staging: octeon-usb: make driver name to match the file name
[linux-2.6/btrfs-unstable.git] / net / rds / send.c
blobc9cdb358ea885e3e356cc675b579f1313ed94ff9
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
43 #include "rds.h"
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
47 * will kick our shin.
48 * Also, it seems fairer to not let one busy connection stall all the
49 * others.
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
53 * drained the queue).
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
62 * Reset the send state. Callers must ensure that this doesn't race with
63 * rds_send_xmit().
65 void rds_send_reset(struct rds_connection *conn)
67 struct rds_message *rm, *tmp;
68 unsigned long flags;
70 if (conn->c_xmit_rm) {
71 rm = conn->c_xmit_rm;
72 conn->c_xmit_rm = NULL;
73 /* Tell the user the RDMA op is no longer mapped by the
74 * transport. This isn't entirely true (it's flushed out
75 * independently) but as the connection is down, there's
76 * no ongoing RDMA to/from that memory */
77 rds_message_unmapped(rm);
78 rds_message_put(rm);
81 conn->c_xmit_sg = 0;
82 conn->c_xmit_hdr_off = 0;
83 conn->c_xmit_data_off = 0;
84 conn->c_xmit_atomic_sent = 0;
85 conn->c_xmit_rdma_sent = 0;
86 conn->c_xmit_data_sent = 0;
88 conn->c_map_queued = 0;
90 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
91 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
93 /* Mark messages as retransmissions, and move them to the send q */
94 spin_lock_irqsave(&conn->c_lock, flags);
95 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
99 list_splice_init(&conn->c_retrans, &conn->c_send_queue);
100 spin_unlock_irqrestore(&conn->c_lock, flags);
103 static int acquire_in_xmit(struct rds_connection *conn)
105 return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
108 static void release_in_xmit(struct rds_connection *conn)
110 clear_bit(RDS_IN_XMIT, &conn->c_flags);
111 smp_mb__after_atomic();
113 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
114 * hot path and finding waiters is very rare. We don't want to walk
115 * the system-wide hashed waitqueue buckets in the fast path only to
116 * almost never find waiters.
118 if (waitqueue_active(&conn->c_waitq))
119 wake_up_all(&conn->c_waitq);
123 * We're making the conscious trade-off here to only send one message
124 * down the connection at a time.
125 * Pro:
126 * - tx queueing is a simple fifo list
127 * - reassembly is optional and easily done by transports per conn
128 * - no per flow rx lookup at all, straight to the socket
129 * - less per-frag memory and wire overhead
130 * Con:
131 * - queued acks can be delayed behind large messages
132 * Depends:
133 * - small message latency is higher behind queued large messages
134 * - large message latency isn't starved by intervening small sends
136 int rds_send_xmit(struct rds_connection *conn)
138 struct rds_message *rm;
139 unsigned long flags;
140 unsigned int tmp;
141 struct scatterlist *sg;
142 int ret = 0;
143 LIST_HEAD(to_be_dropped);
144 int batch_count;
145 unsigned long send_gen = 0;
147 restart:
148 batch_count = 0;
151 * sendmsg calls here after having queued its message on the send
152 * queue. We only have one task feeding the connection at a time. If
153 * another thread is already feeding the queue then we back off. This
154 * avoids blocking the caller and trading per-connection data between
155 * caches per message.
157 if (!acquire_in_xmit(conn)) {
158 rds_stats_inc(s_send_lock_contention);
159 ret = -ENOMEM;
160 goto out;
164 * we record the send generation after doing the xmit acquire.
165 * if someone else manages to jump in and do some work, we'll use
166 * this to avoid a goto restart farther down.
168 * The acquire_in_xmit() check above ensures that only one
169 * caller can increment c_send_gen at any time.
171 conn->c_send_gen++;
172 send_gen = conn->c_send_gen;
175 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
176 * we do the opposite to avoid races.
