MAINTAINERS: EDAC: add Mauro and Borislav as interim patch collectors
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp_input.c
blob227cba79fa6b1f490f27a3aaf013070fbf9c8015
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_thin_dupack __read_mostly;
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
133 icsk->icsk_ack.last_seg_size = 0;
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
145 * "len" is invariant segment length, including TCP header.
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 static void tcp_incr_quickack(struct sock *sk)
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 static void tcp_enter_quickack_mode(struct sock *sk)
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
198 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
265 /* Buffer size and advertised window tuning.
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
270 static void tcp_sndbuf_expand(struct sock *sk)
272 const struct tcp_sock *tp = tcp_sk(sk);
273 int sndmem, per_mss;
274 u32 nr_segs;
276 /* Worst case is non GSO/TSO : each frame consumes one skb
277 * and skb->head is kmalloced using power of two area of memory
279 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
280 MAX_TCP_HEADER +
281 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
283 per_mss = roundup_pow_of_two(per_mss) +
284 SKB_DATA_ALIGN(sizeof(struct sk_buff));
286 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
287 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
289 /* Fast Recovery (RFC 5681 3.2) :
290 * Cubic needs 1.7 factor, rounded to 2 to include
291 * extra cushion (application might react slowly to POLLOUT)
293 sndmem = 2 * nr_segs * per_mss;
295 if (sk->sk_sndbuf < sndmem)
296 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
299 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
301 * All tcp_full_space() is split to two parts: "network" buffer, allocated
302 * forward and advertised in receiver window (tp->rcv_wnd) and
303 * "application buffer", required to isolate scheduling/application
304 * latencies from network.
305 * window_clamp is maximal advertised window. It can be less than
306 * tcp_full_space(), in this case tcp_full_space() - window_clamp
307 * is reserved for "application" buffer. The less window_clamp is
308 * the smoother our behaviour from viewpoint of network, but the lower
309 * throughput and the higher sensitivity of the connection to losses. 8)
311 * rcv_ssthresh is more strict window_clamp used at "slow start"
312 * phase to predict further behaviour of this connection.
313 * It is used for two goals:
314 * - to enforce header prediction at sender, even when application
315 * requires some significant "application buffer". It is check #1.
316 * - to prevent pruning of receive queue because of misprediction
317 * of receiver window. Check #2.
319 * The scheme does not work when sender sends good segments opening
320 * window and then starts to feed us spaghetti. But it should work
321 * in common situations. Otherwise, we have to rely on queue collapsing.
324 /* Slow part of check#2. */
325 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
327 struct tcp_sock *tp = tcp_sk(sk);
328 /* Optimize this! */
329 int truesize = tcp_win_from_space(skb->truesize) >> 1;
330 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
332 while (tp->rcv_ssthresh <= window) {
333 if (truesize <= skb->len)
334 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
336 truesize >>= 1;
337 window >>= 1;
339 return 0;
342 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
344 struct tcp_sock *tp = tcp_sk(sk);
346 /* Check #1 */
347 if (tp->rcv_ssthresh < tp->window_clamp &&
348 (int)tp->rcv_ssthresh < tcp_space(sk) &&
349 !sk_under_memory_pressure(sk)) {
350 int incr;
352 /* Check #2. Increase window, if skb with such overhead
353 * will fit to rcvbuf in future.
355 if (tcp_win_from_space(skb->truesize) <= skb->len)
356 incr = 2 * tp->advmss;
357 else
358 incr = __tcp_grow_window(sk, skb);
360 if (incr) {
361 incr = max_t(int, incr, 2 * skb->len);
362 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
363 tp->window_clamp);
364 inet_csk(sk)->icsk_ack.quick |= 1;
369 /* 3. Tuning rcvbuf, when connection enters established state. */
370 static void tcp_fixup_rcvbuf(struct sock *sk)
372 u32 mss = tcp_sk(sk)->advmss;
373 int rcvmem;
375 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
376 tcp_default_init_rwnd(mss);
378 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
379 * Allow enough cushion so that sender is not limited by our window
381 if (sysctl_tcp_moderate_rcvbuf)
382 rcvmem <<= 2;
384 if (sk->sk_rcvbuf < rcvmem)
385 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
388 /* 4. Try to fixup all. It is made immediately after connection enters
389 * established state.
391 void tcp_init_buffer_space(struct sock *sk)
393 struct tcp_sock *tp = tcp_sk(sk);
394 int maxwin;
396 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
397 tcp_fixup_rcvbuf(sk);
398 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
399 tcp_sndbuf_expand(sk);
401 tp->rcvq_space.space = tp->rcv_wnd;
402 tp->rcvq_space.time = tcp_time_stamp;
403 tp->rcvq_space.seq = tp->copied_seq;
405 maxwin = tcp_full_space(sk);
407 if (tp->window_clamp >= maxwin) {
408 tp->window_clamp = maxwin;
410 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
411 tp->window_clamp = max(maxwin -
412 (maxwin >> sysctl_tcp_app_win),
413 4 * tp->advmss);
416 /* Force reservation of one segment. */
417 if (sysctl_tcp_app_win &&
418 tp->window_clamp > 2 * tp->advmss &&
419 tp->window_clamp + tp->advmss > maxwin)
420 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
422 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
423 tp->snd_cwnd_stamp = tcp_time_stamp;
426 /* 5. Recalculate window clamp after socket hit its memory bounds. */
427 static void tcp_clamp_window(struct sock *sk)
429 struct tcp_sock *tp = tcp_sk(sk);
430 struct inet_connection_sock *icsk = inet_csk(sk);
432 icsk->icsk_ack.quick = 0;
434 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
435 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
436 !sk_under_memory_pressure(sk) &&
437 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
438 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
439 sysctl_tcp_rmem[2]);
441 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
442 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
445 /* Initialize RCV_MSS value.
446 * RCV_MSS is an our guess about MSS used by the peer.
447 * We haven't any direct information about the MSS.
448 * It's better to underestimate the RCV_MSS rather than overestimate.
449 * Overestimations make us ACKing less frequently than needed.
450 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
452 void tcp_initialize_rcv_mss(struct sock *sk)
454 const struct tcp_sock *tp = tcp_sk(sk);
455 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
457 hint = min(hint, tp->rcv_wnd / 2);
458 hint = min(hint, TCP_MSS_DEFAULT);
459 hint = max(hint, TCP_MIN_MSS);
461 inet_csk(sk)->icsk_ack.rcv_mss = hint;
463 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
465 /* Receiver "autotuning" code.
467 * The algorithm for RTT estimation w/o timestamps is based on
468 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
469 * <http://public.lanl.gov/radiant/pubs.html#DRS>
471 * More detail on this code can be found at
472 * <http://staff.psc.edu/jheffner/>,
473 * though this reference is out of date. A new paper
474 * is pending.
476 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
478 u32 new_sample = tp->rcv_rtt_est.rtt;
479 long m = sample;
481 if (m == 0)
482 m = 1;
484 if (new_sample != 0) {
485 /* If we sample in larger samples in the non-timestamp
486 * case, we could grossly overestimate the RTT especially
487 * with chatty applications or bulk transfer apps which
488 * are stalled on filesystem I/O.
490 * Also, since we are only going for a minimum in the
491 * non-timestamp case, we do not smooth things out
492 * else with timestamps disabled convergence takes too
493 * long.
495 if (!win_dep) {
496 m -= (new_sample >> 3);
497 new_sample += m;
498 } else {
499 m <<= 3;
500 if (m < new_sample)
501 new_sample = m;
503 } else {
504 /* No previous measure. */
505 new_sample = m << 3;
508 if (tp->rcv_rtt_est.rtt != new_sample)
509 tp->rcv_rtt_est.rtt = new_sample;
512 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
514 if (tp->rcv_rtt_est.time == 0)
515 goto new_measure;
516 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
517 return;
518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
520 new_measure:
521 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
522 tp->rcv_rtt_est.time = tcp_time_stamp;
525 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
526 const struct sk_buff *skb)
528 struct tcp_sock *tp = tcp_sk(sk);
529 if (tp->rx_opt.rcv_tsecr &&
530 (TCP_SKB_CB(skb)->end_seq -
531 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
532 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
536 * This function should be called every time data is copied to user space.
537 * It calculates the appropriate TCP receive buffer space.
539 void tcp_rcv_space_adjust(struct sock *sk)
541 struct tcp_sock *tp = tcp_sk(sk);
542 int time;
543 int copied;
545 time = tcp_time_stamp - tp->rcvq_space.time;
546 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
547 return;
549 /* Number of bytes copied to user in last RTT */
550 copied = tp->copied_seq - tp->rcvq_space.seq;
551 if (copied <= tp->rcvq_space.space)
552 goto new_measure;
554 /* A bit of theory :
555 * copied = bytes received in previous RTT, our base window
556 * To cope with packet losses, we need a 2x factor
557 * To cope with slow start, and sender growing its cwin by 100 %
558 * every RTT, we need a 4x factor, because the ACK we are sending
559 * now is for the next RTT, not the current one :
560 * <prev RTT . ><current RTT .. ><next RTT .... >
563 if (sysctl_tcp_moderate_rcvbuf &&
564 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
565 int rcvwin, rcvmem, rcvbuf;
567 /* minimal window to cope with packet losses, assuming
568 * steady state. Add some cushion because of small variations.
570 rcvwin = (copied << 1) + 16 * tp->advmss;
572 /* If rate increased by 25%,
573 * assume slow start, rcvwin = 3 * copied
574 * If rate increased by 50%,
575 * assume sender can use 2x growth, rcvwin = 4 * copied
577 if (copied >=
578 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
579 if (copied >=
580 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
581 rcvwin <<= 1;
582 else
583 rcvwin += (rcvwin >> 1);
586 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
587 while (tcp_win_from_space(rcvmem) < tp->advmss)
588 rcvmem += 128;
590 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
591 if (rcvbuf > sk->sk_rcvbuf) {
592 sk->sk_rcvbuf = rcvbuf;
594 /* Make the window clamp follow along. */
595 tp->window_clamp = rcvwin;
598 tp->rcvq_space.space = copied;
600 new_measure:
601 tp->rcvq_space.seq = tp->copied_seq;
602 tp->rcvq_space.time = tcp_time_stamp;
605 /* There is something which you must keep in mind when you analyze the
606 * behavior of the tp->ato delayed ack timeout interval. When a
607 * connection starts up, we want to ack as quickly as possible. The
608 * problem is that "good" TCP's do slow start at the beginning of data
609 * transmission. The means that until we send the first few ACK's the
610 * sender will sit on his end and only queue most of his data, because
611 * he can only send snd_cwnd unacked packets at any given time. For
612 * each ACK we send, he increments snd_cwnd and transmits more of his
613 * queue. -DaveM
615 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
617 struct tcp_sock *tp = tcp_sk(sk);
618 struct inet_connection_sock *icsk = inet_csk(sk);
619 u32 now;
621 inet_csk_schedule_ack(sk);
623 tcp_measure_rcv_mss(sk, skb);
625 tcp_rcv_rtt_measure(tp);
627 now = tcp_time_stamp;
629 if (!icsk->icsk_ack.ato) {
630 /* The _first_ data packet received, initialize
631 * delayed ACK engine.
633 tcp_incr_quickack(sk);
634 icsk->icsk_ack.ato = TCP_ATO_MIN;
635 } else {
636 int m = now - icsk->icsk_ack.lrcvtime;
638 if (m <= TCP_ATO_MIN / 2) {
639 /* The fastest case is the first. */
640 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
641 } else if (m < icsk->icsk_ack.ato) {
642 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
643 if (icsk->icsk_ack.ato > icsk->icsk_rto)
644 icsk->icsk_ack.ato = icsk->icsk_rto;
645 } else if (m > icsk->icsk_rto) {
646 /* Too long gap. Apparently sender failed to
647 * restart window, so that we send ACKs quickly.
649 tcp_incr_quickack(sk);
650 sk_mem_reclaim(sk);
653 icsk->icsk_ack.lrcvtime = now;
655 TCP_ECN_check_ce(tp, skb);
657 if (skb->len >= 128)
658 tcp_grow_window(sk, skb);
661 /* Called to compute a smoothed rtt estimate. The data fed to this
662 * routine either comes from timestamps, or from segments that were
663 * known _not_ to have been retransmitted [see Karn/Partridge
664 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
665 * piece by Van Jacobson.
666 * NOTE: the next three routines used to be one big routine.
667 * To save cycles in the RFC 1323 implementation it was better to break
668 * it up into three procedures. -- erics
670 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
672 struct tcp_sock *tp = tcp_sk(sk);
673 long m = mrtt; /* RTT */
674 u32 srtt = tp->srtt;
676 /* The following amusing code comes from Jacobson's
677 * article in SIGCOMM '88. Note that rtt and mdev
678 * are scaled versions of rtt and mean deviation.
679 * This is designed to be as fast as possible
680 * m stands for "measurement".
682 * On a 1990 paper the rto value is changed to:
683 * RTO = rtt + 4 * mdev
685 * Funny. This algorithm seems to be very broken.
686 * These formulae increase RTO, when it should be decreased, increase
687 * too slowly, when it should be increased quickly, decrease too quickly
688 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
689 * does not matter how to _calculate_ it. Seems, it was trap
690 * that VJ failed to avoid. 8)
692 if (srtt != 0) {
693 m -= (srtt >> 3); /* m is now error in rtt est */
694 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
695 if (m < 0) {
696 m = -m; /* m is now abs(error) */
697 m -= (tp->mdev >> 2); /* similar update on mdev */
698 /* This is similar to one of Eifel findings.
699 * Eifel blocks mdev updates when rtt decreases.
700 * This solution is a bit different: we use finer gain
701 * for mdev in this case (alpha*beta).
702 * Like Eifel it also prevents growth of rto,
703 * but also it limits too fast rto decreases,
704 * happening in pure Eifel.
706 if (m > 0)
707 m >>= 3;
708 } else {
709 m -= (tp->mdev >> 2); /* similar update on mdev */
711 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
712 if (tp->mdev > tp->mdev_max) {
713 tp->mdev_max = tp->mdev;
714 if (tp->mdev_max > tp->rttvar)
715 tp->rttvar = tp->mdev_max;
717 if (after(tp->snd_una, tp->rtt_seq)) {
718 if (tp->mdev_max < tp->rttvar)
719 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
720 tp->rtt_seq = tp->snd_nxt;
721 tp->mdev_max = tcp_rto_min(sk);
723 } else {
724 /* no previous measure. */
725 srtt = m << 3; /* take the measured time to be rtt */
726 tp->mdev = m << 1; /* make sure rto = 3*rtt */
727 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
728 tp->rtt_seq = tp->snd_nxt;
730 tp->srtt = max(1U, srtt);
733 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
734 * Note: TCP stack does not yet implement pacing.
735 * FQ packet scheduler can be used to implement cheap but effective
736 * TCP pacing, to smooth the burst on large writes when packets
737 * in flight is significantly lower than cwnd (or rwin)
739 static void tcp_update_pacing_rate(struct sock *sk)
741 const struct tcp_sock *tp = tcp_sk(sk);
742 u64 rate;
744 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
745 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
747 rate *= max(tp->snd_cwnd, tp->packets_out);
749 /* Correction for small srtt and scheduling constraints.
750 * For small rtt, consider noise is too high, and use
751 * the minimal value (srtt = 1 -> 125 us for HZ=1000)
753 * We probably need usec resolution in the future.
754 * Note: This also takes care of possible srtt=0 case,
755 * when tcp_rtt_estimator() was not yet called.
757 if (tp->srtt > 8 + 2)
758 do_div(rate, tp->srtt);
760 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
761 * without any lock. We want to make sure compiler wont store
762 * intermediate values in this location.
764 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
765 sk->sk_max_pacing_rate);
768 /* Calculate rto without backoff. This is the second half of Van Jacobson's
769 * routine referred to above.
771 static void tcp_set_rto(struct sock *sk)
773 const struct tcp_sock *tp = tcp_sk(sk);
774 /* Old crap is replaced with new one. 8)
776 * More seriously:
777 * 1. If rtt variance happened to be less 50msec, it is hallucination.
778 * It cannot be less due to utterly erratic ACK generation made
779 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
780 * to do with delayed acks, because at cwnd>2 true delack timeout
781 * is invisible. Actually, Linux-2.4 also generates erratic
782 * ACKs in some circumstances.
784 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
786 /* 2. Fixups made earlier cannot be right.
787 * If we do not estimate RTO correctly without them,
788 * all the algo is pure shit and should be replaced
789 * with correct one. It is exactly, which we pretend to do.
792 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
793 * guarantees that rto is higher.
795 tcp_bound_rto(sk);
798 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
800 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
802 if (!cwnd)
803 cwnd = TCP_INIT_CWND;
804 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
808 * Packet counting of FACK is based on in-order assumptions, therefore TCP
809 * disables it when reordering is detected
811 void tcp_disable_fack(struct tcp_sock *tp)
813 /* RFC3517 uses different metric in lost marker => reset on change */
814 if (tcp_is_fack(tp))
815 tp->lost_skb_hint = NULL;
816 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
819 /* Take a notice that peer is sending D-SACKs */
820 static void tcp_dsack_seen(struct tcp_sock *tp)
822 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
825 static void tcp_update_reordering(struct sock *sk, const int metric,
826 const int ts)
828 struct tcp_sock *tp = tcp_sk(sk);
829 if (metric > tp->reordering) {
830 int mib_idx;
832 tp->reordering = min(TCP_MAX_REORDERING, metric);
834 /* This exciting event is worth to be remembered. 8) */
835 if (ts)
836 mib_idx = LINUX_MIB_TCPTSREORDER;
837 else if (tcp_is_reno(tp))
838 mib_idx = LINUX_MIB_TCPRENOREORDER;
839 else if (tcp_is_fack(tp))
840 mib_idx = LINUX_MIB_TCPFACKREORDER;
841 else
842 mib_idx = LINUX_MIB_TCPSACKREORDER;
844 NET_INC_STATS_BH(sock_net(sk), mib_idx);
845 #if FASTRETRANS_DEBUG > 1
846 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
847 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
848 tp->reordering,
849 tp->fackets_out,
850 tp->sacked_out,
851 tp->undo_marker ? tp->undo_retrans : 0);
852 #endif
853 tcp_disable_fack(tp);
856 if (metric > 0)
857 tcp_disable_early_retrans(tp);
860 /* This must be called before lost_out is incremented */
861 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
863 if ((tp->retransmit_skb_hint == NULL) ||
864 before(TCP_SKB_CB(skb)->seq,
865 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
866 tp->retransmit_skb_hint = skb;
868 if (!tp->lost_out ||
869 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
870 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
873 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
875 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
876 tcp_verify_retransmit_hint(tp, skb);
878 tp->lost_out += tcp_skb_pcount(skb);
879 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
883 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
884 struct sk_buff *skb)
886 tcp_verify_retransmit_hint(tp, skb);
888 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
889 tp->lost_out += tcp_skb_pcount(skb);
890 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
894 /* This procedure tags the retransmission queue when SACKs arrive.
896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897 * Packets in queue with these bits set are counted in variables
898 * sacked_out, retrans_out and lost_out, correspondingly.
900 * Valid combinations are:
901 * Tag InFlight Description
902 * 0 1 - orig segment is in flight.
903 * S 0 - nothing flies, orig reached receiver.
904 * L 0 - nothing flies, orig lost by net.
905 * R 2 - both orig and retransmit are in flight.
906 * L|R 1 - orig is lost, retransmit is in flight.
907 * S|R 1 - orig reached receiver, retrans is still in flight.
908 * (L|S|R is logically valid, it could occur when L|R is sacked,
909 * but it is equivalent to plain S and code short-curcuits it to S.
