MAINTAINERS: EDAC: add Mauro and Borislav as interim patch collectors
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp_memcontrol.c
blobf7e522c558ba2eb43165f85d46c2ba3a91ce42eb
1 #include <net/tcp.h>
2 #include <net/tcp_memcontrol.h>
3 #include <net/sock.h>
4 #include <net/ip.h>
5 #include <linux/nsproxy.h>
6 #include <linux/memcontrol.h>
7 #include <linux/module.h>
9 int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
12 * The root cgroup does not use res_counters, but rather,
13 * rely on the data already collected by the network
14 * subsystem
16 struct res_counter *res_parent = NULL;
17 struct cg_proto *cg_proto, *parent_cg;
18 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
20 cg_proto = tcp_prot.proto_cgroup(memcg);
21 if (!cg_proto)
22 return 0;
24 cg_proto->sysctl_mem[0] = sysctl_tcp_mem[0];
25 cg_proto->sysctl_mem[1] = sysctl_tcp_mem[1];
26 cg_proto->sysctl_mem[2] = sysctl_tcp_mem[2];
27 cg_proto->memory_pressure = 0;
28 cg_proto->memcg = memcg;
30 parent_cg = tcp_prot.proto_cgroup(parent);
31 if (parent_cg)
32 res_parent = &parent_cg->memory_allocated;
34 res_counter_init(&cg_proto->memory_allocated, res_parent);
35 percpu_counter_init(&cg_proto->sockets_allocated, 0);
37 return 0;
39 EXPORT_SYMBOL(tcp_init_cgroup);
41 void tcp_destroy_cgroup(struct mem_cgroup *memcg)
43 struct cg_proto *cg_proto;
45 cg_proto = tcp_prot.proto_cgroup(memcg);
46 if (!cg_proto)
47 return;
49 percpu_counter_destroy(&cg_proto->sockets_allocated);
51 EXPORT_SYMBOL(tcp_destroy_cgroup);
53 static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
55 struct cg_proto *cg_proto;
56 int i;
57 int ret;
59 cg_proto = tcp_prot.proto_cgroup(memcg);
60 if (!cg_proto)
61 return -EINVAL;
63 if (val > RES_COUNTER_MAX)
64 val = RES_COUNTER_MAX;
66 ret = res_counter_set_limit(&cg_proto->memory_allocated, val);
67 if (ret)
68 return ret;
70 for (i = 0; i < 3; i++)
71 cg_proto->sysctl_mem[i] = min_t(long, val >> PAGE_SHIFT,
72 sysctl_tcp_mem[i]);
74 if (val == RES_COUNTER_MAX)
75 clear_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
76 else if (val != RES_COUNTER_MAX) {
78 * The active bit needs to be written after the static_key
79 * update. This is what guarantees that the socket activation
80 * function is the last one to run. See sock_update_memcg() for
81 * details, and note that we don't mark any socket as belonging
82 * to this memcg until that flag is up.
84 * We need to do this, because static_keys will span multiple
85 * sites, but we can't control their order. If we mark a socket
86 * as accounted, but the accounting functions are not patched in
87 * yet, we'll lose accounting.
89 * We never race with the readers in sock_update_memcg(),
90 * because when this value change, the code to process it is not
91 * patched in yet.
93 * The activated bit is used to guarantee that no two writers
94 * will do the update in the same memcg. Without that, we can't
95 * properly shutdown the static key.
97 if (!test_and_set_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags))
98 static_key_slow_inc(&memcg_socket_limit_enabled);
99 set_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
102 return 0;
105 static int tcp_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
106 const char *buffer)
108 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
109 unsigned long long val;
110 int ret = 0;
112 switch (cft->private) {
113 case RES_LIMIT:
114 /* see memcontrol.c */
115 ret = res_counter_memparse_write_strategy(buffer, &val);
116 if (ret)
117 break;
118 ret = tcp_update_limit(memcg, val);
119 break;
120 default:
121 ret = -EINVAL;
122 break;
124 return ret;
127 static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val)
129 struct cg_proto *cg_proto;
131 cg_proto = tcp_prot.proto_cgroup(memcg);
132 if (!cg_proto)
133 return default_val;
135 return res_counter_read_u64(&cg_proto->memory_allocated, type);
138 static u64 tcp_read_usage(struct mem_cgroup *memcg)
140 struct cg_proto *cg_proto;
142 cg_proto = tcp_prot.proto_cgroup(memcg);
143 if (!cg_proto)
144 return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT;
146 return res_counter_read_u64(&cg_proto->memory_allocated, RES_USAGE);
149 static u64 tcp_cgroup_read(struct cgroup_subsys_state *css, struct cftype *cft)
151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
152 u64 val;
154 switch (cft->private) {
155 case RES_LIMIT:
156 val = tcp_read_stat(memcg, RES_LIMIT, RES_COUNTER_MAX);
157 break;
158 case RES_USAGE:
159 val = tcp_read_usage(memcg);
160 break;
161 case RES_FAILCNT:
162 case RES_MAX_USAGE:
163 val = tcp_read_stat(memcg, cft->private, 0);
164 break;
165 default:
166 BUG();
168 return val;
171 static int tcp_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
173 struct mem_cgroup *memcg;
174 struct cg_proto *cg_proto;
176 memcg = mem_cgroup_from_css(css);
177 cg_proto = tcp_prot.proto_cgroup(memcg);
178 if (!cg_proto)
179 return 0;
181 switch (event) {
182 case RES_MAX_USAGE:
183 res_counter_reset_max(&cg_proto->memory_allocated);
184 break;
185 case RES_FAILCNT:
186 res_counter_reset_failcnt(&cg_proto->memory_allocated);
187 break;
190 return 0;
193 static struct cftype tcp_files[] = {
195 .name = "kmem.tcp.limit_in_bytes",
196 .write_string = tcp_cgroup_write,
197 .read_u64 = tcp_cgroup_read,
198 .private = RES_LIMIT,
201 .name = "kmem.tcp.usage_in_bytes",
202 .read_u64 = tcp_cgroup_read,
203 .private = RES_USAGE,
206 .name = "kmem.tcp.failcnt",
207 .private = RES_FAILCNT,
208 .trigger = tcp_cgroup_reset,
209 .read_u64 = tcp_cgroup_read,
212 .name = "kmem.tcp.max_usage_in_bytes",
213 .private = RES_MAX_USAGE,
214 .trigger = tcp_cgroup_reset,
215 .read_u64 = tcp_cgroup_read,
217 { } /* terminate */
220 static int __init tcp_memcontrol_init(void)
222 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, tcp_files));
223 return 0;
225 __initcall(tcp_memcontrol_init);