 do {
303 get_bh(bh);
304 if (!trylock_buffer(bh)) {
306 * We failed to lock the buffer and cannot stall in
307 * async migration. Release the taken locks
309 struct buffer_head *failed_bh = bh;
310 put_bh(failed_bh);
311 bh = head;
312 while (bh != failed_bh) {
313 unlock_buffer(bh);
314 put_bh(bh);
315 bh = bh->b_this_page;
317 return false;
320 bh = bh->b_this_page;
321 } while (bh != head);
322 return true;
324 #else
325 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
326 enum migrate_mode mode)
328 return true;
330 #endif /* CONFIG_BLOCK */
333 * Replace the page in the mapping.
335 * The number of remaining references must be:
336 * 1 for anonymous pages without a mapping
337 * 2 for pages with a mapping
338 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
340 int migrate_page_move_mapping(struct address_space *mapping,
341 struct page *newpage, struct page *page,
342 struct buffer_head *head, enum migrate_mode mode,
343 int extra_count)
345 int expected_count = 1 + extra_count;
346 void **pslot;
348 if (!mapping) {
349 /* Anonymous page without mapping */
350 if (page_count(page) != expected_count)
351 return -EAGAIN;
352 return MIGRATEPAGE_SUCCESS;
355 spin_lock_irq(&mapping->tree_lock);
357 pslot = radix_tree_lookup_slot(&mapping->page_tree,
358 page_index(page));
360 expected_count += 1 + page_has_private(page);
361 if (page_count(page) != expected_count ||
362 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
363 spin_unlock_irq(&mapping->tree_lock);
364 return -EAGAIN;
367 if (!page_freeze_refs(page, expected_count)) {
368 spin_unlock_irq(&mapping->tree_lock);
369 return -EAGAIN;
373 * In the async migration case of moving a page with buffers, lock the
374 * buffers using trylock before the mapping is moved. If the mapping
375 * was moved, we later failed to lock the buffers and could not move
376 * the mapping back due to an elevated page count, we would have to
377 * block waiting on other references to be dropped.
379 if (mode == MIGRATE_ASYNC && head &&
380 !buffer_migrate_lock_buffers(head, mode)) {
381 page_unfreeze_refs(page, expected_count);
382 spin_unlock_irq(&mapping->tree_lock);
383 return -EAGAIN;
387 * Now we know that no one else is looking at the page.
389 get_page(newpage); /* add cache reference */
390 if (PageSwapCache(page)) {
391 SetPageSwapCache(newpage);
392 set_page_private(newpage, page_private(page));
395 radix_tree_replace_slot(pslot, newpage);
398 * Drop cache reference from old page by unfreezing
399 * to one less reference.
400 * We know this isn't the last reference.
402 page_unfreeze_refs(page, expected_count - 1);
405 * If moved to a different zone then also account
406 * the page for that zone. Other VM counters will be
407 * taken care of when we establish references to the
408 * new page and drop references to the old page.
410 * Note that anonymous pages are accounted for
411 * via NR_FILE_PAGES and NR_ANON_PAGES if they
412 * are mapped to swap space.
414 __dec_zone_page_state(page, NR_FILE_PAGES);
415 __inc_zone_page_state(newpage, NR_FILE_PAGES);
416 if (!PageSwapCache(page) && PageSwapBacked(page)) {
417 __dec_zone_page_state(page, NR_SHMEM);
418 __inc_zone_page_state(newpage, NR_SHMEM);
420 spin_unlock_irq(&mapping->tree_lock);
422 return MIGRATEPAGE_SUCCESS;
426 * The expected number of remaining references is the same as that
427 * of migrate_page_move_mapping().
429 int migrate_huge_page_move_mapping(struct address_space *mapping,
430 struct page *newpage, struct page *page)
432 int expected_count;
433 void **pslot;
435 if (!mapping) {
436 if (page_count(page) != 1)
437 return -EAGAIN;
438 return MIGRATEPAGE_SUCCESS;
441 spin_lock_irq(&mapping->tree_lock);
443 pslot = radix_tree_lookup_slot(&mapping->page_tree,
444 page_index(page));
446 expected_count = 2 + page_has_private(page);
447 if (page_count(page) != expected_count ||
448 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
449 spin_unlock_irq(&mapping->tree_lock);
450 return -EAGAIN;
453 if (!page_freeze_refs(page, expected_count)) {
454 spin_unlock_irq(&mapping->tree_lock);
455 return -EAGAIN;
458 get_page(newpage);
460 radix_tree_replace_slot(pslot, newpage);
462 page_unfreeze_refs(page, expected_count - 1);
464 spin_unlock_irq(&mapping->tree_lock);
465 return MIGRATEPAGE_SUCCESS;
469 * Gigantic pages are so large that we do not guarantee that page++ pointer
470 * arithmetic will work across the entire page. We need something more
471 * specialized.