910 * L|S is logically invalid, it would mean -1 packet in flight 8))
912 * These 6 states form finite state machine, controlled by the following events:
913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915 * 3. Loss detection event of two flavors:
916 * A. Scoreboard estimator decided the packet is lost.
917 * A'. Reno "three dupacks" marks head of queue lost.
918 * A''. Its FACK modification, head until snd.fack is lost.
919 * B. SACK arrives sacking SND.NXT at the moment, when the
920 * segment was retransmitted.
921 * 4. D-SACK added new rule: D-SACK changes any tag to S.
923 * It is pleasant to note, that state diagram turns out to be commutative,
924 * so that we are allowed not to be bothered by order of our actions,
925 * when multiple events arrive simultaneously. (see the function below).
927 * Reordering detection.
928 * --------------------
929 * Reordering metric is maximal distance, which a packet can be displaced
930 * in packet stream. With SACKs we can estimate it:
932 * 1. SACK fills old hole and the corresponding segment was not
933 * ever retransmitted -> reordering. Alas, we cannot use it
934 * when segment was retransmitted.
935 * 2. The last flaw is solved with D-SACK. D-SACK arrives
936 * for retransmitted and already SACKed segment -> reordering..
937 * Both of these heuristics are not used in Loss state, when we cannot
938 * account for retransmits accurately.
940 * SACK block validation.
941 * ----------------------
943 * SACK block range validation checks that the received SACK block fits to
944 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
945 * Note that SND.UNA is not included to the range though being valid because
946 * it means that the receiver is rather inconsistent with itself reporting
947 * SACK reneging when it should advance SND.UNA. Such SACK block this is
948 * perfectly valid, however, in light of RFC2018 which explicitly states
949 * that "SACK block MUST reflect the newest segment. Even if the newest
950 * segment is going to be discarded ...", not that it looks very clever
951 * in case of head skb. Due to potentional receiver driven attacks, we
952 * choose to avoid immediate execution of a walk in write queue due to
953 * reneging and defer head skb's loss recovery to standard loss recovery
954 * procedure that will eventually trigger (nothing forbids us doing this).
956 * Implements also blockage to start_seq wrap-around. Problem lies in the
957 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
958 * there's no guarantee that it will be before snd_nxt (n). The problem
959 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
960 * wrap (s_w):
962 * <- outs wnd -> <- wrapzone ->
963 * u e n u_w e_w s n_w
964 * | | | | | | |
965 * |<------------+------+----- TCP seqno space --------------+---------->|
966 * ...-- <2^31 ->| |<--------...
967 * ...---- >2^31 ------>| |<--------...
969 * Current code wouldn't be vulnerable but it's better still to discard such
970 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
971 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
972 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
973 * equal to the ideal case (infinite seqno space without wrap caused issues).
975 * With D-SACK the lower bound is extended to cover sequence space below
976 * SND.UNA down to undo_marker, which is the last point of interest. Yet
977 * again, D-SACK block must not to go across snd_una (for the same reason as
978 * for the normal SACK blocks, explained above). But there all simplicity
979 * ends, TCP might receive valid D-SACKs below that. As long as they reside
980 * fully below undo_marker they do not affect behavior in anyway and can
981 * therefore be safely ignored. In rare cases (which are more or less
982 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
983 * fragmentation and packet reordering past skb's retransmission. To consider
984 * them correctly, the acceptable range must be extended even more though
985 * the exact amount is rather hard to quantify. However, tp->max_window can
986 * be used as an exaggerated estimate.
988 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
989 u32 start_seq, u32 end_seq)
991 /* Too far in future, or reversed (interpretation is ambiguous) */
992 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
993 return false;
995 /* Nasty start_seq wrap-around check (see comments above) */
996 if (!before(start_seq, tp->snd_nxt))
997 return false;
999 /* In outstanding window? ...This is valid exit for D-SACKs too.
1000 * start_seq == snd_una is non-sensical (see comments above)
1002 if (after(start_seq, tp->snd_una))
1003 return true;
1005 if (!is_dsack || !tp->undo_marker)
1006 return false;
1008 /* ...Then it's D-SACK, and must reside below snd_una completely */
1009 if (after(end_seq, tp->snd_una))
1010 return false;
1012 if (!before(start_seq, tp->undo_marker))
1013 return true;
1015 /* Too old */
1016 if (!after(end_seq, tp->undo_marker))
1017 return false;
1019 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1020 * start_seq < undo_marker and end_seq >= undo_marker.
1022 return !before(start_seq, end_seq - tp->max_window);
1025 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1026 * Event "B". Later note: FACK people cheated me again 8), we have to account
1027 * for reordering! Ugly, but should help.
1029 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1030 * less than what is now known to be received by the other end (derived from
1031 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1032 * retransmitted skbs to avoid some costly processing per ACKs.
1034 static void tcp_mark_lost_retrans(struct sock *sk)
1036 const struct inet_connection_sock *icsk = inet_csk(sk);
1037 struct tcp_sock *tp = tcp_sk(sk);
1038 struct sk_buff *skb;
1039 int cnt = 0;
1040 u32 new_low_seq = tp->snd_nxt;
1041 u32 received_upto = tcp_highest_sack_seq(tp);
1043 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1044 !after(received_upto, tp->lost_retrans_low) ||
1045 icsk->icsk_ca_state != TCP_CA_Recovery)
1046 return;
1048 tcp_for_write_queue(skb, sk) {
1049 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1051 if (skb == tcp_send_head(sk))
1052 break;
1053 if (cnt == tp->retrans_out)
1054 break;
1055 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1056 continue;
1058 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1059 continue;
1061 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1062 * constraint here (see above) but figuring out that at
1063 * least tp->reordering SACK blocks reside between ack_seq
1064 * and received_upto is not easy task to do cheaply with
1065 * the available datastructures.
1067 * Whether FACK should check here for tp->reordering segs
1068 * in-between one could argue for either way (it would be
1069 * rather simple to implement as we could count fack_count
1070 * during the walk and do tp->fackets_out - fack_count).
1072 if (after(received_upto, ack_seq)) {
1073 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1074 tp->retrans_out -= tcp_skb_pcount(skb);
1076 tcp_skb_mark_lost_uncond_verify(tp, skb);
1077 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1078 } else {
1079 if (before(ack_seq, new_low_seq))
1080 new_low_seq = ack_seq;
1081 cnt += tcp_skb_pcount(skb);
1085 if (tp->retrans_out)
1086 tp->lost_retrans_low = new_low_seq;
1089 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1090 struct tcp_sack_block_wire *sp, int num_sacks,
1091 u32 prior_snd_una)
1093 struct tcp_sock *tp = tcp_sk(sk);
1094 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1095 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1096 bool dup_sack = false;
1098 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1099 dup_sack = true;
1100 tcp_dsack_seen(tp);
1101 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1102 } else if (num_sacks > 1) {
1103 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1104 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1106 if (!after(end_seq_0, end_seq_1) &&
1107 !before(start_seq_0, start_seq_1)) {
1108 dup_sack = true;
1109 tcp_dsack_seen(tp);
1110 NET_INC_STATS_BH(sock_net(sk),
1111 LINUX_MIB_TCPDSACKOFORECV);
1115 /* D-SACK for already forgotten data... Do dumb counting. */
1116 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1117 !after(end_seq_0, prior_snd_una) &&
1118 after(end_seq_0, tp->undo_marker))
1119 tp->undo_retrans--;
1121 return dup_sack;
1124 struct tcp_sacktag_state {
1125 int reord;
1126 int fack_count;
1127 int flag;
1128 s32 rtt; /* RTT measured by SACKing never-retransmitted data */
1131 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1132 * the incoming SACK may not exactly match but we can find smaller MSS
1133 * aligned portion of it that matches. Therefore we might need to fragment
1134 * which may fail and creates some hassle (caller must handle error case
1135 * returns).
1137 * FIXME: this could be merged to shift decision code
1139 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1140 u32 start_seq, u32 end_seq)
1142 int err;
1143 bool in_sack;
1144 unsigned int pkt_len;
1145 unsigned int mss;
1147 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1148 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1150 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1151 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1152 mss = tcp_skb_mss(skb);
1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1155 if (!in_sack) {
1156 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1157 if (pkt_len < mss)
1158 pkt_len = mss;
1159 } else {
1160 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1161 if (pkt_len < mss)
1162 return -EINVAL;
1165 /* Round if necessary so that SACKs cover only full MSSes
1166 * and/or the remaining small portion (if present)
1168 if (pkt_len > mss) {
1169 unsigned int new_len = (pkt_len / mss) * mss;
1170 if (!in_sack && new_len < pkt_len) {
1171 new_len += mss;
1172 if (new_len > skb->len)
1173 return 0;
1175 pkt_len = new_len;
1177 err = tcp_fragment(sk, skb, pkt_len, mss);
1178 if (err < 0)
1179 return err;
1182 return in_sack;
1185 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1186 static u8 tcp_sacktag_one(struct sock *sk,
1187 struct tcp_sacktag_state *state, u8 sacked,
1188 u32 start_seq, u32 end_seq,
1189 int dup_sack, int pcount, u32 xmit_time)
1191 struct tcp_sock *tp = tcp_sk(sk);
1192 int fack_count = state->fack_count;
1194 /* Account D-SACK for retransmitted packet. */
1195 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1196 if (tp->undo_marker && tp->undo_retrans &&
1197 after(end_seq, tp->undo_marker))
1198 tp->undo_retrans--;
1199 if (sacked & TCPCB_SACKED_ACKED)
1200 state->reord = min(fack_count, state->reord);
1203 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1204 if (!after(end_seq, tp->snd_una))
1205 return sacked;
1207 if (!(sacked & TCPCB_SACKED_ACKED)) {
1208 if (sacked & TCPCB_SACKED_RETRANS) {
1209 /* If the segment is not tagged as lost,
1210 * we do not clear RETRANS, believing
1211 * that retransmission is still in flight.
1213 if (sacked & TCPCB_LOST) {
1214 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1215 tp->lost_out -= pcount;
1216 tp->retrans_out -= pcount;
1218 } else {
1219 if (!(sacked & TCPCB_RETRANS)) {
1220 /* New sack for not retransmitted frame,
1221 * which was in hole. It is reordering.
1223 if (before(start_seq,
1224 tcp_highest_sack_seq(tp)))
1225 state->reord = min(fack_count,
1226 state->reord);
1227 if (!after(end_seq, tp->high_seq))
1228 state->flag |= FLAG_ORIG_SACK_ACKED;
1229 /* Pick the earliest sequence sacked for RTT */
1230 if (state->rtt < 0)
1231 state->rtt = tcp_time_stamp - xmit_time;
1234 if (sacked & TCPCB_LOST) {
1235 sacked &= ~TCPCB_LOST;
1236 tp->lost_out -= pcount;
1240 sacked |= TCPCB_SACKED_ACKED;
1241 state->flag |= FLAG_DATA_SACKED;
1242 tp->sacked_out += pcount;
1244 fack_count += pcount;
1246 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1248 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1249 tp->lost_cnt_hint += pcount;
1251 if (fack_count > tp->fackets_out)
1252 tp->fackets_out = fack_count;
1255 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1256 * frames and clear it. undo_retrans is decreased above, L|R frames
1257 * are accounted above as well.
1259 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1260 sacked &= ~TCPCB_SACKED_RETRANS;
1261 tp->retrans_out -= pcount;
1264 return sacked;
1267 /* Shift newly-SACKed bytes from this skb to the immediately previous
1268 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1270 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1271 struct tcp_sacktag_state *state,
1272 unsigned int pcount, int shifted, int mss,
1273 bool dup_sack)
1275 struct tcp_sock *tp = tcp_sk(sk);
1276 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1277 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1278 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1280 BUG_ON(!pcount);
1282 /* Adjust counters and hints for the newly sacked sequence
1283 * range but discard the return value since prev is already
1284 * marked. We must tag the range first because the seq
1285 * advancement below implicitly advances
1286 * tcp_highest_sack_seq() when skb is highest_sack.
1288 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1289 start_seq, end_seq, dup_sack, pcount,
1290 TCP_SKB_CB(skb)->when);
1292 if (skb == tp->lost_skb_hint)
1293 tp->lost_cnt_hint += pcount;
1295 TCP_SKB_CB(prev)->end_seq += shifted;
1296 TCP_SKB_CB(skb)->seq += shifted;
1298 skb_shinfo(prev)->gso_segs += pcount;
1299 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1300 skb_shinfo(skb)->gso_segs -= pcount;
1302 /* When we're adding to gso_segs == 1, gso_size will be zero,
1303 * in theory this shouldn't be necessary but as long as DSACK
1304 * code can come after this skb later on it's better to keep
1305 * setting gso_size to something.
1307 if (!skb_shinfo(prev)->gso_size) {
1308 skb_shinfo(prev)->gso_size = mss;
1309 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1312 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1313 if (skb_shinfo(skb)->gso_segs <= 1) {
1314 skb_shinfo(skb)->gso_size = 0;
1315 skb_shinfo(skb)->gso_type = 0;
1318 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1319 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1321 if (skb->len > 0) {
1322 BUG_ON(!tcp_skb_pcount(skb));
1323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1324 return false;
1327 /* Whole SKB was eaten :-) */
1329 if (skb == tp->retransmit_skb_hint)
1330 tp->retransmit_skb_hint = prev;
1331 if (skb == tp->lost_skb_hint) {
1332 tp->lost_skb_hint = prev;
1333 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1336 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1337 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1338 TCP_SKB_CB(prev)->end_seq++;
1340 if (skb == tcp_highest_sack(sk))
1341 tcp_advance_highest_sack(sk, skb);
1343 tcp_unlink_write_queue(skb, sk);
1344 sk_wmem_free_skb(sk, skb);
1346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1348 return true;
1351 /* I wish gso_size would have a bit more sane initialization than
1352 * something-or-zero which complicates things
1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1359 /* Shifting pages past head area doesn't work */
1360 static int skb_can_shift(const struct sk_buff *skb)
1362 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1366 * skb.
1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1369 struct tcp_sacktag_state *state,
1370 u32 start_seq, u32 end_seq,
1371 bool dup_sack)
1373 struct tcp_sock *tp = tcp_sk(sk);
1374 struct sk_buff *prev;
1375 int mss;
1376 int pcount = 0;
1377 int len;
1378 int in_sack;
1380 if (!sk_can_gso(sk))
1381 goto fallback;
1383 /* Normally R but no L won't result in plain S */
1384 if (!dup_sack &&
1385 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1386 goto fallback;
1387 if (!skb_can_shift(skb))
1388 goto fallback;
1389 /* This frame is about to be dropped (was ACKed). */
1390 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1391 goto fallback;
1393 /* Can only happen with delayed DSACK + discard craziness */
1394 if (unlikely(skb == tcp_write_queue_head(sk)))
1395 goto fallback;
1396 prev = tcp_write_queue_prev(sk, skb);
1398 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1399 goto fallback;
1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1404 if (in_sack) {
1405 len = skb->len;
1406 pcount = tcp_skb_pcount(skb);
1407 mss = tcp_skb_seglen(skb);
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1412 if (mss != tcp_skb_seglen(prev))
1413 goto fallback;
1414 } else {
1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 goto noop;
1417 /* CHECKME: This is non-MSS split case only?, this will
1418 * cause skipped skbs due to advancing loop btw, original
1419 * has that feature too
1421 if (tcp_skb_pcount(skb) <= 1)
1422 goto noop;
1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 if (!in_sack) {
1426 /* TODO: head merge to next could be attempted here
1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 * though it might not be worth of the additional hassle
1430 * ...we can probably just fallback to what was done
1431 * previously. We could try merging non-SACKed ones
1432 * as well but it probably isn't going to buy off
1433 * because later SACKs might again split them, and
1434 * it would make skb timestamp tracking considerably
1435 * harder problem.
1437 goto fallback;
1440 len = end_seq - TCP_SKB_CB(skb)->seq;
1441 BUG_ON(len < 0);
1442 BUG_ON(len > skb->len);
1444 /* MSS boundaries should be honoured or else pcount will
1445 * severely break even though it makes things bit trickier.
1446 * Optimize common case to avoid most of the divides
1448 mss = tcp_skb_mss(skb);
1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 * drop this restriction as unnecessary
1453 if (mss != tcp_skb_seglen(prev))
1454 goto fallback;
1456 if (len == mss) {
1457 pcount = 1;
1458 } else if (len < mss) {
1459 goto noop;
1460 } else {
1461 pcount = len / mss;
1462 len = pcount * mss;
1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 goto fallback;
1470 if (!skb_shift(prev, skb, len))
1471 goto fallback;
1472 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1473 goto out;
1475 /* Hole filled allows collapsing with the next as well, this is very
1476 * useful when hole on every nth skb pattern happens
1478 if (prev == tcp_write_queue_tail(sk))
1479 goto out;
1480 skb = tcp_write_queue_next(sk, prev);
1482 if (!skb_can_shift(skb) ||
1483 (skb == tcp_send_head(sk)) ||
1484 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1485 (mss != tcp_skb_seglen(skb)))
1486 goto out;
1488 len = skb->len;
1489 if (skb_shift(prev, skb, len)) {
1490 pcount += tcp_skb_pcount(skb);
1491 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1494 out:
1495 state->fack_count += pcount;
1496 return prev;
1498 noop:
1499 return skb;
1501 fallback:
1502 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1503 return NULL;
1506 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1507 struct tcp_sack_block *next_dup,
1508 struct tcp_sacktag_state *state,
1509 u32 start_seq, u32 end_seq,
1510 bool dup_sack_in)
1512 struct tcp_sock *tp = tcp_sk(sk);
1513 struct sk_buff *tmp;
1515 tcp_for_write_queue_from(skb, sk) {
1516 int in_sack = 0;
1517 bool dup_sack = dup_sack_in;
1519 if (skb == tcp_send_head(sk))
1520 break;
1522 /* queue is in-order => we can short-circuit the walk early */
1523 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524 break;
1526 if ((next_dup != NULL) &&
1527 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528 in_sack = tcp_match_skb_to_sack(sk, skb,
1529 next_dup->start_seq,
1530 next_dup->end_seq);
1531 if (in_sack > 0)
1532 dup_sack = true;
1535 /* skb reference here is a bit tricky to get right, since
1536 * shifting can eat and free both this skb and the next,
1537 * so not even _safe variant of the loop is enough.