178 if (!rds_conn_up(conn)) {
179 release_in_xmit(conn);
180 ret = 0;
181 goto out;
184 if (conn->c_trans->xmit_prepare)
185 conn->c_trans->xmit_prepare(conn);
188 * spin trying to push headers and data down the connection until
189 * the connection doesn't make forward progress.
191 while (1) {
193 rm = conn->c_xmit_rm;
196 * If between sending messages, we can send a pending congestion
197 * map update.
199 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
200 rm = rds_cong_update_alloc(conn);
201 if (IS_ERR(rm)) {
202 ret = PTR_ERR(rm);
203 break;
205 rm->data.op_active = 1;
207 conn->c_xmit_rm = rm;
211 * If not already working on one, grab the next message.
213 * c_xmit_rm holds a ref while we're sending this message down
214 * the connction. We can use this ref while holding the
215 * send_sem.. rds_send_reset() is serialized with it.
217 if (!rm) {
218 unsigned int len;
220 batch_count++;
222 /* we want to process as big a batch as we can, but
223 * we also want to avoid softlockups. If we've been
224 * through a lot of messages, lets back off and see
225 * if anyone else jumps in
227 if (batch_count >= send_batch_count)
228 goto over_batch;
230 spin_lock_irqsave(&conn->c_lock, flags);
232 if (!list_empty(&conn->c_send_queue)) {
233 rm = list_entry(conn->c_send_queue.next,
234 struct rds_message,
235 m_conn_item);
236 rds_message_addref(rm);
239 * Move the message from the send queue to the retransmit
240 * list right away.
242 list_move_tail(&rm->m_conn_item, &conn->c_retrans);
245 spin_unlock_irqrestore(&conn->c_lock, flags);
247 if (!rm)
248 break;
250 /* Unfortunately, the way Infiniband deals with
251 * RDMA to a bad MR key is by moving the entire
252 * queue pair to error state. We cold possibly
253 * recover from that, but right now we drop the
254 * connection.
255 * Therefore, we never retransmit messages with RDMA ops.
257 if (rm->rdma.op_active &&
258 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
259 spin_lock_irqsave(&conn->c_lock, flags);
260 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
261 list_move(&rm->m_conn_item, &to_be_dropped);
262 spin_unlock_irqrestore(&conn->c_lock, flags);
263 continue;
266 /* Require an ACK every once in a while */
267 len = ntohl(rm->m_inc.i_hdr.h_len);
268 if (conn->c_unacked_packets == 0 ||
269 conn->c_unacked_bytes < len) {
270 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
272 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
273 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
274 rds_stats_inc(s_send_ack_required);
275 } else {
276 conn->c_unacked_bytes -= len;
277 conn->c_unacked_packets--;
280 conn->c_xmit_rm = rm;
283 /* The transport either sends the whole rdma or none of it */
284 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
285 rm->m_final_op = &rm->rdma;
286 /* The transport owns the mapped memory for now.
287 * You can't unmap it while it's on the send queue
289 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
290 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
291 if (ret) {
292 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
293 wake_up_interruptible(&rm->m_flush_wait);
294 break;
296 conn->c_xmit_rdma_sent = 1;
300 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
301 rm->m_final_op = &rm->atomic;
302 /* The transport owns the mapped memory for now.
303 * You can't unmap it while it's on the send queue
305 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
306 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
307 if (ret) {
308 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
309 wake_up_interruptible(&rm->m_flush_wait);
310 break;
312 conn->c_xmit_atomic_sent = 1;
317 * A number of cases require an RDS header to be sent
318 * even if there is no data.
319 * We permit 0-byte sends; rds-ping depends on this.
320 * However, if there are exclusively attached silent ops,
321 * we skip the hdr/data send, to enable silent operation.