473 static void __copy_gigantic_page(struct page *dst, struct page *src,
474 int nr_pages)
476 int i;
477 struct page *dst_base = dst;
478 struct page *src_base = src;
480 for (i = 0; i < nr_pages; ) {
481 cond_resched();
482 copy_highpage(dst, src);
484 i++;
485 dst = mem_map_next(dst, dst_base, i);
486 src = mem_map_next(src, src_base, i);
490 static void copy_huge_page(struct page *dst, struct page *src)
492 int i;
493 int nr_pages;
495 if (PageHuge(src)) {
496 /* hugetlbfs page */
497 struct hstate *h = page_hstate(src);
498 nr_pages = pages_per_huge_page(h);
500 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
501 __copy_gigantic_page(dst, src, nr_pages);
502 return;
504 } else {
505 /* thp page */
506 BUG_ON(!PageTransHuge(src));
507 nr_pages = hpage_nr_pages(src);
510 for (i = 0; i < nr_pages; i++) {
511 cond_resched();
512 copy_highpage(dst + i, src + i);
517 * Copy the page to its new location
519 void migrate_page_copy(struct page *newpage, struct page *page)
521 int cpupid;
523 if (PageHuge(page) || PageTransHuge(page))
524 copy_huge_page(newpage, page);
525 else
526 copy_highpage(newpage, page);
528 if (PageError(page))
529 SetPageError(newpage);
530 if (PageReferenced(page))
531 SetPageReferenced(newpage);
532 if (PageUptodate(page))
533 SetPageUptodate(newpage);
534 if (TestClearPageActive(page)) {
535 VM_BUG_ON_PAGE(PageUnevictable(page), page);
536 SetPageActive(newpage);
537 } else if (TestClearPageUnevictable(page))
538 SetPageUnevictable(newpage);
539 if (PageChecked(page))
540 SetPageChecked(newpage);
541 if (PageMappedToDisk(page))
542 SetPageMappedToDisk(newpage);
544 if (PageDirty(page)) {
545 clear_page_dirty_for_io(page);
547 * Want to mark the page and the radix tree as dirty, and
548 * redo the accounting that clear_page_dirty_for_io undid,
549 * but we can't use set_page_dirty because that function
550 * is actually a signal that all of the page has become dirty.
551 * Whereas only part of our page may be dirty.
553 if (PageSwapBacked(page))
554 SetPageDirty(newpage);
555 else
556 __set_page_dirty_nobuffers(newpage);
560 * Copy NUMA information to the new page, to prevent over-eager
561 * future migrations of this same page.
563 cpupid = page_cpupid_xchg_last(page, -1);
564 page_cpupid_xchg_last(newpage, cpupid);
566 mlock_migrate_page(newpage, page);
567 ksm_migrate_page(newpage, page);
569 * Please do not reorder this without considering how mm/ksm.c's
570 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
572 ClearPageSwapCache(page);
573 ClearPagePrivate(page);
574 set_page_private(page, 0);
577 * If any waiters have accumulated on the new page then
578 * wake them up.
580 if (PageWriteback(newpage))
581 end_page_writeback(newpage);
584 /************************************************************
585 * Migration functions
586 ***********************************************************/
589 * Common logic to directly migrate a single page suitable for
590 * pages that do not use PagePrivate/PagePrivate2.
592 * Pages are locked upon entry and exit.
594 int migrate_page(struct address_space *mapping,
595 struct page *newpage, struct page *page,
596 enum migrate_mode mode)
598 int rc;
600 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
602 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
604 if (rc != MIGRATEPAGE_SUCCESS)
605 return rc;
607 migrate_page_copy(newpage, page);
608 return MIGRATEPAGE_SUCCESS;
610 EXPORT_SYMBOL(migrate_page);
612 #ifdef CONFIG_BLOCK
614 * Migration function for pages with buffers. This function can only be used
615 * if the underlying filesystem guarantees that no other references to "page"
616 * exist.
618 int buffer_migrate_page(struct address_space *mapping,
619 struct page *newpage, struct page *page, enum migrate_mode mode)
621 struct buffer_head *bh, *head;
622 int rc;
624 if (!page_has_buffers(page))
625 return migrate_page(mapping, newpage, page, mode);
627 head = page_buffers(page);
629 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
631 if (rc != MIGRATEPAGE_SUCCESS)
632 return rc;
635 * In the async case, migrate_page_move_mapping locked the buffers
636 * with an IRQ-safe spinlock held. In the sync case, the buffers
637 * need to be locked now
639 if (mode != MIGRATE_ASYNC)
640 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
642 ClearPagePrivate(page);
643 set_page_private(newpage, page_private(page));
644 set_page_private(page, 0);
645 put_page(page);
646 get_page(newpage);
648 bh = head;
649 do {
650 set_bh_page(bh, newpage, bh_offset(bh));
651 bh = bh->b_this_page;
653 } while (bh != head);
655 SetPagePrivate(newpage);
657 migrate_page_copy(newpage, page);
659 bh = head;
660 do {
661 unlock_buffer(bh);
662 put_bh(bh);
663 bh = bh->b_this_page;
665 } while (bh != head);
667 return MIGRATEPAGE_SUCCESS;
669 EXPORT_SYMBOL(buffer_migrate_page);
670 #endif
673 * Writeback a page to clean the dirty state
675 static int writeout(struct address_space *mapping, struct page *page)
677 struct writeback_control wbc = {
678 .sync_mode = WB_SYNC_NONE,
679 .nr_to_write = 1,
680 .range_start = 0,
681 .range_end = LLONG_MAX,
682 .for_reclaim = 1
684 int rc;
686 if (!mapping->a_ops->writepage)
687 /* No write method for the address space */
688 return -EINVAL;
690 if (!clear_page_dirty_for_io(page))
691 /* Someone else already triggered a write */
692 return -EAGAIN;
695 * A dirty page may imply that the underlying filesystem has
696 * the page on some queue. So the page must be clean for
697 * migration. Writeout may mean we loose the lock and the
698 * page state is no longer what we checked for earlier.
699 * At this point we know that the migration attempt cannot
700 * be successful.