1539 if (in_sack <= 0) {
1540 tmp = tcp_shift_skb_data(sk, skb, state,
1541 start_seq, end_seq, dup_sack);
1542 if (tmp != NULL) {
1543 if (tmp != skb) {
1544 skb = tmp;
1545 continue;
1548 in_sack = 0;
1549 } else {
1550 in_sack = tcp_match_skb_to_sack(sk, skb,
1551 start_seq,
1552 end_seq);
1556 if (unlikely(in_sack < 0))
1557 break;
1559 if (in_sack) {
1560 TCP_SKB_CB(skb)->sacked =
1561 tcp_sacktag_one(sk,
1562 state,
1563 TCP_SKB_CB(skb)->sacked,
1564 TCP_SKB_CB(skb)->seq,
1565 TCP_SKB_CB(skb)->end_seq,
1566 dup_sack,
1567 tcp_skb_pcount(skb),
1568 TCP_SKB_CB(skb)->when);
1570 if (!before(TCP_SKB_CB(skb)->seq,
1571 tcp_highest_sack_seq(tp)))
1572 tcp_advance_highest_sack(sk, skb);
1575 state->fack_count += tcp_skb_pcount(skb);
1577 return skb;
1580 /* Avoid all extra work that is being done by sacktag while walking in
1581 * a normal way
1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584 struct tcp_sacktag_state *state,
1585 u32 skip_to_seq)
1587 tcp_for_write_queue_from(skb, sk) {
1588 if (skb == tcp_send_head(sk))
1589 break;
1591 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1592 break;
1594 state->fack_count += tcp_skb_pcount(skb);
1596 return skb;
1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 struct sock *sk,
1601 struct tcp_sack_block *next_dup,
1602 struct tcp_sacktag_state *state,
1603 u32 skip_to_seq)
1605 if (next_dup == NULL)
1606 return skb;
1608 if (before(next_dup->start_seq, skip_to_seq)) {
1609 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 next_dup->start_seq, next_dup->end_seq,
1615 return skb;
1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1620 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1623 static int
1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1625 u32 prior_snd_una, s32 *sack_rtt)
1627 struct tcp_sock *tp = tcp_sk(sk);
1628 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 TCP_SKB_CB(ack_skb)->sacked);
1630 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1631 struct tcp_sack_block sp[TCP_NUM_SACKS];
1632 struct tcp_sack_block *cache;
1633 struct tcp_sacktag_state state;
1634 struct sk_buff *skb;
1635 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1636 int used_sacks;
1637 bool found_dup_sack = false;
1638 int i, j;
1639 int first_sack_index;
1641 state.flag = 0;
1642 state.reord = tp->packets_out;
1643 state.rtt = -1;
1645 if (!tp->sacked_out) {
1646 if (WARN_ON(tp->fackets_out))
1647 tp->fackets_out = 0;
1648 tcp_highest_sack_reset(sk);
1651 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1652 num_sacks, prior_snd_una);
1653 if (found_dup_sack)
1654 state.flag |= FLAG_DSACKING_ACK;
1656 /* Eliminate too old ACKs, but take into
1657 * account more or less fresh ones, they can
1658 * contain valid SACK info.
1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 return 0;
1663 if (!tp->packets_out)
1664 goto out;
1666 used_sacks = 0;
1667 first_sack_index = 0;
1668 for (i = 0; i < num_sacks; i++) {
1669 bool dup_sack = !i && found_dup_sack;
1671 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1672 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1674 if (!tcp_is_sackblock_valid(tp, dup_sack,
1675 sp[used_sacks].start_seq,
1676 sp[used_sacks].end_seq)) {
1677 int mib_idx;
1679 if (dup_sack) {
1680 if (!tp->undo_marker)
1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1682 else
1683 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1684 } else {
1685 /* Don't count olds caused by ACK reordering */
1686 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1687 !after(sp[used_sacks].end_seq, tp->snd_una))
1688 continue;
1689 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1692 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1693 if (i == 0)
1694 first_sack_index = -1;
1695 continue;
1698 /* Ignore very old stuff early */
1699 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1700 continue;
1702 used_sacks++;
1705 /* order SACK blocks to allow in order walk of the retrans queue */
1706 for (i = used_sacks - 1; i > 0; i--) {
1707 for (j = 0; j < i; j++) {
1708 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1709 swap(sp[j], sp[j + 1]);
1711 /* Track where the first SACK block goes to */
1712 if (j == first_sack_index)
1713 first_sack_index = j + 1;
1718 skb = tcp_write_queue_head(sk);
1719 state.fack_count = 0;
1720 i = 0;
1722 if (!tp->sacked_out) {
1723 /* It's already past, so skip checking against it */
1724 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1725 } else {
1726 cache = tp->recv_sack_cache;
1727 /* Skip empty blocks in at head of the cache */
1728 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1729 !cache->end_seq)
1730 cache++;
1733 while (i < used_sacks) {
1734 u32 start_seq = sp[i].start_seq;
1735 u32 end_seq = sp[i].end_seq;
1736 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1737 struct tcp_sack_block *next_dup = NULL;
1739 if (found_dup_sack && ((i + 1) == first_sack_index))
1740 next_dup = &sp[i + 1];
1742 /* Skip too early cached blocks */
1743 while (tcp_sack_cache_ok(tp, cache) &&
1744 !before(start_seq, cache->end_seq))
1745 cache++;
1747 /* Can skip some work by looking recv_sack_cache? */
1748 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1749 after(end_seq, cache->start_seq)) {
1751 /* Head todo? */
1752 if (before(start_seq, cache->start_seq)) {
1753 skb = tcp_sacktag_skip(skb, sk, &state,
1754 start_seq);
1755 skb = tcp_sacktag_walk(skb, sk, next_dup,
1756 &state,
1757 start_seq,
1758 cache->start_seq,
1759 dup_sack);
1762 /* Rest of the block already fully processed? */
1763 if (!after(end_seq, cache->end_seq))
1764 goto advance_sp;
1766 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1767 &state,
1768 cache->end_seq);
1770 /* ...tail remains todo... */
1771 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1772 /* ...but better entrypoint exists! */
1773 skb = tcp_highest_sack(sk);
1774 if (skb == NULL)
1775 break;
1776 state.fack_count = tp->fackets_out;
1777 cache++;
1778 goto walk;
1781 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1782 /* Check overlap against next cached too (past this one already) */
1783 cache++;
1784 continue;
1787 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1788 skb = tcp_highest_sack(sk);
1789 if (skb == NULL)
1790 break;
1791 state.fack_count = tp->fackets_out;
1793 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1795 walk:
1796 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1797 start_seq, end_seq, dup_sack);
1799 advance_sp:
1800 i++;
1803 /* Clear the head of the cache sack blocks so we can skip it next time */
1804 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1805 tp->recv_sack_cache[i].start_seq = 0;
1806 tp->recv_sack_cache[i].end_seq = 0;
1808 for (j = 0; j < used_sacks; j++)
1809 tp->recv_sack_cache[i++] = sp[j];
1811 tcp_mark_lost_retrans(sk);
1813 tcp_verify_left_out(tp);
1815 if ((state.reord < tp->fackets_out) &&
1816 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1817 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1819 out:
1821 #if FASTRETRANS_DEBUG > 0
1822 WARN_ON((int)tp->sacked_out < 0);
1823 WARN_ON((int)tp->lost_out < 0);
1824 WARN_ON((int)tp->retrans_out < 0);
1825 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1826 #endif
1827 *sack_rtt = state.rtt;
1828 return state.flag;
1831 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1832 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1834 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1836 u32 holes;
1838 holes = max(tp->lost_out, 1U);
1839 holes = min(holes, tp->packets_out);
1841 if ((tp->sacked_out + holes) > tp->packets_out) {
1842 tp->sacked_out = tp->packets_out - holes;
1843 return true;
1845 return false;
1848 /* If we receive more dupacks than we expected counting segments
1849 * in assumption of absent reordering, interpret this as reordering.
1850 * The only another reason could be bug in receiver TCP.
1852 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1854 struct tcp_sock *tp = tcp_sk(sk);
1855 if (tcp_limit_reno_sacked(tp))
1856 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1859 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1861 static void tcp_add_reno_sack(struct sock *sk)
1863 struct tcp_sock *tp = tcp_sk(sk);
1864 tp->sacked_out++;
1865 tcp_check_reno_reordering(sk, 0);
1866 tcp_verify_left_out(tp);
1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1873 struct tcp_sock *tp = tcp_sk(sk);
1875 if (acked > 0) {
1876 /* One ACK acked hole. The rest eat duplicate ACKs. */
1877 if (acked - 1 >= tp->sacked_out)
1878 tp->sacked_out = 0;
1879 else
1880 tp->sacked_out -= acked - 1;
1882 tcp_check_reno_reordering(sk, acked);
1883 tcp_verify_left_out(tp);
1886 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1888 tp->sacked_out = 0;
1891 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1893 tp->retrans_out = 0;
1894 tp->lost_out = 0;
1896 tp->undo_marker = 0;
1897 tp->undo_retrans = 0;
1900 void tcp_clear_retrans(struct tcp_sock *tp)
1902 tcp_clear_retrans_partial(tp);
1904 tp->fackets_out = 0;
1905 tp->sacked_out = 0;
1908 /* Enter Loss state. If "how" is not zero, forget all SACK information
1909 * and reset tags completely, otherwise preserve SACKs. If receiver
1910 * dropped its ofo queue, we will know this due to reneging detection.
1912 void tcp_enter_loss(struct sock *sk, int how)
1914 const struct inet_connection_sock *icsk = inet_csk(sk);
1915 struct tcp_sock *tp = tcp_sk(sk);
1916 struct sk_buff *skb;
1917 bool new_recovery = false;
1919 /* Reduce ssthresh if it has not yet been made inside this window. */
1920 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1921 !after(tp->high_seq, tp->snd_una) ||
1922 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1923 new_recovery = true;
1924 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1925 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1926 tcp_ca_event(sk, CA_EVENT_LOSS);
1928 tp->snd_cwnd = 1;
1929 tp->snd_cwnd_cnt = 0;
1930 tp->snd_cwnd_stamp = tcp_time_stamp;
1932 tcp_clear_retrans_partial(tp);
1934 if (tcp_is_reno(tp))
1935 tcp_reset_reno_sack(tp);
1937 tp->undo_marker = tp->snd_una;
1938 if (how) {
1939 tp->sacked_out = 0;
1940 tp->fackets_out = 0;
1942 tcp_clear_all_retrans_hints(tp);
1944 tcp_for_write_queue(skb, sk) {
1945 if (skb == tcp_send_head(sk))
1946 break;
1948 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1949 tp->undo_marker = 0;
1950 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 tp->lost_out += tcp_skb_pcount(skb);
1955 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1958 tcp_verify_left_out(tp);
1960 /* Timeout in disordered state after receiving substantial DUPACKs
1961 * suggests that the degree of reordering is over-estimated.
1963 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1964 tp->sacked_out >= sysctl_tcp_reordering)
1965 tp->reordering = min_t(unsigned int, tp->reordering,
1966 sysctl_tcp_reordering);
1967 tcp_set_ca_state(sk, TCP_CA_Loss);
1968 tp->high_seq = tp->snd_nxt;
1969 TCP_ECN_queue_cwr(tp);
1971 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1972 * loss recovery is underway except recurring timeout(s) on
1973 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1975 tp->frto = sysctl_tcp_frto &&
1976 (new_recovery || icsk->icsk_retransmits) &&
1977 !inet_csk(sk)->icsk_mtup.probe_size;
1980 /* If ACK arrived pointing to a remembered SACK, it means that our
1981 * remembered SACKs do not reflect real state of receiver i.e.
1982 * receiver _host_ is heavily congested (or buggy).
1984 * Do processing similar to RTO timeout.
1986 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1988 if (flag & FLAG_SACK_RENEGING) {
1989 struct inet_connection_sock *icsk = inet_csk(sk);
1990 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1992 tcp_enter_loss(sk, 1);
1993 icsk->icsk_retransmits++;
1994 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1996 icsk->icsk_rto, TCP_RTO_MAX);
1997 return true;
1999 return false;
2002 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2004 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2007 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2008 * counter when SACK is enabled (without SACK, sacked_out is used for
2009 * that purpose).
2011 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2012 * segments up to the highest received SACK block so far and holes in
2013 * between them.
2015 * With reordering, holes may still be in flight, so RFC3517 recovery
2016 * uses pure sacked_out (total number of SACKed segments) even though
2017 * it violates the RFC that uses duplicate ACKs, often these are equal
2018 * but when e.g. out-of-window ACKs or packet duplication occurs,
2019 * they differ. Since neither occurs due to loss, TCP should really
2020 * ignore them.
2022 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2024 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2027 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2029 struct tcp_sock *tp = tcp_sk(sk);
2030 unsigned long delay;
2032 /* Delay early retransmit and entering fast recovery for
2033 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2034 * available, or RTO is scheduled to fire first.
2036 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2037 (flag & FLAG_ECE) || !tp->srtt)
2038 return false;
2040 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2041 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2042 return false;
2044 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2045 TCP_RTO_MAX);
2046 return true;
2049 /* Linux NewReno/SACK/FACK/ECN state machine.
2050 * --------------------------------------
2052 * "Open" Normal state, no dubious events, fast path.
2053 * "Disorder" In all the respects it is "Open",
2054 * but requires a bit more attention. It is entered when
2055 * we see some SACKs or dupacks. It is split of "Open"
2056 * mainly to move some processing from fast path to slow one.
2057 * "CWR" CWND was reduced due to some Congestion Notification event.
2058 * It can be ECN, ICMP source quench, local device congestion.
2059 * "Recovery" CWND was reduced, we are fast-retransmitting.
2060 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2062 * tcp_fastretrans_alert() is entered:
2063 * - each incoming ACK, if state is not "Open"
2064 * - when arrived ACK is unusual, namely:
2065 * * SACK
2066 * * Duplicate ACK.
2067 * * ECN ECE.
2069 * Counting packets in flight is pretty simple.
2071 * in_flight = packets_out - left_out + retrans_out
2073 * packets_out is SND.NXT-SND.UNA counted in packets.
2075 * retrans_out is number of retransmitted segments.
2077 * left_out is number of segments left network, but not ACKed yet.
2079 * left_out = sacked_out + lost_out
2081 * sacked_out: Packets, which arrived to receiver out of order
2082 * and hence not ACKed. With SACKs this number is simply
2083 * amount of SACKed data. Even without SACKs
2084 * it is easy to give pretty reliable estimate of this number,
2085 * counting duplicate ACKs.
2087 * lost_out: Packets lost by network. TCP has no explicit
2088 * "loss notification" feedback from network (for now).
2089 * It means that this number can be only _guessed_.
2090 * Actually, it is the heuristics to predict lossage that
2091 * distinguishes different algorithms.
2093 * F.e. after RTO, when all the queue is considered as lost,
2094 * lost_out = packets_out and in_flight = retrans_out.
2096 * Essentially, we have now two algorithms counting
2097 * lost packets.
2099 * FACK: It is the simplest heuristics. As soon as we decided
2100 * that something is lost, we decide that _all_ not SACKed
2101 * packets until the most forward SACK are lost. I.e.
2102 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2103 * It is absolutely correct estimate, if network does not reorder
2104 * packets. And it loses any connection to reality when reordering
2105 * takes place. We use FACK by default until reordering
2106 * is suspected on the path to this destination.
2108 * NewReno: when Recovery is entered, we assume that one segment
2109 * is lost (classic Reno). While we are in Recovery and
2110 * a partial ACK arrives, we assume that one more packet
2111 * is lost (NewReno). This heuristics are the same in NewReno
2112 * and SACK.
2114 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2115 * deflation etc. CWND is real congestion window, never inflated, changes
2116 * only according to classic VJ rules.
2118 * Really tricky (and requiring careful tuning) part of algorithm
2119 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2120 * The first determines the moment _when_ we should reduce CWND and,
2121 * hence, slow down forward transmission. In fact, it determines the moment
2122 * when we decide that hole is caused by loss, rather than by a reorder.
2124 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2125 * holes, caused by lost packets.
2127 * And the most logically complicated part of algorithm is undo
2128 * heuristics. We detect false retransmits due to both too early
2129 * fast retransmit (reordering) and underestimated RTO, analyzing
2130 * timestamps and D-SACKs. When we detect that some segments were
2131 * retransmitted by mistake and CWND reduction was wrong, we undo
2132 * window reduction and abort recovery phase. This logic is hidden
2133 * inside several functions named tcp_try_undo_<something>.
2136 /* This function decides, when we should leave Disordered state
2137 * and enter Recovery phase, reducing congestion window.
2139 * Main question: may we further continue forward transmission
2140 * with the same cwnd?
2142 static bool tcp_time_to_recover(struct sock *sk, int flag)
2144 struct tcp_sock *tp = tcp_sk(sk);
2145 __u32 packets_out;
2147 /* Trick#1: The loss is proven. */
2148 if (tp->lost_out)
2149 return true;
2151 /* Not-A-Trick#2 : Classic rule... */
2152 if (tcp_dupack_heuristics(tp) > tp->reordering)
2153 return true;
2155 /* Trick#4: It is still not OK... But will it be useful to delay
2156 * recovery more?
2158 packets_out = tp->packets_out;
2159 if (packets_out <= tp->reordering &&
2160 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2161 !tcp_may_send_now(sk)) {
2162 /* We have nothing to send. This connection is limited
2163 * either by receiver window or by application.
2165 return true;
2168 /* If a thin stream is detected, retransmit after first
2169 * received dupack. Employ only if SACK is supported in order
2170 * to avoid possible corner-case series of spurious retransmissions
2171 * Use only if there are no unsent data.
2173 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2174 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2175 tcp_is_sack(tp) && !tcp_send_head(sk))
2176 return true;
2178 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2179 * retransmissions due to small network reorderings, we implement
2180 * Mitigation A.3 in the RFC and delay the retransmission for a short
2181 * interval if appropriate.
2183 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2184 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2185 !tcp_may_send_now(sk))
2186 return !tcp_pause_early_retransmit(sk, flag);
2188 return false;
2191 /* Detect loss in event "A" above by marking head of queue up as lost.
2192 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2193 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2194 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2195 * the maximum SACKed segments to pass before reaching this limit.
2197 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2199 struct tcp_sock *tp = tcp_sk(sk);
2200 struct sk_buff *skb;
2201 int cnt, oldcnt;
2202 int err;
2203 unsigned int mss;
2204 /* Use SACK to deduce losses of new sequences sent during recovery */
2205 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2207 WARN_ON(packets > tp->packets_out);
2208 if (tp->lost_skb_hint) {
2209 skb = tp->lost_skb_hint;
2210 cnt = tp->lost_cnt_hint;
2211 /* Head already handled? */
2212 if (mark_head && skb != tcp_write_queue_head(sk))
2213 return;
2214 } else {
2215 skb = tcp_write_queue_head(sk);
2216 cnt = 0;
2219 tcp_for_write_queue_from(skb, sk) {
2220 if (skb == tcp_send_head(sk))
2221 break;
2222 /* TODO: do this better */
2223 /* this is not the most efficient way to do this... */
2224 tp->lost_skb_hint = skb;
2225 tp->lost_cnt_hint = cnt;
2227 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2228 break;
2230 oldcnt = cnt;
2231 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2232 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2233 cnt += tcp_skb_pcount(skb);
2235 if (cnt > packets) {
2236 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2237 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2238 (oldcnt >= packets))
2239 break;
2241 mss = skb_shinfo(skb)->gso_size;
2242 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2243 if (err < 0)
2244 break;
2245 cnt = packets;
2248 tcp_skb_mark_lost(tp, skb);
2250 if (mark_head)
2251 break;
2253 tcp_verify_left_out(tp);
2256 /* Account newly detected lost packet(s) */
2258 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2260 struct tcp_sock *tp = tcp_sk(sk);
2262 if (tcp_is_reno(tp)) {
2263 tcp_mark_head_lost(sk, 1, 1);
2264 } else if (tcp_is_fack(tp)) {
2265 int lost = tp->fackets_out - tp->reordering;
2266 if (lost <= 0)
2267 lost = 1;
2268 tcp_mark_head_lost(sk, lost, 0);
2269 } else {
2270 int sacked_upto = tp->sacked_out - tp->reordering;
2271 if (sacked_upto >= 0)
2272 tcp_mark_head_lost(sk, sacked_upto, 0);
2273 else if (fast_rexmit)
2274 tcp_mark_head_lost(sk, 1, 1);
2278 /* CWND moderation, preventing bursts due to too big ACKs
2279 * in dubious situations.
2281 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2283 tp->snd_cwnd = min(tp->snd_cwnd,
2284 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2285 tp->snd_cwnd_stamp = tcp_time_stamp;
2288 /* Nothing was retransmitted or returned timestamp is less
2289 * than timestamp of the first retransmission.
