mmc: mxs: use standard flag for broken card detection
[linux-2.6/btrfs-unstable.git] / drivers / clocksource / arm_arch_timer.c
blob95fb944e15ee0579a6f437f8440ba93fe8443524
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/interrupt.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/sched_clock.h>
25 #include <asm/arch_timer.h>
26 #include <asm/virt.h>
28 #include <clocksource/arm_arch_timer.h>
30 #define CNTTIDR 0x08
31 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
33 #define CNTVCT_LO 0x08
34 #define CNTVCT_HI 0x0c
35 #define CNTFRQ 0x10
36 #define CNTP_TVAL 0x28
37 #define CNTP_CTL 0x2c
38 #define CNTV_TVAL 0x38
39 #define CNTV_CTL 0x3c
41 #define ARCH_CP15_TIMER BIT(0)
42 #define ARCH_MEM_TIMER BIT(1)
43 static unsigned arch_timers_present __initdata;
45 static void __iomem *arch_counter_base;
47 struct arch_timer {
48 void __iomem *base;
49 struct clock_event_device evt;
52 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
54 static u32 arch_timer_rate;
56 enum ppi_nr {
57 PHYS_SECURE_PPI,
58 PHYS_NONSECURE_PPI,
59 VIRT_PPI,
60 HYP_PPI,
61 MAX_TIMER_PPI
64 static int arch_timer_ppi[MAX_TIMER_PPI];
66 static struct clock_event_device __percpu *arch_timer_evt;
68 static bool arch_timer_use_virtual = true;
69 static bool arch_timer_mem_use_virtual;
72 * Architected system timer support.
75 static __always_inline
76 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
77 struct clock_event_device *clk)
79 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
80 struct arch_timer *timer = to_arch_timer(clk);
81 switch (reg) {
82 case ARCH_TIMER_REG_CTRL:
83 writel_relaxed(val, timer->base + CNTP_CTL);
84 break;
85 case ARCH_TIMER_REG_TVAL:
86 writel_relaxed(val, timer->base + CNTP_TVAL);
87 break;
89 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
90 struct arch_timer *timer = to_arch_timer(clk);
91 switch (reg) {
92 case ARCH_TIMER_REG_CTRL:
93 writel_relaxed(val, timer->base + CNTV_CTL);
94 break;
95 case ARCH_TIMER_REG_TVAL:
96 writel_relaxed(val, timer->base + CNTV_TVAL);
97 break;
99 } else {
100 arch_timer_reg_write_cp15(access, reg, val);
104 static __always_inline
105 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
106 struct clock_event_device *clk)
108 u32 val;
110 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
111 struct arch_timer *timer = to_arch_timer(clk);
112 switch (reg) {
113 case ARCH_TIMER_REG_CTRL:
114 val = readl_relaxed(timer->base + CNTP_CTL);
115 break;
116 case ARCH_TIMER_REG_TVAL:
117 val = readl_relaxed(timer->base + CNTP_TVAL);
118 break;
120 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
121 struct arch_timer *timer = to_arch_timer(clk);
122 switch (reg) {
123 case ARCH_TIMER_REG_CTRL:
124 val = readl_relaxed(timer->base + CNTV_CTL);
125 break;
126 case ARCH_TIMER_REG_TVAL:
127 val = readl_relaxed(timer->base + CNTV_TVAL);
128 break;
130 } else {
131 val = arch_timer_reg_read_cp15(access, reg);
134 return val;
137 static __always_inline irqreturn_t timer_handler(const int access,
138 struct clock_event_device *evt)
140 unsigned long ctrl;
142 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
143 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
144 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
145 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
146 evt->event_handler(evt);
147 return IRQ_HANDLED;
150 return IRQ_NONE;
153 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
155 struct clock_event_device *evt = dev_id;
157 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
160 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
162 struct clock_event_device *evt = dev_id;
164 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
167 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
169 struct clock_event_device *evt = dev_id;
171 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
174 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
176 struct clock_event_device *evt = dev_id;
178 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
181 static __always_inline void timer_set_mode(const int access, int mode,
182 struct clock_event_device *clk)
184 unsigned long ctrl;
185 switch (mode) {
186 case CLOCK_EVT_MODE_UNUSED:
187 case CLOCK_EVT_MODE_SHUTDOWN:
188 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
189 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
190 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
191 break;
192 default:
193 break;
197 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
198 struct clock_event_device *clk)
200 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
203 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
204 struct clock_event_device *clk)
206 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
209 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
210 struct clock_event_device *clk)
212 timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
215 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
216 struct clock_event_device *clk)