702 remove_migration_ptes(page, page);
704 rc = mapping->a_ops->writepage(page, &wbc);
706 if (rc != AOP_WRITEPAGE_ACTIVATE)
707 /* unlocked. Relock */
708 lock_page(page);
710 return (rc < 0) ? -EIO : -EAGAIN;
714 * Default handling if a filesystem does not provide a migration function.
716 static int fallback_migrate_page(struct address_space *mapping,
717 struct page *newpage, struct page *page, enum migrate_mode mode)
719 if (PageDirty(page)) {
720 /* Only writeback pages in full synchronous migration */
721 if (mode != MIGRATE_SYNC)
722 return -EBUSY;
723 return writeout(mapping, page);
727 * Buffers may be managed in a filesystem specific way.
728 * We must have no buffers or drop them.
730 if (page_has_private(page) &&
731 !try_to_release_page(page, GFP_KERNEL))
732 return -EAGAIN;
734 return migrate_page(mapping, newpage, page, mode);
738 * Move a page to a newly allocated page
739 * The page is locked and all ptes have been successfully removed.
741 * The new page will have replaced the old page if this function
742 * is successful.
744 * Return value:
745 * < 0 - error code
746 * MIGRATEPAGE_SUCCESS - success
748 static int move_to_new_page(struct page *newpage, struct page *page,
749 int remap_swapcache, enum migrate_mode mode)
751 struct address_space *mapping;
752 int rc;
755 * Block others from accessing the page when we get around to
756 * establishing additional references. We are the only one
757 * holding a reference to the new page at this point.
759 if (!trylock_page(newpage))
760 BUG();
762 /* Prepare mapping for the new page.*/
763 newpage->index = page->index;
764 newpage->mapping = page->mapping;
765 if (PageSwapBacked(page))
766 SetPageSwapBacked(newpage);
768 mapping = page_mapping(page);
769 if (!mapping)
770 rc = migrate_page(mapping, newpage, page, mode);
771 else if (mapping->a_ops->migratepage)
773 * Most pages have a mapping and most filesystems provide a
774 * migratepage callback. Anonymous pages are part of swap
775 * space which also has its own migratepage callback. This
776 * is the most common path for page migration.
778 rc = mapping->a_ops->migratepage(mapping,
779 newpage, page, mode);
780 else
781 rc = fallback_migrate_page(mapping, newpage, page, mode);
783 if (rc != MIGRATEPAGE_SUCCESS) {
784 newpage->mapping = NULL;
785 } else {
786 mem_cgroup_migrate(page, newpage, false);
787 if (remap_swapcache)
788 remove_migration_ptes(page, newpage);
789 page->mapping = NULL;
792 unlock_page(newpage);
794 return rc;
797 static int __unmap_and_move(struct page *page, struct page *newpage,
798 int force, enum migrate_mode mode)
800 int rc = -EAGAIN;
801 int remap_swapcache = 1;
802 struct anon_vma *anon_vma = NULL;
804 if (!trylock_page(page)) {
805 if (!force || mode == MIGRATE_ASYNC)
806 goto out;
809 * It's not safe for direct compaction to call lock_page.
810 * For example, during page readahead pages are added locked
811 * to the LRU. Later, when the IO completes the pages are
812 * marked uptodate and unlocked. However, the queueing
813 * could be merging multiple pages for one bio (e.g.
814 * mpage_readpages). If an allocation happens for the
815 * second or third page, the process can end up locking
816 * the same page twice and deadlocking. Rather than
817 * trying to be clever about what pages can be locked,
818 * avoid the use of lock_page for direct compaction
819 * altogether.
821 if (current->flags & PF_MEMALLOC)
822 goto out;
824 lock_page(page);
827 if (PageWriteback(page)) {
829 * Only in the case of a full synchronous migration is it
830 * necessary to wait for PageWriteback. In the async case,
831 * the retry loop is too short and in the sync-light case,
832 * the overhead of stalling is too much
834 if (mode != MIGRATE_SYNC) {
835 rc = -EBUSY;
836 goto out_unlock;
838 if (!force)
839 goto out_unlock;
840 wait_on_page_writeback(page);
843 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
844 * we cannot notice that anon_vma is freed while we migrates a page.
845 * This get_anon_vma() delays freeing anon_vma pointer until the end
846 * of migration. File cache pages are no problem because of page_lock()
847 * File Caches may use write_page() or lock_page() in migration, then,
848 * just care Anon page here.
850 if (PageAnon(page) && !PageKsm(page)) {
852 * Only page_lock_anon_vma_read() understands the subtleties of
853 * getting a hold on an anon_vma from outside one of its mms.
855 anon_vma = page_get_anon_vma(page);
856 if (anon_vma) {
858 * Anon page
860 } else if (PageSwapCache(page)) {
862 * We cannot be sure that the anon_vma of an unmapped
863 * swapcache page is safe to use because we don't
864 * know in advance if the VMA that this page belonged
865 * to still exists. If the VMA and others sharing the
866 * data have been freed, then the anon_vma could
867 * already be invalid.
869 * To avoid this possibility, swapcache pages get
870 * migrated but are not remapped when migration
871 * completes
873 remap_swapcache = 0;
874 } else {
875 goto out_unlock;
879 if (unlikely(isolated_balloon_page(page))) {
881 * A ballooned page does not need any special attention from
882 * physical to virtual reverse mapping procedures.
883 * Skip any attempt to unmap PTEs or to remap swap cache,
884 * in order to avoid burning cycles at rmap level, and perform
885 * the page migration right away (proteced by page lock).
887 rc = balloon_page_migrate(newpage, page, mode);
888 goto out_unlock;
892 * Corner case handling:
893 * 1. When a new swap-cache page is read into, it is added to the LRU
894 * and treated as swapcache but it has no rmap yet.