323 if (rm->data.op_nents == 0) {
324 int ops_present;
325 int all_ops_are_silent = 1;
327 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
328 if (rm->atomic.op_active && !rm->atomic.op_silent)
329 all_ops_are_silent = 0;
330 if (rm->rdma.op_active && !rm->rdma.op_silent)
331 all_ops_are_silent = 0;
333 if (ops_present && all_ops_are_silent
334 && !rm->m_rdma_cookie)
335 rm->data.op_active = 0;
338 if (rm->data.op_active && !conn->c_xmit_data_sent) {
339 rm->m_final_op = &rm->data;
340 ret = conn->c_trans->xmit(conn, rm,
341 conn->c_xmit_hdr_off,
342 conn->c_xmit_sg,
343 conn->c_xmit_data_off);
344 if (ret <= 0)
345 break;
347 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
348 tmp = min_t(int, ret,
349 sizeof(struct rds_header) -
350 conn->c_xmit_hdr_off);
351 conn->c_xmit_hdr_off += tmp;
352 ret -= tmp;
355 sg = &rm->data.op_sg[conn->c_xmit_sg];
356 while (ret) {
357 tmp = min_t(int, ret, sg->length -
358 conn->c_xmit_data_off);
359 conn->c_xmit_data_off += tmp;
360 ret -= tmp;
361 if (conn->c_xmit_data_off == sg->length) {
362 conn->c_xmit_data_off = 0;
363 sg++;
364 conn->c_xmit_sg++;
365 BUG_ON(ret != 0 &&
366 conn->c_xmit_sg == rm->data.op_nents);
370 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
371 (conn->c_xmit_sg == rm->data.op_nents))
372 conn->c_xmit_data_sent = 1;
376 * A rm will only take multiple times through this loop
377 * if there is a data op. Thus, if the data is sent (or there was
378 * none), then we're done with the rm.
380 if (!rm->data.op_active || conn->c_xmit_data_sent) {
381 conn->c_xmit_rm = NULL;
382 conn->c_xmit_sg = 0;
383 conn->c_xmit_hdr_off = 0;
384 conn->c_xmit_data_off = 0;
385 conn->c_xmit_rdma_sent = 0;
386 conn->c_xmit_atomic_sent = 0;
387 conn->c_xmit_data_sent = 0;
389 rds_message_put(rm);
393 over_batch:
394 if (conn->c_trans->xmit_complete)
395 conn->c_trans->xmit_complete(conn);
396 release_in_xmit(conn);
398 /* Nuke any messages we decided not to retransmit. */
399 if (!list_empty(&to_be_dropped)) {
400 /* irqs on here, so we can put(), unlike above */
401 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
402 rds_message_put(rm);
403 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
407 * Other senders can queue a message after we last test the send queue
408 * but before we clear RDS_IN_XMIT. In that case they'd back off and
409 * not try and send their newly queued message. We need to check the
410 * send queue after having cleared RDS_IN_XMIT so that their message
411 * doesn't get stuck on the send queue.
413 * If the transport cannot continue (i.e ret != 0), then it must
414 * call us when more room is available, such as from the tx
415 * completion handler.
417 * We have an extra generation check here so that if someone manages
418 * to jump in after our release_in_xmit, we'll see that they have done
419 * some work and we will skip our goto
421 if (ret == 0) {
422 smp_mb();
423 if ((test_bit(0, &conn->c_map_queued) ||
424 !list_empty(&conn->c_send_queue)) &&
425 send_gen == conn->c_send_gen) {
426 rds_stats_inc(s_send_lock_queue_raced);
427 if (batch_count < send_batch_count)
428 goto restart;
429 queue_delayed_work(rds_wq, &conn->c_send_w, 1);
432 out:
433 return ret;
435 EXPORT_SYMBOL_GPL(rds_send_xmit);
437 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
439 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
441 assert_spin_locked(&rs->rs_lock);
443 BUG_ON(rs->rs_snd_bytes < len);
444 rs->rs_snd_bytes -= len;
446 if (rs->rs_snd_bytes == 0)
447 rds_stats_inc(s_send_queue_empty);
450 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
451 is_acked_func is_acked)
453 if (is_acked)
454 return is_acked(rm, ack);
455 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
459 * This is pretty similar to what happens below in the ACK
460 * handling code - except that we call here as soon as we get
461 * the IB send completion on the RDMA op and the accompanying
462 * message.
