igmp: Avoid zero delay when receiving odd mixture of IGMP queries
[linux-2.6/btrfs-unstable.git] / kernel / sched / fair.c
blob8e42de9105f800d1a7ca7231626b6d683b1cce4a
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
30 #include <trace/events/sched.h>
32 #include "sched.h"
35 * Targeted preemption latency for CPU-bound tasks:
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
38 * NOTE: this latency value is not the same as the concept of
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
62 * Minimal preemption granularity for CPU-bound tasks:
63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
71 static unsigned int sched_nr_latency = 8;
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
99 #ifdef CONFIG_CFS_BANDWIDTH
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
108 * default: 5 msec, units: microseconds
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
120 * This idea comes from the SD scheduler of Con Kolivas:
122 static int get_update_sysctl_factor(void)
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
140 return factor;
143 static void update_sysctl(void)
145 unsigned int factor = get_update_sysctl_factor();
147 #define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
155 void sched_init_granularity(void)
157 update_sysctl();
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST (~0UL)
162 #else
163 # define WMULT_CONST (1UL << 32)
164 #endif
166 #define WMULT_SHIFT 32
169 * Shift right and round:
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
174 * delta *= weight / lw
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
180 u64 tmp;
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
204 * Check whether we'd overflow the 64-bit multiplication:
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 const struct sched_class fair_sched_class;
218 /**************************************************************
219 * CFS operations on generic schedulable entities:
222 #ifdef CONFIG_FAIR_GROUP_SCHED
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
227 return cfs_rq->rq;
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se) (!se->my_q)
233 static inline struct task_struct *task_of(struct sched_entity *se)
235 #ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 return container_of(se, struct task_struct, se);
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
247 return p->se.cfs_rq;
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
253 return se->cfs_rq;
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
259 return grp->my_q;
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
264 if (!cfs_rq->on_list) {
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
280 cfs_rq->on_list = 1;
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
296 /* Do the two (enqueued) entities belong to the same group ? */
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
303 return 0;
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
308 return se->parent;
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
314 int depth = 0;
316 for_each_sched_entity(se)
317 depth++;
319 return depth;
322 static void
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
325 int se_depth, pse_depth;
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
354 #else /* !CONFIG_FAIR_GROUP_SCHED */
356 static inline struct task_struct *task_of(struct sched_entity *se)
358 return container_of(se, struct task_struct, se);
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
363 return container_of(cfs_rq, struct rq, cfs);
366 #define entity_is_task(se) 1
368 #define for_each_sched_entity(se) \
369 for (; se; se = NULL)
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
373 return &task_rq(p)->cfs;
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
381 return &rq->cfs;
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
387 return NULL;
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
401 static inline int
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
404 return 1;
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
409 return NULL;
412 static inline void
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
417 #endif /* CONFIG_FAIR_GROUP_SCHED */
419 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
420 unsigned long delta_exec);
422 /**************************************************************
423 * Scheduling class tree data structure manipulation methods:
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
430 min_vruntime = vruntime;
432 return min_vruntime;
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
441 return min_vruntime;
444 static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
447 return (s64)(a->vruntime - b->vruntime) < 0;
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
452 u64 vruntime = cfs_rq->min_vruntime;
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
462 if (!cfs_rq->curr)
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 #ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472 #endif
476 * Enqueue an entity into the rb-tree:
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
483 int leftmost = 1;
486 * Find the right place in the rbtree:
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
495 if (entity_before(se, entry)) {
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
507 if (leftmost)
508 cfs_rq->rb_leftmost = &se->run_node;
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
528 struct rb_node *left = cfs_rq->rb_leftmost;
530 if (!left)
531 return NULL;
533 return rb_entry(left, struct sched_entity, run_node);
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
538 struct rb_node *next = rb_next(&se->run_node);
540 if (!next)
541 return NULL;
543 return rb_entry(next, struct sched_entity, run_node);
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
551 if (!last)
552 return NULL;
554 return rb_entry(last, struct sched_entity, run_node);
557 /**************************************************************
558 * Scheduling class statistics methods:
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 void __user *buffer, size_t *lenp,
563 loff_t *ppos)
565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 int factor = get_update_sysctl_factor();
568 if (ret || !write)
569 return ret;
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
574 #define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
579 #undef WRT_SYSCTL
581 return 0;
583 #endif
586 * delta /= w
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
594 return delta;
598 * The idea is to set a period in which each task runs once.
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
603 * p = (nr <= nl) ? l : l*nr/nl
605 static u64 __sched_period(unsigned long nr_running)
607 u64 period = sysctl_sched_latency;
608 unsigned long nr_latency = sched_nr_latency;
610 if (unlikely(nr_running > nr_latency)) {
611 period = sysctl_sched_min_granularity;
612 period *= nr_running;
615 return period;
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
622 * s = p*P[w/rw]
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
628 for_each_sched_entity(se) {
629 struct load_weight *load;
630 struct load_weight lw;
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
635 if (unlikely(!se->on_rq)) {
636 lw = cfs_rq->load;
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
641 slice = calc_delta_mine(slice, se->load.weight, load);
643 return slice;
647 * We calculate the vruntime slice of a to be inserted task
649 * vs = s/w
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
663 static inline void
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
667 unsigned long delta_exec_weighted;
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
672 curr->sum_exec_runtime += delta_exec;
673 schedstat_add(cfs_rq, exec_clock, delta_exec);
674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
676 curr->vruntime += delta_exec_weighted;
677 update_min_vruntime(cfs_rq);
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 cfs_rq->load_unacc_exec_time += delta_exec;
681 #endif
684 static void update_curr(struct cfs_rq *cfs_rq)
686 struct sched_entity *curr = cfs_rq->curr;
687 u64 now = rq_of(cfs_rq)->clock_task;
688 unsigned long delta_exec;
690 if (unlikely(!curr))
691 return;
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
698 delta_exec = (unsigned long)(now - curr->exec_start);
699 if (!delta_exec)
700 return;
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 cpuacct_charge(curtask, delta_exec);
710 account_group_exec_runtime(curtask, delta_exec);
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
716 static inline void
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
723 * Task is being enqueued - update stats:
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
731 if (se != cfs_rq->curr)
732 update_stats_wait_start(cfs_rq, se);
735 static void
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
748 #endif
749 schedstat_set(se->statistics.wait_start, 0);
752 static inline void
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
759 if (se != cfs_rq->curr)
760 update_stats_wait_end(cfs_rq, se);
764 * We are picking a new current task - update its stats:
766 static inline void
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 * We are starting a new run period:
772 se->exec_start = rq_of(cfs_rq)->clock_task;
775 /**************************************************
776 * Scheduling class queueing methods:
779 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
780 static void
781 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
783 cfs_rq->task_weight += weight;
785 #else
786 static inline void
787 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
790 #endif
792 static void
793 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
795 update_load_add(&cfs_rq->load, se->load.weight);
796 if (!parent_entity(se))
797 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
798 if (entity_is_task(se)) {
799 add_cfs_task_weight(cfs_rq, se->load.weight);
800 list_add(&se->group_node, &cfs_rq->tasks);
802 cfs_rq->nr_running++;
805 static void
806 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
808 update_load_sub(&cfs_rq->load, se->load.weight);
809 if (!parent_entity(se))
810 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
811 if (entity_is_task(se)) {
812 add_cfs_task_weight(cfs_rq, -se->load.weight);
813 list_del_init(&se->group_node);
815 cfs_rq->nr_running--;
818 #ifdef CONFIG_FAIR_GROUP_SCHED
819 /* we need this in update_cfs_load and load-balance functions below */
820 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
821 # ifdef CONFIG_SMP
822 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
823 int global_update)
825 struct task_group *tg = cfs_rq->tg;
826 long load_avg;
828 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
829 load_avg -= cfs_rq->load_contribution;
831 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
832 atomic_add(load_avg, &tg->load_weight);
833 cfs_rq->load_contribution += load_avg;
837 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
839 u64 period = sysctl_sched_shares_window;
840 u64 now, delta;
841 unsigned long load = cfs_rq->load.weight;
843 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
844 return;
846 now = rq_of(cfs_rq)->clock_task;
847 delta = now - cfs_rq->load_stamp;
849 /* truncate load history at 4 idle periods */
850 if (cfs_rq->load_stamp > cfs_rq->load_last &&
851 now - cfs_rq->load_last > 4 * period) {
852 cfs_rq->load_period = 0;
853 cfs_rq->load_avg = 0;
854 delta = period - 1;
857 cfs_rq->load_stamp = now;
858 cfs_rq->load_unacc_exec_time = 0;
859 cfs_rq->load_period += delta;
860 if (load) {
861 cfs_rq->load_last = now;
862 cfs_rq->load_avg += delta * load;
865 /* consider updating load contribution on each fold or truncate */
866 if (global_update || cfs_rq->load_period > period
867 || !cfs_rq->load_period)
868 update_cfs_rq_load_contribution(cfs_rq, global_update);
870 while (cfs_rq->load_period > period) {
872 * Inline assembly required to prevent the compiler
873 * optimising this loop into a divmod call.
874 * See __iter_div_u64_rem() for another example of this.
876 asm("" : "+rm" (cfs_rq->load_period));
877 cfs_rq->load_period /= 2;
878 cfs_rq->load_avg /= 2;
881 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
882 list_del_leaf_cfs_rq(cfs_rq);
885 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
887 long tg_weight;
890 * Use this CPU's actual weight instead of the last load_contribution
891 * to gain a more accurate current total weight. See
892 * update_cfs_rq_load_contribution().
894 tg_weight = atomic_read(&tg->load_weight);
895 tg_weight -= cfs_rq->load_contribution;
896 tg_weight += cfs_rq->load.weight;
898 return tg_weight;
901 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
903 long tg_weight, load, shares;
905 tg_weight = calc_tg_weight(tg, cfs_rq);
906 load = cfs_rq->load.weight;
908 shares = (tg->shares * load);
909 if (tg_weight)
910 shares /= tg_weight;
912 if (shares < MIN_SHARES)
913 shares = MIN_SHARES;
914 if (shares > tg->shares)
915 shares = tg->shares;
917 return shares;
920 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
922 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
923 update_cfs_load(cfs_rq, 0);
924 update_cfs_shares(cfs_rq);
927 # else /* CONFIG_SMP */
928 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
932 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
934 return tg->shares;
937 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
940 # endif /* CONFIG_SMP */
941 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
942 unsigned long weight)
944 if (se->on_rq) {
945 /* commit outstanding execution time */
946 if (cfs_rq->curr == se)
947 update_curr(cfs_rq);
948 account_entity_dequeue(cfs_rq, se);
951 update_load_set(&se->load, weight);
953 if (se->on_rq)
954 account_entity_enqueue(cfs_rq, se);
957 static void update_cfs_shares(struct cfs_rq *cfs_rq)
959 struct task_group *tg;
960 struct sched_entity *se;
961 long shares;
963 tg = cfs_rq->tg;
964 se = tg->se[cpu_of(rq_of(cfs_rq))];
965 if (!se || throttled_hierarchy(cfs_rq))
966 return;
967 #ifndef CONFIG_SMP
968 if (likely(se->load.weight == tg->shares))
969 return;
970 #endif
971 shares = calc_cfs_shares(cfs_rq, tg);
973 reweight_entity(cfs_rq_of(se), se, shares);
975 #else /* CONFIG_FAIR_GROUP_SCHED */
976 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
980 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
984 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
987 #endif /* CONFIG_FAIR_GROUP_SCHED */
989 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
991 #ifdef CONFIG_SCHEDSTATS
992 struct task_struct *tsk = NULL;
994 if (entity_is_task(se))
995 tsk = task_of(se);
997 if (se->statistics.sleep_start) {
998 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1000 if ((s64)delta < 0)
1001 delta = 0;
1003 if (unlikely(delta > se->statistics.sleep_max))
1004 se->statistics.sleep_max = delta;
1006 se->statistics.sum_sleep_runtime += delta;
1008 if (tsk) {
1009 account_scheduler_latency(tsk, delta >> 10, 1);
1010 trace_sched_stat_sleep(tsk, delta);
1013 if (se->statistics.block_start) {
1014 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1016 if ((s64)delta < 0)
1017 delta = 0;
1019 if (unlikely(delta > se->statistics.block_max))
1020 se->statistics.block_max = delta;
1022 se->statistics.sum_sleep_runtime += delta;
1024 if (tsk) {
1025 if (tsk->in_iowait) {
1026 se->statistics.iowait_sum += delta;
1027 se->statistics.iowait_count++;
1028 trace_sched_stat_iowait(tsk, delta);
1031 trace_sched_stat_blocked(tsk, delta);
1034 * Blocking time is in units of nanosecs, so shift by
1035 * 20 to get a milliseconds-range estimation of the
1036 * amount of time that the task spent sleeping:
1038 if (unlikely(prof_on == SLEEP_PROFILING)) {
1039 profile_hits(SLEEP_PROFILING,
1040 (void *)get_wchan(tsk),
1041 delta >> 20);
1043 account_scheduler_latency(tsk, delta >> 10, 0);
1046 #endif
1049 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051 #ifdef CONFIG_SCHED_DEBUG
1052 s64 d = se->vruntime - cfs_rq->min_vruntime;
1054 if (d < 0)
1055 d = -d;
1057 if (d > 3*sysctl_sched_latency)
1058 schedstat_inc(cfs_rq, nr_spread_over);
1059 #endif
1062 static void
1063 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1065 u64 vruntime = cfs_rq->min_vruntime;
1068 * The 'current' period is already promised to the current tasks,
1069 * however the extra weight of the new task will slow them down a
1070 * little, place the new task so that it fits in the slot that
1071 * stays open at the end.
1073 if (initial && sched_feat(START_DEBIT))
1074 vruntime += sched_vslice(cfs_rq, se);
1076 /* sleeps up to a single latency don't count. */
1077 if (!initial) {
1078 unsigned long thresh = sysctl_sched_latency;
1081 * Halve their sleep time's effect, to allow
1082 * for a gentler effect of sleepers:
1084 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1085 thresh >>= 1;
1087 vruntime -= thresh;
1090 /* ensure we never gain time by being placed backwards. */
1091 vruntime = max_vruntime(se->vruntime, vruntime);
1093 se->vruntime = vruntime;
1096 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1098 static void
1099 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1102 * Update the normalized vruntime before updating min_vruntime
1103 * through callig update_curr().
1105 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1106 se->vruntime += cfs_rq->min_vruntime;
1109 * Update run-time statistics of the 'current'.
1111 update_curr(cfs_rq);
1112 update_cfs_load(cfs_rq, 0);
1113 account_entity_enqueue(cfs_rq, se);
1114 update_cfs_shares(cfs_rq);
1116 if (flags & ENQUEUE_WAKEUP) {
1117 place_entity(cfs_rq, se, 0);
1118 enqueue_sleeper(cfs_rq, se);
1121 update_stats_enqueue(cfs_rq, se);
1122 check_spread(cfs_rq, se);
1123 if (se != cfs_rq->curr)
1124 __enqueue_entity(cfs_rq, se);
1125 se->on_rq = 1;
1127 if (cfs_rq->nr_running == 1) {
1128 list_add_leaf_cfs_rq(cfs_rq);
1129 check_enqueue_throttle(cfs_rq);
1133 static void __clear_buddies_last(struct sched_entity *se)
1135 for_each_sched_entity(se) {
1136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1137 if (cfs_rq->last == se)
1138 cfs_rq->last = NULL;
1139 else
1140 break;
1144 static void __clear_buddies_next(struct sched_entity *se)
1146 for_each_sched_entity(se) {
1147 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1148 if (cfs_rq->next == se)
1149 cfs_rq->next = NULL;
1150 else
1151 break;
1155 static void __clear_buddies_skip(struct sched_entity *se)
1157 for_each_sched_entity(se) {
1158 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1159 if (cfs_rq->skip == se)
1160 cfs_rq->skip = NULL;
1161 else
1162 break;
1166 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1168 if (cfs_rq->last == se)
1169 __clear_buddies_last(se);
1171 if (cfs_rq->next == se)
1172 __clear_buddies_next(se);
1174 if (cfs_rq->skip == se)
1175 __clear_buddies_skip(se);
1178 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1180 static void
1181 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1184 * Update run-time statistics of the 'current'.