895 * Calling try_to_unmap() against a page->mapping==NULL page will
896 * trigger a BUG. So handle it here.
897 * 2. An orphaned page (see truncate_complete_page) might have
898 * fs-private metadata. The page can be picked up due to memory
899 * offlining. Everywhere else except page reclaim, the page is
900 * invisible to the vm, so the page can not be migrated. So try to
901 * free the metadata, so the page can be freed.
903 if (!page->mapping) {
904 VM_BUG_ON_PAGE(PageAnon(page), page);
905 if (page_has_private(page)) {
906 try_to_free_buffers(page);
907 goto out_unlock;
909 goto skip_unmap;
912 /* Establish migration ptes or remove ptes */
913 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
915 skip_unmap:
916 if (!page_mapped(page))
917 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
919 if (rc && remap_swapcache)
920 remove_migration_ptes(page, page);
922 /* Drop an anon_vma reference if we took one */
923 if (anon_vma)
924 put_anon_vma(anon_vma);
926 out_unlock:
927 unlock_page(page);
928 out:
929 return rc;
933 * Obtain the lock on page, remove all ptes and migrate the page
934 * to the newly allocated page in newpage.
936 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
937 unsigned long private, struct page *page, int force,
938 enum migrate_mode mode)
940 int rc = 0;
941 int *result = NULL;
942 struct page *newpage = get_new_page(page, private, &result);
944 if (!newpage)
945 return -ENOMEM;
947 if (page_count(page) == 1) {
948 /* page was freed from under us. So we are done. */
949 goto out;
952 if (unlikely(PageTransHuge(page)))
953 if (unlikely(split_huge_page(page)))
954 goto out;
956 rc = __unmap_and_move(page, newpage, force, mode);
958 out:
959 if (rc != -EAGAIN) {
961 * A page that has been migrated has all references
962 * removed and will be freed. A page that has not been
963 * migrated will have kepts its references and be
964 * restored.
966 list_del(&page->lru);
967 dec_zone_page_state(page, NR_ISOLATED_ANON +
968 page_is_file_cache(page));
969 putback_lru_page(page);
973 * If migration was not successful and there's a freeing callback, use
974 * it. Otherwise, putback_lru_page() will drop the reference grabbed
975 * during isolation.
977 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
978 ClearPageSwapBacked(newpage);
979 put_new_page(newpage, private);
980 } else if (unlikely(__is_movable_balloon_page(newpage))) {
981 /* drop our reference, page already in the balloon */
982 put_page(newpage);
983 } else
984 putback_lru_page(newpage);
986 if (result) {
987 if (rc)
988 *result = rc;
989 else
990 *result = page_to_nid(newpage);
992 return rc;
996 * Counterpart of unmap_and_move_page() for hugepage migration.
998 * This function doesn't wait the completion of hugepage I/O
999 * because there is no race between I/O and migration for hugepage.
1000 * Note that currently hugepage I/O occurs only in direct I/O
1001 * where no lock is held and PG_writeback is irrelevant,
1002 * and writeback status of all subpages are counted in the reference
1003 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1004 * under direct I/O, the reference of the head page is 512 and a bit more.)
1005 * This means that when we try to migrate hugepage whose subpages are
1006 * doing direct I/O, some references remain after try_to_unmap() and
1007 * hugepage migration fails without data corruption.
1009 * There is also no race when direct I/O is issued on the page under migration,
1010 * because then pte is replaced with migration swap entry and direct I/O code
1011 * will wait in the page fault for migration to complete.
1013 static int unmap_and_move_huge_page(new_page_t get_new_page,
1014 free_page_t put_new_page, unsigned long private,
1015 struct page *hpage, int force,
1016 enum migrate_mode mode)
1018 int rc = 0;
1019 int *result = NULL;
1020 struct page *new_hpage;
1021 struct anon_vma *anon_vma = NULL;
1024 * Movability of hugepages depends on architectures and hugepage size.
1025 * This check is necessary because some callers of hugepage migration
1026 * like soft offline and memory hotremove don't walk through page
1027 * tables or check whether the hugepage is pmd-based or not before
1028 * kicking migration.
1030 if (!hugepage_migration_supported(page_hstate(hpage))) {
1031 putback_active_hugepage(hpage);
1032 return -ENOSYS;
1035 new_hpage = get_new_page(hpage, private, &result);
1036 if (!new_hpage)
1037 return -ENOMEM;
1039 rc = -EAGAIN;
1041 if (!trylock_page(hpage)) {
1042 if (!force || mode != MIGRATE_SYNC)
1043 goto out;
1044 lock_page(hpage);
1047 if (PageAnon(hpage))
1048 anon_vma = page_get_anon_vma(hpage);
1050 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1052 if (!page_mapped(hpage))
1053 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1055 if (rc != MIGRATEPAGE_SUCCESS)
1056 remove_migration_ptes(hpage, hpage);
1058 if (anon_vma)
1059 put_anon_vma(anon_vma);
1061 if (rc == MIGRATEPAGE_SUCCESS)
1062 hugetlb_cgroup_migrate(hpage, new_hpage);
1064 unlock_page(hpage);
1065 out:
1066 if (rc != -EAGAIN)
1067 putback_active_hugepage(hpage);
1070 * If migration was not successful and there's a freeing callback, use
1071 * it. Otherwise, put_page() will drop the reference grabbed during
1072 * isolation.