2291 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2293 return !tp->retrans_stamp ||
2294 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2295 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2298 /* Undo procedures. */
2300 #if FASTRETRANS_DEBUG > 1
2301 static void DBGUNDO(struct sock *sk, const char *msg)
2303 struct tcp_sock *tp = tcp_sk(sk);
2304 struct inet_sock *inet = inet_sk(sk);
2306 if (sk->sk_family == AF_INET) {
2307 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2308 msg,
2309 &inet->inet_daddr, ntohs(inet->inet_dport),
2310 tp->snd_cwnd, tcp_left_out(tp),
2311 tp->snd_ssthresh, tp->prior_ssthresh,
2312 tp->packets_out);
2314 #if IS_ENABLED(CONFIG_IPV6)
2315 else if (sk->sk_family == AF_INET6) {
2316 struct ipv6_pinfo *np = inet6_sk(sk);
2317 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2318 msg,
2319 &np->daddr, ntohs(inet->inet_dport),
2320 tp->snd_cwnd, tcp_left_out(tp),
2321 tp->snd_ssthresh, tp->prior_ssthresh,
2322 tp->packets_out);
2324 #endif
2326 #else
2327 #define DBGUNDO(x...) do { } while (0)
2328 #endif
2330 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2332 struct tcp_sock *tp = tcp_sk(sk);
2334 if (unmark_loss) {
2335 struct sk_buff *skb;
2337 tcp_for_write_queue(skb, sk) {
2338 if (skb == tcp_send_head(sk))
2339 break;
2340 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2342 tp->lost_out = 0;
2343 tcp_clear_all_retrans_hints(tp);
2346 if (tp->prior_ssthresh) {
2347 const struct inet_connection_sock *icsk = inet_csk(sk);
2349 if (icsk->icsk_ca_ops->undo_cwnd)
2350 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2351 else
2352 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2354 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2355 tp->snd_ssthresh = tp->prior_ssthresh;
2356 TCP_ECN_withdraw_cwr(tp);
2358 } else {
2359 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2361 tp->snd_cwnd_stamp = tcp_time_stamp;
2362 tp->undo_marker = 0;
2365 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2367 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2370 /* People celebrate: "We love our President!" */
2371 static bool tcp_try_undo_recovery(struct sock *sk)
2373 struct tcp_sock *tp = tcp_sk(sk);
2375 if (tcp_may_undo(tp)) {
2376 int mib_idx;
2378 /* Happy end! We did not retransmit anything
2379 * or our original transmission succeeded.
2381 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2382 tcp_undo_cwnd_reduction(sk, false);
2383 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2384 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2385 else
2386 mib_idx = LINUX_MIB_TCPFULLUNDO;
2388 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2390 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2391 /* Hold old state until something *above* high_seq
2392 * is ACKed. For Reno it is MUST to prevent false
2393 * fast retransmits (RFC2582). SACK TCP is safe. */
2394 tcp_moderate_cwnd(tp);
2395 return true;
2397 tcp_set_ca_state(sk, TCP_CA_Open);
2398 return false;
2401 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2402 static bool tcp_try_undo_dsack(struct sock *sk)
2404 struct tcp_sock *tp = tcp_sk(sk);
2406 if (tp->undo_marker && !tp->undo_retrans) {
2407 DBGUNDO(sk, "D-SACK");
2408 tcp_undo_cwnd_reduction(sk, false);
2409 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2410 return true;
2412 return false;
2415 /* We can clear retrans_stamp when there are no retransmissions in the
2416 * window. It would seem that it is trivially available for us in
2417 * tp->retrans_out, however, that kind of assumptions doesn't consider
2418 * what will happen if errors occur when sending retransmission for the
2419 * second time. ...It could the that such segment has only
2420 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2421 * the head skb is enough except for some reneging corner cases that
2422 * are not worth the effort.
2424 * Main reason for all this complexity is the fact that connection dying
2425 * time now depends on the validity of the retrans_stamp, in particular,
2426 * that successive retransmissions of a segment must not advance
2427 * retrans_stamp under any conditions.
2429 static bool tcp_any_retrans_done(const struct sock *sk)
2431 const struct tcp_sock *tp = tcp_sk(sk);
2432 struct sk_buff *skb;
2434 if (tp->retrans_out)
2435 return true;
2437 skb = tcp_write_queue_head(sk);
2438 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2439 return true;
2441 return false;
2444 /* Undo during loss recovery after partial ACK or using F-RTO. */
2445 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2447 struct tcp_sock *tp = tcp_sk(sk);
2449 if (frto_undo || tcp_may_undo(tp)) {
2450 tcp_undo_cwnd_reduction(sk, true);
2452 DBGUNDO(sk, "partial loss");
2453 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2454 if (frto_undo)
2455 NET_INC_STATS_BH(sock_net(sk),
2456 LINUX_MIB_TCPSPURIOUSRTOS);
2457 inet_csk(sk)->icsk_retransmits = 0;
2458 if (frto_undo || tcp_is_sack(tp))
2459 tcp_set_ca_state(sk, TCP_CA_Open);
2460 return true;
2462 return false;
2465 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2466 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2467 * It computes the number of packets to send (sndcnt) based on packets newly
2468 * delivered:
2469 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2470 * cwnd reductions across a full RTT.
2471 * 2) If packets in flight is lower than ssthresh (such as due to excess
2472 * losses and/or application stalls), do not perform any further cwnd
2473 * reductions, but instead slow start up to ssthresh.
2475 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2477 struct tcp_sock *tp = tcp_sk(sk);
2479 tp->high_seq = tp->snd_nxt;
2480 tp->tlp_high_seq = 0;
2481 tp->snd_cwnd_cnt = 0;
2482 tp->prior_cwnd = tp->snd_cwnd;
2483 tp->prr_delivered = 0;
2484 tp->prr_out = 0;
2485 if (set_ssthresh)
2486 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2487 TCP_ECN_queue_cwr(tp);
2490 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2491 int fast_rexmit)
2493 struct tcp_sock *tp = tcp_sk(sk);
2494 int sndcnt = 0;
2495 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2496 int newly_acked_sacked = prior_unsacked -
2497 (tp->packets_out - tp->sacked_out);
2499 tp->prr_delivered += newly_acked_sacked;
2500 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2501 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2502 tp->prior_cwnd - 1;
2503 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2504 } else {
2505 sndcnt = min_t(int, delta,
2506 max_t(int, tp->prr_delivered - tp->prr_out,
2507 newly_acked_sacked) + 1);
2510 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2511 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2514 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2516 struct tcp_sock *tp = tcp_sk(sk);
2518 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2519 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2520 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2521 tp->snd_cwnd = tp->snd_ssthresh;
2522 tp->snd_cwnd_stamp = tcp_time_stamp;
2524 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2527 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2528 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2530 struct tcp_sock *tp = tcp_sk(sk);
2532 tp->prior_ssthresh = 0;
2533 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2534 tp->undo_marker = 0;
2535 tcp_init_cwnd_reduction(sk, set_ssthresh);
2536 tcp_set_ca_state(sk, TCP_CA_CWR);
2540 static void tcp_try_keep_open(struct sock *sk)
2542 struct tcp_sock *tp = tcp_sk(sk);
2543 int state = TCP_CA_Open;
2545 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2546 state = TCP_CA_Disorder;
2548 if (inet_csk(sk)->icsk_ca_state != state) {
2549 tcp_set_ca_state(sk, state);
2550 tp->high_seq = tp->snd_nxt;
2554 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2556 struct tcp_sock *tp = tcp_sk(sk);
2558 tcp_verify_left_out(tp);
2560 if (!tcp_any_retrans_done(sk))
2561 tp->retrans_stamp = 0;
2563 if (flag & FLAG_ECE)
2564 tcp_enter_cwr(sk, 1);
2566 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2567 tcp_try_keep_open(sk);
2568 } else {
2569 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2573 static void tcp_mtup_probe_failed(struct sock *sk)
2575 struct inet_connection_sock *icsk = inet_csk(sk);
2577 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2578 icsk->icsk_mtup.probe_size = 0;
2581 static void tcp_mtup_probe_success(struct sock *sk)
2583 struct tcp_sock *tp = tcp_sk(sk);
2584 struct inet_connection_sock *icsk = inet_csk(sk);
2586 /* FIXME: breaks with very large cwnd */
2587 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2588 tp->snd_cwnd = tp->snd_cwnd *
2589 tcp_mss_to_mtu(sk, tp->mss_cache) /
2590 icsk->icsk_mtup.probe_size;
2591 tp->snd_cwnd_cnt = 0;
2592 tp->snd_cwnd_stamp = tcp_time_stamp;
2593 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2595 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2596 icsk->icsk_mtup.probe_size = 0;
2597 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2600 /* Do a simple retransmit without using the backoff mechanisms in
2601 * tcp_timer. This is used for path mtu discovery.
2602 * The socket is already locked here.
2604 void tcp_simple_retransmit(struct sock *sk)
2606 const struct inet_connection_sock *icsk = inet_csk(sk);
2607 struct tcp_sock *tp = tcp_sk(sk);
2608 struct sk_buff *skb;
2609 unsigned int mss = tcp_current_mss(sk);
2610 u32 prior_lost = tp->lost_out;
2612 tcp_for_write_queue(skb, sk) {
2613 if (skb == tcp_send_head(sk))
2614 break;
2615 if (tcp_skb_seglen(skb) > mss &&
2616 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2617 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2618 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2619 tp->retrans_out -= tcp_skb_pcount(skb);
2621 tcp_skb_mark_lost_uncond_verify(tp, skb);
2625 tcp_clear_retrans_hints_partial(tp);
2627 if (prior_lost == tp->lost_out)
2628 return;
2630 if (tcp_is_reno(tp))
2631 tcp_limit_reno_sacked(tp);
2633 tcp_verify_left_out(tp);
2635 /* Don't muck with the congestion window here.
2636 * Reason is that we do not increase amount of _data_
2637 * in network, but units changed and effective
2638 * cwnd/ssthresh really reduced now.
2640 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2641 tp->high_seq = tp->snd_nxt;
2642 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2643 tp->prior_ssthresh = 0;
2644 tp->undo_marker = 0;
2645 tcp_set_ca_state(sk, TCP_CA_Loss);
2647 tcp_xmit_retransmit_queue(sk);
2649 EXPORT_SYMBOL(tcp_simple_retransmit);
2651 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2653 struct tcp_sock *tp = tcp_sk(sk);
2654 int mib_idx;
2656 if (tcp_is_reno(tp))
2657 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2658 else
2659 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2661 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2663 tp->prior_ssthresh = 0;
2664 tp->undo_marker = tp->snd_una;
2665 tp->undo_retrans = tp->retrans_out;
2667 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2668 if (!ece_ack)
2669 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670 tcp_init_cwnd_reduction(sk, true);
2672 tcp_set_ca_state(sk, TCP_CA_Recovery);
2675 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2676 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2678 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2680 struct inet_connection_sock *icsk = inet_csk(sk);
2681 struct tcp_sock *tp = tcp_sk(sk);
2682 bool recovered = !before(tp->snd_una, tp->high_seq);
2684 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2685 if (flag & FLAG_ORIG_SACK_ACKED) {
2686 /* Step 3.b. A timeout is spurious if not all data are
2687 * lost, i.e., never-retransmitted data are (s)acked.
2689 tcp_try_undo_loss(sk, true);
2690 return;
2692 if (after(tp->snd_nxt, tp->high_seq) &&
2693 (flag & FLAG_DATA_SACKED || is_dupack)) {
2694 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2695 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2696 tp->high_seq = tp->snd_nxt;
2697 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2698 TCP_NAGLE_OFF);
2699 if (after(tp->snd_nxt, tp->high_seq))
2700 return; /* Step 2.b */
2701 tp->frto = 0;
2705 if (recovered) {
2706 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2707 icsk->icsk_retransmits = 0;
2708 tcp_try_undo_recovery(sk);
2709 return;
2711 if (flag & FLAG_DATA_ACKED)
2712 icsk->icsk_retransmits = 0;
2713 if (tcp_is_reno(tp)) {
2714 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2715 * delivered. Lower inflight to clock out (re)tranmissions.
2717 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2718 tcp_add_reno_sack(sk);
2719 else if (flag & FLAG_SND_UNA_ADVANCED)
2720 tcp_reset_reno_sack(tp);
2722 if (tcp_try_undo_loss(sk, false))
2723 return;
2724 tcp_xmit_retransmit_queue(sk);
2727 /* Undo during fast recovery after partial ACK. */
2728 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2729 const int prior_unsacked)
2731 struct tcp_sock *tp = tcp_sk(sk);
2733 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2734 /* Plain luck! Hole if filled with delayed
2735 * packet, rather than with a retransmit.
2737 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2739 /* We are getting evidence that the reordering degree is higher
2740 * than we realized. If there are no retransmits out then we
2741 * can undo. Otherwise we clock out new packets but do not
2742 * mark more packets lost or retransmit more.
2744 if (tp->retrans_out) {
2745 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2746 return true;
2749 if (!tcp_any_retrans_done(sk))
2750 tp->retrans_stamp = 0;
2752 DBGUNDO(sk, "partial recovery");
2753 tcp_undo_cwnd_reduction(sk, true);
2754 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2755 tcp_try_keep_open(sk);
2756 return true;
2758 return false;
2761 /* Process an event, which can update packets-in-flight not trivially.
2762 * Main goal of this function is to calculate new estimate for left_out,
2763 * taking into account both packets sitting in receiver's buffer and
2764 * packets lost by network.
2766 * Besides that it does CWND reduction, when packet loss is detected
2767 * and changes state of machine.
2769 * It does _not_ decide what to send, it is made in function
2770 * tcp_xmit_retransmit_queue().
2772 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2773 const int prior_unsacked,
2774 bool is_dupack, int flag)
2776 struct inet_connection_sock *icsk = inet_csk(sk);
2777 struct tcp_sock *tp = tcp_sk(sk);
2778 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2779 (tcp_fackets_out(tp) > tp->reordering));
2780 int fast_rexmit = 0;
2782 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2783 tp->sacked_out = 0;
2784 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2785 tp->fackets_out = 0;
2787 /* Now state machine starts.
2788 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2789 if (flag & FLAG_ECE)
2790 tp->prior_ssthresh = 0;
2792 /* B. In all the states check for reneging SACKs. */
2793 if (tcp_check_sack_reneging(sk, flag))
2794 return;
2796 /* C. Check consistency of the current state. */
2797 tcp_verify_left_out(tp);
2799 /* D. Check state exit conditions. State can be terminated
2800 * when high_seq is ACKed. */
2801 if (icsk->icsk_ca_state == TCP_CA_Open) {
2802 WARN_ON(tp->retrans_out != 0);
2803 tp->retrans_stamp = 0;
2804 } else if (!before(tp->snd_una, tp->high_seq)) {
2805 switch (icsk->icsk_ca_state) {
2806 case TCP_CA_CWR:
2807 /* CWR is to be held something *above* high_seq
2808 * is ACKed for CWR bit to reach receiver. */
2809 if (tp->snd_una != tp->high_seq) {
2810 tcp_end_cwnd_reduction(sk);
2811 tcp_set_ca_state(sk, TCP_CA_Open);
2813 break;
2815 case TCP_CA_Recovery:
2816 if (tcp_is_reno(tp))
2817 tcp_reset_reno_sack(tp);
2818 if (tcp_try_undo_recovery(sk))
2819 return;
2820 tcp_end_cwnd_reduction(sk);
2821 break;
2825 /* E. Process state. */
2826 switch (icsk->icsk_ca_state) {
2827 case TCP_CA_Recovery:
2828 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2829 if (tcp_is_reno(tp) && is_dupack)
2830 tcp_add_reno_sack(sk);
2831 } else {
2832 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2833 return;
2834 /* Partial ACK arrived. Force fast retransmit. */
2835 do_lost = tcp_is_reno(tp) ||
2836 tcp_fackets_out(tp) > tp->reordering;
2838 if (tcp_try_undo_dsack(sk)) {
2839 tcp_try_keep_open(sk);
2840 return;
2842 break;
2843 case TCP_CA_Loss:
2844 tcp_process_loss(sk, flag, is_dupack);
2845 if (icsk->icsk_ca_state != TCP_CA_Open)
2846 return;
2847 /* Fall through to processing in Open state. */
2848 default:
2849 if (tcp_is_reno(tp)) {
2850 if (flag & FLAG_SND_UNA_ADVANCED)
2851 tcp_reset_reno_sack(tp);
2852 if (is_dupack)
2853 tcp_add_reno_sack(sk);
2856 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2857 tcp_try_undo_dsack(sk);
2859 if (!tcp_time_to_recover(sk, flag)) {
2860 tcp_try_to_open(sk, flag, prior_unsacked);
2861 return;
2864 /* MTU probe failure: don't reduce cwnd */
2865 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2866 icsk->icsk_mtup.probe_size &&
2867 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2868 tcp_mtup_probe_failed(sk);
2869 /* Restores the reduction we did in tcp_mtup_probe() */
2870 tp->snd_cwnd++;
2871 tcp_simple_retransmit(sk);
2872 return;
2875 /* Otherwise enter Recovery state */
2876 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2877 fast_rexmit = 1;
2880 if (do_lost)
2881 tcp_update_scoreboard(sk, fast_rexmit);
2882 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2883 tcp_xmit_retransmit_queue(sk);
2886 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2887 s32 seq_rtt, s32 sack_rtt)
2889 const struct tcp_sock *tp = tcp_sk(sk);
2891 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2892 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2893 * Karn's algorithm forbids taking RTT if some retransmitted data
2894 * is acked (RFC6298).
2896 if (flag & FLAG_RETRANS_DATA_ACKED)
2897 seq_rtt = -1;
2899 if (seq_rtt < 0)
2900 seq_rtt = sack_rtt;
2902 /* RTTM Rule: A TSecr value received in a segment is used to
2903 * update the averaged RTT measurement only if the segment
2904 * acknowledges some new data, i.e., only if it advances the
2905 * left edge of the send window.
2906 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2908 if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2909 flag & FLAG_ACKED)
2910 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2912 if (seq_rtt < 0)
2913 return false;
2915 tcp_rtt_estimator(sk, seq_rtt);
2916 tcp_set_rto(sk);
2918 /* RFC6298: only reset backoff on valid RTT measurement. */
2919 inet_csk(sk)->icsk_backoff = 0;
2920 return true;
2923 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2924 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2926 struct tcp_sock *tp = tcp_sk(sk);
2927 s32 seq_rtt = -1;
2929 if (synack_stamp && !tp->total_retrans)
2930 seq_rtt = tcp_time_stamp - synack_stamp;
2932 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2933 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2935 if (!tp->srtt)
2936 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1);
2939 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight)
2941 const struct inet_connection_sock *icsk = inet_csk(sk);
2942 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked, in_flight);
2943 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2946 /* Restart timer after forward progress on connection.
2947 * RFC2988 recommends to restart timer to now+rto.
2949 void tcp_rearm_rto(struct sock *sk)
2951 const struct inet_connection_sock *icsk = inet_csk(sk);
2952 struct tcp_sock *tp = tcp_sk(sk);
2954 /* If the retrans timer is currently being used by Fast Open
2955 * for SYN-ACK retrans purpose, stay put.
2957 if (tp->fastopen_rsk)
2958 return;
2960 if (!tp->packets_out) {
2961 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2962 } else {
2963 u32 rto = inet_csk(sk)->icsk_rto;
2964 /* Offset the time elapsed after installing regular RTO */
2965 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2966 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2967 struct sk_buff *skb = tcp_write_queue_head(sk);
2968 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2969 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2970 /* delta may not be positive if the socket is locked
2971 * when the retrans timer fires and is rescheduled.
2973 if (delta > 0)
2974 rto = delta;
2976 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2977 TCP_RTO_MAX);
2981 /* This function is called when the delayed ER timer fires. TCP enters
2982 * fast recovery and performs fast-retransmit.