1186 update_curr(cfs_rq);
1188 update_stats_dequeue(cfs_rq, se);
1189 if (flags & DEQUEUE_SLEEP) {
1190 #ifdef CONFIG_SCHEDSTATS
1191 if (entity_is_task(se)) {
1192 struct task_struct *tsk = task_of(se);
1194 if (tsk->state & TASK_INTERRUPTIBLE)
1195 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1196 if (tsk->state & TASK_UNINTERRUPTIBLE)
1197 se->statistics.block_start = rq_of(cfs_rq)->clock;
1199 #endif
1202 clear_buddies(cfs_rq, se);
1204 if (se != cfs_rq->curr)
1205 __dequeue_entity(cfs_rq, se);
1206 se->on_rq = 0;
1207 update_cfs_load(cfs_rq, 0);
1208 account_entity_dequeue(cfs_rq, se);
1211 * Normalize the entity after updating the min_vruntime because the
1212 * update can refer to the ->curr item and we need to reflect this
1213 * movement in our normalized position.
1215 if (!(flags & DEQUEUE_SLEEP))
1216 se->vruntime -= cfs_rq->min_vruntime;
1218 /* return excess runtime on last dequeue */
1219 return_cfs_rq_runtime(cfs_rq);
1221 update_min_vruntime(cfs_rq);
1222 update_cfs_shares(cfs_rq);
1226 * Preempt the current task with a newly woken task if needed:
1228 static void
1229 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1231 unsigned long ideal_runtime, delta_exec;
1232 struct sched_entity *se;
1233 s64 delta;
1235 ideal_runtime = sched_slice(cfs_rq, curr);
1236 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1237 if (delta_exec > ideal_runtime) {
1238 resched_task(rq_of(cfs_rq)->curr);
1240 * The current task ran long enough, ensure it doesn't get
1241 * re-elected due to buddy favours.
1243 clear_buddies(cfs_rq, curr);
1244 return;
1248 * Ensure that a task that missed wakeup preemption by a
1249 * narrow margin doesn't have to wait for a full slice.
1250 * This also mitigates buddy induced latencies under load.
1252 if (delta_exec < sysctl_sched_min_granularity)
1253 return;
1255 se = __pick_first_entity(cfs_rq);
1256 delta = curr->vruntime - se->vruntime;
1258 if (delta < 0)
1259 return;
1261 if (delta > ideal_runtime)
1262 resched_task(rq_of(cfs_rq)->curr);
1265 static void
1266 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1268 /* 'current' is not kept within the tree. */
1269 if (se->on_rq) {
1271 * Any task has to be enqueued before it get to execute on
1272 * a CPU. So account for the time it spent waiting on the
1273 * runqueue.
1275 update_stats_wait_end(cfs_rq, se);
1276 __dequeue_entity(cfs_rq, se);
1279 update_stats_curr_start(cfs_rq, se);
1280 cfs_rq->curr = se;
1281 #ifdef CONFIG_SCHEDSTATS
1283 * Track our maximum slice length, if the CPU's load is at
1284 * least twice that of our own weight (i.e. dont track it
1285 * when there are only lesser-weight tasks around):
1287 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1288 se->statistics.slice_max = max(se->statistics.slice_max,
1289 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1291 #endif
1292 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1295 static int
1296 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1299 * Pick the next process, keeping these things in mind, in this order:
1300 * 1) keep things fair between processes/task groups
1301 * 2) pick the "next" process, since someone really wants that to run
1302 * 3) pick the "last" process, for cache locality
1303 * 4) do not run the "skip" process, if something else is available
1305 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1307 struct sched_entity *se = __pick_first_entity(cfs_rq);
1308 struct sched_entity *left = se;
1311 * Avoid running the skip buddy, if running something else can
1312 * be done without getting too unfair.
1314 if (cfs_rq->skip == se) {
1315 struct sched_entity *second = __pick_next_entity(se);
1316 if (second && wakeup_preempt_entity(second, left) < 1)
1317 se = second;
1321 * Prefer last buddy, try to return the CPU to a preempted task.
1323 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1324 se = cfs_rq->last;
1327 * Someone really wants this to run. If it's not unfair, run it.
1329 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1330 se = cfs_rq->next;
1332 clear_buddies(cfs_rq, se);
1334 return se;
1337 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1339 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1342 * If still on the runqueue then deactivate_task()
1343 * was not called and update_curr() has to be done:
1345 if (prev->on_rq)
1346 update_curr(cfs_rq);
1348 /* throttle cfs_rqs exceeding runtime */
1349 check_cfs_rq_runtime(cfs_rq);
1351 check_spread(cfs_rq, prev);
1352 if (prev->on_rq) {
1353 update_stats_wait_start(cfs_rq, prev);
1354 /* Put 'current' back into the tree. */
1355 __enqueue_entity(cfs_rq, prev);
1357 cfs_rq->curr = NULL;
1360 static void
1361 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1364 * Update run-time statistics of the 'current'.
1366 update_curr(cfs_rq);
1369 * Update share accounting for long-running entities.
1371 update_entity_shares_tick(cfs_rq);
1373 #ifdef CONFIG_SCHED_HRTICK
1375 * queued ticks are scheduled to match the slice, so don't bother
1376 * validating it and just reschedule.
1378 if (queued) {
1379 resched_task(rq_of(cfs_rq)->curr);
1380 return;
1383 * don't let the period tick interfere with the hrtick preemption
1385 if (!sched_feat(DOUBLE_TICK) &&
1386 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1387 return;
1388 #endif
1390 if (cfs_rq->nr_running > 1)
1391 check_preempt_tick(cfs_rq, curr);
1395 /**************************************************
1396 * CFS bandwidth control machinery
1399 #ifdef CONFIG_CFS_BANDWIDTH
1401 #ifdef HAVE_JUMP_LABEL
1402 static struct jump_label_key __cfs_bandwidth_used;
1404 static inline bool cfs_bandwidth_used(void)
1406 return static_branch(&__cfs_bandwidth_used);
1409 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1411 /* only need to count groups transitioning between enabled/!enabled */
1412 if (enabled && !was_enabled)
1413 jump_label_inc(&__cfs_bandwidth_used);
1414 else if (!enabled && was_enabled)
1415 jump_label_dec(&__cfs_bandwidth_used);
1417 #else /* HAVE_JUMP_LABEL */
1418 static bool cfs_bandwidth_used(void)
1420 return true;
1423 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1424 #endif /* HAVE_JUMP_LABEL */
1427 * default period for cfs group bandwidth.
1428 * default: 0.1s, units: nanoseconds
1430 static inline u64 default_cfs_period(void)
1432 return 100000000ULL;
1435 static inline u64 sched_cfs_bandwidth_slice(void)
1437 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1441 * Replenish runtime according to assigned quota and update expiration time.
1442 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1443 * additional synchronization around rq->lock.
1445 * requires cfs_b->lock
1447 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1449 u64 now;
1451 if (cfs_b->quota == RUNTIME_INF)
1452 return;
1454 now = sched_clock_cpu(smp_processor_id());
1455 cfs_b->runtime = cfs_b->quota;
1456 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1459 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1461 return &tg->cfs_bandwidth;
1464 /* returns 0 on failure to allocate runtime */
1465 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1467 struct task_group *tg = cfs_rq->tg;
1468 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1469 u64 amount = 0, min_amount, expires;
1471 /* note: this is a positive sum as runtime_remaining <= 0 */
1472 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1474 raw_spin_lock(&cfs_b->lock);
1475 if (cfs_b->quota == RUNTIME_INF)
1476 amount = min_amount;
1477 else {
1479 * If the bandwidth pool has become inactive, then at least one
1480 * period must have elapsed since the last consumption.
1481 * Refresh the global state and ensure bandwidth timer becomes
1482 * active.
1484 if (!cfs_b->timer_active) {
1485 __refill_cfs_bandwidth_runtime(cfs_b);
1486 __start_cfs_bandwidth(cfs_b);
1489 if (cfs_b->runtime > 0) {
1490 amount = min(cfs_b->runtime, min_amount);
1491 cfs_b->runtime -= amount;
1492 cfs_b->idle = 0;
1495 expires = cfs_b->runtime_expires;
1496 raw_spin_unlock(&cfs_b->lock);
1498 cfs_rq->runtime_remaining += amount;
1500 * we may have advanced our local expiration to account for allowed
1501 * spread between our sched_clock and the one on which runtime was
1502 * issued.
1504 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1505 cfs_rq->runtime_expires = expires;
1507 return cfs_rq->runtime_remaining > 0;
1511 * Note: This depends on the synchronization provided by sched_clock and the
1512 * fact that rq->clock snapshots this value.
1514 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1516 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1517 struct rq *rq = rq_of(cfs_rq);
1519 /* if the deadline is ahead of our clock, nothing to do */
1520 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1521 return;
1523 if (cfs_rq->runtime_remaining < 0)
1524 return;
1527 * If the local deadline has passed we have to consider the
1528 * possibility that our sched_clock is 'fast' and the global deadline
1529 * has not truly expired.
1531 * Fortunately we can check determine whether this the case by checking
1532 * whether the global deadline has advanced.
1535 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1536 /* extend local deadline, drift is bounded above by 2 ticks */
1537 cfs_rq->runtime_expires += TICK_NSEC;
1538 } else {
1539 /* global deadline is ahead, expiration has passed */
1540 cfs_rq->runtime_remaining = 0;
1544 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1545 unsigned long delta_exec)
1547 /* dock delta_exec before expiring quota (as it could span periods) */
1548 cfs_rq->runtime_remaining -= delta_exec;
1549 expire_cfs_rq_runtime(cfs_rq);
1551 if (likely(cfs_rq->runtime_remaining > 0))
1552 return;
1555 * if we're unable to extend our runtime we resched so that the active
1556 * hierarchy can be throttled
1558 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1559 resched_task(rq_of(cfs_rq)->curr);
1562 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1563 unsigned long delta_exec)
1565 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1566 return;
1568 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1571 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1573 return cfs_bandwidth_used() && cfs_rq->throttled;
1576 /* check whether cfs_rq, or any parent, is throttled */
1577 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1579 return cfs_bandwidth_used() && cfs_rq->throttle_count;
1583 * Ensure that neither of the group entities corresponding to src_cpu or
1584 * dest_cpu are members of a throttled hierarchy when performing group
1585 * load-balance operations.
1587 static inline int throttled_lb_pair(struct task_group *tg,
1588 int src_cpu, int dest_cpu)
1590 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1592 src_cfs_rq = tg->cfs_rq[src_cpu];
1593 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1595 return throttled_hierarchy(src_cfs_rq) ||
1596 throttled_hierarchy(dest_cfs_rq);
1599 /* updated child weight may affect parent so we have to do this bottom up */
1600 static int tg_unthrottle_up(struct task_group *tg, void *data)
1602 struct rq *rq = data;
1603 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1605 cfs_rq->throttle_count--;
1606 #ifdef CONFIG_SMP
1607 if (!cfs_rq->throttle_count) {
1608 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1610 /* leaving throttled state, advance shares averaging windows */
1611 cfs_rq->load_stamp += delta;
1612 cfs_rq->load_last += delta;
1614 /* update entity weight now that we are on_rq again */
1615 update_cfs_shares(cfs_rq);
1617 #endif
1619 return 0;
1622 static int tg_throttle_down(struct task_group *tg, void *data)
1624 struct rq *rq = data;
1625 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1627 /* group is entering throttled state, record last load */
1628 if (!cfs_rq->throttle_count)
1629 update_cfs_load(cfs_rq, 0);
1630 cfs_rq->throttle_count++;
1632 return 0;
1635 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1637 struct rq *rq = rq_of(cfs_rq);
1638 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1639 struct sched_entity *se;
1640 long task_delta, dequeue = 1;
1642 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1644 /* account load preceding throttle */
1645 rcu_read_lock();
1646 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1647 rcu_read_unlock();
1649 task_delta = cfs_rq->h_nr_running;
1650 for_each_sched_entity(se) {
1651 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1652 /* throttled entity or throttle-on-deactivate */
1653 if (!se->on_rq)
1654 break;
1656 if (dequeue)
1657 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1658 qcfs_rq->h_nr_running -= task_delta;
1660 if (qcfs_rq->load.weight)
1661 dequeue = 0;
1664 if (!se)
1665 rq->nr_running -= task_delta;
1667 cfs_rq->throttled = 1;
1668 cfs_rq->throttled_timestamp = rq->clock;
1669 raw_spin_lock(&cfs_b->lock);
1670 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1671 raw_spin_unlock(&cfs_b->lock);
1674 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1676 struct rq *rq = rq_of(cfs_rq);
1677 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1678 struct sched_entity *se;
1679 int enqueue = 1;
1680 long task_delta;
1682 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1684 cfs_rq->throttled = 0;
1685 raw_spin_lock(&cfs_b->lock);
1686 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1687 list_del_rcu(&cfs_rq->throttled_list);
1688 raw_spin_unlock(&cfs_b->lock);
1689 cfs_rq->throttled_timestamp = 0;
1691 update_rq_clock(rq);
1692 /* update hierarchical throttle state */
1693 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1695 if (!cfs_rq->load.weight)
1696 return;
1698 task_delta = cfs_rq->h_nr_running;
1699 for_each_sched_entity(se) {
1700 if (se->on_rq)
1701 enqueue = 0;
1703 cfs_rq = cfs_rq_of(se);
1704 if (enqueue)
1705 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1706 cfs_rq->h_nr_running += task_delta;
1708 if (cfs_rq_throttled(cfs_rq))
1709 break;
1712 if (!se)
1713 rq->nr_running += task_delta;
1715 /* determine whether we need to wake up potentially idle cpu */
1716 if (rq->curr == rq->idle && rq->cfs.nr_running)
1717 resched_task(rq->curr);
1720 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1721 u64 remaining, u64 expires)
1723 struct cfs_rq *cfs_rq;
1724 u64 runtime = remaining;
1726 rcu_read_lock();
1727 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1728 throttled_list) {
1729 struct rq *rq = rq_of(cfs_rq);
1731 raw_spin_lock(&rq->lock);
1732 if (!cfs_rq_throttled(cfs_rq))
1733 goto next;
1735 runtime = -cfs_rq->runtime_remaining + 1;
1736 if (runtime > remaining)
1737 runtime = remaining;
1738 remaining -= runtime;
1740 cfs_rq->runtime_remaining += runtime;
1741 cfs_rq->runtime_expires = expires;
1743 /* we check whether we're throttled above */
1744 if (cfs_rq->runtime_remaining > 0)
1745 unthrottle_cfs_rq(cfs_rq);
1747 next:
1748 raw_spin_unlock(&rq->lock);
1750 if (!remaining)
1751 break;
1753 rcu_read_unlock();
1755 return remaining;
1759 * Responsible for refilling a task_group's bandwidth and unthrottling its
1760 * cfs_rqs as appropriate. If there has been no activity within the last
1761 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1762 * used to track this state.
1764 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1766 u64 runtime, runtime_expires;
1767 int idle = 1, throttled;
1769 raw_spin_lock(&cfs_b->lock);
1770 /* no need to continue the timer with no bandwidth constraint */
1771 if (cfs_b->quota == RUNTIME_INF)
1772 goto out_unlock;
1774 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1775 /* idle depends on !throttled (for the case of a large deficit) */
1776 idle = cfs_b->idle && !throttled;
1777 cfs_b->nr_periods += overrun;
1779 /* if we're going inactive then everything else can be deferred */
1780 if (idle)
1781 goto out_unlock;
1783 __refill_cfs_bandwidth_runtime(cfs_b);
1785 if (!throttled) {
1786 /* mark as potentially idle for the upcoming period */
1787 cfs_b->idle = 1;
1788 goto out_unlock;
1791 /* account preceding periods in which throttling occurred */
1792 cfs_b->nr_throttled += overrun;
1795 * There are throttled entities so we must first use the new bandwidth
1796 * to unthrottle them before making it generally available. This
1797 * ensures that all existing debts will be paid before a new cfs_rq is
1798 * allowed to run.
1800 runtime = cfs_b->runtime;
1801 runtime_expires = cfs_b->runtime_expires;
1802 cfs_b->runtime = 0;
1805 * This check is repeated as we are holding onto the new bandwidth
1806 * while we unthrottle. This can potentially race with an unthrottled
1807 * group trying to acquire new bandwidth from the global pool.
1809 while (throttled && runtime > 0) {
1810 raw_spin_unlock(&cfs_b->lock);
1811 /* we can't nest cfs_b->lock while distributing bandwidth */
1812 runtime = distribute_cfs_runtime(cfs_b, runtime,
1813 runtime_expires);
1814 raw_spin_lock(&cfs_b->lock);
1816 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1819 /* return (any) remaining runtime */
1820 cfs_b->runtime = runtime;
1822 * While we are ensured activity in the period following an
1823 * unthrottle, this also covers the case in which the new bandwidth is
1824 * insufficient to cover the existing bandwidth deficit. (Forcing the
1825 * timer to remain active while there are any throttled entities.)