464 void rds_rdma_send_complete(struct rds_message *rm, int status)
466 struct rds_sock *rs = NULL;
467 struct rm_rdma_op *ro;
468 struct rds_notifier *notifier;
469 unsigned long flags;
471 spin_lock_irqsave(&rm->m_rs_lock, flags);
473 ro = &rm->rdma;
474 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
475 ro->op_active && ro->op_notify && ro->op_notifier) {
476 notifier = ro->op_notifier;
477 rs = rm->m_rs;
478 sock_hold(rds_rs_to_sk(rs));
480 notifier->n_status = status;
481 spin_lock(&rs->rs_lock);
482 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
483 spin_unlock(&rs->rs_lock);
485 ro->op_notifier = NULL;
488 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
490 if (rs) {
491 rds_wake_sk_sleep(rs);
492 sock_put(rds_rs_to_sk(rs));
495 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
498 * Just like above, except looks at atomic op
500 void rds_atomic_send_complete(struct rds_message *rm, int status)
502 struct rds_sock *rs = NULL;
503 struct rm_atomic_op *ao;
504 struct rds_notifier *notifier;
505 unsigned long flags;
507 spin_lock_irqsave(&rm->m_rs_lock, flags);
509 ao = &rm->atomic;
510 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
511 && ao->op_active && ao->op_notify && ao->op_notifier) {
512 notifier = ao->op_notifier;
513 rs = rm->m_rs;
514 sock_hold(rds_rs_to_sk(rs));
516 notifier->n_status = status;
517 spin_lock(&rs->rs_lock);
518 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
519 spin_unlock(&rs->rs_lock);
521 ao->op_notifier = NULL;
524 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
526 if (rs) {
527 rds_wake_sk_sleep(rs);
528 sock_put(rds_rs_to_sk(rs));
531 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
534 * This is the same as rds_rdma_send_complete except we
535 * don't do any locking - we have all the ingredients (message,
536 * socket, socket lock) and can just move the notifier.
538 static inline void
539 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
541 struct rm_rdma_op *ro;
542 struct rm_atomic_op *ao;
544 ro = &rm->rdma;
545 if (ro->op_active && ro->op_notify && ro->op_notifier) {
546 ro->op_notifier->n_status = status;
547 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
548 ro->op_notifier = NULL;
551 ao = &rm->atomic;
552 if (ao->op_active && ao->op_notify && ao->op_notifier) {
553 ao->op_notifier->n_status = status;
554 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
555 ao->op_notifier = NULL;
558 /* No need to wake the app - caller does this */
562 * This is called from the IB send completion when we detect
563 * a RDMA operation that failed with remote access error.
564 * So speed is not an issue here.
566 struct rds_message *rds_send_get_message(struct rds_connection *conn,
567 struct rm_rdma_op *op)
569 struct rds_message *rm, *tmp, *found = NULL;
570 unsigned long flags;
572 spin_lock_irqsave(&conn->c_lock, flags);
574 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
575 if (&rm->rdma == op) {
576 atomic_inc(&rm->m_refcount);
577 found = rm;
578 goto out;
582 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
583 if (&rm->rdma == op) {
584 atomic_inc(&rm->m_refcount);
585 found = rm;
586 break;
590 out:
591 spin_unlock_irqrestore(&conn->c_lock, flags);
593 return found;
595 EXPORT_SYMBOL_GPL(rds_send_get_message);
598 * This removes messages from the socket's list if they're on it. The list
599 * argument must be private to the caller, we must be able to modify it
600 * without locks. The messages must have a reference held for their
601 * position on the list. This function will drop that reference after
602 * removing the messages from the 'messages' list regardless of if it found
603 * the messages on the socket list or not.