1074 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1075 put_new_page(new_hpage, private);
1076 else
1077 put_page(new_hpage);
1079 if (result) {
1080 if (rc)
1081 *result = rc;
1082 else
1083 *result = page_to_nid(new_hpage);
1085 return rc;
1089 * migrate_pages - migrate the pages specified in a list, to the free pages
1090 * supplied as the target for the page migration
1092 * @from: The list of pages to be migrated.
1093 * @get_new_page: The function used to allocate free pages to be used
1094 * as the target of the page migration.
1095 * @put_new_page: The function used to free target pages if migration
1096 * fails, or NULL if no special handling is necessary.
1097 * @private: Private data to be passed on to get_new_page()
1098 * @mode: The migration mode that specifies the constraints for
1099 * page migration, if any.
1100 * @reason: The reason for page migration.
1102 * The function returns after 10 attempts or if no pages are movable any more
1103 * because the list has become empty or no retryable pages exist any more.
1104 * The caller should call putback_lru_pages() to return pages to the LRU
1105 * or free list only if ret != 0.
1107 * Returns the number of pages that were not migrated, or an error code.
1109 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1110 free_page_t put_new_page, unsigned long private,
1111 enum migrate_mode mode, int reason)
1113 int retry = 1;
1114 int nr_failed = 0;
1115 int nr_succeeded = 0;
1116 int pass = 0;
1117 struct page *page;
1118 struct page *page2;
1119 int swapwrite = current->flags & PF_SWAPWRITE;
1120 int rc;
1122 if (!swapwrite)
1123 current->flags |= PF_SWAPWRITE;
1125 for(pass = 0; pass < 10 && retry; pass++) {
1126 retry = 0;
1128 list_for_each_entry_safe(page, page2, from, lru) {
1129 cond_resched();
1131 if (PageHuge(page))
1132 rc = unmap_and_move_huge_page(get_new_page,
1133 put_new_page, private, page,
1134 pass > 2, mode);
1135 else
1136 rc = unmap_and_move(get_new_page, put_new_page,
1137 private, page, pass > 2, mode);
1139 switch(rc) {
1140 case -ENOMEM:
1141 goto out;
1142 case -EAGAIN:
1143 retry++;
1144 break;
1145 case MIGRATEPAGE_SUCCESS:
1146 nr_succeeded++;
1147 break;
1148 default:
1150 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1151 * unlike -EAGAIN case, the failed page is
1152 * removed from migration page list and not
1153 * retried in the next outer loop.
1155 nr_failed++;
1156 break;
1160 rc = nr_failed + retry;
1161 out:
1162 if (nr_succeeded)
1163 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1164 if (nr_failed)
1165 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1166 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1168 if (!swapwrite)
1169 current->flags &= ~PF_SWAPWRITE;
1171 return rc;
1174 #ifdef CONFIG_NUMA
1176 * Move a list of individual pages
1178 struct page_to_node {
1179 unsigned long addr;
1180 struct page *page;
1181 int node;
1182 int status;
1185 static struct page *new_page_node(struct page *p, unsigned long private,
1186 int **result)
1188 struct page_to_node *pm = (struct page_to_node *)private;
1190 while (pm->node != MAX_NUMNODES && pm->page != p)
1191 pm++;
1193 if (pm->node == MAX_NUMNODES)
1194 return NULL;
1196 *result = &pm->status;
1198 if (PageHuge(p))
1199 return alloc_huge_page_node(page_hstate(compound_head(p)),
1200 pm->node);
1201 else
1202 return alloc_pages_exact_node(pm->node,
1203 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1207 * Move a set of pages as indicated in the pm array. The addr
1208 * field must be set to the virtual address of the page to be moved
1209 * and the node number must contain a valid target node.
1210 * The pm array ends with node = MAX_NUMNODES.
1212 static int do_move_page_to_node_array(struct mm_struct *mm,
1213 struct page_to_node *pm,
1214 int migrate_all)
1216 int err;
1217 struct page_to_node *pp;
1218 LIST_HEAD(pagelist);
1220 down_read(&mm->mmap_sem);
1223 * Build a list of pages to migrate
1225 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1226 struct vm_area_struct *vma;
1227 struct page *page;
1229 err = -EFAULT;
1230 vma = find_vma(mm, pp->addr);
1231 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1232 goto set_status;
1234 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1236 err = PTR_ERR(page);
1237 if (IS_ERR(page))
1238 goto set_status;
1240 err = -ENOENT;
1241 if (!page)
1242 goto set_status;
1244 /* Use PageReserved to check for zero page */
1245 if (PageReserved(page))
1246 goto put_and_set;
1248 pp->page = page;
1249 err = page_to_nid(page);
1251 if (err == pp->node)
1253 * Node already in the right place
1255 goto put_and_set;
1257 err = -EACCES;
1258 if (page_mapcount(page) > 1 &&
1259 !migrate_all)
1260 goto put_and_set;
1262 if (PageHuge(page)) {
1263 isolate_huge_page(page, &pagelist);
1264 goto put_and_set;
1267 err = isolate_lru_page(page);
1268 if (!err) {
1269 list_add_tail(&page->lru, &pagelist);
1270 inc_zone_page_state(page, NR_ISOLATED_ANON +
1271 page_is_file_cache(page));
1273 put_and_set:
1275 * Either remove the duplicate refcount from
1276 * isolate_lru_page() or drop the page ref if it was
1277 * not isolated.
1279 put_page(page);
1280 set_status:
1281 pp->status = err;
1284 err = 0;
1285 if (!list_empty(&pagelist)) {
1286 err = migrate_pages(&pagelist, new_page_node, NULL,
1287 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1288 if (err)
1289 putback_movable_pages(&pagelist);
1292 up_read(&mm->mmap_sem);
1293 return err;
1297 * Migrate an array of page address onto an array of nodes and fill
1298 * the corresponding array of status.