2984 void tcp_resume_early_retransmit(struct sock *sk)
2986 struct tcp_sock *tp = tcp_sk(sk);
2988 tcp_rearm_rto(sk);
2990 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2991 if (!tp->do_early_retrans)
2992 return;
2994 tcp_enter_recovery(sk, false);
2995 tcp_update_scoreboard(sk, 1);
2996 tcp_xmit_retransmit_queue(sk);
2999 /* If we get here, the whole TSO packet has not been acked. */
3000 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3002 struct tcp_sock *tp = tcp_sk(sk);
3003 u32 packets_acked;
3005 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3007 packets_acked = tcp_skb_pcount(skb);
3008 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3009 return 0;
3010 packets_acked -= tcp_skb_pcount(skb);
3012 if (packets_acked) {
3013 BUG_ON(tcp_skb_pcount(skb) == 0);
3014 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3017 return packets_acked;
3020 /* Remove acknowledged frames from the retransmission queue. If our packet
3021 * is before the ack sequence we can discard it as it's confirmed to have
3022 * arrived at the other end.
3024 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3025 u32 prior_snd_una, s32 sack_rtt)
3027 struct tcp_sock *tp = tcp_sk(sk);
3028 const struct inet_connection_sock *icsk = inet_csk(sk);
3029 struct sk_buff *skb;
3030 u32 now = tcp_time_stamp;
3031 bool fully_acked = true;
3032 int flag = 0;
3033 u32 pkts_acked = 0;
3034 u32 reord = tp->packets_out;
3035 u32 prior_sacked = tp->sacked_out;
3036 s32 seq_rtt = -1;
3037 s32 ca_seq_rtt = -1;
3038 ktime_t last_ackt = net_invalid_timestamp();
3039 bool rtt_update;
3041 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3042 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3043 u32 acked_pcount;
3044 u8 sacked = scb->sacked;
3046 /* Determine how many packets and what bytes were acked, tso and else */
3047 if (after(scb->end_seq, tp->snd_una)) {
3048 if (tcp_skb_pcount(skb) == 1 ||
3049 !after(tp->snd_una, scb->seq))
3050 break;
3052 acked_pcount = tcp_tso_acked(sk, skb);
3053 if (!acked_pcount)
3054 break;
3056 fully_acked = false;
3057 } else {
3058 acked_pcount = tcp_skb_pcount(skb);
3061 if (sacked & TCPCB_RETRANS) {
3062 if (sacked & TCPCB_SACKED_RETRANS)
3063 tp->retrans_out -= acked_pcount;
3064 flag |= FLAG_RETRANS_DATA_ACKED;
3065 } else {
3066 ca_seq_rtt = now - scb->when;
3067 last_ackt = skb->tstamp;
3068 if (seq_rtt < 0) {
3069 seq_rtt = ca_seq_rtt;
3071 if (!(sacked & TCPCB_SACKED_ACKED))
3072 reord = min(pkts_acked, reord);
3073 if (!after(scb->end_seq, tp->high_seq))
3074 flag |= FLAG_ORIG_SACK_ACKED;
3077 if (sacked & TCPCB_SACKED_ACKED)
3078 tp->sacked_out -= acked_pcount;
3079 if (sacked & TCPCB_LOST)
3080 tp->lost_out -= acked_pcount;
3082 tp->packets_out -= acked_pcount;
3083 pkts_acked += acked_pcount;
3085 /* Initial outgoing SYN's get put onto the write_queue
3086 * just like anything else we transmit. It is not
3087 * true data, and if we misinform our callers that
3088 * this ACK acks real data, we will erroneously exit
3089 * connection startup slow start one packet too
3090 * quickly. This is severely frowned upon behavior.
3092 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3093 flag |= FLAG_DATA_ACKED;
3094 } else {
3095 flag |= FLAG_SYN_ACKED;
3096 tp->retrans_stamp = 0;
3099 if (!fully_acked)
3100 break;
3102 tcp_unlink_write_queue(skb, sk);
3103 sk_wmem_free_skb(sk, skb);
3104 if (skb == tp->retransmit_skb_hint)
3105 tp->retransmit_skb_hint = NULL;
3106 if (skb == tp->lost_skb_hint)
3107 tp->lost_skb_hint = NULL;
3110 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3111 tp->snd_up = tp->snd_una;
3113 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3114 flag |= FLAG_SACK_RENEGING;
3116 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt);
3118 if (flag & FLAG_ACKED) {
3119 const struct tcp_congestion_ops *ca_ops
3120 = inet_csk(sk)->icsk_ca_ops;
3122 tcp_rearm_rto(sk);
3123 if (unlikely(icsk->icsk_mtup.probe_size &&
3124 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3125 tcp_mtup_probe_success(sk);
3128 if (tcp_is_reno(tp)) {
3129 tcp_remove_reno_sacks(sk, pkts_acked);
3130 } else {
3131 int delta;
3133 /* Non-retransmitted hole got filled? That's reordering */
3134 if (reord < prior_fackets)
3135 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3137 delta = tcp_is_fack(tp) ? pkts_acked :
3138 prior_sacked - tp->sacked_out;
3139 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3142 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3144 if (ca_ops->pkts_acked) {
3145 s32 rtt_us = -1;
3147 /* Is the ACK triggering packet unambiguous? */
3148 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3149 /* High resolution needed and available? */
3150 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3151 !ktime_equal(last_ackt,
3152 net_invalid_timestamp()))
3153 rtt_us = ktime_us_delta(ktime_get_real(),
3154 last_ackt);
3155 else if (ca_seq_rtt >= 0)
3156 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3159 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3161 } else if (skb && rtt_update && sack_rtt >= 0 &&
3162 sack_rtt > (s32)(now - TCP_SKB_CB(skb)->when)) {
3163 /* Do not re-arm RTO if the sack RTT is measured from data sent
3164 * after when the head was last (re)transmitted. Otherwise the
3165 * timeout may continue to extend in loss recovery.
3167 tcp_rearm_rto(sk);
3170 #if FASTRETRANS_DEBUG > 0
3171 WARN_ON((int)tp->sacked_out < 0);
3172 WARN_ON((int)tp->lost_out < 0);
3173 WARN_ON((int)tp->retrans_out < 0);
3174 if (!tp->packets_out && tcp_is_sack(tp)) {
3175 icsk = inet_csk(sk);
3176 if (tp->lost_out) {
3177 pr_debug("Leak l=%u %d\n",
3178 tp->lost_out, icsk->icsk_ca_state);
3179 tp->lost_out = 0;
3181 if (tp->sacked_out) {
3182 pr_debug("Leak s=%u %d\n",
3183 tp->sacked_out, icsk->icsk_ca_state);
3184 tp->sacked_out = 0;
3186 if (tp->retrans_out) {
3187 pr_debug("Leak r=%u %d\n",
3188 tp->retrans_out, icsk->icsk_ca_state);
3189 tp->retrans_out = 0;
3192 #endif
3193 return flag;
3196 static void tcp_ack_probe(struct sock *sk)
3198 const struct tcp_sock *tp = tcp_sk(sk);
3199 struct inet_connection_sock *icsk = inet_csk(sk);
3201 /* Was it a usable window open? */
3203 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3204 icsk->icsk_backoff = 0;
3205 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3206 /* Socket must be waked up by subsequent tcp_data_snd_check().
3207 * This function is not for random using!
3209 } else {
3210 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3211 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3212 TCP_RTO_MAX);
3216 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3218 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3219 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3222 /* Decide wheather to run the increase function of congestion control. */
3223 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3225 if (tcp_in_cwnd_reduction(sk))
3226 return false;
3228 /* If reordering is high then always grow cwnd whenever data is
3229 * delivered regardless of its ordering. Otherwise stay conservative
3230 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3231 * new SACK or ECE mark may first advance cwnd here and later reduce
3232 * cwnd in tcp_fastretrans_alert() based on more states.
3234 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3235 return flag & FLAG_FORWARD_PROGRESS;
3237 return flag & FLAG_DATA_ACKED;
3240 /* Check that window update is acceptable.
3241 * The function assumes that snd_una<=ack<=snd_next.
3243 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3244 const u32 ack, const u32 ack_seq,
3245 const u32 nwin)
3247 return after(ack, tp->snd_una) ||
3248 after(ack_seq, tp->snd_wl1) ||
3249 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3252 /* Update our send window.
3254 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3255 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3257 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3258 u32 ack_seq)
3260 struct tcp_sock *tp = tcp_sk(sk);
3261 int flag = 0;
3262 u32 nwin = ntohs(tcp_hdr(skb)->window);
3264 if (likely(!tcp_hdr(skb)->syn))
3265 nwin <<= tp->rx_opt.snd_wscale;
3267 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3268 flag |= FLAG_WIN_UPDATE;
3269 tcp_update_wl(tp, ack_seq);
3271 if (tp->snd_wnd != nwin) {
3272 tp->snd_wnd = nwin;
3274 /* Note, it is the only place, where
3275 * fast path is recovered for sending TCP.
3277 tp->pred_flags = 0;
3278 tcp_fast_path_check(sk);
3280 if (nwin > tp->max_window) {
3281 tp->max_window = nwin;
3282 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3287 tp->snd_una = ack;
3289 return flag;
3292 /* RFC 5961 7 [ACK Throttling] */
3293 static void tcp_send_challenge_ack(struct sock *sk)
3295 /* unprotected vars, we dont care of overwrites */
3296 static u32 challenge_timestamp;
3297 static unsigned int challenge_count;
3298 u32 now = jiffies / HZ;
3300 if (now != challenge_timestamp) {
3301 challenge_timestamp = now;
3302 challenge_count = 0;
3304 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3305 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3306 tcp_send_ack(sk);
3310 static void tcp_store_ts_recent(struct tcp_sock *tp)
3312 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3313 tp->rx_opt.ts_recent_stamp = get_seconds();
3316 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3318 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3319 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3320 * extra check below makes sure this can only happen
3321 * for pure ACK frames. -DaveM
3323 * Not only, also it occurs for expired timestamps.
3326 if (tcp_paws_check(&tp->rx_opt, 0))
3327 tcp_store_ts_recent(tp);
3331 /* This routine deals with acks during a TLP episode.
3332 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3334 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3336 struct tcp_sock *tp = tcp_sk(sk);
3337 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3338 !(flag & (FLAG_SND_UNA_ADVANCED |
3339 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3341 /* Mark the end of TLP episode on receiving TLP dupack or when
3342 * ack is after tlp_high_seq.
3344 if (is_tlp_dupack) {
3345 tp->tlp_high_seq = 0;
3346 return;
3349 if (after(ack, tp->tlp_high_seq)) {
3350 tp->tlp_high_seq = 0;
3351 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3352 if (!(flag & FLAG_DSACKING_ACK)) {
3353 tcp_init_cwnd_reduction(sk, true);
3354 tcp_set_ca_state(sk, TCP_CA_CWR);
3355 tcp_end_cwnd_reduction(sk);
3356 tcp_try_keep_open(sk);
3357 NET_INC_STATS_BH(sock_net(sk),
3358 LINUX_MIB_TCPLOSSPROBERECOVERY);
3363 /* This routine deals with incoming acks, but not outgoing ones. */
3364 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3366 struct inet_connection_sock *icsk = inet_csk(sk);
3367 struct tcp_sock *tp = tcp_sk(sk);
3368 u32 prior_snd_una = tp->snd_una;
3369 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3370 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3371 bool is_dupack = false;
3372 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3373 u32 prior_fackets;
3374 int prior_packets = tp->packets_out;
3375 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3376 int acked = 0; /* Number of packets newly acked */
3377 s32 sack_rtt = -1;
3379 /* If the ack is older than previous acks
3380 * then we can probably ignore it.
3382 if (before(ack, prior_snd_una)) {
3383 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3384 if (before(ack, prior_snd_una - tp->max_window)) {
3385 tcp_send_challenge_ack(sk);
3386 return -1;
3388 goto old_ack;
3391 /* If the ack includes data we haven't sent yet, discard
3392 * this segment (RFC793 Section 3.9).
3394 if (after(ack, tp->snd_nxt))
3395 goto invalid_ack;
3397 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3398 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3399 tcp_rearm_rto(sk);
3401 if (after(ack, prior_snd_una))
3402 flag |= FLAG_SND_UNA_ADVANCED;
3404 prior_fackets = tp->fackets_out;
3405 prior_in_flight = tcp_packets_in_flight(tp);
3407 /* ts_recent update must be made after we are sure that the packet
3408 * is in window.
3410 if (flag & FLAG_UPDATE_TS_RECENT)
3411 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3413 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3414 /* Window is constant, pure forward advance.
3415 * No more checks are required.
3416 * Note, we use the fact that SND.UNA>=SND.WL2.
3418 tcp_update_wl(tp, ack_seq);
3419 tp->snd_una = ack;
3420 flag |= FLAG_WIN_UPDATE;
3422 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3424 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3425 } else {
3426 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3427 flag |= FLAG_DATA;
3428 else
3429 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3431 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3433 if (TCP_SKB_CB(skb)->sacked)
3434 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3435 &sack_rtt);
3437 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3438 flag |= FLAG_ECE;
3440 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3443 /* We passed data and got it acked, remove any soft error
3444 * log. Something worked...
3446 sk->sk_err_soft = 0;
3447 icsk->icsk_probes_out = 0;
3448 tp->rcv_tstamp = tcp_time_stamp;
3449 if (!prior_packets)
3450 goto no_queue;
3452 /* See if we can take anything off of the retransmit queue. */
3453 acked = tp->packets_out;
3454 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt);
3455 acked -= tp->packets_out;
3457 /* Advance cwnd if state allows */
3458 if (tcp_may_raise_cwnd(sk, flag))
3459 tcp_cong_avoid(sk, ack, acked, prior_in_flight);
3461 if (tcp_ack_is_dubious(sk, flag)) {
3462 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3463 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3464 is_dupack, flag);
3466 if (tp->tlp_high_seq)
3467 tcp_process_tlp_ack(sk, ack, flag);
3469 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3470 struct dst_entry *dst = __sk_dst_get(sk);
3471 if (dst)
3472 dst_confirm(dst);
3475 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3476 tcp_schedule_loss_probe(sk);
3477 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3478 tcp_update_pacing_rate(sk);
3479 return 1;
3481 no_queue:
3482 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3483 if (flag & FLAG_DSACKING_ACK)
3484 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3485 is_dupack, flag);
3486 /* If this ack opens up a zero window, clear backoff. It was
3487 * being used to time the probes, and is probably far higher than
3488 * it needs to be for normal retransmission.
3490 if (tcp_send_head(sk))
3491 tcp_ack_probe(sk);
3493 if (tp->tlp_high_seq)
3494 tcp_process_tlp_ack(sk, ack, flag);
3495 return 1;
3497 invalid_ack:
3498 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3499 return -1;
3501 old_ack:
3502 /* If data was SACKed, tag it and see if we should send more data.
3503 * If data was DSACKed, see if we can undo a cwnd reduction.
3505 if (TCP_SKB_CB(skb)->sacked) {
3506 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3507 &sack_rtt);
3508 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3509 is_dupack, flag);
3512 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3513 return 0;
3516 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3517 * But, this can also be called on packets in the established flow when
3518 * the fast version below fails.
3520 void tcp_parse_options(const struct sk_buff *skb,
3521 struct tcp_options_received *opt_rx, int estab,
3522 struct tcp_fastopen_cookie *foc)
3524 const unsigned char *ptr;
3525 const struct tcphdr *th = tcp_hdr(skb);
3526 int length = (th->doff * 4) - sizeof(struct tcphdr);
3528 ptr = (const unsigned char *)(th + 1);
3529 opt_rx->saw_tstamp = 0;
3531 while (length > 0) {
3532 int opcode = *ptr++;
3533 int opsize;
3535 switch (opcode) {
3536 case TCPOPT_EOL:
3537 return;
3538 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3539 length--;
3540 continue;
3541 default:
3542 opsize = *ptr++;
3543 if (opsize < 2) /* "silly options" */
3544 return;
3545 if (opsize > length)
3546 return; /* don't parse partial options */
3547 switch (opcode) {
3548 case TCPOPT_MSS:
3549 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3550 u16 in_mss = get_unaligned_be16(ptr);
3551 if (in_mss) {
3552 if (opt_rx->user_mss &&
3553 opt_rx->user_mss < in_mss)
3554 in_mss = opt_rx->user_mss;
3555 opt_rx->mss_clamp = in_mss;
3558 break;
3559 case TCPOPT_WINDOW:
3560 if (opsize == TCPOLEN_WINDOW && th->syn &&
3561 !estab && sysctl_tcp_window_scaling) {
3562 __u8 snd_wscale = *(__u8 *)ptr;
3563 opt_rx->wscale_ok = 1;
3564 if (snd_wscale > 14) {
3565 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3566 __func__,
3567 snd_wscale);
3568 snd_wscale = 14;
3570 opt_rx->snd_wscale = snd_wscale;
3572 break;
3573 case TCPOPT_TIMESTAMP:
3574 if ((opsize == TCPOLEN_TIMESTAMP) &&
3575 ((estab && opt_rx->tstamp_ok) ||
3576 (!estab && sysctl_tcp_timestamps))) {
3577 opt_rx->saw_tstamp = 1;
3578 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3579 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3581 break;
3582 case TCPOPT_SACK_PERM:
3583 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3584 !estab && sysctl_tcp_sack) {
3585 opt_rx->sack_ok = TCP_SACK_SEEN;
3586 tcp_sack_reset(opt_rx);
3588 break;
3590 case TCPOPT_SACK:
3591 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3592 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3593 opt_rx->sack_ok) {
3594 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3596 break;
3597 #ifdef CONFIG_TCP_MD5SIG
3598 case TCPOPT_MD5SIG:
3600 * The MD5 Hash has already been
3601 * checked (see tcp_v{4,6}_do_rcv()).
3603 break;
3604 #endif
3605 case TCPOPT_EXP:
3606 /* Fast Open option shares code 254 using a
3607 * 16 bits magic number. It's valid only in
3608 * SYN or SYN-ACK with an even size.
3610 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3611 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3612 foc == NULL || !th->syn || (opsize & 1))
3613 break;
3614 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3615 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3616 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3617 memcpy(foc->val, ptr + 2, foc->len);
3618 else if (foc->len != 0)
3619 foc->len = -1;
3620 break;
3623 ptr += opsize-2;
3624 length -= opsize;
3628 EXPORT_SYMBOL(tcp_parse_options);
3630 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3632 const __be32 *ptr = (const __be32 *)(th + 1);
3634 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3635 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3636 tp->rx_opt.saw_tstamp = 1;
3637 ++ptr;
3638 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3639 ++ptr;
3640 if (*ptr)
3641 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3642 else
3643 tp->rx_opt.rcv_tsecr = 0;
3644 return true;
3646 return false;
3649 /* Fast parse options. This hopes to only see timestamps.
3650 * If it is wrong it falls back on tcp_parse_options().
3652 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3653 const struct tcphdr *th, struct tcp_sock *tp)
3655 /* In the spirit of fast parsing, compare doff directly to constant
3656 * values. Because equality is used, short doff can be ignored here.
3658 if (th->doff == (sizeof(*th) / 4)) {
3659 tp->rx_opt.saw_tstamp = 0;
3660 return false;
3661 } else if (tp->rx_opt.tstamp_ok &&
3662 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3663 if (tcp_parse_aligned_timestamp(tp, th))
3664 return true;
3667 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3668 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3669 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3671 return true;
3674 #ifdef CONFIG_TCP_MD5SIG
3676 * Parse MD5 Signature option
3678 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3680 int length = (th->doff << 2) - sizeof(*th);
3681 const u8 *ptr = (const u8 *)(th + 1);
3683 /* If the TCP option is too short, we can short cut */
3684 if (length < TCPOLEN_MD5SIG)
3685 return NULL;
3687 while (length > 0) {
3688 int opcode = *ptr++;
3689 int opsize;
3691 switch (opcode) {
3692 case TCPOPT_EOL:
3693 return NULL;
3694 case TCPOPT_NOP:
3695 length--;
3696 continue;
3697 default:
3698 opsize = *ptr++;
3699 if (opsize < 2 || opsize > length)
3700 return NULL;
3701 if (opcode == TCPOPT_MD5SIG)
3702 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3704 ptr += opsize - 2;
3705 length -= opsize;
3707 return NULL;
3709 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3710 #endif
3712 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3714 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3715 * it can pass through stack. So, the following predicate verifies that
3716 * this segment is not used for anything but congestion avoidance or
3717 * fast retransmit. Moreover, we even are able to eliminate most of such
3718 * second order effects, if we apply some small "replay" window (~RTO)
3719 * to timestamp space.