218 timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
221 static __always_inline void set_next_event(const int access, unsigned long evt,
222 struct clock_event_device *clk)
224 unsigned long ctrl;
225 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
226 ctrl |= ARCH_TIMER_CTRL_ENABLE;
227 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
228 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
229 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
232 static int arch_timer_set_next_event_virt(unsigned long evt,
233 struct clock_event_device *clk)
235 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
236 return 0;
239 static int arch_timer_set_next_event_phys(unsigned long evt,
240 struct clock_event_device *clk)
242 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
243 return 0;
246 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
247 struct clock_event_device *clk)
249 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
250 return 0;
253 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
254 struct clock_event_device *clk)
256 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
257 return 0;
260 static void __arch_timer_setup(unsigned type,
261 struct clock_event_device *clk)
263 clk->features = CLOCK_EVT_FEAT_ONESHOT;
265 if (type == ARCH_CP15_TIMER) {
266 clk->features |= CLOCK_EVT_FEAT_C3STOP;
267 clk->name = "arch_sys_timer";
268 clk->rating = 450;
269 clk->cpumask = cpumask_of(smp_processor_id());
270 if (arch_timer_use_virtual) {
271 clk->irq = arch_timer_ppi[VIRT_PPI];
272 clk->set_mode = arch_timer_set_mode_virt;
273 clk->set_next_event = arch_timer_set_next_event_virt;
274 } else {
275 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
276 clk->set_mode = arch_timer_set_mode_phys;
277 clk->set_next_event = arch_timer_set_next_event_phys;
279 } else {
280 clk->name = "arch_mem_timer";
281 clk->rating = 400;
282 clk->cpumask = cpu_all_mask;
283 if (arch_timer_mem_use_virtual) {
284 clk->set_mode = arch_timer_set_mode_virt_mem;
285 clk->set_next_event =
286 arch_timer_set_next_event_virt_mem;
287 } else {
288 clk->set_mode = arch_timer_set_mode_phys_mem;
289 clk->set_next_event =
290 arch_timer_set_next_event_phys_mem;
294 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
296 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
299 static void arch_timer_configure_evtstream(void)
301 int evt_stream_div, pos;
303 /* Find the closest power of two to the divisor */
304 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
305 pos = fls(evt_stream_div);
306 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
307 pos--;
308 /* enable event stream */
309 arch_timer_evtstrm_enable(min(pos, 15));
312 static int arch_timer_setup(struct clock_event_device *clk)
314 __arch_timer_setup(ARCH_CP15_TIMER, clk);
316 if (arch_timer_use_virtual)
317 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
318 else {
319 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
320 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
321 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
324 arch_counter_set_user_access();
325 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
326 arch_timer_configure_evtstream();
328 return 0;
331 static void
332 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
334 /* Who has more than one independent system counter? */
335 if (arch_timer_rate)
336 return;
338 /* Try to determine the frequency from the device tree or CNTFRQ */
339 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
340 if (cntbase)
341 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
342 else
343 arch_timer_rate = arch_timer_get_cntfrq();
346 /* Check the timer frequency. */
347 if (arch_timer_rate == 0)
348 pr_warn("Architected timer frequency not available\n");
351 static void arch_timer_banner(unsigned type)
353 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
354 type & ARCH_CP15_TIMER ? "cp15" : "",
355 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
356 type & ARCH_MEM_TIMER ? "mmio" : "",
357 (unsigned long)arch_timer_rate / 1000000,
358 (unsigned long)(arch_timer_rate / 10000) % 100,
359 type & ARCH_CP15_TIMER ?
360 arch_timer_use_virtual ? "virt" : "phys" :
362 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
363 type & ARCH_MEM_TIMER ?
364 arch_timer_mem_use_virtual ? "virt" : "phys" :
365 "");
368 u32 arch_timer_get_rate(void)
370 return arch_timer_rate;
373 static u64 arch_counter_get_cntvct_mem(void)
375 u32 vct_lo, vct_hi, tmp_hi;
377 do {
378 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
379 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
380 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
381 } while (vct_hi != tmp_hi);
383 return ((u64) vct_hi << 32) | vct_lo;
387 * Default to cp15 based access because arm64 uses this function for
388 * sched_clock() before DT is probed and the cp15 method is guaranteed
389 * to exist on arm64. arm doesn't use this before DT is probed so even
390 * if we don't have the cp15 accessors we won't have a problem.