1300 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1301 unsigned long nr_pages,
1302 const void __user * __user *pages,
1303 const int __user *nodes,
1304 int __user *status, int flags)
1306 struct page_to_node *pm;
1307 unsigned long chunk_nr_pages;
1308 unsigned long chunk_start;
1309 int err;
1311 err = -ENOMEM;
1312 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1313 if (!pm)
1314 goto out;
1316 migrate_prep();
1319 * Store a chunk of page_to_node array in a page,
1320 * but keep the last one as a marker
1322 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1324 for (chunk_start = 0;
1325 chunk_start < nr_pages;
1326 chunk_start += chunk_nr_pages) {
1327 int j;
1329 if (chunk_start + chunk_nr_pages > nr_pages)
1330 chunk_nr_pages = nr_pages - chunk_start;
1332 /* fill the chunk pm with addrs and nodes from user-space */
1333 for (j = 0; j < chunk_nr_pages; j++) {
1334 const void __user *p;
1335 int node;
1337 err = -EFAULT;
1338 if (get_user(p, pages + j + chunk_start))
1339 goto out_pm;
1340 pm[j].addr = (unsigned long) p;
1342 if (get_user(node, nodes + j + chunk_start))
1343 goto out_pm;
1345 err = -ENODEV;
1346 if (node < 0 || node >= MAX_NUMNODES)
1347 goto out_pm;
1349 if (!node_state(node, N_MEMORY))
1350 goto out_pm;
1352 err = -EACCES;
1353 if (!node_isset(node, task_nodes))
1354 goto out_pm;
1356 pm[j].node = node;
1359 /* End marker for this chunk */
1360 pm[chunk_nr_pages].node = MAX_NUMNODES;
1362 /* Migrate this chunk */
1363 err = do_move_page_to_node_array(mm, pm,
1364 flags & MPOL_MF_MOVE_ALL);
1365 if (err < 0)
1366 goto out_pm;
1368 /* Return status information */
1369 for (j = 0; j < chunk_nr_pages; j++)
1370 if (put_user(pm[j].status, status + j + chunk_start)) {
1371 err = -EFAULT;
1372 goto out_pm;
1375 err = 0;
1377 out_pm:
1378 free_page((unsigned long)pm);
1379 out:
1380 return err;
1384 * Determine the nodes of an array of pages and store it in an array of status.
1386 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1387 const void __user **pages, int *status)
1389 unsigned long i;
1391 down_read(&mm->mmap_sem);
1393 for (i = 0; i < nr_pages; i++) {
1394 unsigned long addr = (unsigned long)(*pages);
1395 struct vm_area_struct *vma;
1396 struct page *page;
1397 int err = -EFAULT;
1399 vma = find_vma(mm, addr);
1400 if (!vma || addr < vma->vm_start)
1401 goto set_status;
1403 page = follow_page(vma, addr, 0);
1405 err = PTR_ERR(page);
1406 if (IS_ERR(page))
1407 goto set_status;
1409 err = -ENOENT;
1410 /* Use PageReserved to check for zero page */
1411 if (!page || PageReserved(page))
1412 goto set_status;
1414 err = page_to_nid(page);
1415 set_status:
1416 *status = err;
1418 pages++;
1419 status++;
1422 up_read(&mm->mmap_sem);
1426 * Determine the nodes of a user array of pages and store it in
1427 * a user array of status.
1429 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1430 const void __user * __user *pages,
1431 int __user *status)
1433 #define DO_PAGES_STAT_CHUNK_NR 16
1434 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1435 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1437 while (nr_pages) {
1438 unsigned long chunk_nr;
1440 chunk_nr = nr_pages;
1441 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1442 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1444 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1445 break;
1447 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1449 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1450 break;
1452 pages += chunk_nr;
1453 status += chunk_nr;
1454 nr_pages -= chunk_nr;
1456 return nr_pages ? -EFAULT : 0;
1460 * Move a list of pages in the address space of the currently executing
1461 * process.
1463 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1464 const void __user * __user *, pages,
1465 const int __user *, nodes,
1466 int __user *, status, int, flags)
1468 const struct cred *cred = current_cred(), *tcred;
1469 struct task_struct *task;
1470 struct mm_struct *mm;
1471 int err;
1472 nodemask_t task_nodes;
1474 /* Check flags */
1475 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1476 return -EINVAL;
1478 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1479 return -EPERM;
1481 /* Find the mm_struct */
1482 rcu_read_lock();
1483 task = pid ? find_task_by_vpid(pid) : current;
1484 if (!task) {
1485 rcu_read_unlock();
1486 return -ESRCH;
1488 get_task_struct(task);
1491 * Check if this process has the right to modify the specified
1492 * process. The right exists if the process has administrative
1493 * capabilities, superuser privileges or the same
1494 * userid as the target process.
1496 tcred = __task_cred(task);
1497 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1498 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1499 !capable(CAP_SYS_NICE)) {
1500 rcu_read_unlock();
1501 err = -EPERM;
1502 goto out;
1504 rcu_read_unlock();
1506 err = security_task_movememory(task);
1507 if (err)
1508 goto out;
1510 task_nodes = cpuset_mems_allowed(task);
1511 mm = get_task_mm(task);
1512 put_task_struct(task);
1514 if (!mm)
1515 return -EINVAL;
1517 if (nodes)
1518 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1519 nodes, status, flags);
1520 else
1521 err = do_pages_stat(mm, nr_pages, pages, status);
1523 mmput(mm);
1524 return err;
1526 out:
1527 put_task_struct(task);
1528 return err;
1532 * Call migration functions in the vma_ops that may prepare
1533 * memory in a vm for migration. migration functions may perform
1534 * the migration for vmas that do not have an underlying page struct.