3721 * All these measures still do not guarantee that we reject wrapped ACKs
3722 * on networks with high bandwidth, when sequence space is recycled fastly,
3723 * but it guarantees that such events will be very rare and do not affect
3724 * connection seriously. This doesn't look nice, but alas, PAWS is really
3725 * buggy extension.
3727 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3728 * states that events when retransmit arrives after original data are rare.
3729 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3730 * the biggest problem on large power networks even with minor reordering.
3731 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3732 * up to bandwidth of 18Gigabit/sec. 8) ]
3735 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3737 const struct tcp_sock *tp = tcp_sk(sk);
3738 const struct tcphdr *th = tcp_hdr(skb);
3739 u32 seq = TCP_SKB_CB(skb)->seq;
3740 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3742 return (/* 1. Pure ACK with correct sequence number. */
3743 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3745 /* 2. ... and duplicate ACK. */
3746 ack == tp->snd_una &&
3748 /* 3. ... and does not update window. */
3749 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3751 /* 4. ... and sits in replay window. */
3752 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3755 static inline bool tcp_paws_discard(const struct sock *sk,
3756 const struct sk_buff *skb)
3758 const struct tcp_sock *tp = tcp_sk(sk);
3760 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3761 !tcp_disordered_ack(sk, skb);
3764 /* Check segment sequence number for validity.
3766 * Segment controls are considered valid, if the segment
3767 * fits to the window after truncation to the window. Acceptability
3768 * of data (and SYN, FIN, of course) is checked separately.
3769 * See tcp_data_queue(), for example.
3771 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3772 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3773 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3774 * (borrowed from freebsd)
3777 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3779 return !before(end_seq, tp->rcv_wup) &&
3780 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3783 /* When we get a reset we do this. */
3784 void tcp_reset(struct sock *sk)
3786 /* We want the right error as BSD sees it (and indeed as we do). */
3787 switch (sk->sk_state) {
3788 case TCP_SYN_SENT:
3789 sk->sk_err = ECONNREFUSED;
3790 break;
3791 case TCP_CLOSE_WAIT:
3792 sk->sk_err = EPIPE;
3793 break;
3794 case TCP_CLOSE:
3795 return;
3796 default:
3797 sk->sk_err = ECONNRESET;
3799 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3800 smp_wmb();
3802 if (!sock_flag(sk, SOCK_DEAD))
3803 sk->sk_error_report(sk);
3805 tcp_done(sk);
3809 * Process the FIN bit. This now behaves as it is supposed to work
3810 * and the FIN takes effect when it is validly part of sequence
3811 * space. Not before when we get holes.
3813 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3814 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3815 * TIME-WAIT)
3817 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3818 * close and we go into CLOSING (and later onto TIME-WAIT)
3820 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3822 static void tcp_fin(struct sock *sk)
3824 struct tcp_sock *tp = tcp_sk(sk);
3825 const struct dst_entry *dst;
3827 inet_csk_schedule_ack(sk);
3829 sk->sk_shutdown |= RCV_SHUTDOWN;
3830 sock_set_flag(sk, SOCK_DONE);
3832 switch (sk->sk_state) {
3833 case TCP_SYN_RECV:
3834 case TCP_ESTABLISHED:
3835 /* Move to CLOSE_WAIT */
3836 tcp_set_state(sk, TCP_CLOSE_WAIT);
3837 dst = __sk_dst_get(sk);
3838 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3839 inet_csk(sk)->icsk_ack.pingpong = 1;
3840 break;
3842 case TCP_CLOSE_WAIT:
3843 case TCP_CLOSING:
3844 /* Received a retransmission of the FIN, do
3845 * nothing.
3847 break;
3848 case TCP_LAST_ACK:
3849 /* RFC793: Remain in the LAST-ACK state. */
3850 break;
3852 case TCP_FIN_WAIT1:
3853 /* This case occurs when a simultaneous close
3854 * happens, we must ack the received FIN and
3855 * enter the CLOSING state.
3857 tcp_send_ack(sk);
3858 tcp_set_state(sk, TCP_CLOSING);
3859 break;
3860 case TCP_FIN_WAIT2:
3861 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3862 tcp_send_ack(sk);
3863 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3864 break;
3865 default:
3866 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3867 * cases we should never reach this piece of code.
3869 pr_err("%s: Impossible, sk->sk_state=%d\n",
3870 __func__, sk->sk_state);
3871 break;
3874 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3875 * Probably, we should reset in this case. For now drop them.
3877 __skb_queue_purge(&tp->out_of_order_queue);
3878 if (tcp_is_sack(tp))
3879 tcp_sack_reset(&tp->rx_opt);
3880 sk_mem_reclaim(sk);
3882 if (!sock_flag(sk, SOCK_DEAD)) {
3883 sk->sk_state_change(sk);
3885 /* Do not send POLL_HUP for half duplex close. */
3886 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3887 sk->sk_state == TCP_CLOSE)
3888 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3889 else
3890 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3894 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3895 u32 end_seq)
3897 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3898 if (before(seq, sp->start_seq))
3899 sp->start_seq = seq;
3900 if (after(end_seq, sp->end_seq))
3901 sp->end_seq = end_seq;
3902 return true;
3904 return false;
3907 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3909 struct tcp_sock *tp = tcp_sk(sk);
3911 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3912 int mib_idx;
3914 if (before(seq, tp->rcv_nxt))
3915 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3916 else
3917 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3919 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3921 tp->rx_opt.dsack = 1;
3922 tp->duplicate_sack[0].start_seq = seq;
3923 tp->duplicate_sack[0].end_seq = end_seq;
3927 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3929 struct tcp_sock *tp = tcp_sk(sk);
3931 if (!tp->rx_opt.dsack)
3932 tcp_dsack_set(sk, seq, end_seq);
3933 else
3934 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3937 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3939 struct tcp_sock *tp = tcp_sk(sk);
3941 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3942 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3943 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3944 tcp_enter_quickack_mode(sk);
3946 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3947 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3949 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3950 end_seq = tp->rcv_nxt;
3951 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3955 tcp_send_ack(sk);
3958 /* These routines update the SACK block as out-of-order packets arrive or
3959 * in-order packets close up the sequence space.
3961 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3963 int this_sack;
3964 struct tcp_sack_block *sp = &tp->selective_acks[0];
3965 struct tcp_sack_block *swalk = sp + 1;
3967 /* See if the recent change to the first SACK eats into
3968 * or hits the sequence space of other SACK blocks, if so coalesce.
3970 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3971 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3972 int i;
3974 /* Zap SWALK, by moving every further SACK up by one slot.
3975 * Decrease num_sacks.
3977 tp->rx_opt.num_sacks--;
3978 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3979 sp[i] = sp[i + 1];
3980 continue;
3982 this_sack++, swalk++;
3986 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3988 struct tcp_sock *tp = tcp_sk(sk);
3989 struct tcp_sack_block *sp = &tp->selective_acks[0];
3990 int cur_sacks = tp->rx_opt.num_sacks;
3991 int this_sack;
3993 if (!cur_sacks)
3994 goto new_sack;
3996 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3997 if (tcp_sack_extend(sp, seq, end_seq)) {
3998 /* Rotate this_sack to the first one. */
3999 for (; this_sack > 0; this_sack--, sp--)
4000 swap(*sp, *(sp - 1));
4001 if (cur_sacks > 1)
4002 tcp_sack_maybe_coalesce(tp);
4003 return;
4007 /* Could not find an adjacent existing SACK, build a new one,
4008 * put it at the front, and shift everyone else down. We
4009 * always know there is at least one SACK present already here.
4011 * If the sack array is full, forget about the last one.
4013 if (this_sack >= TCP_NUM_SACKS) {
4014 this_sack--;
4015 tp->rx_opt.num_sacks--;
4016 sp--;
4018 for (; this_sack > 0; this_sack--, sp--)
4019 *sp = *(sp - 1);
4021 new_sack:
4022 /* Build the new head SACK, and we're done. */
4023 sp->start_seq = seq;
4024 sp->end_seq = end_seq;
4025 tp->rx_opt.num_sacks++;
4028 /* RCV.NXT advances, some SACKs should be eaten. */
4030 static void tcp_sack_remove(struct tcp_sock *tp)
4032 struct tcp_sack_block *sp = &tp->selective_acks[0];
4033 int num_sacks = tp->rx_opt.num_sacks;
4034 int this_sack;
4036 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4037 if (skb_queue_empty(&tp->out_of_order_queue)) {
4038 tp->rx_opt.num_sacks = 0;
4039 return;
4042 for (this_sack = 0; this_sack < num_sacks;) {
4043 /* Check if the start of the sack is covered by RCV.NXT. */
4044 if (!before(tp->rcv_nxt, sp->start_seq)) {
4045 int i;
4047 /* RCV.NXT must cover all the block! */
4048 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4050 /* Zap this SACK, by moving forward any other SACKS. */
4051 for (i = this_sack+1; i < num_sacks; i++)
4052 tp->selective_acks[i-1] = tp->selective_acks[i];
4053 num_sacks--;
4054 continue;
4056 this_sack++;
4057 sp++;
4059 tp->rx_opt.num_sacks = num_sacks;
4062 /* This one checks to see if we can put data from the
4063 * out_of_order queue into the receive_queue.
4065 static void tcp_ofo_queue(struct sock *sk)
4067 struct tcp_sock *tp = tcp_sk(sk);
4068 __u32 dsack_high = tp->rcv_nxt;
4069 struct sk_buff *skb;
4071 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4072 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4073 break;
4075 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4076 __u32 dsack = dsack_high;
4077 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4078 dsack_high = TCP_SKB_CB(skb)->end_seq;
4079 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4082 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4083 SOCK_DEBUG(sk, "ofo packet was already received\n");
4084 __skb_unlink(skb, &tp->out_of_order_queue);
4085 __kfree_skb(skb);
4086 continue;
4088 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4089 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4090 TCP_SKB_CB(skb)->end_seq);
4092 __skb_unlink(skb, &tp->out_of_order_queue);
4093 __skb_queue_tail(&sk->sk_receive_queue, skb);
4094 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4095 if (tcp_hdr(skb)->fin)
4096 tcp_fin(sk);
4100 static bool tcp_prune_ofo_queue(struct sock *sk);
4101 static int tcp_prune_queue(struct sock *sk);
4103 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4104 unsigned int size)
4106 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4107 !sk_rmem_schedule(sk, skb, size)) {
4109 if (tcp_prune_queue(sk) < 0)
4110 return -1;
4112 if (!sk_rmem_schedule(sk, skb, size)) {
4113 if (!tcp_prune_ofo_queue(sk))
4114 return -1;
4116 if (!sk_rmem_schedule(sk, skb, size))
4117 return -1;
4120 return 0;
4124 * tcp_try_coalesce - try to merge skb to prior one
4125 * @sk: socket
4126 * @to: prior buffer
4127 * @from: buffer to add in queue
4128 * @fragstolen: pointer to boolean
4130 * Before queueing skb @from after @to, try to merge them
4131 * to reduce overall memory use and queue lengths, if cost is small.
4132 * Packets in ofo or receive queues can stay a long time.
4133 * Better try to coalesce them right now to avoid future collapses.
4134 * Returns true if caller should free @from instead of queueing it
4136 static bool tcp_try_coalesce(struct sock *sk,
4137 struct sk_buff *to,
4138 struct sk_buff *from,
4139 bool *fragstolen)
4141 int delta;
4143 *fragstolen = false;
4145 if (tcp_hdr(from)->fin)
4146 return false;
4148 /* Its possible this segment overlaps with prior segment in queue */
4149 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4150 return false;
4152 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4153 return false;
4155 atomic_add(delta, &sk->sk_rmem_alloc);
4156 sk_mem_charge(sk, delta);
4157 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4158 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4159 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4160 return true;
4163 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4165 struct tcp_sock *tp = tcp_sk(sk);
4166 struct sk_buff *skb1;
4167 u32 seq, end_seq;
4169 TCP_ECN_check_ce(tp, skb);
4171 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4172 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4173 __kfree_skb(skb);
4174 return;
4177 /* Disable header prediction. */
4178 tp->pred_flags = 0;
4179 inet_csk_schedule_ack(sk);
4181 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4182 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4183 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4185 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4186 if (!skb1) {
4187 /* Initial out of order segment, build 1 SACK. */
4188 if (tcp_is_sack(tp)) {
4189 tp->rx_opt.num_sacks = 1;
4190 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4191 tp->selective_acks[0].end_seq =
4192 TCP_SKB_CB(skb)->end_seq;
4194 __skb_queue_head(&tp->out_of_order_queue, skb);
4195 goto end;
4198 seq = TCP_SKB_CB(skb)->seq;
4199 end_seq = TCP_SKB_CB(skb)->end_seq;
4201 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4202 bool fragstolen;
4204 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4205 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4206 } else {
4207 tcp_grow_window(sk, skb);
4208 kfree_skb_partial(skb, fragstolen);
4209 skb = NULL;
4212 if (!tp->rx_opt.num_sacks ||
4213 tp->selective_acks[0].end_seq != seq)
4214 goto add_sack;
4216 /* Common case: data arrive in order after hole. */
4217 tp->selective_acks[0].end_seq = end_seq;
4218 goto end;
4221 /* Find place to insert this segment. */
4222 while (1) {
4223 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4224 break;
4225 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4226 skb1 = NULL;
4227 break;
4229 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4232 /* Do skb overlap to previous one? */
4233 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4234 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4235 /* All the bits are present. Drop. */
4236 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4237 __kfree_skb(skb);
4238 skb = NULL;
4239 tcp_dsack_set(sk, seq, end_seq);
4240 goto add_sack;
4242 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4243 /* Partial overlap. */
4244 tcp_dsack_set(sk, seq,
4245 TCP_SKB_CB(skb1)->end_seq);
4246 } else {
4247 if (skb_queue_is_first(&tp->out_of_order_queue,
4248 skb1))
4249 skb1 = NULL;
4250 else
4251 skb1 = skb_queue_prev(
4252 &tp->out_of_order_queue,
4253 skb1);
4256 if (!skb1)
4257 __skb_queue_head(&tp->out_of_order_queue, skb);
4258 else
4259 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4261 /* And clean segments covered by new one as whole. */
4262 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4263 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4265 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4266 break;
4267 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4268 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4269 end_seq);
4270 break;
4272 __skb_unlink(skb1, &tp->out_of_order_queue);
4273 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4274 TCP_SKB_CB(skb1)->end_seq);
4275 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4276 __kfree_skb(skb1);
4279 add_sack:
4280 if (tcp_is_sack(tp))
4281 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4282 end:
4283 if (skb) {
4284 tcp_grow_window(sk, skb);
4285 skb_set_owner_r(skb, sk);
4289 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4290 bool *fragstolen)
4292 int eaten;
4293 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4295 __skb_pull(skb, hdrlen);
4296 eaten = (tail &&
4297 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4298 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4299 if (!eaten) {
4300 __skb_queue_tail(&sk->sk_receive_queue, skb);
4301 skb_set_owner_r(skb, sk);
4303 return eaten;
4306 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4308 struct sk_buff *skb = NULL;
4309 struct tcphdr *th;
4310 bool fragstolen;
4312 if (size == 0)
4313 return 0;
4315 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4316 if (!skb)
4317 goto err;
4319 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4320 goto err_free;
4322 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4323 skb_reset_transport_header(skb);
4324 memset(th, 0, sizeof(*th));
4326 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4327 goto err_free;
4329 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4330 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4331 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4333 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4334 WARN_ON_ONCE(fragstolen); /* should not happen */
4335 __kfree_skb(skb);
4337 return size;
4339 err_free:
4340 kfree_skb(skb);
4341 err:
4342 return -ENOMEM;
4345 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4347 const struct tcphdr *th = tcp_hdr(skb);
4348 struct tcp_sock *tp = tcp_sk(sk);
4349 int eaten = -1;
4350 bool fragstolen = false;
4352 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4353 goto drop;
4355 skb_dst_drop(skb);
4356 __skb_pull(skb, th->doff * 4);
4358 TCP_ECN_accept_cwr(tp, skb);
4360 tp->rx_opt.dsack = 0;
4362 /* Queue data for delivery to the user.
4363 * Packets in sequence go to the receive queue.
4364 * Out of sequence packets to the out_of_order_queue.
4366 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4367 if (tcp_receive_window(tp) == 0)
4368 goto out_of_window;
4370 /* Ok. In sequence. In window. */
4371 if (tp->ucopy.task == current &&
4372 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4373 sock_owned_by_user(sk) && !tp->urg_data) {
4374 int chunk = min_t(unsigned int, skb->len,
4375 tp->ucopy.len);
4377 __set_current_state(TASK_RUNNING);
4379 local_bh_enable();
4380 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4381 tp->ucopy.len -= chunk;
4382 tp->copied_seq += chunk;
4383 eaten = (chunk == skb->len);
4384 tcp_rcv_space_adjust(sk);
4386 local_bh_disable();
4389 if (eaten <= 0) {
4390 queue_and_out:
4391 if (eaten < 0 &&
4392 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4393 goto drop;
4395 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4397 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4398 if (skb->len)
4399 tcp_event_data_recv(sk, skb);
4400 if (th->fin)
4401 tcp_fin(sk);
4403 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4404 tcp_ofo_queue(sk);
4406 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4407 * gap in queue is filled.
4409 if (skb_queue_empty(&tp->out_of_order_queue))
4410 inet_csk(sk)->icsk_ack.pingpong = 0;
4413 if (tp->rx_opt.num_sacks)
4414 tcp_sack_remove(tp);
4416 tcp_fast_path_check(sk);
4418 if (eaten > 0)
4419 kfree_skb_partial(skb, fragstolen);
4420 if (!sock_flag(sk, SOCK_DEAD))
4421 sk->sk_data_ready(sk, 0);
4422 return;
4425 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4426 /* A retransmit, 2nd most common case. Force an immediate ack. */
4427 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4428 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4430 out_of_window:
4431 tcp_enter_quickack_mode(sk);
4432 inet_csk_schedule_ack(sk);
4433 drop:
4434 __kfree_skb(skb);
4435 return;
4438 /* Out of window. F.e. zero window probe. */
4439 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4440 goto out_of_window;
4442 tcp_enter_quickack_mode(sk);
4444 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4445 /* Partial packet, seq < rcv_next < end_seq */
4446 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4447 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4448 TCP_SKB_CB(skb)->end_seq);
4450 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4452 /* If window is closed, drop tail of packet. But after
4453 * remembering D-SACK for its head made in previous line.
4455 if (!tcp_receive_window(tp))
4456 goto out_of_window;
4457 goto queue_and_out;
4460 tcp_data_queue_ofo(sk, skb);
4463 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4464 struct sk_buff_head *list)
4466 struct sk_buff *next = NULL;
4468 if (!skb_queue_is_last(list, skb))
4469 next = skb_queue_next(list, skb);
4471 __skb_unlink(skb, list);
4472 __kfree_skb(skb);
4473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4475 return next;
4478 /* Collapse contiguous sequence of skbs head..tail with
4479 * sequence numbers start..end.
4481 * If tail is NULL, this means until the end of the list.