392 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
394 static cycle_t arch_counter_read(struct clocksource *cs)
396 return arch_timer_read_counter();
399 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
401 return arch_timer_read_counter();
404 static struct clocksource clocksource_counter = {
405 .name = "arch_sys_counter",
406 .rating = 400,
407 .read = arch_counter_read,
408 .mask = CLOCKSOURCE_MASK(56),
409 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
412 static struct cyclecounter cyclecounter = {
413 .read = arch_counter_read_cc,
414 .mask = CLOCKSOURCE_MASK(56),
417 static struct timecounter timecounter;
419 struct timecounter *arch_timer_get_timecounter(void)
421 return &timecounter;
424 static void __init arch_counter_register(unsigned type)
426 u64 start_count;
428 /* Register the CP15 based counter if we have one */
429 if (type & ARCH_CP15_TIMER)
430 arch_timer_read_counter = arch_counter_get_cntvct;
431 else
432 arch_timer_read_counter = arch_counter_get_cntvct_mem;
434 start_count = arch_timer_read_counter();
435 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
436 cyclecounter.mult = clocksource_counter.mult;
437 cyclecounter.shift = clocksource_counter.shift;
438 timecounter_init(&timecounter, &cyclecounter, start_count);
440 /* 56 bits minimum, so we assume worst case rollover */
441 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
444 static void arch_timer_stop(struct clock_event_device *clk)
446 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
447 clk->irq, smp_processor_id());
449 if (arch_timer_use_virtual)
450 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
451 else {
452 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
453 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
454 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
457 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
460 static int arch_timer_cpu_notify(struct notifier_block *self,
461 unsigned long action, void *hcpu)
464 * Grab cpu pointer in each case to avoid spurious
465 * preemptible warnings
467 switch (action & ~CPU_TASKS_FROZEN) {
468 case CPU_STARTING:
469 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
470 break;
471 case CPU_DYING:
472 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
473 break;
476 return NOTIFY_OK;
479 static struct notifier_block arch_timer_cpu_nb = {
480 .notifier_call = arch_timer_cpu_notify,
483 #ifdef CONFIG_CPU_PM
484 static unsigned int saved_cntkctl;
485 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
486 unsigned long action, void *hcpu)
488 if (action == CPU_PM_ENTER)
489 saved_cntkctl = arch_timer_get_cntkctl();
490 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
491 arch_timer_set_cntkctl(saved_cntkctl);
492 return NOTIFY_OK;
495 static struct notifier_block arch_timer_cpu_pm_notifier = {
496 .notifier_call = arch_timer_cpu_pm_notify,
499 static int __init arch_timer_cpu_pm_init(void)
501 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
503 #else
504 static int __init arch_timer_cpu_pm_init(void)
506 return 0;
508 #endif
510 static int __init arch_timer_register(void)
512 int err;
513 int ppi;
515 arch_timer_evt = alloc_percpu(struct clock_event_device);
516 if (!arch_timer_evt) {
517 err = -ENOMEM;
518 goto out;
521 if (arch_timer_use_virtual) {
522 ppi = arch_timer_ppi[VIRT_PPI];
523 err = request_percpu_irq(ppi, arch_timer_handler_virt,
524 "arch_timer", arch_timer_evt);
525 } else {
526 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
527 err = request_percpu_irq(ppi, arch_timer_handler_phys,
528 "arch_timer", arch_timer_evt);
529 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
530 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
531 err = request_percpu_irq(ppi, arch_timer_handler_phys,
532 "arch_timer", arch_timer_evt);
533 if (err)
534 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
535 arch_timer_evt);
539 if (err) {
540 pr_err("arch_timer: can't register interrupt %d (%d)\n",
541 ppi, err);
542 goto out_free;
545 err = register_cpu_notifier(&arch_timer_cpu_nb);
546 if (err)
547 goto out_free_irq;
549 err = arch_timer_cpu_pm_init();
550 if (err)
551 goto out_unreg_notify;
553 /* Immediately configure the timer on the boot CPU */
554 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
556 return 0;
558 out_unreg_notify:
559 unregister_cpu_notifier(&arch_timer_cpu_nb);
560 out_free_irq:
561 if (arch_timer_use_virtual)
562 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
563 else {