1536 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1537 const nodemask_t *from, unsigned long flags)
1539 struct vm_area_struct *vma;
1540 int err = 0;
1542 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1543 if (vma->vm_ops && vma->vm_ops->migrate) {
1544 err = vma->vm_ops->migrate(vma, to, from, flags);
1545 if (err)
1546 break;
1549 return err;
1552 #ifdef CONFIG_NUMA_BALANCING
1554 * Returns true if this is a safe migration target node for misplaced NUMA
1555 * pages. Currently it only checks the watermarks which crude
1557 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1558 unsigned long nr_migrate_pages)
1560 int z;
1561 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1562 struct zone *zone = pgdat->node_zones + z;
1564 if (!populated_zone(zone))
1565 continue;
1567 if (!zone_reclaimable(zone))
1568 continue;
1570 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1571 if (!zone_watermark_ok(zone, 0,
1572 high_wmark_pages(zone) +
1573 nr_migrate_pages,
1574 0, 0))
1575 continue;
1576 return true;
1578 return false;
1581 static struct page *alloc_misplaced_dst_page(struct page *page,
1582 unsigned long data,
1583 int **result)
1585 int nid = (int) data;
1586 struct page *newpage;
1588 newpage = alloc_pages_exact_node(nid,
1589 (GFP_HIGHUSER_MOVABLE |
1590 __GFP_THISNODE | __GFP_NOMEMALLOC |
1591 __GFP_NORETRY | __GFP_NOWARN) &
1592 ~GFP_IOFS, 0);
1594 return newpage;
1598 * page migration rate limiting control.
1599 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1600 * window of time. Default here says do not migrate more than 1280M per second.
1601 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1602 * as it is faults that reset the window, pte updates will happen unconditionally
1603 * if there has not been a fault since @pteupdate_interval_millisecs after the
1604 * throttle window closed.
1606 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1607 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1608 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1610 /* Returns true if NUMA migration is currently rate limited */
1611 bool migrate_ratelimited(int node)
1613 pg_data_t *pgdat = NODE_DATA(node);
1615 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1616 msecs_to_jiffies(pteupdate_interval_millisecs)))
1617 return false;
1619 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1620 return false;
1622 return true;
1625 /* Returns true if the node is migrate rate-limited after the update */
1626 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1627 unsigned long nr_pages)
1630 * Rate-limit the amount of data that is being migrated to a node.
1631 * Optimal placement is no good if the memory bus is saturated and
1632 * all the time is being spent migrating!
1634 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1635 spin_lock(&pgdat->numabalancing_migrate_lock);
1636 pgdat->numabalancing_migrate_nr_pages = 0;
1637 pgdat->numabalancing_migrate_next_window = jiffies +
1638 msecs_to_jiffies(migrate_interval_millisecs);
1639 spin_unlock(&pgdat->numabalancing_migrate_lock);
1641 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1642 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1643 nr_pages);
1644 return true;
1648 * This is an unlocked non-atomic update so errors are possible.
1649 * The consequences are failing to migrate when we potentiall should
1650 * have which is not severe enough to warrant locking. If it is ever
1651 * a problem, it can be converted to a per-cpu counter.
1653 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1654 return false;
1657 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1659 int page_lru;
1661 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1663 /* Avoid migrating to a node that is nearly full */
1664 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1665 return 0;
1667 if (isolate_lru_page(page))
1668 return 0;
1671 * migrate_misplaced_transhuge_page() skips page migration's usual
1672 * check on page_count(), so we must do it here, now that the page
1673 * has been isolated: a GUP pin, or any other pin, prevents migration.
1674 * The expected page count is 3: 1 for page's mapcount and 1 for the
1675 * caller's pin and 1 for the reference taken by isolate_lru_page().
1677 if (PageTransHuge(page) && page_count(page) != 3) {
1678 putback_lru_page(page);
1679 return 0;
1682 page_lru = page_is_file_cache(page);
1683 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1684 hpage_nr_pages(page));
1687 * Isolating the page has taken another reference, so the
1688 * caller's reference can be safely dropped without the page
1689 * disappearing underneath us during migration.
1691 put_page(page);
1692 return 1;
1695 bool pmd_trans_migrating(pmd_t pmd)
1697 struct page *page = pmd_page(pmd);
1698 return PageLocked(page);
1701 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1703 struct page *page = pmd_page(*pmd);
1704 wait_on_page_locked(page);
1708 * Attempt to migrate a misplaced page to the specified destination
1709 * node. Caller is expected to have an elevated reference count on
1710 * the page that will be dropped by this function before returning.
1712 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1713 int node)
1715 pg_data_t *pgdat = NODE_DATA(node);
1716 int isolated;
1717 int nr_remaining;
1718 LIST_HEAD(migratepages);
1721 * Don't migrate file pages that are mapped in multiple processes
1722 * with execute permissions as they are probably shared libraries.
1724 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1725 (vma->vm_flags & VM_EXEC))
1726 goto out;
1729 * Rate-limit the amount of data that is being migrated to a node.
1730 * Optimal placement is no good if the memory bus is saturated and
1731 * all the time is being spent migrating!