1827 cfs_b->idle = 0;
1828 out_unlock:
1829 if (idle)
1830 cfs_b->timer_active = 0;
1831 raw_spin_unlock(&cfs_b->lock);
1833 return idle;
1836 /* a cfs_rq won't donate quota below this amount */
1837 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1838 /* minimum remaining period time to redistribute slack quota */
1839 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1840 /* how long we wait to gather additional slack before distributing */
1841 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1843 /* are we near the end of the current quota period? */
1844 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1846 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1847 u64 remaining;
1849 /* if the call-back is running a quota refresh is already occurring */
1850 if (hrtimer_callback_running(refresh_timer))
1851 return 1;
1853 /* is a quota refresh about to occur? */
1854 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1855 if (remaining < min_expire)
1856 return 1;
1858 return 0;
1861 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1863 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1865 /* if there's a quota refresh soon don't bother with slack */
1866 if (runtime_refresh_within(cfs_b, min_left))
1867 return;
1869 start_bandwidth_timer(&cfs_b->slack_timer,
1870 ns_to_ktime(cfs_bandwidth_slack_period));
1873 /* we know any runtime found here is valid as update_curr() precedes return */
1874 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1876 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1877 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1879 if (slack_runtime <= 0)
1880 return;
1882 raw_spin_lock(&cfs_b->lock);
1883 if (cfs_b->quota != RUNTIME_INF &&
1884 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1885 cfs_b->runtime += slack_runtime;
1887 /* we are under rq->lock, defer unthrottling using a timer */
1888 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1889 !list_empty(&cfs_b->throttled_cfs_rq))
1890 start_cfs_slack_bandwidth(cfs_b);
1892 raw_spin_unlock(&cfs_b->lock);
1894 /* even if it's not valid for return we don't want to try again */
1895 cfs_rq->runtime_remaining -= slack_runtime;
1898 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1900 if (!cfs_bandwidth_used())
1901 return;
1903 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1904 return;
1906 __return_cfs_rq_runtime(cfs_rq);
1910 * This is done with a timer (instead of inline with bandwidth return) since
1911 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1913 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1915 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1916 u64 expires;
1918 /* confirm we're still not at a refresh boundary */
1919 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1920 return;
1922 raw_spin_lock(&cfs_b->lock);
1923 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1924 runtime = cfs_b->runtime;
1925 cfs_b->runtime = 0;
1927 expires = cfs_b->runtime_expires;
1928 raw_spin_unlock(&cfs_b->lock);
1930 if (!runtime)
1931 return;
1933 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1935 raw_spin_lock(&cfs_b->lock);
1936 if (expires == cfs_b->runtime_expires)
1937 cfs_b->runtime = runtime;
1938 raw_spin_unlock(&cfs_b->lock);
1942 * When a group wakes up we want to make sure that its quota is not already
1943 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1944 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1946 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1948 if (!cfs_bandwidth_used())
1949 return;
1951 /* an active group must be handled by the update_curr()->put() path */
1952 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1953 return;
1955 /* ensure the group is not already throttled */
1956 if (cfs_rq_throttled(cfs_rq))
1957 return;
1959 /* update runtime allocation */
1960 account_cfs_rq_runtime(cfs_rq, 0);
1961 if (cfs_rq->runtime_remaining <= 0)
1962 throttle_cfs_rq(cfs_rq);
1965 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1966 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1968 if (!cfs_bandwidth_used())
1969 return;
1971 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1972 return;
1975 * it's possible for a throttled entity to be forced into a running
1976 * state (e.g. set_curr_task), in this case we're finished.
1978 if (cfs_rq_throttled(cfs_rq))
1979 return;
1981 throttle_cfs_rq(cfs_rq);
1984 static inline u64 default_cfs_period(void);
1985 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1986 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1988 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1990 struct cfs_bandwidth *cfs_b =
1991 container_of(timer, struct cfs_bandwidth, slack_timer);
1992 do_sched_cfs_slack_timer(cfs_b);
1994 return HRTIMER_NORESTART;
1997 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1999 struct cfs_bandwidth *cfs_b =
2000 container_of(timer, struct cfs_bandwidth, period_timer);
2001 ktime_t now;
2002 int overrun;
2003 int idle = 0;
2005 for (;;) {
2006 now = hrtimer_cb_get_time(timer);
2007 overrun = hrtimer_forward(timer, now, cfs_b->period);
2009 if (!overrun)
2010 break;
2012 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2015 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2018 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2020 raw_spin_lock_init(&cfs_b->lock);
2021 cfs_b->runtime = 0;
2022 cfs_b->quota = RUNTIME_INF;
2023 cfs_b->period = ns_to_ktime(default_cfs_period());
2025 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2026 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2027 cfs_b->period_timer.function = sched_cfs_period_timer;
2028 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2029 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2032 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2034 cfs_rq->runtime_enabled = 0;
2035 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2038 /* requires cfs_b->lock, may release to reprogram timer */
2039 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2042 * The timer may be active because we're trying to set a new bandwidth
2043 * period or because we're racing with the tear-down path
2044 * (timer_active==0 becomes visible before the hrtimer call-back
2045 * terminates). In either case we ensure that it's re-programmed
2047 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2048 raw_spin_unlock(&cfs_b->lock);
2049 /* ensure cfs_b->lock is available while we wait */
2050 hrtimer_cancel(&cfs_b->period_timer);
2052 raw_spin_lock(&cfs_b->lock);
2053 /* if someone else restarted the timer then we're done */
2054 if (cfs_b->timer_active)
2055 return;
2058 cfs_b->timer_active = 1;
2059 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2062 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2064 hrtimer_cancel(&cfs_b->period_timer);
2065 hrtimer_cancel(&cfs_b->slack_timer);
2068 void unthrottle_offline_cfs_rqs(struct rq *rq)
2070 struct cfs_rq *cfs_rq;
2072 for_each_leaf_cfs_rq(rq, cfs_rq) {
2073 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2075 if (!cfs_rq->runtime_enabled)
2076 continue;
2079 * clock_task is not advancing so we just need to make sure
2080 * there's some valid quota amount
2082 cfs_rq->runtime_remaining = cfs_b->quota;
2083 if (cfs_rq_throttled(cfs_rq))
2084 unthrottle_cfs_rq(cfs_rq);
2088 #else /* CONFIG_CFS_BANDWIDTH */
2089 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2090 unsigned long delta_exec) {}
2091 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2092 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2093 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2095 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2097 return 0;
2100 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2102 return 0;
2105 static inline int throttled_lb_pair(struct task_group *tg,
2106 int src_cpu, int dest_cpu)
2108 return 0;
2111 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2113 #ifdef CONFIG_FAIR_GROUP_SCHED
2114 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2115 #endif
2117 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2119 return NULL;
2121 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2122 void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2124 #endif /* CONFIG_CFS_BANDWIDTH */
2126 /**************************************************
2127 * CFS operations on tasks:
2130 #ifdef CONFIG_SCHED_HRTICK
2131 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2133 struct sched_entity *se = &p->se;
2134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2136 WARN_ON(task_rq(p) != rq);
2138 if (cfs_rq->nr_running > 1) {
2139 u64 slice = sched_slice(cfs_rq, se);
2140 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2141 s64 delta = slice - ran;
2143 if (delta < 0) {
2144 if (rq->curr == p)
2145 resched_task(p);
2146 return;
2150 * Don't schedule slices shorter than 10000ns, that just
2151 * doesn't make sense. Rely on vruntime for fairness.
2153 if (rq->curr != p)
2154 delta = max_t(s64, 10000LL, delta);
2156 hrtick_start(rq, delta);
2161 * called from enqueue/dequeue and updates the hrtick when the
2162 * current task is from our class and nr_running is low enough
2163 * to matter.
2165 static void hrtick_update(struct rq *rq)
2167 struct task_struct *curr = rq->curr;
2169 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2170 return;
2172 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2173 hrtick_start_fair(rq, curr);
2175 #else /* !CONFIG_SCHED_HRTICK */
2176 static inline void
2177 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2181 static inline void hrtick_update(struct rq *rq)
2184 #endif
2187 * The enqueue_task method is called before nr_running is
2188 * increased. Here we update the fair scheduling stats and
2189 * then put the task into the rbtree:
2191 static void
2192 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2194 struct cfs_rq *cfs_rq;
2195 struct sched_entity *se = &p->se;
2197 for_each_sched_entity(se) {
2198 if (se->on_rq)
2199 break;
2200 cfs_rq = cfs_rq_of(se);
2201 enqueue_entity(cfs_rq, se, flags);
2204 * end evaluation on encountering a throttled cfs_rq
2206 * note: in the case of encountering a throttled cfs_rq we will
2207 * post the final h_nr_running increment below.
2209 if (cfs_rq_throttled(cfs_rq))
2210 break;
2211 cfs_rq->h_nr_running++;
2213 flags = ENQUEUE_WAKEUP;
2216 for_each_sched_entity(se) {
2217 cfs_rq = cfs_rq_of(se);
2218 cfs_rq->h_nr_running++;
2220 if (cfs_rq_throttled(cfs_rq))
2221 break;
2223 update_cfs_load(cfs_rq, 0);
2224 update_cfs_shares(cfs_rq);
2227 if (!se)
2228 inc_nr_running(rq);
2229 hrtick_update(rq);
2232 static void set_next_buddy(struct sched_entity *se);
2235 * The dequeue_task method is called before nr_running is
2236 * decreased. We remove the task from the rbtree and
2237 * update the fair scheduling stats:
2239 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2241 struct cfs_rq *cfs_rq;
2242 struct sched_entity *se = &p->se;
2243 int task_sleep = flags & DEQUEUE_SLEEP;
2245 for_each_sched_entity(se) {
2246 cfs_rq = cfs_rq_of(se);
2247 dequeue_entity(cfs_rq, se, flags);
2250 * end evaluation on encountering a throttled cfs_rq
2252 * note: in the case of encountering a throttled cfs_rq we will
2253 * post the final h_nr_running decrement below.
2255 if (cfs_rq_throttled(cfs_rq))
2256 break;
2257 cfs_rq->h_nr_running--;
2259 /* Don't dequeue parent if it has other entities besides us */
2260 if (cfs_rq->load.weight) {
2262 * Bias pick_next to pick a task from this cfs_rq, as
2263 * p is sleeping when it is within its sched_slice.
2265 if (task_sleep && parent_entity(se))
2266 set_next_buddy(parent_entity(se));
2268 /* avoid re-evaluating load for this entity */
2269 se = parent_entity(se);
2270 break;
2272 flags |= DEQUEUE_SLEEP;
2275 for_each_sched_entity(se) {
2276 cfs_rq = cfs_rq_of(se);
2277 cfs_rq->h_nr_running--;
2279 if (cfs_rq_throttled(cfs_rq))
2280 break;
2282 update_cfs_load(cfs_rq, 0);
2283 update_cfs_shares(cfs_rq);
2286 if (!se)
2287 dec_nr_running(rq);
2288 hrtick_update(rq);
2291 #ifdef CONFIG_SMP
2292 /* Used instead of source_load when we know the type == 0 */
2293 static unsigned long weighted_cpuload(const int cpu)
2295 return cpu_rq(cpu)->load.weight;
2299 * Return a low guess at the load of a migration-source cpu weighted
2300 * according to the scheduling class and "nice" value.
2302 * We want to under-estimate the load of migration sources, to
2303 * balance conservatively.
2305 static unsigned long source_load(int cpu, int type)
2307 struct rq *rq = cpu_rq(cpu);
2308 unsigned long total = weighted_cpuload(cpu);
2310 if (type == 0 || !sched_feat(LB_BIAS))
2311 return total;
2313 return min(rq->cpu_load[type-1], total);
2317 * Return a high guess at the load of a migration-target cpu weighted
2318 * according to the scheduling class and "nice" value.
2320 static unsigned long target_load(int cpu, int type)
2322 struct rq *rq = cpu_rq(cpu);
2323 unsigned long total = weighted_cpuload(cpu);
2325 if (type == 0 || !sched_feat(LB_BIAS))
2326 return total;
2328 return max(rq->cpu_load[type-1], total);
2331 static unsigned long power_of(int cpu)
2333 return cpu_rq(cpu)->cpu_power;
2336 static unsigned long cpu_avg_load_per_task(int cpu)
2338 struct rq *rq = cpu_rq(cpu);
2339 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2341 if (nr_running)
2342 return rq->load.weight / nr_running;
2344 return 0;
2348 static void task_waking_fair(struct task_struct *p)
2350 struct sched_entity *se = &p->se;
2351 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2352 u64 min_vruntime;
2354 #ifndef CONFIG_64BIT
2355 u64 min_vruntime_copy;
2357 do {
2358 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2359 smp_rmb();
2360 min_vruntime = cfs_rq->min_vruntime;
2361 } while (min_vruntime != min_vruntime_copy);
2362 #else
2363 min_vruntime = cfs_rq->min_vruntime;
2364 #endif
2366 se->vruntime -= min_vruntime;
2369 #ifdef CONFIG_FAIR_GROUP_SCHED
2371 * effective_load() calculates the load change as seen from the root_task_group
2373 * Adding load to a group doesn't make a group heavier, but can cause movement
2374 * of group shares between cpus. Assuming the shares were perfectly aligned one
2375 * can calculate the shift in shares.
2377 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2378 * on this @cpu and results in a total addition (subtraction) of @wg to the
2379 * total group weight.
2381 * Given a runqueue weight distribution (rw_i) we can compute a shares
2382 * distribution (s_i) using:
2384 * s_i = rw_i / \Sum rw_j (1)
2386 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2387 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2388 * shares distribution (s_i):
2390 * rw_i = { 2, 4, 1, 0 }
2391 * s_i = { 2/7, 4/7, 1/7, 0 }
2393 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2394 * task used to run on and the CPU the waker is running on), we need to
2395 * compute the effect of waking a task on either CPU and, in case of a sync
2396 * wakeup, compute the effect of the current task going to sleep.
2398 * So for a change of @wl to the local @cpu with an overall group weight change
2399 * of @wl we can compute the new shares distribution (s'_i) using:
2401 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2403 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2404 * differences in waking a task to CPU 0. The additional task changes the
2405 * weight and shares distributions like:
2407 * rw'_i = { 3, 4, 1, 0 }
2408 * s'_i = { 3/8, 4/8, 1/8, 0 }
2410 * We can then compute the difference in effective weight by using:
2412 * dw_i = S * (s'_i - s_i) (3)
2414 * Where 'S' is the group weight as seen by its parent.
2416 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2417 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2418 * 4/7) times the weight of the group.
2420 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2422 struct sched_entity *se = tg->se[cpu];
2424 if (!tg->parent) /* the trivial, non-cgroup case */
2425 return wl;
2427 for_each_sched_entity(se) {
2428 long w, W;
2430 tg = se->my_q->tg;
2433 * W = @wg + \Sum rw_j
2435 W = wg + calc_tg_weight(tg, se->my_q);
2438 * w = rw_i + @wl
2440 w = se->my_q->load.weight + wl;
2443 * wl = S * s'_i; see (2)
2445 if (W > 0 && w < W)
2446 wl = (w * tg->shares) / W;
2447 else
2448 wl = tg->shares;
2451 * Per the above, wl is the new se->load.weight value; since
2452 * those are clipped to [MIN_SHARES, ...) do so now. See
2453 * calc_cfs_shares().
2455 if (wl < MIN_SHARES)
2456 wl = MIN_SHARES;
2459 * wl = dw_i = S * (s'_i - s_i); see (3)
2461 wl -= se->load.weight;
2464 * Recursively apply this logic to all parent groups to compute
2465 * the final effective load change on the root group. Since
2466 * only the @tg group gets extra weight, all parent groups can
2467 * only redistribute existing shares. @wl is the shift in shares
2468 * resulting from this level per the above.
2470 wg = 0;
2473 return wl;
2475 #else
2477 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2478 unsigned long wl, unsigned long wg)
2480 return wl;
2483 #endif
2485 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2487 s64 this_load, load;
2488 int idx, this_cpu, prev_cpu;
2489 unsigned long tl_per_task;
2490 struct task_group *tg;
2491 unsigned long weight;
2492 int balanced;
2494 idx = sd->wake_idx;
2495 this_cpu = smp_processor_id();
2496 prev_cpu = task_cpu(p);
2497 load = source_load(prev_cpu, idx);
2498 this_load = target_load(this_cpu, idx);
2501 * If sync wakeup then subtract the (maximum possible)
2502 * effect of the currently running task from the load
2503 * of the current CPU:
2505 if (sync) {
2506 tg = task_group(current);
2507 weight = current->se.load.weight;
2509 this_load += effective_load(tg, this_cpu, -weight, -weight);
2510 load += effective_load(tg, prev_cpu, 0, -weight);
2513 tg = task_group(p);
2514 weight = p->se.load.weight;
2517 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2518 * due to the sync cause above having dropped this_load to 0, we'll
2519 * always have an imbalance, but there's really nothing you can do
2520 * about that, so that's good too.