564 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
565 arch_timer_evt);
566 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
567 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
568 arch_timer_evt);
571 out_free:
572 free_percpu(arch_timer_evt);
573 out:
574 return err;
577 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
579 int ret;
580 irq_handler_t func;
581 struct arch_timer *t;
583 t = kzalloc(sizeof(*t), GFP_KERNEL);
584 if (!t)
585 return -ENOMEM;
587 t->base = base;
588 t->evt.irq = irq;
589 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
591 if (arch_timer_mem_use_virtual)
592 func = arch_timer_handler_virt_mem;
593 else
594 func = arch_timer_handler_phys_mem;
596 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
597 if (ret) {
598 pr_err("arch_timer: Failed to request mem timer irq\n");
599 kfree(t);
602 return ret;
605 static const struct of_device_id arch_timer_of_match[] __initconst = {
606 { .compatible = "arm,armv7-timer", },
607 { .compatible = "arm,armv8-timer", },
611 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
612 { .compatible = "arm,armv7-timer-mem", },
616 static void __init arch_timer_common_init(void)
618 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
620 /* Wait until both nodes are probed if we have two timers */
621 if ((arch_timers_present & mask) != mask) {
622 if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
623 !(arch_timers_present & ARCH_MEM_TIMER))
624 return;
625 if (of_find_matching_node(NULL, arch_timer_of_match) &&
626 !(arch_timers_present & ARCH_CP15_TIMER))
627 return;
630 arch_timer_banner(arch_timers_present);
631 arch_counter_register(arch_timers_present);
632 arch_timer_arch_init();
635 static void __init arch_timer_init(struct device_node *np)
637 int i;
639 if (arch_timers_present & ARCH_CP15_TIMER) {
640 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
641 return;
644 arch_timers_present |= ARCH_CP15_TIMER;
645 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
646 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
647 arch_timer_detect_rate(NULL, np);
650 * If HYP mode is available, we know that the physical timer
651 * has been configured to be accessible from PL1. Use it, so
652 * that a guest can use the virtual timer instead.
654 * If no interrupt provided for virtual timer, we'll have to
655 * stick to the physical timer. It'd better be accessible...
657 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
658 arch_timer_use_virtual = false;
660 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
661 !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
662 pr_warn("arch_timer: No interrupt available, giving up\n");
663 return;
667 arch_timer_register();
668 arch_timer_common_init();
670 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
671 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
673 static void __init arch_timer_mem_init(struct device_node *np)
675 struct device_node *frame, *best_frame = NULL;
676 void __iomem *cntctlbase, *base;
677 unsigned int irq;
678 u32 cnttidr;
680 arch_timers_present |= ARCH_MEM_TIMER;
681 cntctlbase = of_iomap(np, 0);
682 if (!cntctlbase) {
683 pr_err("arch_timer: Can't find CNTCTLBase\n");
684 return;
687 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
688 iounmap(cntctlbase);
691 * Try to find a virtual capable frame. Otherwise fall back to a
692 * physical capable frame.
694 for_each_available_child_of_node(np, frame) {
695 int n;
697 if (of_property_read_u32(frame, "frame-number", &n)) {
698 pr_err("arch_timer: Missing frame-number\n");
699 of_node_put(best_frame);
700 of_node_put(frame);
701 return;
704 if (cnttidr & CNTTIDR_VIRT(n)) {
705 of_node_put(best_frame);
706 best_frame = frame;
707 arch_timer_mem_use_virtual = true;
708 break;
710 of_node_put(best_frame);
711 best_frame = of_node_get(frame);
714 base = arch_counter_base = of_iomap(best_frame, 0);
715 if (!base) {
716 pr_err("arch_timer: Can't map frame's registers\n");
717 of_node_put(best_frame);
718 return;
721 if (arch_timer_mem_use_virtual)
722 irq = irq_of_parse_and_map(best_frame, 1);
723 else
724 irq = irq_of_parse_and_map(best_frame, 0);
725 of_node_put(best_frame);
726 if (!irq) {
727 pr_err("arch_timer: Frame missing %s irq",
728 arch_timer_mem_use_virtual ? "virt" : "phys");
729 return;
732 arch_timer_detect_rate(base, np);
733 arch_timer_mem_register(base, irq);
734 arch_timer_common_init();
736 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
737 arch_timer_mem_init);