4483 * Segments with FIN/SYN are not collapsed (only because this
4484 * simplifies code)
4486 static void
4487 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4488 struct sk_buff *head, struct sk_buff *tail,
4489 u32 start, u32 end)
4491 struct sk_buff *skb, *n;
4492 bool end_of_skbs;
4494 /* First, check that queue is collapsible and find
4495 * the point where collapsing can be useful. */
4496 skb = head;
4497 restart:
4498 end_of_skbs = true;
4499 skb_queue_walk_from_safe(list, skb, n) {
4500 if (skb == tail)
4501 break;
4502 /* No new bits? It is possible on ofo queue. */
4503 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4504 skb = tcp_collapse_one(sk, skb, list);
4505 if (!skb)
4506 break;
4507 goto restart;
4510 /* The first skb to collapse is:
4511 * - not SYN/FIN and
4512 * - bloated or contains data before "start" or
4513 * overlaps to the next one.
4515 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4516 (tcp_win_from_space(skb->truesize) > skb->len ||
4517 before(TCP_SKB_CB(skb)->seq, start))) {
4518 end_of_skbs = false;
4519 break;
4522 if (!skb_queue_is_last(list, skb)) {
4523 struct sk_buff *next = skb_queue_next(list, skb);
4524 if (next != tail &&
4525 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4526 end_of_skbs = false;
4527 break;
4531 /* Decided to skip this, advance start seq. */
4532 start = TCP_SKB_CB(skb)->end_seq;
4534 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4535 return;
4537 while (before(start, end)) {
4538 struct sk_buff *nskb;
4539 unsigned int header = skb_headroom(skb);
4540 int copy = SKB_MAX_ORDER(header, 0);
4542 /* Too big header? This can happen with IPv6. */
4543 if (copy < 0)
4544 return;
4545 if (end - start < copy)
4546 copy = end - start;
4547 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4548 if (!nskb)
4549 return;
4551 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4552 skb_set_network_header(nskb, (skb_network_header(skb) -
4553 skb->head));
4554 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4555 skb->head));
4556 skb_reserve(nskb, header);
4557 memcpy(nskb->head, skb->head, header);
4558 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4559 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4560 __skb_queue_before(list, skb, nskb);
4561 skb_set_owner_r(nskb, sk);
4563 /* Copy data, releasing collapsed skbs. */
4564 while (copy > 0) {
4565 int offset = start - TCP_SKB_CB(skb)->seq;
4566 int size = TCP_SKB_CB(skb)->end_seq - start;
4568 BUG_ON(offset < 0);
4569 if (size > 0) {
4570 size = min(copy, size);
4571 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4572 BUG();
4573 TCP_SKB_CB(nskb)->end_seq += size;
4574 copy -= size;
4575 start += size;
4577 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4578 skb = tcp_collapse_one(sk, skb, list);
4579 if (!skb ||
4580 skb == tail ||
4581 tcp_hdr(skb)->syn ||
4582 tcp_hdr(skb)->fin)
4583 return;
4589 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4590 * and tcp_collapse() them until all the queue is collapsed.
4592 static void tcp_collapse_ofo_queue(struct sock *sk)
4594 struct tcp_sock *tp = tcp_sk(sk);
4595 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4596 struct sk_buff *head;
4597 u32 start, end;
4599 if (skb == NULL)
4600 return;
4602 start = TCP_SKB_CB(skb)->seq;
4603 end = TCP_SKB_CB(skb)->end_seq;
4604 head = skb;
4606 for (;;) {
4607 struct sk_buff *next = NULL;
4609 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4610 next = skb_queue_next(&tp->out_of_order_queue, skb);
4611 skb = next;
4613 /* Segment is terminated when we see gap or when
4614 * we are at the end of all the queue. */
4615 if (!skb ||
4616 after(TCP_SKB_CB(skb)->seq, end) ||
4617 before(TCP_SKB_CB(skb)->end_seq, start)) {
4618 tcp_collapse(sk, &tp->out_of_order_queue,
4619 head, skb, start, end);
4620 head = skb;
4621 if (!skb)
4622 break;
4623 /* Start new segment */
4624 start = TCP_SKB_CB(skb)->seq;
4625 end = TCP_SKB_CB(skb)->end_seq;
4626 } else {
4627 if (before(TCP_SKB_CB(skb)->seq, start))
4628 start = TCP_SKB_CB(skb)->seq;
4629 if (after(TCP_SKB_CB(skb)->end_seq, end))
4630 end = TCP_SKB_CB(skb)->end_seq;
4636 * Purge the out-of-order queue.
4637 * Return true if queue was pruned.
4639 static bool tcp_prune_ofo_queue(struct sock *sk)
4641 struct tcp_sock *tp = tcp_sk(sk);
4642 bool res = false;
4644 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4645 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4646 __skb_queue_purge(&tp->out_of_order_queue);
4648 /* Reset SACK state. A conforming SACK implementation will
4649 * do the same at a timeout based retransmit. When a connection
4650 * is in a sad state like this, we care only about integrity
4651 * of the connection not performance.
4653 if (tp->rx_opt.sack_ok)
4654 tcp_sack_reset(&tp->rx_opt);
4655 sk_mem_reclaim(sk);
4656 res = true;
4658 return res;
4661 /* Reduce allocated memory if we can, trying to get
4662 * the socket within its memory limits again.
4664 * Return less than zero if we should start dropping frames
4665 * until the socket owning process reads some of the data
4666 * to stabilize the situation.
4668 static int tcp_prune_queue(struct sock *sk)
4670 struct tcp_sock *tp = tcp_sk(sk);
4672 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4674 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4676 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4677 tcp_clamp_window(sk);
4678 else if (sk_under_memory_pressure(sk))
4679 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4681 tcp_collapse_ofo_queue(sk);
4682 if (!skb_queue_empty(&sk->sk_receive_queue))
4683 tcp_collapse(sk, &sk->sk_receive_queue,
4684 skb_peek(&sk->sk_receive_queue),
4685 NULL,
4686 tp->copied_seq, tp->rcv_nxt);
4687 sk_mem_reclaim(sk);
4689 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4690 return 0;
4692 /* Collapsing did not help, destructive actions follow.
4693 * This must not ever occur. */
4695 tcp_prune_ofo_queue(sk);
4697 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4698 return 0;
4700 /* If we are really being abused, tell the caller to silently
4701 * drop receive data on the floor. It will get retransmitted
4702 * and hopefully then we'll have sufficient space.
4704 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4706 /* Massive buffer overcommit. */
4707 tp->pred_flags = 0;
4708 return -1;
4711 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4712 * As additional protections, we do not touch cwnd in retransmission phases,
4713 * and if application hit its sndbuf limit recently.
4715 void tcp_cwnd_application_limited(struct sock *sk)
4717 struct tcp_sock *tp = tcp_sk(sk);
4719 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4720 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4721 /* Limited by application or receiver window. */
4722 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4723 u32 win_used = max(tp->snd_cwnd_used, init_win);
4724 if (win_used < tp->snd_cwnd) {
4725 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4726 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4728 tp->snd_cwnd_used = 0;
4730 tp->snd_cwnd_stamp = tcp_time_stamp;
4733 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4735 const struct tcp_sock *tp = tcp_sk(sk);
4737 /* If the user specified a specific send buffer setting, do
4738 * not modify it.
4740 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4741 return false;
4743 /* If we are under global TCP memory pressure, do not expand. */
4744 if (sk_under_memory_pressure(sk))
4745 return false;
4747 /* If we are under soft global TCP memory pressure, do not expand. */
4748 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4749 return false;
4751 /* If we filled the congestion window, do not expand. */
4752 if (tp->packets_out >= tp->snd_cwnd)
4753 return false;
4755 return true;
4758 /* When incoming ACK allowed to free some skb from write_queue,
4759 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4760 * on the exit from tcp input handler.
4762 * PROBLEM: sndbuf expansion does not work well with largesend.
4764 static void tcp_new_space(struct sock *sk)
4766 struct tcp_sock *tp = tcp_sk(sk);
4768 if (tcp_should_expand_sndbuf(sk)) {
4769 tcp_sndbuf_expand(sk);
4770 tp->snd_cwnd_stamp = tcp_time_stamp;
4773 sk->sk_write_space(sk);
4776 static void tcp_check_space(struct sock *sk)
4778 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4779 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4780 if (sk->sk_socket &&
4781 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4782 tcp_new_space(sk);
4786 static inline void tcp_data_snd_check(struct sock *sk)
4788 tcp_push_pending_frames(sk);
4789 tcp_check_space(sk);
4793 * Check if sending an ack is needed.
4795 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4797 struct tcp_sock *tp = tcp_sk(sk);
4799 /* More than one full frame received... */
4800 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4801 /* ... and right edge of window advances far enough.
4802 * (tcp_recvmsg() will send ACK otherwise). Or...
4804 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4805 /* We ACK each frame or... */
4806 tcp_in_quickack_mode(sk) ||
4807 /* We have out of order data. */
4808 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4809 /* Then ack it now */
4810 tcp_send_ack(sk);
4811 } else {
4812 /* Else, send delayed ack. */
4813 tcp_send_delayed_ack(sk);
4817 static inline void tcp_ack_snd_check(struct sock *sk)
4819 if (!inet_csk_ack_scheduled(sk)) {
4820 /* We sent a data segment already. */
4821 return;
4823 __tcp_ack_snd_check(sk, 1);
4827 * This routine is only called when we have urgent data
4828 * signaled. Its the 'slow' part of tcp_urg. It could be
4829 * moved inline now as tcp_urg is only called from one
4830 * place. We handle URGent data wrong. We have to - as
4831 * BSD still doesn't use the correction from RFC961.
4832 * For 1003.1g we should support a new option TCP_STDURG to permit
4833 * either form (or just set the sysctl tcp_stdurg).
4836 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4838 struct tcp_sock *tp = tcp_sk(sk);
4839 u32 ptr = ntohs(th->urg_ptr);
4841 if (ptr && !sysctl_tcp_stdurg)
4842 ptr--;
4843 ptr += ntohl(th->seq);
4845 /* Ignore urgent data that we've already seen and read. */
4846 if (after(tp->copied_seq, ptr))
4847 return;
4849 /* Do not replay urg ptr.
4851 * NOTE: interesting situation not covered by specs.
4852 * Misbehaving sender may send urg ptr, pointing to segment,
4853 * which we already have in ofo queue. We are not able to fetch
4854 * such data and will stay in TCP_URG_NOTYET until will be eaten
4855 * by recvmsg(). Seems, we are not obliged to handle such wicked
4856 * situations. But it is worth to think about possibility of some
4857 * DoSes using some hypothetical application level deadlock.
4859 if (before(ptr, tp->rcv_nxt))
4860 return;
4862 /* Do we already have a newer (or duplicate) urgent pointer? */
4863 if (tp->urg_data && !after(ptr, tp->urg_seq))
4864 return;
4866 /* Tell the world about our new urgent pointer. */
4867 sk_send_sigurg(sk);
4869 /* We may be adding urgent data when the last byte read was
4870 * urgent. To do this requires some care. We cannot just ignore
4871 * tp->copied_seq since we would read the last urgent byte again
4872 * as data, nor can we alter copied_seq until this data arrives
4873 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4875 * NOTE. Double Dutch. Rendering to plain English: author of comment
4876 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4877 * and expect that both A and B disappear from stream. This is _wrong_.
4878 * Though this happens in BSD with high probability, this is occasional.
4879 * Any application relying on this is buggy. Note also, that fix "works"
4880 * only in this artificial test. Insert some normal data between A and B and we will
4881 * decline of BSD again. Verdict: it is better to remove to trap
4882 * buggy users.
4884 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4885 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4886 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4887 tp->copied_seq++;
4888 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4889 __skb_unlink(skb, &sk->sk_receive_queue);
4890 __kfree_skb(skb);
4894 tp->urg_data = TCP_URG_NOTYET;
4895 tp->urg_seq = ptr;
4897 /* Disable header prediction. */
4898 tp->pred_flags = 0;
4901 /* This is the 'fast' part of urgent handling. */
4902 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4904 struct tcp_sock *tp = tcp_sk(sk);
4906 /* Check if we get a new urgent pointer - normally not. */
4907 if (th->urg)
4908 tcp_check_urg(sk, th);
4910 /* Do we wait for any urgent data? - normally not... */
4911 if (tp->urg_data == TCP_URG_NOTYET) {
4912 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4913 th->syn;
4915 /* Is the urgent pointer pointing into this packet? */
4916 if (ptr < skb->len) {
4917 u8 tmp;
4918 if (skb_copy_bits(skb, ptr, &tmp, 1))
4919 BUG();
4920 tp->urg_data = TCP_URG_VALID | tmp;
4921 if (!sock_flag(sk, SOCK_DEAD))
4922 sk->sk_data_ready(sk, 0);
4927 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4929 struct tcp_sock *tp = tcp_sk(sk);
4930 int chunk = skb->len - hlen;
4931 int err;
4933 local_bh_enable();
4934 if (skb_csum_unnecessary(skb))
4935 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4936 else
4937 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4938 tp->ucopy.iov);
4940 if (!err) {
4941 tp->ucopy.len -= chunk;
4942 tp->copied_seq += chunk;
4943 tcp_rcv_space_adjust(sk);
4946 local_bh_disable();
4947 return err;
4950 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4951 struct sk_buff *skb)
4953 __sum16 result;
4955 if (sock_owned_by_user(sk)) {
4956 local_bh_enable();
4957 result = __tcp_checksum_complete(skb);
4958 local_bh_disable();
4959 } else {
4960 result = __tcp_checksum_complete(skb);
4962 return result;
4965 static inline bool tcp_checksum_complete_user(struct sock *sk,
4966 struct sk_buff *skb)
4968 return !skb_csum_unnecessary(skb) &&
4969 __tcp_checksum_complete_user(sk, skb);
4972 #ifdef CONFIG_NET_DMA
4973 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4974 int hlen)
4976 struct tcp_sock *tp = tcp_sk(sk);
4977 int chunk = skb->len - hlen;
4978 int dma_cookie;
4979 bool copied_early = false;
4981 if (tp->ucopy.wakeup)
4982 return false;
4984 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4985 tp->ucopy.dma_chan = net_dma_find_channel();
4987 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4989 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4990 skb, hlen,
4991 tp->ucopy.iov, chunk,
4992 tp->ucopy.pinned_list);
4994 if (dma_cookie < 0)
4995 goto out;
4997 tp->ucopy.dma_cookie = dma_cookie;
4998 copied_early = true;
5000 tp->ucopy.len -= chunk;
5001 tp->copied_seq += chunk;
5002 tcp_rcv_space_adjust(sk);
5004 if ((tp->ucopy.len == 0) ||
5005 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5006 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5007 tp->ucopy.wakeup = 1;
5008 sk->sk_data_ready(sk, 0);
5010 } else if (chunk > 0) {
5011 tp->ucopy.wakeup = 1;
5012 sk->sk_data_ready(sk, 0);
5014 out:
5015 return copied_early;
5017 #endif /* CONFIG_NET_DMA */
5019 /* Does PAWS and seqno based validation of an incoming segment, flags will
5020 * play significant role here.
5022 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5023 const struct tcphdr *th, int syn_inerr)
5025 struct tcp_sock *tp = tcp_sk(sk);
5027 /* RFC1323: H1. Apply PAWS check first. */
5028 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5029 tcp_paws_discard(sk, skb)) {
5030 if (!th->rst) {
5031 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5032 tcp_send_dupack(sk, skb);
5033 goto discard;
5035 /* Reset is accepted even if it did not pass PAWS. */
5038 /* Step 1: check sequence number */
5039 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5040 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5041 * (RST) segments are validated by checking their SEQ-fields."
5042 * And page 69: "If an incoming segment is not acceptable,
5043 * an acknowledgment should be sent in reply (unless the RST
5044 * bit is set, if so drop the segment and return)".
5046 if (!th->rst) {
5047 if (th->syn)
5048 goto syn_challenge;
5049 tcp_send_dupack(sk, skb);
5051 goto discard;
5054 /* Step 2: check RST bit */
5055 if (th->rst) {
5056 /* RFC 5961 3.2 :
5057 * If sequence number exactly matches RCV.NXT, then
5058 * RESET the connection
5059 * else
5060 * Send a challenge ACK
5062 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5063 tcp_reset(sk);
5064 else
5065 tcp_send_challenge_ack(sk);
5066 goto discard;
5069 /* step 3: check security and precedence [ignored] */
5071 /* step 4: Check for a SYN
5072 * RFC 5691 4.2 : Send a challenge ack
5074 if (th->syn) {
5075 syn_challenge:
5076 if (syn_inerr)
5077 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5078 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5079 tcp_send_challenge_ack(sk);
5080 goto discard;
5083 return true;
5085 discard:
5086 __kfree_skb(skb);
5087 return false;
5091 * TCP receive function for the ESTABLISHED state.
5093 * It is split into a fast path and a slow path. The fast path is
5094 * disabled when:
5095 * - A zero window was announced from us - zero window probing
5096 * is only handled properly in the slow path.
5097 * - Out of order segments arrived.
5098 * - Urgent data is expected.
5099 * - There is no buffer space left
5100 * - Unexpected TCP flags/window values/header lengths are received
5101 * (detected by checking the TCP header against pred_flags)
5102 * - Data is sent in both directions. Fast path only supports pure senders
5103 * or pure receivers (this means either the sequence number or the ack
5104 * value must stay constant)
5105 * - Unexpected TCP option.
5107 * When these conditions are not satisfied it drops into a standard
5108 * receive procedure patterned after RFC793 to handle all cases.
5109 * The first three cases are guaranteed by proper pred_flags setting,
5110 * the rest is checked inline. Fast processing is turned on in
5111 * tcp_data_queue when everything is OK.
5113 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5114 const struct tcphdr *th, unsigned int len)
5116 struct tcp_sock *tp = tcp_sk(sk);
5118 if (unlikely(sk->sk_rx_dst == NULL))
5119 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5121 * Header prediction.
5122 * The code loosely follows the one in the famous
5123 * "30 instruction TCP receive" Van Jacobson mail.
5125 * Van's trick is to deposit buffers into socket queue
5126 * on a device interrupt, to call tcp_recv function
5127 * on the receive process context and checksum and copy
5128 * the buffer to user space. smart...
5130 * Our current scheme is not silly either but we take the
5131 * extra cost of the net_bh soft interrupt processing...
5132 * We do checksum and copy also but from device to kernel.
5135 tp->rx_opt.saw_tstamp = 0;
5137 /* pred_flags is 0xS?10 << 16 + snd_wnd
5138 * if header_prediction is to be made
5139 * 'S' will always be tp->tcp_header_len >> 2
5140 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5141 * turn it off (when there are holes in the receive
5142 * space for instance)
5143 * PSH flag is ignored.
5146 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5147 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5148 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5149 int tcp_header_len = tp->tcp_header_len;
5151 /* Timestamp header prediction: tcp_header_len
5152 * is automatically equal to th->doff*4 due to pred_flags
5153 * match.
5156 /* Check timestamp */
5157 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5158 /* No? Slow path! */
5159 if (!tcp_parse_aligned_timestamp(tp, th))
5160 goto slow_path;
5162 /* If PAWS failed, check it more carefully in slow path */
5163 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5164 goto slow_path;
5166 /* DO NOT update ts_recent here, if checksum fails
5167 * and timestamp was corrupted part, it will result
5168 * in a hung connection since we will drop all
5169 * future packets due to the PAWS test.
5173 if (len <= tcp_header_len) {
5174 /* Bulk data transfer: sender */
5175 if (len == tcp_header_len) {
5176 /* Predicted packet is in window by definition.