605 static void rds_send_remove_from_sock(struct list_head *messages, int status)
607 unsigned long flags;
608 struct rds_sock *rs = NULL;
609 struct rds_message *rm;
611 while (!list_empty(messages)) {
612 int was_on_sock = 0;
614 rm = list_entry(messages->next, struct rds_message,
615 m_conn_item);
616 list_del_init(&rm->m_conn_item);
619 * If we see this flag cleared then we're *sure* that someone
620 * else beat us to removing it from the sock. If we race
621 * with their flag update we'll get the lock and then really
622 * see that the flag has been cleared.
624 * The message spinlock makes sure nobody clears rm->m_rs
625 * while we're messing with it. It does not prevent the
626 * message from being removed from the socket, though.
628 spin_lock_irqsave(&rm->m_rs_lock, flags);
629 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
630 goto unlock_and_drop;
632 if (rs != rm->m_rs) {
633 if (rs) {
634 rds_wake_sk_sleep(rs);
635 sock_put(rds_rs_to_sk(rs));
637 rs = rm->m_rs;
638 if (rs)
639 sock_hold(rds_rs_to_sk(rs));
641 if (!rs)
642 goto unlock_and_drop;
643 spin_lock(&rs->rs_lock);
645 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
646 struct rm_rdma_op *ro = &rm->rdma;
647 struct rds_notifier *notifier;
649 list_del_init(&rm->m_sock_item);
650 rds_send_sndbuf_remove(rs, rm);
652 if (ro->op_active && ro->op_notifier &&
653 (ro->op_notify || (ro->op_recverr && status))) {
654 notifier = ro->op_notifier;
655 list_add_tail(&notifier->n_list,
656 &rs->rs_notify_queue);
657 if (!notifier->n_status)
658 notifier->n_status = status;
659 rm->rdma.op_notifier = NULL;
661 was_on_sock = 1;
662 rm->m_rs = NULL;
664 spin_unlock(&rs->rs_lock);
666 unlock_and_drop:
667 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
668 rds_message_put(rm);
669 if (was_on_sock)
670 rds_message_put(rm);
673 if (rs) {
674 rds_wake_sk_sleep(rs);
675 sock_put(rds_rs_to_sk(rs));
680 * Transports call here when they've determined that the receiver queued
681 * messages up to, and including, the given sequence number. Messages are
682 * moved to the retrans queue when rds_send_xmit picks them off the send
683 * queue. This means that in the TCP case, the message may not have been
684 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
685 * checks the RDS_MSG_HAS_ACK_SEQ bit.
687 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
688 is_acked_func is_acked)
690 struct rds_message *rm, *tmp;
691 unsigned long flags;
692 LIST_HEAD(list);
694 spin_lock_irqsave(&conn->c_lock, flags);
696 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
697 if (!rds_send_is_acked(rm, ack, is_acked))
698 break;
700 list_move(&rm->m_conn_item, &list);
701 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
704 /* order flag updates with spin locks */
705 if (!list_empty(&list))
706 smp_mb__after_atomic();
708 spin_unlock_irqrestore(&conn->c_lock, flags);
710 /* now remove the messages from the sock list as needed */
711 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
713 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
715 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
717 struct rds_message *rm, *tmp;
718 struct rds_connection *conn;
719 unsigned long flags;
720 LIST_HEAD(list);
722 /* get all the messages we're dropping under the rs lock */
723 spin_lock_irqsave(&rs->rs_lock, flags);
725 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
726 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
727 dest->sin_port != rm->m_inc.i_hdr.h_dport))
728 continue;
730 list_move(&rm->m_sock_item, &list);
731 rds_send_sndbuf_remove(rs, rm);
732 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
735 /* order flag updates with the rs lock */
736 smp_mb__after_atomic();
738 spin_unlock_irqrestore(&rs->rs_lock, flags);
740 if (list_empty(&list))
741 return;
743 /* Remove the messages from the conn */
744 list_for_each_entry(rm, &list, m_sock_item) {
746 conn = rm->m_inc.i_conn;
748 spin_lock_irqsave(&conn->c_lock, flags);
750 * Maybe someone else beat us to removing rm from the conn.