2522 * Otherwise check if either cpus are near enough in load to allow this
2523 * task to be woken on this_cpu.
2525 if (this_load > 0) {
2526 s64 this_eff_load, prev_eff_load;
2528 this_eff_load = 100;
2529 this_eff_load *= power_of(prev_cpu);
2530 this_eff_load *= this_load +
2531 effective_load(tg, this_cpu, weight, weight);
2533 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2534 prev_eff_load *= power_of(this_cpu);
2535 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2537 balanced = this_eff_load <= prev_eff_load;
2538 } else
2539 balanced = true;
2542 * If the currently running task will sleep within
2543 * a reasonable amount of time then attract this newly
2544 * woken task:
2546 if (sync && balanced)
2547 return 1;
2549 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2550 tl_per_task = cpu_avg_load_per_task(this_cpu);
2552 if (balanced ||
2553 (this_load <= load &&
2554 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2556 * This domain has SD_WAKE_AFFINE and
2557 * p is cache cold in this domain, and
2558 * there is no bad imbalance.
2560 schedstat_inc(sd, ttwu_move_affine);
2561 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2563 return 1;
2565 return 0;
2569 * find_idlest_group finds and returns the least busy CPU group within the
2570 * domain.
2572 static struct sched_group *
2573 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2574 int this_cpu, int load_idx)
2576 struct sched_group *idlest = NULL, *group = sd->groups;
2577 unsigned long min_load = ULONG_MAX, this_load = 0;
2578 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2580 do {
2581 unsigned long load, avg_load;
2582 int local_group;
2583 int i;
2585 /* Skip over this group if it has no CPUs allowed */
2586 if (!cpumask_intersects(sched_group_cpus(group),
2587 tsk_cpus_allowed(p)))
2588 continue;
2590 local_group = cpumask_test_cpu(this_cpu,
2591 sched_group_cpus(group));
2593 /* Tally up the load of all CPUs in the group */
2594 avg_load = 0;
2596 for_each_cpu(i, sched_group_cpus(group)) {
2597 /* Bias balancing toward cpus of our domain */
2598 if (local_group)
2599 load = source_load(i, load_idx);
2600 else
2601 load = target_load(i, load_idx);
2603 avg_load += load;
2606 /* Adjust by relative CPU power of the group */
2607 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2609 if (local_group) {
2610 this_load = avg_load;
2611 } else if (avg_load < min_load) {
2612 min_load = avg_load;
2613 idlest = group;
2615 } while (group = group->next, group != sd->groups);
2617 if (!idlest || 100*this_load < imbalance*min_load)
2618 return NULL;
2619 return idlest;
2623 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2625 static int
2626 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2628 unsigned long load, min_load = ULONG_MAX;
2629 int idlest = -1;
2630 int i;
2632 /* Traverse only the allowed CPUs */
2633 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2634 load = weighted_cpuload(i);
2636 if (load < min_load || (load == min_load && i == this_cpu)) {
2637 min_load = load;
2638 idlest = i;
2642 return idlest;
2646 * Try and locate an idle CPU in the sched_domain.
2648 static int select_idle_sibling(struct task_struct *p, int target)
2650 int cpu = smp_processor_id();
2651 int prev_cpu = task_cpu(p);
2652 struct sched_domain *sd;
2653 struct sched_group *sg;
2654 int i;
2657 * If the task is going to be woken-up on this cpu and if it is
2658 * already idle, then it is the right target.
2660 if (target == cpu && idle_cpu(cpu))
2661 return cpu;
2664 * If the task is going to be woken-up on the cpu where it previously
2665 * ran and if it is currently idle, then it the right target.
2667 if (target == prev_cpu && idle_cpu(prev_cpu))
2668 return prev_cpu;
2671 * Otherwise, iterate the domains and find an elegible idle cpu.
2673 rcu_read_lock();
2675 sd = rcu_dereference(per_cpu(sd_llc, target));
2676 for_each_lower_domain(sd) {
2677 sg = sd->groups;
2678 do {
2679 if (!cpumask_intersects(sched_group_cpus(sg),
2680 tsk_cpus_allowed(p)))
2681 goto next;
2683 for_each_cpu(i, sched_group_cpus(sg)) {
2684 if (!idle_cpu(i))
2685 goto next;
2688 target = cpumask_first_and(sched_group_cpus(sg),
2689 tsk_cpus_allowed(p));
2690 goto done;
2691 next:
2692 sg = sg->next;
2693 } while (sg != sd->groups);
2695 done:
2696 rcu_read_unlock();
2698 return target;
2702 * sched_balance_self: balance the current task (running on cpu) in domains
2703 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2704 * SD_BALANCE_EXEC.
2706 * Balance, ie. select the least loaded group.
2708 * Returns the target CPU number, or the same CPU if no balancing is needed.
2710 * preempt must be disabled.
2712 static int
2713 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2715 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2716 int cpu = smp_processor_id();
2717 int prev_cpu = task_cpu(p);
2718 int new_cpu = cpu;
2719 int want_affine = 0;
2720 int want_sd = 1;
2721 int sync = wake_flags & WF_SYNC;
2723 if (p->rt.nr_cpus_allowed == 1)
2724 return prev_cpu;
2726 if (sd_flag & SD_BALANCE_WAKE) {
2727 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2728 want_affine = 1;
2729 new_cpu = prev_cpu;
2732 rcu_read_lock();
2733 for_each_domain(cpu, tmp) {
2734 if (!(tmp->flags & SD_LOAD_BALANCE))
2735 continue;
2738 * If power savings logic is enabled for a domain, see if we
2739 * are not overloaded, if so, don't balance wider.
2741 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
2742 unsigned long power = 0;
2743 unsigned long nr_running = 0;
2744 unsigned long capacity;
2745 int i;
2747 for_each_cpu(i, sched_domain_span(tmp)) {
2748 power += power_of(i);
2749 nr_running += cpu_rq(i)->cfs.nr_running;
2752 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2754 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2755 nr_running /= 2;
2757 if (nr_running < capacity)
2758 want_sd = 0;
2762 * If both cpu and prev_cpu are part of this domain,
2763 * cpu is a valid SD_WAKE_AFFINE target.
2765 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2766 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2767 affine_sd = tmp;
2768 want_affine = 0;
2771 if (!want_sd && !want_affine)
2772 break;
2774 if (!(tmp->flags & sd_flag))
2775 continue;
2777 if (want_sd)
2778 sd = tmp;
2781 if (affine_sd) {
2782 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2783 prev_cpu = cpu;
2785 new_cpu = select_idle_sibling(p, prev_cpu);
2786 goto unlock;
2789 while (sd) {
2790 int load_idx = sd->forkexec_idx;
2791 struct sched_group *group;
2792 int weight;
2794 if (!(sd->flags & sd_flag)) {
2795 sd = sd->child;
2796 continue;
2799 if (sd_flag & SD_BALANCE_WAKE)
2800 load_idx = sd->wake_idx;
2802 group = find_idlest_group(sd, p, cpu, load_idx);
2803 if (!group) {
2804 sd = sd->child;
2805 continue;
2808 new_cpu = find_idlest_cpu(group, p, cpu);
2809 if (new_cpu == -1 || new_cpu == cpu) {
2810 /* Now try balancing at a lower domain level of cpu */
2811 sd = sd->child;
2812 continue;
2815 /* Now try balancing at a lower domain level of new_cpu */
2816 cpu = new_cpu;
2817 weight = sd->span_weight;
2818 sd = NULL;
2819 for_each_domain(cpu, tmp) {
2820 if (weight <= tmp->span_weight)
2821 break;
2822 if (tmp->flags & sd_flag)
2823 sd = tmp;
2825 /* while loop will break here if sd == NULL */
2827 unlock:
2828 rcu_read_unlock();
2830 return new_cpu;
2832 #endif /* CONFIG_SMP */
2834 static unsigned long
2835 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2837 unsigned long gran = sysctl_sched_wakeup_granularity;
2840 * Since its curr running now, convert the gran from real-time
2841 * to virtual-time in his units.
2843 * By using 'se' instead of 'curr' we penalize light tasks, so
2844 * they get preempted easier. That is, if 'se' < 'curr' then
2845 * the resulting gran will be larger, therefore penalizing the
2846 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2847 * be smaller, again penalizing the lighter task.
2849 * This is especially important for buddies when the leftmost
2850 * task is higher priority than the buddy.
2852 return calc_delta_fair(gran, se);
2856 * Should 'se' preempt 'curr'.
2858 * |s1
2859 * |s2
2860 * |s3
2862 * |<--->|c
2864 * w(c, s1) = -1
2865 * w(c, s2) = 0
2866 * w(c, s3) = 1
2869 static int
2870 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2872 s64 gran, vdiff = curr->vruntime - se->vruntime;
2874 if (vdiff <= 0)
2875 return -1;
2877 gran = wakeup_gran(curr, se);
2878 if (vdiff > gran)
2879 return 1;
2881 return 0;
2884 static void set_last_buddy(struct sched_entity *se)
2886 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2887 return;
2889 for_each_sched_entity(se)
2890 cfs_rq_of(se)->last = se;
2893 static void set_next_buddy(struct sched_entity *se)
2895 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2896 return;
2898 for_each_sched_entity(se)
2899 cfs_rq_of(se)->next = se;
2902 static void set_skip_buddy(struct sched_entity *se)
2904 for_each_sched_entity(se)
2905 cfs_rq_of(se)->skip = se;
2909 * Preempt the current task with a newly woken task if needed:
2911 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2913 struct task_struct *curr = rq->curr;
2914 struct sched_entity *se = &curr->se, *pse = &p->se;
2915 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2916 int scale = cfs_rq->nr_running >= sched_nr_latency;
2917 int next_buddy_marked = 0;
2919 if (unlikely(se == pse))
2920 return;
2923 * This is possible from callers such as pull_task(), in which we
2924 * unconditionally check_prempt_curr() after an enqueue (which may have
2925 * lead to a throttle). This both saves work and prevents false
2926 * next-buddy nomination below.
2928 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2929 return;
2931 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2932 set_next_buddy(pse);
2933 next_buddy_marked = 1;
2937 * We can come here with TIF_NEED_RESCHED already set from new task
2938 * wake up path.
2940 * Note: this also catches the edge-case of curr being in a throttled
2941 * group (e.g. via set_curr_task), since update_curr() (in the
2942 * enqueue of curr) will have resulted in resched being set. This
2943 * prevents us from potentially nominating it as a false LAST_BUDDY
2944 * below.
2946 if (test_tsk_need_resched(curr))
2947 return;
2949 /* Idle tasks are by definition preempted by non-idle tasks. */
2950 if (unlikely(curr->policy == SCHED_IDLE) &&
2951 likely(p->policy != SCHED_IDLE))
2952 goto preempt;
2955 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2956 * is driven by the tick):
2958 if (unlikely(p->policy != SCHED_NORMAL))
2959 return;
2961 find_matching_se(&se, &pse);
2962 update_curr(cfs_rq_of(se));
2963 BUG_ON(!pse);
2964 if (wakeup_preempt_entity(se, pse) == 1) {
2966 * Bias pick_next to pick the sched entity that is
2967 * triggering this preemption.
2969 if (!next_buddy_marked)
2970 set_next_buddy(pse);
2971 goto preempt;
2974 return;
2976 preempt:
2977 resched_task(curr);
2979 * Only set the backward buddy when the current task is still
2980 * on the rq. This can happen when a wakeup gets interleaved
2981 * with schedule on the ->pre_schedule() or idle_balance()
2982 * point, either of which can * drop the rq lock.
2984 * Also, during early boot the idle thread is in the fair class,
2985 * for obvious reasons its a bad idea to schedule back to it.
2987 if (unlikely(!se->on_rq || curr == rq->idle))
2988 return;
2990 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2991 set_last_buddy(se);
2994 static struct task_struct *pick_next_task_fair(struct rq *rq)
2996 struct task_struct *p;
2997 struct cfs_rq *cfs_rq = &rq->cfs;
2998 struct sched_entity *se;
3000 if (!cfs_rq->nr_running)
3001 return NULL;
3003 do {
3004 se = pick_next_entity(cfs_rq);
3005 set_next_entity(cfs_rq, se);
3006 cfs_rq = group_cfs_rq(se);
3007 } while (cfs_rq);
3009 p = task_of(se);
3010 if (hrtick_enabled(rq))
3011 hrtick_start_fair(rq, p);
3013 return p;
3017 * Account for a descheduled task:
3019 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3021 struct sched_entity *se = &prev->se;
3022 struct cfs_rq *cfs_rq;
3024 for_each_sched_entity(se) {
3025 cfs_rq = cfs_rq_of(se);
3026 put_prev_entity(cfs_rq, se);
3031 * sched_yield() is very simple
3033 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3035 static void yield_task_fair(struct rq *rq)
3037 struct task_struct *curr = rq->curr;
3038 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3039 struct sched_entity *se = &curr->se;
3042 * Are we the only task in the tree?
3044 if (unlikely(rq->nr_running == 1))
3045 return;
3047 clear_buddies(cfs_rq, se);
3049 if (curr->policy != SCHED_BATCH) {
3050 update_rq_clock(rq);
3052 * Update run-time statistics of the 'current'.
3054 update_curr(cfs_rq);
3056 * Tell update_rq_clock() that we've just updated,
3057 * so we don't do microscopic update in schedule()
3058 * and double the fastpath cost.
3060 rq->skip_clock_update = 1;
3063 set_skip_buddy(se);
3066 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3068 struct sched_entity *se = &p->se;
3070 /* throttled hierarchies are not runnable */
3071 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3072 return false;
3074 /* Tell the scheduler that we'd really like pse to run next. */
3075 set_next_buddy(se);
3077 yield_task_fair(rq);
3079 return true;
3082 #ifdef CONFIG_SMP
3083 /**************************************************
3084 * Fair scheduling class load-balancing methods:
3088 * pull_task - move a task from a remote runqueue to the local runqueue.
3089 * Both runqueues must be locked.
3091 static void pull_task(struct rq *src_rq, struct task_struct *p,
3092 struct rq *this_rq, int this_cpu)
3094 deactivate_task(src_rq, p, 0);
3095 set_task_cpu(p, this_cpu);
3096 activate_task(this_rq, p, 0);
3097 check_preempt_curr(this_rq, p, 0);
3101 * Is this task likely cache-hot:
3103 static int
3104 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3106 s64 delta;
3108 if (p->sched_class != &fair_sched_class)
3109 return 0;
3111 if (unlikely(p->policy == SCHED_IDLE))
3112 return 0;
3115 * Buddy candidates are cache hot:
3117 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3118 (&p->se == cfs_rq_of(&p->se)->next ||
3119 &p->se == cfs_rq_of(&p->se)->last))
3120 return 1;
3122 if (sysctl_sched_migration_cost == -1)
3123 return 1;
3124 if (sysctl_sched_migration_cost == 0)
3125 return 0;
3127 delta = now - p->se.exec_start;
3129 return delta < (s64)sysctl_sched_migration_cost;
3132 #define LBF_ALL_PINNED 0x01
3133 #define LBF_NEED_BREAK 0x02
3134 #define LBF_ABORT 0x04
3137 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3139 static
3140 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3141 struct sched_domain *sd, enum cpu_idle_type idle,
3142 int *lb_flags)
3144 int tsk_cache_hot = 0;
3146 * We do not migrate tasks that are:
3147 * 1) running (obviously), or
3148 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3149 * 3) are cache-hot on their current CPU.
3151 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
3152 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3153 return 0;
3155 *lb_flags &= ~LBF_ALL_PINNED;
3157 if (task_running(rq, p)) {
3158 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3159 return 0;
3163 * Aggressive migration if:
3164 * 1) task is cache cold, or
3165 * 2) too many balance attempts have failed.
3168 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
3169 if (!tsk_cache_hot ||
3170 sd->nr_balance_failed > sd->cache_nice_tries) {
3171 #ifdef CONFIG_SCHEDSTATS
3172 if (tsk_cache_hot) {
3173 schedstat_inc(sd, lb_hot_gained[idle]);
3174 schedstat_inc(p, se.statistics.nr_forced_migrations);
3176 #endif
3177 return 1;
3180 if (tsk_cache_hot) {
3181 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3182 return 0;
3184 return 1;
3188 * move_one_task tries to move exactly one task from busiest to this_rq, as
3189 * part of active balancing operations within "domain".