1733 if (numamigrate_update_ratelimit(pgdat, 1))
1734 goto out;
1736 isolated = numamigrate_isolate_page(pgdat, page);
1737 if (!isolated)
1738 goto out;
1740 list_add(&page->lru, &migratepages);
1741 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1742 NULL, node, MIGRATE_ASYNC,
1743 MR_NUMA_MISPLACED);
1744 if (nr_remaining) {
1745 if (!list_empty(&migratepages)) {
1746 list_del(&page->lru);
1747 dec_zone_page_state(page, NR_ISOLATED_ANON +
1748 page_is_file_cache(page));
1749 putback_lru_page(page);
1751 isolated = 0;
1752 } else
1753 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1754 BUG_ON(!list_empty(&migratepages));
1755 return isolated;
1757 out:
1758 put_page(page);
1759 return 0;
1761 #endif /* CONFIG_NUMA_BALANCING */
1763 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1765 * Migrates a THP to a given target node. page must be locked and is unlocked
1766 * before returning.
1768 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1769 struct vm_area_struct *vma,
1770 pmd_t *pmd, pmd_t entry,
1771 unsigned long address,
1772 struct page *page, int node)
1774 spinlock_t *ptl;
1775 pg_data_t *pgdat = NODE_DATA(node);
1776 int isolated = 0;
1777 struct page *new_page = NULL;
1778 int page_lru = page_is_file_cache(page);
1779 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1780 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1781 pmd_t orig_entry;
1784 * Rate-limit the amount of data that is being migrated to a node.
1785 * Optimal placement is no good if the memory bus is saturated and
1786 * all the time is being spent migrating!
1788 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1789 goto out_dropref;
1791 new_page = alloc_pages_node(node,
1792 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1793 HPAGE_PMD_ORDER);
1794 if (!new_page)
1795 goto out_fail;
1797 isolated = numamigrate_isolate_page(pgdat, page);
1798 if (!isolated) {
1799 put_page(new_page);
1800 goto out_fail;
1803 if (mm_tlb_flush_pending(mm))
1804 flush_tlb_range(vma, mmun_start, mmun_end);
1806 /* Prepare a page as a migration target */
1807 __set_page_locked(new_page);
1808 SetPageSwapBacked(new_page);
1810 /* anon mapping, we can simply copy page->mapping to the new page: */
1811 new_page->mapping = page->mapping;
1812 new_page->index = page->index;
1813 migrate_page_copy(new_page, page);
1814 WARN_ON(PageLRU(new_page));
1816 /* Recheck the target PMD */
1817 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1818 ptl = pmd_lock(mm, pmd);
1819 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1820 fail_putback:
1821 spin_unlock(ptl);
1822 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1824 /* Reverse changes made by migrate_page_copy() */
1825 if (TestClearPageActive(new_page))
1826 SetPageActive(page);
1827 if (TestClearPageUnevictable(new_page))
1828 SetPageUnevictable(page);
1829 mlock_migrate_page(page, new_page);
1831 unlock_page(new_page);
1832 put_page(new_page); /* Free it */
1834 /* Retake the callers reference and putback on LRU */
1835 get_page(page);
1836 putback_lru_page(page);
1837 mod_zone_page_state(page_zone(page),
1838 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1840 goto out_unlock;
1843 orig_entry = *pmd;
1844 entry = mk_pmd(new_page, vma->vm_page_prot);
1845 entry = pmd_mkhuge(entry);
1846 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1849 * Clear the old entry under pagetable lock and establish the new PTE.
1850 * Any parallel GUP will either observe the old page blocking on the
1851 * page lock, block on the page table lock or observe the new page.
1852 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1853 * guarantee the copy is visible before the pagetable update.
1855 flush_cache_range(vma, mmun_start, mmun_end);
1856 page_add_anon_rmap(new_page, vma, mmun_start);
1857 pmdp_clear_flush(vma, mmun_start, pmd);
1858 set_pmd_at(mm, mmun_start, pmd, entry);
1859 flush_tlb_range(vma, mmun_start, mmun_end);
1860 update_mmu_cache_pmd(vma, address, &entry);
1862 if (page_count(page) != 2) {
1863 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1864 flush_tlb_range(vma, mmun_start, mmun_end);
1865 update_mmu_cache_pmd(vma, address, &entry);
1866 page_remove_rmap(new_page);
1867 goto fail_putback;
1870 mem_cgroup_migrate(page, new_page, false);
1872 page_remove_rmap(page);
1874 spin_unlock(ptl);
1875 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1877 /* Take an "isolate" reference and put new page on the LRU. */
1878 get_page(new_page);
1879 putback_lru_page(new_page);
1881 unlock_page(new_page);
1882 unlock_page(page);
1883 put_page(page); /* Drop the rmap reference */
1884 put_page(page); /* Drop the LRU isolation reference */
1886 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1887 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1889 mod_zone_page_state(page_zone(page),
1890 NR_ISOLATED_ANON + page_lru,
1891 -HPAGE_PMD_NR);
1892 return isolated;
1894 out_fail:
1895 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1896 out_dropref:
1897 ptl = pmd_lock(mm, pmd);
1898 if (pmd_same(*pmd, entry)) {
1899 entry = pmd_mknonnuma(entry);
1900 set_pmd_at(mm, mmun_start, pmd, entry);
1901 update_mmu_cache_pmd(vma, address, &entry);
1903 spin_unlock(ptl);
1905 out_unlock:
1906 unlock_page(page);
1907 put_page(page);
1908 return 0;
1910 #endif /* CONFIG_NUMA_BALANCING */
1912 #endif /* CONFIG_NUMA */