751 * If we race with their flag update we'll get the lock and
752 * then really see that the flag has been cleared.
754 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
755 spin_unlock_irqrestore(&conn->c_lock, flags);
756 spin_lock_irqsave(&rm->m_rs_lock, flags);
757 rm->m_rs = NULL;
758 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
759 continue;
761 list_del_init(&rm->m_conn_item);
762 spin_unlock_irqrestore(&conn->c_lock, flags);
765 * Couldn't grab m_rs_lock in top loop (lock ordering),
766 * but we can now.
768 spin_lock_irqsave(&rm->m_rs_lock, flags);
770 spin_lock(&rs->rs_lock);
771 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
772 spin_unlock(&rs->rs_lock);
774 rm->m_rs = NULL;
775 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
777 rds_message_put(rm);
780 rds_wake_sk_sleep(rs);
782 while (!list_empty(&list)) {
783 rm = list_entry(list.next, struct rds_message, m_sock_item);
784 list_del_init(&rm->m_sock_item);
785 rds_message_wait(rm);
787 /* just in case the code above skipped this message
788 * because RDS_MSG_ON_CONN wasn't set, run it again here
789 * taking m_rs_lock is the only thing that keeps us
790 * from racing with ack processing.
792 spin_lock_irqsave(&rm->m_rs_lock, flags);
794 spin_lock(&rs->rs_lock);
795 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
796 spin_unlock(&rs->rs_lock);
798 rm->m_rs = NULL;
799 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
801 rds_message_put(rm);
806 * we only want this to fire once so we use the callers 'queued'. It's
807 * possible that another thread can race with us and remove the
808 * message from the flow with RDS_CANCEL_SENT_TO.
810 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
811 struct rds_message *rm, __be16 sport,
812 __be16 dport, int *queued)
814 unsigned long flags;
815 u32 len;
817 if (*queued)
818 goto out;
820 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
822 /* this is the only place which holds both the socket's rs_lock
823 * and the connection's c_lock */
824 spin_lock_irqsave(&rs->rs_lock, flags);
827 * If there is a little space in sndbuf, we don't queue anything,
828 * and userspace gets -EAGAIN. But poll() indicates there's send
829 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
830 * freed up by incoming acks. So we check the *old* value of
831 * rs_snd_bytes here to allow the last msg to exceed the buffer,
832 * and poll() now knows no more data can be sent.
834 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
835 rs->rs_snd_bytes += len;
837 /* let recv side know we are close to send space exhaustion.
838 * This is probably not the optimal way to do it, as this
839 * means we set the flag on *all* messages as soon as our
840 * throughput hits a certain threshold.
842 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
843 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
845 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
846 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
847 rds_message_addref(rm);
848 rm->m_rs = rs;
850 /* The code ordering is a little weird, but we're
851 trying to minimize the time we hold c_lock */
852 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
853 rm->m_inc.i_conn = conn;
854 rds_message_addref(rm);
856 spin_lock(&conn->c_lock);
857 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
858 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
859 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
860 spin_unlock(&conn->c_lock);
862 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
863 rm, len, rs, rs->rs_snd_bytes,
864 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
866 *queued = 1;
869 spin_unlock_irqrestore(&rs->rs_lock, flags);
870 out:
871 return *queued;
875 * rds_message is getting to be quite complicated, and we'd like to allocate
876 * it all in one go. This figures out how big it needs to be up front.