3190 * Returns 1 if successful and 0 otherwise.
3192 * Called with both runqueues locked.
3194 static int
3195 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3196 struct sched_domain *sd, enum cpu_idle_type idle)
3198 struct task_struct *p, *n;
3199 struct cfs_rq *cfs_rq;
3200 int pinned = 0;
3202 for_each_leaf_cfs_rq(busiest, cfs_rq) {
3203 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
3204 if (throttled_lb_pair(task_group(p),
3205 busiest->cpu, this_cpu))
3206 break;
3208 if (!can_migrate_task(p, busiest, this_cpu,
3209 sd, idle, &pinned))
3210 continue;
3212 pull_task(busiest, p, this_rq, this_cpu);
3214 * Right now, this is only the second place pull_task()
3215 * is called, so we can safely collect pull_task()
3216 * stats here rather than inside pull_task().
3218 schedstat_inc(sd, lb_gained[idle]);
3219 return 1;
3223 return 0;
3226 static unsigned long
3227 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3228 unsigned long max_load_move, struct sched_domain *sd,
3229 enum cpu_idle_type idle, int *lb_flags,
3230 struct cfs_rq *busiest_cfs_rq)
3232 int loops = 0, pulled = 0;
3233 long rem_load_move = max_load_move;
3234 struct task_struct *p, *n;
3236 if (max_load_move == 0)
3237 goto out;
3239 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
3240 if (loops++ > sysctl_sched_nr_migrate) {
3241 *lb_flags |= LBF_NEED_BREAK;
3242 break;
3245 if ((p->se.load.weight >> 1) > rem_load_move ||
3246 !can_migrate_task(p, busiest, this_cpu, sd, idle,
3247 lb_flags))
3248 continue;
3250 pull_task(busiest, p, this_rq, this_cpu);
3251 pulled++;
3252 rem_load_move -= p->se.load.weight;
3254 #ifdef CONFIG_PREEMPT
3256 * NEWIDLE balancing is a source of latency, so preemptible
3257 * kernels will stop after the first task is pulled to minimize
3258 * the critical section.
3260 if (idle == CPU_NEWLY_IDLE) {
3261 *lb_flags |= LBF_ABORT;
3262 break;
3264 #endif
3267 * We only want to steal up to the prescribed amount of
3268 * weighted load.
3270 if (rem_load_move <= 0)
3271 break;
3273 out:
3275 * Right now, this is one of only two places pull_task() is called,
3276 * so we can safely collect pull_task() stats here rather than
3277 * inside pull_task().
3279 schedstat_add(sd, lb_gained[idle], pulled);
3281 return max_load_move - rem_load_move;
3284 #ifdef CONFIG_FAIR_GROUP_SCHED
3286 * update tg->load_weight by folding this cpu's load_avg
3288 static int update_shares_cpu(struct task_group *tg, int cpu)
3290 struct cfs_rq *cfs_rq;
3291 unsigned long flags;
3292 struct rq *rq;
3294 if (!tg->se[cpu])
3295 return 0;
3297 rq = cpu_rq(cpu);
3298 cfs_rq = tg->cfs_rq[cpu];
3300 raw_spin_lock_irqsave(&rq->lock, flags);
3302 update_rq_clock(rq);
3303 update_cfs_load(cfs_rq, 1);
3306 * We need to update shares after updating tg->load_weight in
3307 * order to adjust the weight of groups with long running tasks.
3309 update_cfs_shares(cfs_rq);
3311 raw_spin_unlock_irqrestore(&rq->lock, flags);
3313 return 0;
3316 static void update_shares(int cpu)
3318 struct cfs_rq *cfs_rq;
3319 struct rq *rq = cpu_rq(cpu);
3321 rcu_read_lock();
3323 * Iterates the task_group tree in a bottom up fashion, see
3324 * list_add_leaf_cfs_rq() for details.
3326 for_each_leaf_cfs_rq(rq, cfs_rq) {
3327 /* throttled entities do not contribute to load */
3328 if (throttled_hierarchy(cfs_rq))
3329 continue;
3331 update_shares_cpu(cfs_rq->tg, cpu);
3333 rcu_read_unlock();
3337 * Compute the cpu's hierarchical load factor for each task group.
3338 * This needs to be done in a top-down fashion because the load of a child
3339 * group is a fraction of its parents load.
3341 static int tg_load_down(struct task_group *tg, void *data)
3343 unsigned long load;
3344 long cpu = (long)data;
3346 if (!tg->parent) {
3347 load = cpu_rq(cpu)->load.weight;
3348 } else {
3349 load = tg->parent->cfs_rq[cpu]->h_load;
3350 load *= tg->se[cpu]->load.weight;
3351 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3354 tg->cfs_rq[cpu]->h_load = load;
3356 return 0;
3359 static void update_h_load(long cpu)
3361 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3364 static unsigned long
3365 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3366 unsigned long max_load_move,
3367 struct sched_domain *sd, enum cpu_idle_type idle,
3368 int *lb_flags)
3370 long rem_load_move = max_load_move;
3371 struct cfs_rq *busiest_cfs_rq;
3373 rcu_read_lock();
3374 update_h_load(cpu_of(busiest));
3376 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
3377 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3378 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3379 u64 rem_load, moved_load;
3381 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
3382 break;
3385 * empty group or part of a throttled hierarchy
3387 if (!busiest_cfs_rq->task_weight ||
3388 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
3389 continue;
3391 rem_load = (u64)rem_load_move * busiest_weight;
3392 rem_load = div_u64(rem_load, busiest_h_load + 1);
3394 moved_load = balance_tasks(this_rq, this_cpu, busiest,
3395 rem_load, sd, idle, lb_flags,
3396 busiest_cfs_rq);
3398 if (!moved_load)
3399 continue;
3401 moved_load *= busiest_h_load;
3402 moved_load = div_u64(moved_load, busiest_weight + 1);
3404 rem_load_move -= moved_load;
3405 if (rem_load_move < 0)
3406 break;
3408 rcu_read_unlock();
3410 return max_load_move - rem_load_move;
3412 #else
3413 static inline void update_shares(int cpu)
3417 static unsigned long
3418 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3419 unsigned long max_load_move,
3420 struct sched_domain *sd, enum cpu_idle_type idle,
3421 int *lb_flags)
3423 return balance_tasks(this_rq, this_cpu, busiest,
3424 max_load_move, sd, idle, lb_flags,
3425 &busiest->cfs);
3427 #endif
3430 * move_tasks tries to move up to max_load_move weighted load from busiest to
3431 * this_rq, as part of a balancing operation within domain "sd".
3432 * Returns 1 if successful and 0 otherwise.
3434 * Called with both runqueues locked.
3436 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3437 unsigned long max_load_move,
3438 struct sched_domain *sd, enum cpu_idle_type idle,
3439 int *lb_flags)
3441 unsigned long total_load_moved = 0, load_moved;
3443 do {
3444 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
3445 max_load_move - total_load_moved,
3446 sd, idle, lb_flags);
3448 total_load_moved += load_moved;
3450 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
3451 break;
3453 #ifdef CONFIG_PREEMPT
3455 * NEWIDLE balancing is a source of latency, so preemptible
3456 * kernels will stop after the first task is pulled to minimize
3457 * the critical section.
3459 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) {
3460 *lb_flags |= LBF_ABORT;
3461 break;
3463 #endif
3464 } while (load_moved && max_load_move > total_load_moved);
3466 return total_load_moved > 0;
3469 /********** Helpers for find_busiest_group ************************/
3471 * sd_lb_stats - Structure to store the statistics of a sched_domain
3472 * during load balancing.
3474 struct sd_lb_stats {
3475 struct sched_group *busiest; /* Busiest group in this sd */
3476 struct sched_group *this; /* Local group in this sd */
3477 unsigned long total_load; /* Total load of all groups in sd */
3478 unsigned long total_pwr; /* Total power of all groups in sd */
3479 unsigned long avg_load; /* Average load across all groups in sd */
3481 /** Statistics of this group */
3482 unsigned long this_load;
3483 unsigned long this_load_per_task;
3484 unsigned long this_nr_running;
3485 unsigned long this_has_capacity;
3486 unsigned int this_idle_cpus;
3488 /* Statistics of the busiest group */
3489 unsigned int busiest_idle_cpus;
3490 unsigned long max_load;
3491 unsigned long busiest_load_per_task;
3492 unsigned long busiest_nr_running;
3493 unsigned long busiest_group_capacity;
3494 unsigned long busiest_has_capacity;
3495 unsigned int busiest_group_weight;
3497 int group_imb; /* Is there imbalance in this sd */
3498 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3499 int power_savings_balance; /* Is powersave balance needed for this sd */
3500 struct sched_group *group_min; /* Least loaded group in sd */
3501 struct sched_group *group_leader; /* Group which relieves group_min */
3502 unsigned long min_load_per_task; /* load_per_task in group_min */
3503 unsigned long leader_nr_running; /* Nr running of group_leader */
3504 unsigned long min_nr_running; /* Nr running of group_min */
3505 #endif
3509 * sg_lb_stats - stats of a sched_group required for load_balancing
3511 struct sg_lb_stats {
3512 unsigned long avg_load; /*Avg load across the CPUs of the group */
3513 unsigned long group_load; /* Total load over the CPUs of the group */
3514 unsigned long sum_nr_running; /* Nr tasks running in the group */
3515 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3516 unsigned long group_capacity;
3517 unsigned long idle_cpus;
3518 unsigned long group_weight;
3519 int group_imb; /* Is there an imbalance in the group ? */
3520 int group_has_capacity; /* Is there extra capacity in the group? */
3524 * get_sd_load_idx - Obtain the load index for a given sched domain.
3525 * @sd: The sched_domain whose load_idx is to be obtained.
3526 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3528 static inline int get_sd_load_idx(struct sched_domain *sd,
3529 enum cpu_idle_type idle)
3531 int load_idx;
3533 switch (idle) {
3534 case CPU_NOT_IDLE:
3535 load_idx = sd->busy_idx;
3536 break;
3538 case CPU_NEWLY_IDLE:
3539 load_idx = sd->newidle_idx;
3540 break;
3541 default:
3542 load_idx = sd->idle_idx;
3543 break;
3546 return load_idx;
3550 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3552 * init_sd_power_savings_stats - Initialize power savings statistics for
3553 * the given sched_domain, during load balancing.
3555 * @sd: Sched domain whose power-savings statistics are to be initialized.
3556 * @sds: Variable containing the statistics for sd.
3557 * @idle: Idle status of the CPU at which we're performing load-balancing.
3559 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3560 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3563 * Busy processors will not participate in power savings
3564 * balance.
3566 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3567 sds->power_savings_balance = 0;
3568 else {
3569 sds->power_savings_balance = 1;
3570 sds->min_nr_running = ULONG_MAX;
3571 sds->leader_nr_running = 0;
3576 * update_sd_power_savings_stats - Update the power saving stats for a
3577 * sched_domain while performing load balancing.
3579 * @group: sched_group belonging to the sched_domain under consideration.
3580 * @sds: Variable containing the statistics of the sched_domain
3581 * @local_group: Does group contain the CPU for which we're performing
3582 * load balancing ?
3583 * @sgs: Variable containing the statistics of the group.
3585 static inline void update_sd_power_savings_stats(struct sched_group *group,
3586 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3589 if (!sds->power_savings_balance)
3590 return;
3593 * If the local group is idle or completely loaded
3594 * no need to do power savings balance at this domain
3596 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3597 !sds->this_nr_running))
3598 sds->power_savings_balance = 0;
3601 * If a group is already running at full capacity or idle,
3602 * don't include that group in power savings calculations
3604 if (!sds->power_savings_balance ||
3605 sgs->sum_nr_running >= sgs->group_capacity ||
3606 !sgs->sum_nr_running)
3607 return;
3610 * Calculate the group which has the least non-idle load.
3611 * This is the group from where we need to pick up the load
3612 * for saving power
3614 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3615 (sgs->sum_nr_running == sds->min_nr_running &&
3616 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3617 sds->group_min = group;
3618 sds->min_nr_running = sgs->sum_nr_running;
3619 sds->min_load_per_task = sgs->sum_weighted_load /
3620 sgs->sum_nr_running;
3624 * Calculate the group which is almost near its
3625 * capacity but still has some space to pick up some load
3626 * from other group and save more power
3628 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3629 return;
3631 if (sgs->sum_nr_running > sds->leader_nr_running ||
3632 (sgs->sum_nr_running == sds->leader_nr_running &&
3633 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3634 sds->group_leader = group;
3635 sds->leader_nr_running = sgs->sum_nr_running;
3640 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3641 * @sds: Variable containing the statistics of the sched_domain
3642 * under consideration.
3643 * @this_cpu: Cpu at which we're currently performing load-balancing.
3644 * @imbalance: Variable to store the imbalance.
3646 * Description:
3647 * Check if we have potential to perform some power-savings balance.
3648 * If yes, set the busiest group to be the least loaded group in the
3649 * sched_domain, so that it's CPUs can be put to idle.
3651 * Returns 1 if there is potential to perform power-savings balance.
3652 * Else returns 0.
3654 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3655 int this_cpu, unsigned long *imbalance)
3657 if (!sds->power_savings_balance)
3658 return 0;
3660 if (sds->this != sds->group_leader ||
3661 sds->group_leader == sds->group_min)
3662 return 0;
3664 *imbalance = sds->min_load_per_task;
3665 sds->busiest = sds->group_min;
3667 return 1;
3670 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3671 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3672 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3674 return;
3677 static inline void update_sd_power_savings_stats(struct sched_group *group,
3678 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3680 return;
3683 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3684 int this_cpu, unsigned long *imbalance)
3686 return 0;
3688 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3691 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3693 return SCHED_POWER_SCALE;
3696 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3698 return default_scale_freq_power(sd, cpu);
3701 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3703 unsigned long weight = sd->span_weight;
3704 unsigned long smt_gain = sd->smt_gain;
3706 smt_gain /= weight;
3708 return smt_gain;
3711 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3713 return default_scale_smt_power(sd, cpu);
3716 unsigned long scale_rt_power(int cpu)
3718 struct rq *rq = cpu_rq(cpu);
3719 u64 total, available;
3721 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3723 if (unlikely(total < rq->rt_avg)) {
3724 /* Ensures that power won't end up being negative */
3725 available = 0;
3726 } else {
3727 available = total - rq->rt_avg;
3730 if (unlikely((s64)total < SCHED_POWER_SCALE))
3731 total = SCHED_POWER_SCALE;
3733 total >>= SCHED_POWER_SHIFT;
3735 return div_u64(available, total);
3738 static void update_cpu_power(struct sched_domain *sd, int cpu)
3740 unsigned long weight = sd->span_weight;
3741 unsigned long power = SCHED_POWER_SCALE;
3742 struct sched_group *sdg = sd->groups;
3744 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3745 if (sched_feat(ARCH_POWER))
3746 power *= arch_scale_smt_power(sd, cpu);
3747 else
3748 power *= default_scale_smt_power(sd, cpu);
3750 power >>= SCHED_POWER_SHIFT;
3753 sdg->sgp->power_orig = power;
3755 if (sched_feat(ARCH_POWER))
3756 power *= arch_scale_freq_power(sd, cpu);
3757 else
3758 power *= default_scale_freq_power(sd, cpu);
3760 power >>= SCHED_POWER_SHIFT;
3762 power *= scale_rt_power(cpu);
3763 power >>= SCHED_POWER_SHIFT;
3765 if (!power)
3766 power = 1;
3768 cpu_rq(cpu)->cpu_power = power;
3769 sdg->sgp->power = power;
3772 void update_group_power(struct sched_domain *sd, int cpu)
3774 struct sched_domain *child = sd->child;
3775 struct sched_group *group, *sdg = sd->groups;
3776 unsigned long power;
3778 if (!child) {
3779 update_cpu_power(sd, cpu);
3780 return;
3783 power = 0;
3785 group = child->groups;
3786 do {
3787 power += group->sgp->power;
3788 group = group->next;
3789 } while (group != child->groups);
3791 sdg->sgp->power = power;
3795 * Try and fix up capacity for tiny siblings, this is needed when
3796 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3797 * which on its own isn't powerful enough.
3799 * See update_sd_pick_busiest() and check_asym_packing().
3801 static inline int
3802 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3805 * Only siblings can have significantly less than SCHED_POWER_SCALE
3807 if (!(sd->flags & SD_SHARE_CPUPOWER))
3808 return 0;
3811 * If ~90% of the cpu_power is still there, we're good.