5177 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5178 * Hence, check seq<=rcv_wup reduces to:
5180 if (tcp_header_len ==
5181 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5182 tp->rcv_nxt == tp->rcv_wup)
5183 tcp_store_ts_recent(tp);
5185 /* We know that such packets are checksummed
5186 * on entry.
5188 tcp_ack(sk, skb, 0);
5189 __kfree_skb(skb);
5190 tcp_data_snd_check(sk);
5191 return;
5192 } else { /* Header too small */
5193 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5194 goto discard;
5196 } else {
5197 int eaten = 0;
5198 int copied_early = 0;
5199 bool fragstolen = false;
5201 if (tp->copied_seq == tp->rcv_nxt &&
5202 len - tcp_header_len <= tp->ucopy.len) {
5203 #ifdef CONFIG_NET_DMA
5204 if (tp->ucopy.task == current &&
5205 sock_owned_by_user(sk) &&
5206 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5207 copied_early = 1;
5208 eaten = 1;
5210 #endif
5211 if (tp->ucopy.task == current &&
5212 sock_owned_by_user(sk) && !copied_early) {
5213 __set_current_state(TASK_RUNNING);
5215 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5216 eaten = 1;
5218 if (eaten) {
5219 /* Predicted packet is in window by definition.
5220 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5221 * Hence, check seq<=rcv_wup reduces to:
5223 if (tcp_header_len ==
5224 (sizeof(struct tcphdr) +
5225 TCPOLEN_TSTAMP_ALIGNED) &&
5226 tp->rcv_nxt == tp->rcv_wup)
5227 tcp_store_ts_recent(tp);
5229 tcp_rcv_rtt_measure_ts(sk, skb);
5231 __skb_pull(skb, tcp_header_len);
5232 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5233 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5235 if (copied_early)
5236 tcp_cleanup_rbuf(sk, skb->len);
5238 if (!eaten) {
5239 if (tcp_checksum_complete_user(sk, skb))
5240 goto csum_error;
5242 if ((int)skb->truesize > sk->sk_forward_alloc)
5243 goto step5;
5245 /* Predicted packet is in window by definition.
5246 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5247 * Hence, check seq<=rcv_wup reduces to:
5249 if (tcp_header_len ==
5250 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5251 tp->rcv_nxt == tp->rcv_wup)
5252 tcp_store_ts_recent(tp);
5254 tcp_rcv_rtt_measure_ts(sk, skb);
5256 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5258 /* Bulk data transfer: receiver */
5259 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5260 &fragstolen);
5263 tcp_event_data_recv(sk, skb);
5265 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5266 /* Well, only one small jumplet in fast path... */
5267 tcp_ack(sk, skb, FLAG_DATA);
5268 tcp_data_snd_check(sk);
5269 if (!inet_csk_ack_scheduled(sk))
5270 goto no_ack;
5273 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5274 __tcp_ack_snd_check(sk, 0);
5275 no_ack:
5276 #ifdef CONFIG_NET_DMA
5277 if (copied_early)
5278 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5279 else
5280 #endif
5281 if (eaten)
5282 kfree_skb_partial(skb, fragstolen);
5283 sk->sk_data_ready(sk, 0);
5284 return;
5288 slow_path:
5289 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5290 goto csum_error;
5292 if (!th->ack && !th->rst)
5293 goto discard;
5296 * Standard slow path.
5299 if (!tcp_validate_incoming(sk, skb, th, 1))
5300 return;
5302 step5:
5303 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5304 goto discard;
5306 tcp_rcv_rtt_measure_ts(sk, skb);
5308 /* Process urgent data. */
5309 tcp_urg(sk, skb, th);
5311 /* step 7: process the segment text */
5312 tcp_data_queue(sk, skb);
5314 tcp_data_snd_check(sk);
5315 tcp_ack_snd_check(sk);
5316 return;
5318 csum_error:
5319 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5320 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5322 discard:
5323 __kfree_skb(skb);
5325 EXPORT_SYMBOL(tcp_rcv_established);
5327 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5329 struct tcp_sock *tp = tcp_sk(sk);
5330 struct inet_connection_sock *icsk = inet_csk(sk);
5332 tcp_set_state(sk, TCP_ESTABLISHED);
5334 if (skb != NULL) {
5335 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5336 security_inet_conn_established(sk, skb);
5339 /* Make sure socket is routed, for correct metrics. */
5340 icsk->icsk_af_ops->rebuild_header(sk);
5342 tcp_init_metrics(sk);
5344 tcp_init_congestion_control(sk);
5346 /* Prevent spurious tcp_cwnd_restart() on first data
5347 * packet.
5349 tp->lsndtime = tcp_time_stamp;
5351 tcp_init_buffer_space(sk);
5353 if (sock_flag(sk, SOCK_KEEPOPEN))
5354 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5356 if (!tp->rx_opt.snd_wscale)
5357 __tcp_fast_path_on(tp, tp->snd_wnd);
5358 else
5359 tp->pred_flags = 0;
5361 if (!sock_flag(sk, SOCK_DEAD)) {
5362 sk->sk_state_change(sk);
5363 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5367 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5368 struct tcp_fastopen_cookie *cookie)
5370 struct tcp_sock *tp = tcp_sk(sk);
5371 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5372 u16 mss = tp->rx_opt.mss_clamp;
5373 bool syn_drop;
5375 if (mss == tp->rx_opt.user_mss) {
5376 struct tcp_options_received opt;
5378 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5379 tcp_clear_options(&opt);
5380 opt.user_mss = opt.mss_clamp = 0;
5381 tcp_parse_options(synack, &opt, 0, NULL);
5382 mss = opt.mss_clamp;
5385 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5386 cookie->len = -1;
5388 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5389 * the remote receives only the retransmitted (regular) SYNs: either
5390 * the original SYN-data or the corresponding SYN-ACK is lost.
5392 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5394 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5396 if (data) { /* Retransmit unacked data in SYN */
5397 tcp_for_write_queue_from(data, sk) {
5398 if (data == tcp_send_head(sk) ||
5399 __tcp_retransmit_skb(sk, data))
5400 break;
5402 tcp_rearm_rto(sk);
5403 return true;
5405 tp->syn_data_acked = tp->syn_data;
5406 return false;
5409 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5410 const struct tcphdr *th, unsigned int len)
5412 struct inet_connection_sock *icsk = inet_csk(sk);
5413 struct tcp_sock *tp = tcp_sk(sk);
5414 struct tcp_fastopen_cookie foc = { .len = -1 };
5415 int saved_clamp = tp->rx_opt.mss_clamp;
5417 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5418 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5419 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5421 if (th->ack) {
5422 /* rfc793:
5423 * "If the state is SYN-SENT then
5424 * first check the ACK bit
5425 * If the ACK bit is set
5426 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5427 * a reset (unless the RST bit is set, if so drop
5428 * the segment and return)"
5430 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5431 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5432 goto reset_and_undo;
5434 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5435 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5436 tcp_time_stamp)) {
5437 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5438 goto reset_and_undo;
5441 /* Now ACK is acceptable.
5443 * "If the RST bit is set
5444 * If the ACK was acceptable then signal the user "error:
5445 * connection reset", drop the segment, enter CLOSED state,
5446 * delete TCB, and return."
5449 if (th->rst) {
5450 tcp_reset(sk);
5451 goto discard;
5454 /* rfc793:
5455 * "fifth, if neither of the SYN or RST bits is set then
5456 * drop the segment and return."
5458 * See note below!
5459 * --ANK(990513)
5461 if (!th->syn)
5462 goto discard_and_undo;
5464 /* rfc793:
5465 * "If the SYN bit is on ...
5466 * are acceptable then ...
5467 * (our SYN has been ACKed), change the connection
5468 * state to ESTABLISHED..."
5471 TCP_ECN_rcv_synack(tp, th);
5473 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5474 tcp_ack(sk, skb, FLAG_SLOWPATH);
5476 /* Ok.. it's good. Set up sequence numbers and
5477 * move to established.
5479 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5480 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5482 /* RFC1323: The window in SYN & SYN/ACK segments is
5483 * never scaled.
5485 tp->snd_wnd = ntohs(th->window);
5487 if (!tp->rx_opt.wscale_ok) {
5488 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5489 tp->window_clamp = min(tp->window_clamp, 65535U);
5492 if (tp->rx_opt.saw_tstamp) {
5493 tp->rx_opt.tstamp_ok = 1;
5494 tp->tcp_header_len =
5495 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5496 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5497 tcp_store_ts_recent(tp);
5498 } else {
5499 tp->tcp_header_len = sizeof(struct tcphdr);
5502 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5503 tcp_enable_fack(tp);
5505 tcp_mtup_init(sk);
5506 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5507 tcp_initialize_rcv_mss(sk);
5509 /* Remember, tcp_poll() does not lock socket!
5510 * Change state from SYN-SENT only after copied_seq
5511 * is initialized. */
5512 tp->copied_seq = tp->rcv_nxt;
5514 smp_mb();
5516 tcp_finish_connect(sk, skb);
5518 if ((tp->syn_fastopen || tp->syn_data) &&
5519 tcp_rcv_fastopen_synack(sk, skb, &foc))
5520 return -1;
5522 if (sk->sk_write_pending ||
5523 icsk->icsk_accept_queue.rskq_defer_accept ||
5524 icsk->icsk_ack.pingpong) {
5525 /* Save one ACK. Data will be ready after
5526 * several ticks, if write_pending is set.
5528 * It may be deleted, but with this feature tcpdumps
5529 * look so _wonderfully_ clever, that I was not able
5530 * to stand against the temptation 8) --ANK
5532 inet_csk_schedule_ack(sk);
5533 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5534 tcp_enter_quickack_mode(sk);
5535 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5536 TCP_DELACK_MAX, TCP_RTO_MAX);
5538 discard:
5539 __kfree_skb(skb);
5540 return 0;
5541 } else {
5542 tcp_send_ack(sk);
5544 return -1;
5547 /* No ACK in the segment */
5549 if (th->rst) {
5550 /* rfc793:
5551 * "If the RST bit is set
5553 * Otherwise (no ACK) drop the segment and return."
5556 goto discard_and_undo;
5559 /* PAWS check. */
5560 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5561 tcp_paws_reject(&tp->rx_opt, 0))
5562 goto discard_and_undo;
5564 if (th->syn) {
5565 /* We see SYN without ACK. It is attempt of
5566 * simultaneous connect with crossed SYNs.
5567 * Particularly, it can be connect to self.
5569 tcp_set_state(sk, TCP_SYN_RECV);
5571 if (tp->rx_opt.saw_tstamp) {
5572 tp->rx_opt.tstamp_ok = 1;
5573 tcp_store_ts_recent(tp);
5574 tp->tcp_header_len =
5575 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5576 } else {
5577 tp->tcp_header_len = sizeof(struct tcphdr);
5580 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5581 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5583 /* RFC1323: The window in SYN & SYN/ACK segments is
5584 * never scaled.
5586 tp->snd_wnd = ntohs(th->window);
5587 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5588 tp->max_window = tp->snd_wnd;
5590 TCP_ECN_rcv_syn(tp, th);
5592 tcp_mtup_init(sk);
5593 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5594 tcp_initialize_rcv_mss(sk);
5596 tcp_send_synack(sk);
5597 #if 0
5598 /* Note, we could accept data and URG from this segment.
5599 * There are no obstacles to make this (except that we must
5600 * either change tcp_recvmsg() to prevent it from returning data
5601 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5603 * However, if we ignore data in ACKless segments sometimes,
5604 * we have no reasons to accept it sometimes.
5605 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5606 * is not flawless. So, discard packet for sanity.
5607 * Uncomment this return to process the data.
5609 return -1;
5610 #else
5611 goto discard;
5612 #endif
5614 /* "fifth, if neither of the SYN or RST bits is set then
5615 * drop the segment and return."
5618 discard_and_undo:
5619 tcp_clear_options(&tp->rx_opt);
5620 tp->rx_opt.mss_clamp = saved_clamp;
5621 goto discard;
5623 reset_and_undo:
5624 tcp_clear_options(&tp->rx_opt);
5625 tp->rx_opt.mss_clamp = saved_clamp;
5626 return 1;
5630 * This function implements the receiving procedure of RFC 793 for
5631 * all states except ESTABLISHED and TIME_WAIT.
5632 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5633 * address independent.
5636 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5637 const struct tcphdr *th, unsigned int len)
5639 struct tcp_sock *tp = tcp_sk(sk);
5640 struct inet_connection_sock *icsk = inet_csk(sk);
5641 struct request_sock *req;
5642 int queued = 0;
5643 bool acceptable;
5644 u32 synack_stamp;
5646 tp->rx_opt.saw_tstamp = 0;
5648 switch (sk->sk_state) {
5649 case TCP_CLOSE:
5650 goto discard;
5652 case TCP_LISTEN:
5653 if (th->ack)
5654 return 1;
5656 if (th->rst)
5657 goto discard;
5659 if (th->syn) {
5660 if (th->fin)
5661 goto discard;
5662 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5663 return 1;
5665 /* Now we have several options: In theory there is
5666 * nothing else in the frame. KA9Q has an option to
5667 * send data with the syn, BSD accepts data with the
5668 * syn up to the [to be] advertised window and
5669 * Solaris 2.1 gives you a protocol error. For now
5670 * we just ignore it, that fits the spec precisely
5671 * and avoids incompatibilities. It would be nice in
5672 * future to drop through and process the data.
5674 * Now that TTCP is starting to be used we ought to
5675 * queue this data.
5676 * But, this leaves one open to an easy denial of
5677 * service attack, and SYN cookies can't defend
5678 * against this problem. So, we drop the data
5679 * in the interest of security over speed unless
5680 * it's still in use.
5682 kfree_skb(skb);
5683 return 0;
5685 goto discard;
5687 case TCP_SYN_SENT:
5688 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5689 if (queued >= 0)
5690 return queued;
5692 /* Do step6 onward by hand. */
5693 tcp_urg(sk, skb, th);
5694 __kfree_skb(skb);
5695 tcp_data_snd_check(sk);
5696 return 0;
5699 req = tp->fastopen_rsk;
5700 if (req != NULL) {
5701 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5702 sk->sk_state != TCP_FIN_WAIT1);
5704 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5705 goto discard;
5708 if (!th->ack && !th->rst)
5709 goto discard;
5711 if (!tcp_validate_incoming(sk, skb, th, 0))
5712 return 0;
5714 /* step 5: check the ACK field */
5715 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5716 FLAG_UPDATE_TS_RECENT) > 0;
5718 switch (sk->sk_state) {
5719 case TCP_SYN_RECV:
5720 if (!acceptable)
5721 return 1;
5723 /* Once we leave TCP_SYN_RECV, we no longer need req
5724 * so release it.
5726 if (req) {
5727 synack_stamp = tcp_rsk(req)->snt_synack;
5728 tp->total_retrans = req->num_retrans;
5729 reqsk_fastopen_remove(sk, req, false);
5730 } else {
5731 synack_stamp = tp->lsndtime;
5732 /* Make sure socket is routed, for correct metrics. */
5733 icsk->icsk_af_ops->rebuild_header(sk);
5734 tcp_init_congestion_control(sk);
5736 tcp_mtup_init(sk);
5737 tp->copied_seq = tp->rcv_nxt;
5738 tcp_init_buffer_space(sk);
5740 smp_mb();
5741 tcp_set_state(sk, TCP_ESTABLISHED);
5742 sk->sk_state_change(sk);
5744 /* Note, that this wakeup is only for marginal crossed SYN case.
5745 * Passively open sockets are not waked up, because
5746 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5748 if (sk->sk_socket)
5749 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5751 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5752 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5753 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5754 tcp_synack_rtt_meas(sk, synack_stamp);
5756 if (tp->rx_opt.tstamp_ok)
5757 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5759 if (req) {
5760 /* Re-arm the timer because data may have been sent out.
5761 * This is similar to the regular data transmission case
5762 * when new data has just been ack'ed.
5764 * (TFO) - we could try to be more aggressive and
5765 * retransmitting any data sooner based on when they
5766 * are sent out.
5768 tcp_rearm_rto(sk);
5769 } else
5770 tcp_init_metrics(sk);
5772 tcp_update_pacing_rate(sk);
5774 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5775 tp->lsndtime = tcp_time_stamp;
5777 tcp_initialize_rcv_mss(sk);
5778 tcp_fast_path_on(tp);
5779 break;
5781 case TCP_FIN_WAIT1: {
5782 struct dst_entry *dst;
5783 int tmo;
5785 /* If we enter the TCP_FIN_WAIT1 state and we are a
5786 * Fast Open socket and this is the first acceptable
5787 * ACK we have received, this would have acknowledged
5788 * our SYNACK so stop the SYNACK timer.
5790 if (req != NULL) {
5791 /* Return RST if ack_seq is invalid.
5792 * Note that RFC793 only says to generate a
5793 * DUPACK for it but for TCP Fast Open it seems
5794 * better to treat this case like TCP_SYN_RECV
5795 * above.
5797 if (!acceptable)
5798 return 1;
5799 /* We no longer need the request sock. */
5800 reqsk_fastopen_remove(sk, req, false);
5801 tcp_rearm_rto(sk);
5803 if (tp->snd_una != tp->write_seq)
5804 break;
5806 tcp_set_state(sk, TCP_FIN_WAIT2);
5807 sk->sk_shutdown |= SEND_SHUTDOWN;
5809 dst = __sk_dst_get(sk);
5810 if (dst)
5811 dst_confirm(dst);
5813 if (!sock_flag(sk, SOCK_DEAD)) {
5814 /* Wake up lingering close() */
5815 sk->sk_state_change(sk);
5816 break;
5819 if (tp->linger2 < 0 ||
5820 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5821 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5822 tcp_done(sk);
5823 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5824 return 1;
5827 tmo = tcp_fin_time(sk);
5828 if (tmo > TCP_TIMEWAIT_LEN) {
5829 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5830 } else if (th->fin || sock_owned_by_user(sk)) {
5831 /* Bad case. We could lose such FIN otherwise.
5832 * It is not a big problem, but it looks confusing
5833 * and not so rare event. We still can lose it now,
5834 * if it spins in bh_lock_sock(), but it is really
5835 * marginal case.
5837 inet_csk_reset_keepalive_timer(sk, tmo);
5838 } else {
5839 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5840 goto discard;
5842 break;
5845 case TCP_CLOSING:
5846 if (tp->snd_una == tp->write_seq) {
5847 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5848 goto discard;
5850 break;
5852 case TCP_LAST_ACK:
5853 if (tp->snd_una == tp->write_seq) {
5854 tcp_update_metrics(sk);
5855 tcp_done(sk);
5856 goto discard;
5858 break;
5861 /* step 6: check the URG bit */
5862 tcp_urg(sk, skb, th);
5864 /* step 7: process the segment text */
5865 switch (sk->sk_state) {
5866 case TCP_CLOSE_WAIT:
5867 case TCP_CLOSING:
5868 case TCP_LAST_ACK:
5869 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5870 break;
5871 case TCP_FIN_WAIT1:
5872 case TCP_FIN_WAIT2:
5873 /* RFC 793 says to queue data in these states,
5874 * RFC 1122 says we MUST send a reset.
5875 * BSD 4.4 also does reset.
5877 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5878 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5879 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5880 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5881 tcp_reset(sk);
5882 return 1;
5885 /* Fall through */
5886 case TCP_ESTABLISHED:
5887 tcp_data_queue(sk, skb);
5888 queued = 1;
5889 break;
5892 /* tcp_data could move socket to TIME-WAIT */
5893 if (sk->sk_state != TCP_CLOSE) {
5894 tcp_data_snd_check(sk);
5895 tcp_ack_snd_check(sk);
5898 if (!queued) {
5899 discard:
5900 __kfree_skb(skb);
5902 return 0;
5904 EXPORT_SYMBOL(tcp_rcv_state_process);