878 static int rds_rm_size(struct msghdr *msg, int data_len)
880 struct cmsghdr *cmsg;
881 int size = 0;
882 int cmsg_groups = 0;
883 int retval;
885 for_each_cmsghdr(cmsg, msg) {
886 if (!CMSG_OK(msg, cmsg))
887 return -EINVAL;
889 if (cmsg->cmsg_level != SOL_RDS)
890 continue;
892 switch (cmsg->cmsg_type) {
893 case RDS_CMSG_RDMA_ARGS:
894 cmsg_groups |= 1;
895 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
896 if (retval < 0)
897 return retval;
898 size += retval;
900 break;
902 case RDS_CMSG_RDMA_DEST:
903 case RDS_CMSG_RDMA_MAP:
904 cmsg_groups |= 2;
905 /* these are valid but do no add any size */
906 break;
908 case RDS_CMSG_ATOMIC_CSWP:
909 case RDS_CMSG_ATOMIC_FADD:
910 case RDS_CMSG_MASKED_ATOMIC_CSWP:
911 case RDS_CMSG_MASKED_ATOMIC_FADD:
912 cmsg_groups |= 1;
913 size += sizeof(struct scatterlist);
914 break;
916 default:
917 return -EINVAL;
922 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
924 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
925 if (cmsg_groups == 3)
926 return -EINVAL;
928 return size;
931 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
932 struct msghdr *msg, int *allocated_mr)
934 struct cmsghdr *cmsg;
935 int ret = 0;
937 for_each_cmsghdr(cmsg, msg) {
938 if (!CMSG_OK(msg, cmsg))
939 return -EINVAL;
941 if (cmsg->cmsg_level != SOL_RDS)
942 continue;
944 /* As a side effect, RDMA_DEST and RDMA_MAP will set
945 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
947 switch (cmsg->cmsg_type) {
948 case RDS_CMSG_RDMA_ARGS:
949 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
950 break;
952 case RDS_CMSG_RDMA_DEST:
953 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
954 break;
956 case RDS_CMSG_RDMA_MAP:
957 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
958 if (!ret)
959 *allocated_mr = 1;
960 break;
961 case RDS_CMSG_ATOMIC_CSWP:
962 case RDS_CMSG_ATOMIC_FADD:
963 case RDS_CMSG_MASKED_ATOMIC_CSWP:
964 case RDS_CMSG_MASKED_ATOMIC_FADD:
965 ret = rds_cmsg_atomic(rs, rm, cmsg);
966 break;
968 default:
969 return -EINVAL;
972 if (ret)
973 break;
976 return ret;
979 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
981 struct sock *sk = sock->sk;
982 struct rds_sock *rs = rds_sk_to_rs(sk);
983 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
984 __be32 daddr;
985 __be16 dport;
986 struct rds_message *rm = NULL;
987 struct rds_connection *conn;
988 int ret = 0;
989 int queued = 0, allocated_mr = 0;
990 int nonblock = msg->msg_flags & MSG_DONTWAIT;
991 long timeo = sock_sndtimeo(sk, nonblock);
993 /* Mirror Linux UDP mirror of BSD error message compatibility */
994 /* XXX: Perhaps MSG_MORE someday */
995 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
996 ret = -EOPNOTSUPP;
997 goto out;
1000 if (msg->msg_namelen) {
1001 /* XXX fail non-unicast destination IPs? */
1002 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1003 ret = -EINVAL;
1004 goto out;
1006 daddr = usin->sin_addr.s_addr;
1007 dport = usin->sin_port;
1008 } else {
1009 /* We only care about consistency with ->connect() */
1010 lock_sock(sk);
1011 daddr = rs->rs_conn_addr;
1012 dport = rs->rs_conn_port;
1013 release_sock(sk);
1016 lock_sock(sk);
1017 if (daddr == 0 || rs->rs_bound_addr == 0) {
1018 release_sock(sk);
1019 ret = -ENOTCONN; /* XXX not a great errno */
1020 goto out;
1022 release_sock(sk);
1024 if (payload_len > rds_sk_sndbuf(rs)) {
1025 ret = -EMSGSIZE;
1026 goto out;
1029 /* size of rm including all sgs */
1030 ret = rds_rm_size(msg, payload_len);
1031 if (ret < 0)
1032 goto out;
1034 rm = rds_message_alloc(ret, GFP_KERNEL);
1035 if (!rm) {
1036 ret = -ENOMEM;
1037 goto out;
1040 /* Attach data to the rm */
1041 if (payload_len) {
1042 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1043 if (!rm->data.op_sg) {
1044 ret = -ENOMEM;
1045 goto out;
1047 ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1048 if (ret)
1049 goto out;
1051 rm->data.op_active = 1;
1053 rm->m_daddr = daddr;
1055 /* rds_conn_create has a spinlock that runs with IRQ off.