3813 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3814 return 1;
3816 return 0;
3820 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3821 * @sd: The sched_domain whose statistics are to be updated.
3822 * @group: sched_group whose statistics are to be updated.
3823 * @this_cpu: Cpu for which load balance is currently performed.
3824 * @idle: Idle status of this_cpu
3825 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3826 * @local_group: Does group contain this_cpu.
3827 * @cpus: Set of cpus considered for load balancing.
3828 * @balance: Should we balance.
3829 * @sgs: variable to hold the statistics for this group.
3831 static inline void update_sg_lb_stats(struct sched_domain *sd,
3832 struct sched_group *group, int this_cpu,
3833 enum cpu_idle_type idle, int load_idx,
3834 int local_group, const struct cpumask *cpus,
3835 int *balance, struct sg_lb_stats *sgs)
3837 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
3838 int i;
3839 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3840 unsigned long avg_load_per_task = 0;
3842 if (local_group)
3843 balance_cpu = group_first_cpu(group);
3845 /* Tally up the load of all CPUs in the group */
3846 max_cpu_load = 0;
3847 min_cpu_load = ~0UL;
3848 max_nr_running = 0;
3850 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3851 struct rq *rq = cpu_rq(i);
3853 /* Bias balancing toward cpus of our domain */
3854 if (local_group) {
3855 if (idle_cpu(i) && !first_idle_cpu) {
3856 first_idle_cpu = 1;
3857 balance_cpu = i;
3860 load = target_load(i, load_idx);
3861 } else {
3862 load = source_load(i, load_idx);
3863 if (load > max_cpu_load) {
3864 max_cpu_load = load;
3865 max_nr_running = rq->nr_running;
3867 if (min_cpu_load > load)
3868 min_cpu_load = load;
3871 sgs->group_load += load;
3872 sgs->sum_nr_running += rq->nr_running;
3873 sgs->sum_weighted_load += weighted_cpuload(i);
3874 if (idle_cpu(i))
3875 sgs->idle_cpus++;
3879 * First idle cpu or the first cpu(busiest) in this sched group
3880 * is eligible for doing load balancing at this and above
3881 * domains. In the newly idle case, we will allow all the cpu's
3882 * to do the newly idle load balance.
3884 if (idle != CPU_NEWLY_IDLE && local_group) {
3885 if (balance_cpu != this_cpu) {
3886 *balance = 0;
3887 return;
3889 update_group_power(sd, this_cpu);
3892 /* Adjust by relative CPU power of the group */
3893 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3896 * Consider the group unbalanced when the imbalance is larger
3897 * than the average weight of a task.
3899 * APZ: with cgroup the avg task weight can vary wildly and
3900 * might not be a suitable number - should we keep a
3901 * normalized nr_running number somewhere that negates
3902 * the hierarchy?
3904 if (sgs->sum_nr_running)
3905 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3907 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
3908 sgs->group_imb = 1;
3910 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3911 SCHED_POWER_SCALE);
3912 if (!sgs->group_capacity)
3913 sgs->group_capacity = fix_small_capacity(sd, group);
3914 sgs->group_weight = group->group_weight;
3916 if (sgs->group_capacity > sgs->sum_nr_running)
3917 sgs->group_has_capacity = 1;
3921 * update_sd_pick_busiest - return 1 on busiest group
3922 * @sd: sched_domain whose statistics are to be checked
3923 * @sds: sched_domain statistics
3924 * @sg: sched_group candidate to be checked for being the busiest
3925 * @sgs: sched_group statistics
3926 * @this_cpu: the current cpu
3928 * Determine if @sg is a busier group than the previously selected
3929 * busiest group.
3931 static bool update_sd_pick_busiest(struct sched_domain *sd,
3932 struct sd_lb_stats *sds,
3933 struct sched_group *sg,
3934 struct sg_lb_stats *sgs,
3935 int this_cpu)
3937 if (sgs->avg_load <= sds->max_load)
3938 return false;
3940 if (sgs->sum_nr_running > sgs->group_capacity)
3941 return true;
3943 if (sgs->group_imb)
3944 return true;
3947 * ASYM_PACKING needs to move all the work to the lowest
3948 * numbered CPUs in the group, therefore mark all groups
3949 * higher than ourself as busy.
3951 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3952 this_cpu < group_first_cpu(sg)) {
3953 if (!sds->busiest)
3954 return true;
3956 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3957 return true;
3960 return false;
3964 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3965 * @sd: sched_domain whose statistics are to be updated.
3966 * @this_cpu: Cpu for which load balance is currently performed.
3967 * @idle: Idle status of this_cpu
3968 * @cpus: Set of cpus considered for load balancing.
3969 * @balance: Should we balance.
3970 * @sds: variable to hold the statistics for this sched_domain.
3972 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3973 enum cpu_idle_type idle, const struct cpumask *cpus,
3974 int *balance, struct sd_lb_stats *sds)
3976 struct sched_domain *child = sd->child;
3977 struct sched_group *sg = sd->groups;
3978 struct sg_lb_stats sgs;
3979 int load_idx, prefer_sibling = 0;
3981 if (child && child->flags & SD_PREFER_SIBLING)
3982 prefer_sibling = 1;
3984 init_sd_power_savings_stats(sd, sds, idle);
3985 load_idx = get_sd_load_idx(sd, idle);
3987 do {
3988 int local_group;
3990 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
3991 memset(&sgs, 0, sizeof(sgs));
3992 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
3993 local_group, cpus, balance, &sgs);
3995 if (local_group && !(*balance))
3996 return;
3998 sds->total_load += sgs.group_load;
3999 sds->total_pwr += sg->sgp->power;
4002 * In case the child domain prefers tasks go to siblings
4003 * first, lower the sg capacity to one so that we'll try
4004 * and move all the excess tasks away. We lower the capacity
4005 * of a group only if the local group has the capacity to fit
4006 * these excess tasks, i.e. nr_running < group_capacity. The
4007 * extra check prevents the case where you always pull from the
4008 * heaviest group when it is already under-utilized (possible
4009 * with a large weight task outweighs the tasks on the system).
4011 if (prefer_sibling && !local_group && sds->this_has_capacity)
4012 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4014 if (local_group) {
4015 sds->this_load = sgs.avg_load;
4016 sds->this = sg;
4017 sds->this_nr_running = sgs.sum_nr_running;
4018 sds->this_load_per_task = sgs.sum_weighted_load;
4019 sds->this_has_capacity = sgs.group_has_capacity;
4020 sds->this_idle_cpus = sgs.idle_cpus;
4021 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
4022 sds->max_load = sgs.avg_load;
4023 sds->busiest = sg;
4024 sds->busiest_nr_running = sgs.sum_nr_running;
4025 sds->busiest_idle_cpus = sgs.idle_cpus;
4026 sds->busiest_group_capacity = sgs.group_capacity;
4027 sds->busiest_load_per_task = sgs.sum_weighted_load;
4028 sds->busiest_has_capacity = sgs.group_has_capacity;
4029 sds->busiest_group_weight = sgs.group_weight;
4030 sds->group_imb = sgs.group_imb;
4033 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
4034 sg = sg->next;
4035 } while (sg != sd->groups);
4039 * check_asym_packing - Check to see if the group is packed into the
4040 * sched doman.
4042 * This is primarily intended to used at the sibling level. Some
4043 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4044 * case of POWER7, it can move to lower SMT modes only when higher
4045 * threads are idle. When in lower SMT modes, the threads will
4046 * perform better since they share less core resources. Hence when we
4047 * have idle threads, we want them to be the higher ones.
4049 * This packing function is run on idle threads. It checks to see if
4050 * the busiest CPU in this domain (core in the P7 case) has a higher
4051 * CPU number than the packing function is being run on. Here we are
4052 * assuming lower CPU number will be equivalent to lower a SMT thread
4053 * number.
4055 * Returns 1 when packing is required and a task should be moved to
4056 * this CPU. The amount of the imbalance is returned in *imbalance.
4058 * @sd: The sched_domain whose packing is to be checked.
4059 * @sds: Statistics of the sched_domain which is to be packed
4060 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4061 * @imbalance: returns amount of imbalanced due to packing.
4063 static int check_asym_packing(struct sched_domain *sd,
4064 struct sd_lb_stats *sds,
4065 int this_cpu, unsigned long *imbalance)
4067 int busiest_cpu;
4069 if (!(sd->flags & SD_ASYM_PACKING))
4070 return 0;
4072 if (!sds->busiest)
4073 return 0;
4075 busiest_cpu = group_first_cpu(sds->busiest);
4076 if (this_cpu > busiest_cpu)
4077 return 0;
4079 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
4080 SCHED_POWER_SCALE);
4081 return 1;
4085 * fix_small_imbalance - Calculate the minor imbalance that exists
4086 * amongst the groups of a sched_domain, during
4087 * load balancing.
4088 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4089 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4090 * @imbalance: Variable to store the imbalance.
4092 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4093 int this_cpu, unsigned long *imbalance)
4095 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4096 unsigned int imbn = 2;
4097 unsigned long scaled_busy_load_per_task;
4099 if (sds->this_nr_running) {
4100 sds->this_load_per_task /= sds->this_nr_running;
4101 if (sds->busiest_load_per_task >
4102 sds->this_load_per_task)
4103 imbn = 1;
4104 } else
4105 sds->this_load_per_task =
4106 cpu_avg_load_per_task(this_cpu);
4108 scaled_busy_load_per_task = sds->busiest_load_per_task
4109 * SCHED_POWER_SCALE;
4110 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4112 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4113 (scaled_busy_load_per_task * imbn)) {
4114 *imbalance = sds->busiest_load_per_task;
4115 return;
4119 * OK, we don't have enough imbalance to justify moving tasks,
4120 * however we may be able to increase total CPU power used by
4121 * moving them.
4124 pwr_now += sds->busiest->sgp->power *
4125 min(sds->busiest_load_per_task, sds->max_load);
4126 pwr_now += sds->this->sgp->power *
4127 min(sds->this_load_per_task, sds->this_load);
4128 pwr_now /= SCHED_POWER_SCALE;
4130 /* Amount of load we'd subtract */
4131 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4132 sds->busiest->sgp->power;
4133 if (sds->max_load > tmp)
4134 pwr_move += sds->busiest->sgp->power *
4135 min(sds->busiest_load_per_task, sds->max_load - tmp);
4137 /* Amount of load we'd add */
4138 if (sds->max_load * sds->busiest->sgp->power <
4139 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4140 tmp = (sds->max_load * sds->busiest->sgp->power) /
4141 sds->this->sgp->power;
4142 else
4143 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4144 sds->this->sgp->power;
4145 pwr_move += sds->this->sgp->power *
4146 min(sds->this_load_per_task, sds->this_load + tmp);
4147 pwr_move /= SCHED_POWER_SCALE;
4149 /* Move if we gain throughput */
4150 if (pwr_move > pwr_now)
4151 *imbalance = sds->busiest_load_per_task;
4155 * calculate_imbalance - Calculate the amount of imbalance present within the
4156 * groups of a given sched_domain during load balance.
4157 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4158 * @this_cpu: Cpu for which currently load balance is being performed.
4159 * @imbalance: The variable to store the imbalance.
4161 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4162 unsigned long *imbalance)
4164 unsigned long max_pull, load_above_capacity = ~0UL;
4166 sds->busiest_load_per_task /= sds->busiest_nr_running;
4167 if (sds->group_imb) {
4168 sds->busiest_load_per_task =
4169 min(sds->busiest_load_per_task, sds->avg_load);
4173 * In the presence of smp nice balancing, certain scenarios can have
4174 * max load less than avg load(as we skip the groups at or below
4175 * its cpu_power, while calculating max_load..)
4177 if (sds->max_load < sds->avg_load) {
4178 *imbalance = 0;
4179 return fix_small_imbalance(sds, this_cpu, imbalance);
4182 if (!sds->group_imb) {
4184 * Don't want to pull so many tasks that a group would go idle.
4186 load_above_capacity = (sds->busiest_nr_running -
4187 sds->busiest_group_capacity);
4189 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4191 load_above_capacity /= sds->busiest->sgp->power;
4195 * We're trying to get all the cpus to the average_load, so we don't
4196 * want to push ourselves above the average load, nor do we wish to
4197 * reduce the max loaded cpu below the average load. At the same time,
4198 * we also don't want to reduce the group load below the group capacity
4199 * (so that we can implement power-savings policies etc). Thus we look
4200 * for the minimum possible imbalance.
4201 * Be careful of negative numbers as they'll appear as very large values
4202 * with unsigned longs.
4204 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4206 /* How much load to actually move to equalise the imbalance */
4207 *imbalance = min(max_pull * sds->busiest->sgp->power,
4208 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4209 / SCHED_POWER_SCALE;
4212 * if *imbalance is less than the average load per runnable task
4213 * there is no guarantee that any tasks will be moved so we'll have
4214 * a think about bumping its value to force at least one task to be
4215 * moved
4217 if (*imbalance < sds->busiest_load_per_task)
4218 return fix_small_imbalance(sds, this_cpu, imbalance);
4222 /******* find_busiest_group() helpers end here *********************/
4225 * find_busiest_group - Returns the busiest group within the sched_domain
4226 * if there is an imbalance. If there isn't an imbalance, and
4227 * the user has opted for power-savings, it returns a group whose
4228 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4229 * such a group exists.
4231 * Also calculates the amount of weighted load which should be moved
4232 * to restore balance.
4234 * @sd: The sched_domain whose busiest group is to be returned.
4235 * @this_cpu: The cpu for which load balancing is currently being performed.
4236 * @imbalance: Variable which stores amount of weighted load which should
4237 * be moved to restore balance/put a group to idle.
4238 * @idle: The idle status of this_cpu.
4239 * @cpus: The set of CPUs under consideration for load-balancing.
4240 * @balance: Pointer to a variable indicating if this_cpu
4241 * is the appropriate cpu to perform load balancing at this_level.
4243 * Returns: - the busiest group if imbalance exists.
4244 * - If no imbalance and user has opted for power-savings balance,
4245 * return the least loaded group whose CPUs can be
4246 * put to idle by rebalancing its tasks onto our group.
4248 static struct sched_group *
4249 find_busiest_group(struct sched_domain *sd, int this_cpu,
4250 unsigned long *imbalance, enum cpu_idle_type idle,
4251 const struct cpumask *cpus, int *balance)
4253 struct sd_lb_stats sds;
4255 memset(&sds, 0, sizeof(sds));
4258 * Compute the various statistics relavent for load balancing at
4259 * this level.
4261 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
4264 * this_cpu is not the appropriate cpu to perform load balancing at
4265 * this level.
4267 if (!(*balance))
4268 goto ret;
4270 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4271 check_asym_packing(sd, &sds, this_cpu, imbalance))
4272 return sds.busiest;
4274 /* There is no busy sibling group to pull tasks from */
4275 if (!sds.busiest || sds.busiest_nr_running == 0)
4276 goto out_balanced;
4278 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4281 * If the busiest group is imbalanced the below checks don't
4282 * work because they assumes all things are equal, which typically
4283 * isn't true due to cpus_allowed constraints and the like.
4285 if (sds.group_imb)
4286 goto force_balance;
4288 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4289 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4290 !sds.busiest_has_capacity)
4291 goto force_balance;
4294 * If the local group is more busy than the selected busiest group
4295 * don't try and pull any tasks.
4297 if (sds.this_load >= sds.max_load)
4298 goto out_balanced;
4301 * Don't pull any tasks if this group is already above the domain
4302 * average load.
4304 if (sds.this_load >= sds.avg_load)
4305 goto out_balanced;
4307 if (idle == CPU_IDLE) {
4309 * This cpu is idle. If the busiest group load doesn't
4310 * have more tasks than the number of available cpu's and
4311 * there is no imbalance between this and busiest group
4312 * wrt to idle cpu's, it is balanced.
4314 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4315 sds.busiest_nr_running <= sds.busiest_group_weight)
4316 goto out_balanced;
4317 } else {
4319 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4320 * imbalance_pct to be conservative.
4322 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4323 goto out_balanced;
4326 force_balance:
4327 /* Looks like there is an imbalance. Compute it */
4328 calculate_imbalance(&sds, this_cpu, imbalance);
4329 return sds.busiest;
4331 out_balanced:
4333 * There is no obvious imbalance. But check if we can do some balancing
4334 * to save power.