1056 * Caching the conn in the socket helps a lot. */
1057 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1058 conn = rs->rs_conn;
1059 else {
1060 conn = rds_conn_create_outgoing(sock_net(sock->sk),
1061 rs->rs_bound_addr, daddr,
1062 rs->rs_transport,
1063 sock->sk->sk_allocation);
1064 if (IS_ERR(conn)) {
1065 ret = PTR_ERR(conn);
1066 goto out;
1068 rs->rs_conn = conn;
1071 /* Parse any control messages the user may have included. */
1072 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1073 if (ret)
1074 goto out;
1076 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1077 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1078 &rm->rdma, conn->c_trans->xmit_rdma);
1079 ret = -EOPNOTSUPP;
1080 goto out;
1083 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1084 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1085 &rm->atomic, conn->c_trans->xmit_atomic);
1086 ret = -EOPNOTSUPP;
1087 goto out;
1090 rds_conn_connect_if_down(conn);
1092 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1093 if (ret) {
1094 rs->rs_seen_congestion = 1;
1095 goto out;
1098 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1099 dport, &queued)) {
1100 rds_stats_inc(s_send_queue_full);
1102 if (nonblock) {
1103 ret = -EAGAIN;
1104 goto out;
1107 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1108 rds_send_queue_rm(rs, conn, rm,
1109 rs->rs_bound_port,
1110 dport,
1111 &queued),
1112 timeo);
1113 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1114 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1115 continue;
1117 ret = timeo;
1118 if (ret == 0)
1119 ret = -ETIMEDOUT;
1120 goto out;
1124 * By now we've committed to the send. We reuse rds_send_worker()
1125 * to retry sends in the rds thread if the transport asks us to.
1127 rds_stats_inc(s_send_queued);
1129 ret = rds_send_xmit(conn);
1130 if (ret == -ENOMEM || ret == -EAGAIN)
1131 queue_delayed_work(rds_wq, &conn->c_send_w, 1);
1133 rds_message_put(rm);
1134 return payload_len;
1136 out:
1137 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1138 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1139 * or in any other way, we need to destroy the MR again */
1140 if (allocated_mr)
1141 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1143 if (rm)
1144 rds_message_put(rm);
1145 return ret;
1149 * Reply to a ping packet.
1152 rds_send_pong(struct rds_connection *conn, __be16 dport)
1154 struct rds_message *rm;
1155 unsigned long flags;
1156 int ret = 0;
1158 rm = rds_message_alloc(0, GFP_ATOMIC);
1159 if (!rm) {
1160 ret = -ENOMEM;
1161 goto out;
1164 rm->m_daddr = conn->c_faddr;
1165 rm->data.op_active = 1;
1167 rds_conn_connect_if_down(conn);
1169 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1170 if (ret)
1171 goto out;
1173 spin_lock_irqsave(&conn->c_lock, flags);
1174 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1175 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1176 rds_message_addref(rm);
1177 rm->m_inc.i_conn = conn;
1179 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1180 conn->c_next_tx_seq);
1181 conn->c_next_tx_seq++;
1182 spin_unlock_irqrestore(&conn->c_lock, flags);
1184 rds_stats_inc(s_send_queued);
1185 rds_stats_inc(s_send_pong);
1187 /* schedule the send work on rds_wq */
1188 queue_delayed_work(rds_wq, &conn->c_send_w, 1);
1190 rds_message_put(rm);
1191 return 0;
1193 out:
1194 if (rm)
1195 rds_message_put(rm);
1196 return ret;