4336 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4337 return sds.busiest;
4338 ret:
4339 *imbalance = 0;
4340 return NULL;
4344 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4346 static struct rq *
4347 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4348 enum cpu_idle_type idle, unsigned long imbalance,
4349 const struct cpumask *cpus)
4351 struct rq *busiest = NULL, *rq;
4352 unsigned long max_load = 0;
4353 int i;
4355 for_each_cpu(i, sched_group_cpus(group)) {
4356 unsigned long power = power_of(i);
4357 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4358 SCHED_POWER_SCALE);
4359 unsigned long wl;
4361 if (!capacity)
4362 capacity = fix_small_capacity(sd, group);
4364 if (!cpumask_test_cpu(i, cpus))
4365 continue;
4367 rq = cpu_rq(i);
4368 wl = weighted_cpuload(i);
4371 * When comparing with imbalance, use weighted_cpuload()
4372 * which is not scaled with the cpu power.
4374 if (capacity && rq->nr_running == 1 && wl > imbalance)
4375 continue;
4378 * For the load comparisons with the other cpu's, consider
4379 * the weighted_cpuload() scaled with the cpu power, so that
4380 * the load can be moved away from the cpu that is potentially
4381 * running at a lower capacity.
4383 wl = (wl * SCHED_POWER_SCALE) / power;
4385 if (wl > max_load) {
4386 max_load = wl;
4387 busiest = rq;
4391 return busiest;
4395 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4396 * so long as it is large enough.
4398 #define MAX_PINNED_INTERVAL 512
4400 /* Working cpumask for load_balance and load_balance_newidle. */
4401 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4403 static int need_active_balance(struct sched_domain *sd, int idle,
4404 int busiest_cpu, int this_cpu)
4406 if (idle == CPU_NEWLY_IDLE) {
4409 * ASYM_PACKING needs to force migrate tasks from busy but
4410 * higher numbered CPUs in order to pack all tasks in the
4411 * lowest numbered CPUs.
4413 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4414 return 1;
4417 * The only task running in a non-idle cpu can be moved to this
4418 * cpu in an attempt to completely freeup the other CPU
4419 * package.
4421 * The package power saving logic comes from
4422 * find_busiest_group(). If there are no imbalance, then
4423 * f_b_g() will return NULL. However when sched_mc={1,2} then
4424 * f_b_g() will select a group from which a running task may be
4425 * pulled to this cpu in order to make the other package idle.
4426 * If there is no opportunity to make a package idle and if
4427 * there are no imbalance, then f_b_g() will return NULL and no
4428 * action will be taken in load_balance_newidle().
4430 * Under normal task pull operation due to imbalance, there
4431 * will be more than one task in the source run queue and
4432 * move_tasks() will succeed. ld_moved will be true and this
4433 * active balance code will not be triggered.
4435 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4436 return 0;
4439 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4442 static int active_load_balance_cpu_stop(void *data);
4445 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4446 * tasks if there is an imbalance.
4448 static int load_balance(int this_cpu, struct rq *this_rq,
4449 struct sched_domain *sd, enum cpu_idle_type idle,
4450 int *balance)
4452 int ld_moved, lb_flags = 0, active_balance = 0;
4453 struct sched_group *group;
4454 unsigned long imbalance;
4455 struct rq *busiest;
4456 unsigned long flags;
4457 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4459 cpumask_copy(cpus, cpu_active_mask);
4461 schedstat_inc(sd, lb_count[idle]);
4463 redo:
4464 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
4465 cpus, balance);
4467 if (*balance == 0)
4468 goto out_balanced;
4470 if (!group) {
4471 schedstat_inc(sd, lb_nobusyg[idle]);
4472 goto out_balanced;
4475 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
4476 if (!busiest) {
4477 schedstat_inc(sd, lb_nobusyq[idle]);
4478 goto out_balanced;
4481 BUG_ON(busiest == this_rq);
4483 schedstat_add(sd, lb_imbalance[idle], imbalance);
4485 ld_moved = 0;
4486 if (busiest->nr_running > 1) {
4488 * Attempt to move tasks. If find_busiest_group has found
4489 * an imbalance but busiest->nr_running <= 1, the group is
4490 * still unbalanced. ld_moved simply stays zero, so it is
4491 * correctly treated as an imbalance.
4493 lb_flags |= LBF_ALL_PINNED;
4494 local_irq_save(flags);
4495 double_rq_lock(this_rq, busiest);
4496 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4497 imbalance, sd, idle, &lb_flags);
4498 double_rq_unlock(this_rq, busiest);
4499 local_irq_restore(flags);
4502 * some other cpu did the load balance for us.
4504 if (ld_moved && this_cpu != smp_processor_id())
4505 resched_cpu(this_cpu);
4507 if (lb_flags & LBF_ABORT)
4508 goto out_balanced;
4510 if (lb_flags & LBF_NEED_BREAK) {
4511 lb_flags &= ~LBF_NEED_BREAK;
4512 goto redo;
4515 /* All tasks on this runqueue were pinned by CPU affinity */
4516 if (unlikely(lb_flags & LBF_ALL_PINNED)) {
4517 cpumask_clear_cpu(cpu_of(busiest), cpus);
4518 if (!cpumask_empty(cpus))
4519 goto redo;
4520 goto out_balanced;
4524 if (!ld_moved) {
4525 schedstat_inc(sd, lb_failed[idle]);
4527 * Increment the failure counter only on periodic balance.
4528 * We do not want newidle balance, which can be very
4529 * frequent, pollute the failure counter causing
4530 * excessive cache_hot migrations and active balances.
4532 if (idle != CPU_NEWLY_IDLE)
4533 sd->nr_balance_failed++;
4535 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
4536 raw_spin_lock_irqsave(&busiest->lock, flags);
4538 /* don't kick the active_load_balance_cpu_stop,
4539 * if the curr task on busiest cpu can't be
4540 * moved to this_cpu
4542 if (!cpumask_test_cpu(this_cpu,
4543 tsk_cpus_allowed(busiest->curr))) {
4544 raw_spin_unlock_irqrestore(&busiest->lock,
4545 flags);
4546 lb_flags |= LBF_ALL_PINNED;
4547 goto out_one_pinned;
4551 * ->active_balance synchronizes accesses to
4552 * ->active_balance_work. Once set, it's cleared
4553 * only after active load balance is finished.
4555 if (!busiest->active_balance) {
4556 busiest->active_balance = 1;
4557 busiest->push_cpu = this_cpu;
4558 active_balance = 1;
4560 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4562 if (active_balance)
4563 stop_one_cpu_nowait(cpu_of(busiest),
4564 active_load_balance_cpu_stop, busiest,
4565 &busiest->active_balance_work);
4568 * We've kicked active balancing, reset the failure
4569 * counter.
4571 sd->nr_balance_failed = sd->cache_nice_tries+1;
4573 } else
4574 sd->nr_balance_failed = 0;
4576 if (likely(!active_balance)) {
4577 /* We were unbalanced, so reset the balancing interval */
4578 sd->balance_interval = sd->min_interval;
4579 } else {
4581 * If we've begun active balancing, start to back off. This
4582 * case may not be covered by the all_pinned logic if there
4583 * is only 1 task on the busy runqueue (because we don't call
4584 * move_tasks).
4586 if (sd->balance_interval < sd->max_interval)
4587 sd->balance_interval *= 2;
4590 goto out;
4592 out_balanced:
4593 schedstat_inc(sd, lb_balanced[idle]);
4595 sd->nr_balance_failed = 0;
4597 out_one_pinned:
4598 /* tune up the balancing interval */
4599 if (((lb_flags & LBF_ALL_PINNED) &&
4600 sd->balance_interval < MAX_PINNED_INTERVAL) ||
4601 (sd->balance_interval < sd->max_interval))
4602 sd->balance_interval *= 2;
4604 ld_moved = 0;
4605 out:
4606 return ld_moved;
4610 * idle_balance is called by schedule() if this_cpu is about to become
4611 * idle. Attempts to pull tasks from other CPUs.
4613 void idle_balance(int this_cpu, struct rq *this_rq)
4615 struct sched_domain *sd;
4616 int pulled_task = 0;
4617 unsigned long next_balance = jiffies + HZ;
4619 this_rq->idle_stamp = this_rq->clock;
4621 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4622 return;
4625 * Drop the rq->lock, but keep IRQ/preempt disabled.
4627 raw_spin_unlock(&this_rq->lock);
4629 update_shares(this_cpu);
4630 rcu_read_lock();
4631 for_each_domain(this_cpu, sd) {
4632 unsigned long interval;
4633 int balance = 1;
4635 if (!(sd->flags & SD_LOAD_BALANCE))
4636 continue;
4638 if (sd->flags & SD_BALANCE_NEWIDLE) {
4639 /* If we've pulled tasks over stop searching: */
4640 pulled_task = load_balance(this_cpu, this_rq,
4641 sd, CPU_NEWLY_IDLE, &balance);
4644 interval = msecs_to_jiffies(sd->balance_interval);
4645 if (time_after(next_balance, sd->last_balance + interval))
4646 next_balance = sd->last_balance + interval;
4647 if (pulled_task) {
4648 this_rq->idle_stamp = 0;
4649 break;
4652 rcu_read_unlock();
4654 raw_spin_lock(&this_rq->lock);
4656 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4658 * We are going idle. next_balance may be set based on
4659 * a busy processor. So reset next_balance.
4661 this_rq->next_balance = next_balance;
4666 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4667 * running tasks off the busiest CPU onto idle CPUs. It requires at
4668 * least 1 task to be running on each physical CPU where possible, and
4669 * avoids physical / logical imbalances.
4671 static int active_load_balance_cpu_stop(void *data)
4673 struct rq *busiest_rq = data;
4674 int busiest_cpu = cpu_of(busiest_rq);
4675 int target_cpu = busiest_rq->push_cpu;
4676 struct rq *target_rq = cpu_rq(target_cpu);
4677 struct sched_domain *sd;
4679 raw_spin_lock_irq(&busiest_rq->lock);
4681 /* make sure the requested cpu hasn't gone down in the meantime */
4682 if (unlikely(busiest_cpu != smp_processor_id() ||
4683 !busiest_rq->active_balance))
4684 goto out_unlock;
4686 /* Is there any task to move? */
4687 if (busiest_rq->nr_running <= 1)
4688 goto out_unlock;
4691 * This condition is "impossible", if it occurs
4692 * we need to fix it. Originally reported by
4693 * Bjorn Helgaas on a 128-cpu setup.
4695 BUG_ON(busiest_rq == target_rq);
4697 /* move a task from busiest_rq to target_rq */
4698 double_lock_balance(busiest_rq, target_rq);
4700 /* Search for an sd spanning us and the target CPU. */
4701 rcu_read_lock();
4702 for_each_domain(target_cpu, sd) {
4703 if ((sd->flags & SD_LOAD_BALANCE) &&
4704 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4705 break;
4708 if (likely(sd)) {
4709 schedstat_inc(sd, alb_count);
4711 if (move_one_task(target_rq, target_cpu, busiest_rq,
4712 sd, CPU_IDLE))
4713 schedstat_inc(sd, alb_pushed);
4714 else
4715 schedstat_inc(sd, alb_failed);
4717 rcu_read_unlock();
4718 double_unlock_balance(busiest_rq, target_rq);
4719 out_unlock:
4720 busiest_rq->active_balance = 0;
4721 raw_spin_unlock_irq(&busiest_rq->lock);
4722 return 0;
4725 #ifdef CONFIG_NO_HZ
4727 * idle load balancing details
4728 * - When one of the busy CPUs notice that there may be an idle rebalancing
4729 * needed, they will kick the idle load balancer, which then does idle
4730 * load balancing for all the idle CPUs.
4732 static struct {
4733 cpumask_var_t idle_cpus_mask;
4734 atomic_t nr_cpus;
4735 unsigned long next_balance; /* in jiffy units */
4736 } nohz ____cacheline_aligned;
4738 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4740 * lowest_flag_domain - Return lowest sched_domain containing flag.
4741 * @cpu: The cpu whose lowest level of sched domain is to
4742 * be returned.
4743 * @flag: The flag to check for the lowest sched_domain
4744 * for the given cpu.
4746 * Returns the lowest sched_domain of a cpu which contains the given flag.
4748 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4750 struct sched_domain *sd;
4752 for_each_domain(cpu, sd)
4753 if (sd->flags & flag)
4754 break;
4756 return sd;
4760 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4761 * @cpu: The cpu whose domains we're iterating over.
4762 * @sd: variable holding the value of the power_savings_sd
4763 * for cpu.
4764 * @flag: The flag to filter the sched_domains to be iterated.
4766 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4767 * set, starting from the lowest sched_domain to the highest.
4769 #define for_each_flag_domain(cpu, sd, flag) \
4770 for (sd = lowest_flag_domain(cpu, flag); \
4771 (sd && (sd->flags & flag)); sd = sd->parent)
4774 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4775 * @cpu: The cpu which is nominating a new idle_load_balancer.
4777 * Returns: Returns the id of the idle load balancer if it exists,
4778 * Else, returns >= nr_cpu_ids.
4780 * This algorithm picks the idle load balancer such that it belongs to a
4781 * semi-idle powersavings sched_domain. The idea is to try and avoid
4782 * completely idle packages/cores just for the purpose of idle load balancing
4783 * when there are other idle cpu's which are better suited for that job.
4785 static int find_new_ilb(int cpu)
4787 int ilb = cpumask_first(nohz.idle_cpus_mask);
4788 struct sched_group *ilbg;
4789 struct sched_domain *sd;
4792 * Have idle load balancer selection from semi-idle packages only
4793 * when power-aware load balancing is enabled
4795 if (!(sched_smt_power_savings || sched_mc_power_savings))
4796 goto out_done;
4799 * Optimize for the case when we have no idle CPUs or only one
4800 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4802 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
4803 goto out_done;
4805 rcu_read_lock();
4806 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4807 ilbg = sd->groups;
4809 do {
4810 if (ilbg->group_weight !=
4811 atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4812 ilb = cpumask_first_and(nohz.idle_cpus_mask,
4813 sched_group_cpus(ilbg));
4814 goto unlock;
4817 ilbg = ilbg->next;
4819 } while (ilbg != sd->groups);
4821 unlock:
4822 rcu_read_unlock();
4824 out_done:
4825 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4826 return ilb;
4828 return nr_cpu_ids;
4830 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4831 static inline int find_new_ilb(int call_cpu)
4833 return nr_cpu_ids;
4835 #endif
4838 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4839 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4840 * CPU (if there is one).
4842 static void nohz_balancer_kick(int cpu)
4844 int ilb_cpu;
4846 nohz.next_balance++;
4848 ilb_cpu = find_new_ilb(cpu);
4850 if (ilb_cpu >= nr_cpu_ids)
4851 return;
4853 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4854 return;
4856 * Use smp_send_reschedule() instead of resched_cpu().
4857 * This way we generate a sched IPI on the target cpu which
4858 * is idle. And the softirq performing nohz idle load balance
4859 * will be run before returning from the IPI.
4861 smp_send_reschedule(ilb_cpu);
4862 return;
4865 static inline void set_cpu_sd_state_busy(void)
4867 struct sched_domain *sd;
4868 int cpu = smp_processor_id();
4870 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4871 return;
4872 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4874 rcu_read_lock();
4875 for_each_domain(cpu, sd)
4876 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4877 rcu_read_unlock();
4880 void set_cpu_sd_state_idle(void)
4882 struct sched_domain *sd;
4883 int cpu = smp_processor_id();
4885 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4886 return;
4887 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4889 rcu_read_lock();
4890 for_each_domain(cpu, sd)
4891 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4892 rcu_read_unlock();
4896 * This routine will record that this cpu is going idle with tick stopped.
4897 * This info will be used in performing idle load balancing in the future.
4899 void select_nohz_load_balancer(int stop_tick)
4901 int cpu = smp_processor_id();
4903 if (stop_tick) {
4904 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4905 return;
4907 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4908 atomic_inc(&nohz.nr_cpus);
4909 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4911 return;
4913 #endif
4915 static DEFINE_SPINLOCK(balancing);
4917 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4920 * Scale the max load_balance interval with the number of CPUs in the system.
4921 * This trades load-balance latency on larger machines for less cross talk.
4923 void update_max_interval(void)
4925 max_load_balance_interval = HZ*num_online_cpus()/10;
4929 * It checks each scheduling domain to see if it is due to be balanced,
4930 * and initiates a balancing operation if so.
4932 * Balancing parameters are set up in arch_init_sched_domains.
4934 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4936 int balance = 1;
4937 struct rq *rq = cpu_rq(cpu);
4938 unsigned long interval;
4939 struct sched_domain *sd;
4940 /* Earliest time when we have to do rebalance again */
4941 unsigned long next_balance = jiffies + 60*HZ;
4942 int update_next_balance = 0;
4943 int need_serialize;
4945 update_shares(cpu);
4947 rcu_read_lock();
4948 for_each_domain(cpu, sd) {
4949 if (!(sd->flags & SD_LOAD_BALANCE))
4950 continue;
4952 interval = sd->balance_interval;
4953 if (idle != CPU_IDLE)
4954 interval *= sd->busy_factor;
4956 /* scale ms to jiffies */
4957 interval = msecs_to_jiffies(interval);
4958 interval = clamp(interval, 1UL, max_load_balance_interval);
4960 need_serialize = sd->flags & SD_SERIALIZE;
4962 if (need_serialize) {
4963 if (!spin_trylock(&balancing))
4964 goto out;
4967 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4968 if (load_balance(cpu, rq, sd, idle, &balance)) {
4970 * We've pulled tasks over so either we're no
4971 * longer idle.
4973 idle = CPU_NOT_IDLE;
4975 sd->last_balance = jiffies;
4977 if (need_serialize)
4978 spin_unlock(&balancing);
4979 out:
4980 if (time_after(next_balance, sd->last_balance + interval)) {
4981 next_balance = sd->last_balance + interval;
4982 update_next_balance = 1;
4986 * Stop the load balance at this level. There is another
4987 * CPU in our sched group which is doing load balancing more
4988 * actively.
4990 if (!balance)
4991 break;
4993 rcu_read_unlock();
4996 * next_balance will be updated only when there is a need.
4997 * When the cpu is attached to null domain for ex, it will not be
4998 * updated.
5000 if (likely(update_next_balance))
5001 rq->next_balance = next_balance;
5004 #ifdef CONFIG_NO_HZ
5006 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5007 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5009 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5011 struct rq *this_rq = cpu_rq(this_cpu);
5012 struct rq *rq;
5013 int balance_cpu;
5015 if (idle != CPU_IDLE ||
5016 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5017 goto end;
5019 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5020 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5021 continue;
5024 * If this cpu gets work to do, stop the load balancing
5025 * work being done for other cpus. Next load
5026 * balancing owner will pick it up.
5028 if (need_resched())
5029 break;
5031 raw_spin_lock_irq(&this_rq->lock);
5032 update_rq_clock(this_rq);
5033 update_cpu_load(this_rq);
5034 raw_spin_unlock_irq(&this_rq->lock);
5036 rebalance_domains(balance_cpu, CPU_IDLE);
5038 rq = cpu_rq(balance_cpu);
5039 if (time_after(this_rq->next_balance, rq->next_balance))
5040 this_rq->next_balance = rq->next_balance;
5042 nohz.next_balance = this_rq->next_balance;
5043 end:
5044 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5048 * Current heuristic for kicking the idle load balancer in the presence
5049 * of an idle cpu is the system.
5050 * - This rq has more than one task.
5051 * - At any scheduler domain level, this cpu's scheduler group has multiple
5052 * busy cpu's exceeding the group's power.
5053 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5054 * domain span are idle.
5056 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5058 unsigned long now = jiffies;
5059 struct sched_domain *sd;
5061 if (unlikely(idle_cpu(cpu)))
5062 return 0;
5065 * We may be recently in ticked or tickless idle mode. At the first
5066 * busy tick after returning from idle, we will update the busy stats.
5068 set_cpu_sd_state_busy();
5069 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5070 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5071 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5072 atomic_dec(&nohz.nr_cpus);
5076 * None are in tickless mode and hence no need for NOHZ idle load
5077 * balancing.
5079 if (likely(!atomic_read(&nohz.nr_cpus)))
5080 return 0;
5082 if (time_before(now, nohz.next_balance))
5083 return 0;
5085 if (rq->nr_running >= 2)
5086 goto need_kick;
5088 rcu_read_lock();
5089 for_each_domain(cpu, sd) {
5090 struct sched_group *sg = sd->groups;
5091 struct sched_group_power *sgp = sg->sgp;
5092 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5094 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5095 goto need_kick_unlock;
5097 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5098 && (cpumask_first_and(nohz.idle_cpus_mask,
5099 sched_domain_span(sd)) < cpu))
5100 goto need_kick_unlock;
5102 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5103 break;
5105 rcu_read_unlock();
5106 return 0;
5108 need_kick_unlock:
5109 rcu_read_unlock();
5110 need_kick:
5111 return 1;
5113 #else
5114 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5115 #endif
5118 * run_rebalance_domains is triggered when needed from the scheduler tick.
5119 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5121 static void run_rebalance_domains(struct softirq_action *h)
5123 int this_cpu = smp_processor_id();
5124 struct rq *this_rq = cpu_rq(this_cpu);
5125 enum cpu_idle_type idle = this_rq->idle_balance ?
5126 CPU_IDLE : CPU_NOT_IDLE;
5128 rebalance_domains(this_cpu, idle);
5131 * If this cpu has a pending nohz_balance_kick, then do the
5132 * balancing on behalf of the other idle cpus whose ticks are
5133 * stopped.
5135 nohz_idle_balance(this_cpu, idle);
5138 static inline int on_null_domain(int cpu)
5140 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5144 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5146 void trigger_load_balance(struct rq *rq, int cpu)
5148 /* Don't need to rebalance while attached to NULL domain */
5149 if (time_after_eq(jiffies, rq->next_balance) &&
5150 likely(!on_null_domain(cpu)))
5151 raise_softirq(SCHED_SOFTIRQ);
5152 #ifdef CONFIG_NO_HZ
5153 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5154 nohz_balancer_kick(cpu);
5155 #endif
5158 static void rq_online_fair(struct rq *rq)
5160 update_sysctl();
5163 static void rq_offline_fair(struct rq *rq)
5165 update_sysctl();
5168 #endif /* CONFIG_SMP */
5171 * scheduler tick hitting a task of our scheduling class:
5173 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5175 struct cfs_rq *cfs_rq;
5176 struct sched_entity *se = &curr->se;
5178 for_each_sched_entity(se) {
5179 cfs_rq = cfs_rq_of(se);
5180 entity_tick(cfs_rq, se, queued);
5185 * called on fork with the child task as argument from the parent's context
5186 * - child not yet on the tasklist
5187 * - preemption disabled
5189 static void task_fork_fair(struct task_struct *p)
5191 struct cfs_rq *cfs_rq;
5192 struct sched_entity *se = &p->se, *curr;
5193 int this_cpu = smp_processor_id();
5194 struct rq *rq = this_rq();
5195 unsigned long flags;
5197 raw_spin_lock_irqsave(&rq->lock, flags);
5199 update_rq_clock(rq);
5201 cfs_rq = task_cfs_rq(current);
5202 curr = cfs_rq->curr;
5204 if (unlikely(task_cpu(p) != this_cpu)) {
5205 rcu_read_lock();
5206 __set_task_cpu(p, this_cpu);
5207 rcu_read_unlock();
5210 update_curr(cfs_rq);
5212 if (curr)
5213 se->vruntime = curr->vruntime;
5214 place_entity(cfs_rq, se, 1);
5216 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5218 * Upon rescheduling, sched_class::put_prev_task() will place
5219 * 'current' within the tree based on its new key value.
5221 swap(curr->vruntime, se->vruntime);
5222 resched_task(rq->curr);
5225 se->vruntime -= cfs_rq->min_vruntime;
5227 raw_spin_unlock_irqrestore(&rq->lock, flags);
5231 * Priority of the task has changed. Check to see if we preempt
5232 * the current task.
5234 static void
5235 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5237 if (!p->se.on_rq)
5238 return;
5241 * Reschedule if we are currently running on this runqueue and
5242 * our priority decreased, or if we are not currently running on
5243 * this runqueue and our priority is higher than the current's
5245 if (rq->curr == p) {
5246 if (p->prio > oldprio)
5247 resched_task(rq->curr);
5248 } else
5249 check_preempt_curr(rq, p, 0);
5252 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5254 struct sched_entity *se = &p->se;
5255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5258 * Ensure the task's vruntime is normalized, so that when its
5259 * switched back to the fair class the enqueue_entity(.flags=0) will
5260 * do the right thing.
5262 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5263 * have normalized the vruntime, if it was !on_rq, then only when
5264 * the task is sleeping will it still have non-normalized vruntime.
5266 if (!se->on_rq && p->state != TASK_RUNNING) {
5268 * Fix up our vruntime so that the current sleep doesn't
5269 * cause 'unlimited' sleep bonus.
5271 place_entity(cfs_rq, se, 0);
5272 se->vruntime -= cfs_rq->min_vruntime;
5277 * We switched to the sched_fair class.
5279 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5281 if (!p->se.on_rq)
5282 return;
5285 * We were most likely switched from sched_rt, so
5286 * kick off the schedule if running, otherwise just see
5287 * if we can still preempt the current task.
5289 if (rq->curr == p)
5290 resched_task(rq->curr);
5291 else
5292 check_preempt_curr(rq, p, 0);
5295 /* Account for a task changing its policy or group.
5297 * This routine is mostly called to set cfs_rq->curr field when a task
5298 * migrates between groups/classes.
5300 static void set_curr_task_fair(struct rq *rq)
5302 struct sched_entity *se = &rq->curr->se;
5304 for_each_sched_entity(se) {
5305 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5307 set_next_entity(cfs_rq, se);
5308 /* ensure bandwidth has been allocated on our new cfs_rq */
5309 account_cfs_rq_runtime(cfs_rq, 0);
5313 void init_cfs_rq(struct cfs_rq *cfs_rq)
5315 cfs_rq->tasks_timeline = RB_ROOT;
5316 INIT_LIST_HEAD(&cfs_rq->tasks);
5317 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5318 #ifndef CONFIG_64BIT
5319 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5320 #endif
5323 #ifdef CONFIG_FAIR_GROUP_SCHED
5324 static void task_move_group_fair(struct task_struct *p, int on_rq)
5327 * If the task was not on the rq at the time of this cgroup movement
5328 * it must have been asleep, sleeping tasks keep their ->vruntime
5329 * absolute on their old rq until wakeup (needed for the fair sleeper
5330 * bonus in place_entity()).
5332 * If it was on the rq, we've just 'preempted' it, which does convert
5333 * ->vruntime to a relative base.
5335 * Make sure both cases convert their relative position when migrating
5336 * to another cgroup's rq. This does somewhat interfere with the
5337 * fair sleeper stuff for the first placement, but who cares.
5340 * When !on_rq, vruntime of the task has usually NOT been normalized.
5341 * But there are some cases where it has already been normalized:
5343 * - Moving a forked child which is waiting for being woken up by
5344 * wake_up_new_task().
5345 * - Moving a task which has been woken up by try_to_wake_up() and
5346 * waiting for actually being woken up by sched_ttwu_pending().
5348 * To prevent boost or penalty in the new cfs_rq caused by delta
5349 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5351 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5352 on_rq = 1;
5354 if (!on_rq)
5355 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5356 set_task_rq(p, task_cpu(p));
5357 if (!on_rq)
5358 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5361 void free_fair_sched_group(struct task_group *tg)
5363 int i;
5365 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5367 for_each_possible_cpu(i) {
5368 if (tg->cfs_rq)
5369 kfree(tg->cfs_rq[i]);
5370 if (tg->se)
5371 kfree(tg->se[i]);
5374 kfree(tg->cfs_rq);
5375 kfree(tg->se);
5378 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5380 struct cfs_rq *cfs_rq;
5381 struct sched_entity *se;
5382 int i;
5384 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5385 if (!tg->cfs_rq)
5386 goto err;
5387 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5388 if (!tg->se)
5389 goto err;
5391 tg->shares = NICE_0_LOAD;
5393 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5395 for_each_possible_cpu(i) {
5396 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5397 GFP_KERNEL, cpu_to_node(i));
5398 if (!cfs_rq)
5399 goto err;
5401 se = kzalloc_node(sizeof(struct sched_entity),
5402 GFP_KERNEL, cpu_to_node(i));
5403 if (!se)
5404 goto err_free_rq;
5406 init_cfs_rq(cfs_rq);
5407 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5410 return 1;
5412 err_free_rq:
5413 kfree(cfs_rq);
5414 err:
5415 return 0;
5418 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5420 struct rq *rq = cpu_rq(cpu);
5421 unsigned long flags;
5424 * Only empty task groups can be destroyed; so we can speculatively
5425 * check on_list without danger of it being re-added.
5427 if (!tg->cfs_rq[cpu]->on_list)
5428 return;
5430 raw_spin_lock_irqsave(&rq->lock, flags);
5431 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5432 raw_spin_unlock_irqrestore(&rq->lock, flags);
5435 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5436 struct sched_entity *se, int cpu,
5437 struct sched_entity *parent)
5439 struct rq *rq = cpu_rq(cpu);
5441 cfs_rq->tg = tg;
5442 cfs_rq->rq = rq;
5443 #ifdef CONFIG_SMP
5444 /* allow initial update_cfs_load() to truncate */
5445 cfs_rq->load_stamp = 1;
5446 #endif
5447 init_cfs_rq_runtime(cfs_rq);
5449 tg->cfs_rq[cpu] = cfs_rq;
5450 tg->se[cpu] = se;
5452 /* se could be NULL for root_task_group */
5453 if (!se)
5454 return;
5456 if (!parent)
5457 se->cfs_rq = &rq->cfs;
5458 else
5459 se->cfs_rq = parent->my_q;
5461 se->my_q = cfs_rq;
5462 update_load_set(&se->load, 0);
5463 se->parent = parent;
5466 static DEFINE_MUTEX(shares_mutex);
5468 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5470 int i;
5471 unsigned long flags;
5474 * We can't change the weight of the root cgroup.
5476 if (!tg->se[0])
5477 return -EINVAL;
5479 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5481 mutex_lock(&shares_mutex);
5482 if (tg->shares == shares)
5483 goto done;
5485 tg->shares = shares;
5486 for_each_possible_cpu(i) {
5487 struct rq *rq = cpu_rq(i);
5488 struct sched_entity *se;
5490 se = tg->se[i];
5491 /* Propagate contribution to hierarchy */
5492 raw_spin_lock_irqsave(&rq->lock, flags);
5493 for_each_sched_entity(se)
5494 update_cfs_shares(group_cfs_rq(se));
5495 raw_spin_unlock_irqrestore(&rq->lock, flags);
5498 done:
5499 mutex_unlock(&shares_mutex);
5500 return 0;
5502 #else /* CONFIG_FAIR_GROUP_SCHED */
5504 void free_fair_sched_group(struct task_group *tg) { }
5506 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5508 return 1;
5511 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5513 #endif /* CONFIG_FAIR_GROUP_SCHED */
5516 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5518 struct sched_entity *se = &task->se;
5519 unsigned int rr_interval = 0;
5522 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5523 * idle runqueue:
5525 if (rq->cfs.load.weight)
5526 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5528 return rr_interval;
5532 * All the scheduling class methods:
5534 const struct sched_class fair_sched_class = {
5535 .next = &idle_sched_class,
5536 .enqueue_task = enqueue_task_fair,
5537 .dequeue_task = dequeue_task_fair,
5538 .yield_task = yield_task_fair,
5539 .yield_to_task = yield_to_task_fair,
5541 .check_preempt_curr = check_preempt_wakeup,
5543 .pick_next_task = pick_next_task_fair,
5544 .put_prev_task = put_prev_task_fair,
5546 #ifdef CONFIG_SMP
5547 .select_task_rq = select_task_rq_fair,
5549 .rq_online = rq_online_fair,
5550 .rq_offline = rq_offline_fair,
5552 .task_waking = task_waking_fair,
5553 #endif
5555 .set_curr_task = set_curr_task_fair,
5556 .task_tick = task_tick_fair,
5557 .task_fork = task_fork_fair,
5559 .prio_changed = prio_changed_fair,
5560 .switched_from = switched_from_fair,
5561 .switched_to = switched_to_fair,
5563 .get_rr_interval = get_rr_interval_fair,
5565 #ifdef CONFIG_FAIR_GROUP_SCHED
5566 .task_move_group = task_move_group_fair,
5567 #endif
5570 #ifdef CONFIG_SCHED_DEBUG
5571 void print_cfs_stats(struct seq_file *m, int cpu)
5573 struct cfs_rq *cfs_rq;
5575 rcu_read_lock();
5576 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5577 print_cfs_rq(m, cpu, cfs_rq);
5578 rcu_read_unlock();
5580 #endif
5582 __init void init_sched_fair_class(void)
5584 #ifdef CONFIG_SMP
5585 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5587 #ifdef CONFIG_NO_HZ
5588 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5589 #endif
5590 #endif /* SMP */