igb: update suspend resume
[linux-2.6/btrfs-unstable.git] / drivers / net / igb / igb_main.c
blob00e2e8d30ba2c835f0d7afd43b6a269f5ac89e21
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
44 #ifdef CONFIG_DCA
45 #include <linux/dca.h>
46 #endif
47 #include "igb.h"
49 #define DRV_VERSION "1.2.45-k2"
50 char igb_driver_name[] = "igb";
51 char igb_driver_version[] = DRV_VERSION;
52 static const char igb_driver_string[] =
53 "Intel(R) Gigabit Ethernet Network Driver";
54 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
56 static const struct e1000_info *igb_info_tbl[] = {
57 [board_82575] = &e1000_82575_info,
60 static struct pci_device_id igb_pci_tbl[] = {
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68 /* required last entry */
69 {0, }
72 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74 void igb_reset(struct igb_adapter *);
75 static int igb_setup_all_tx_resources(struct igb_adapter *);
76 static int igb_setup_all_rx_resources(struct igb_adapter *);
77 static void igb_free_all_tx_resources(struct igb_adapter *);
78 static void igb_free_all_rx_resources(struct igb_adapter *);
79 static void igb_free_tx_resources(struct igb_ring *);
80 static void igb_free_rx_resources(struct igb_ring *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99 struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
110 #ifdef CONFIG_DCA
111 static void igb_update_rx_dca(struct igb_ring *);
112 static void igb_update_tx_dca(struct igb_ring *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_DCA */
115 static bool igb_clean_tx_irq(struct igb_ring *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
119 #ifdef CONFIG_IGB_LRO
120 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
121 #endif
122 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
123 static void igb_tx_timeout(struct net_device *);
124 static void igb_reset_task(struct work_struct *);
125 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
126 static void igb_vlan_rx_add_vid(struct net_device *, u16);
127 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
128 static void igb_restore_vlan(struct igb_adapter *);
130 static int igb_suspend(struct pci_dev *, pm_message_t);
131 #ifdef CONFIG_PM
132 static int igb_resume(struct pci_dev *);
133 #endif
134 static void igb_shutdown(struct pci_dev *);
135 #ifdef CONFIG_DCA
136 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
137 static struct notifier_block dca_notifier = {
138 .notifier_call = igb_notify_dca,
139 .next = NULL,
140 .priority = 0
142 #endif
144 #ifdef CONFIG_NET_POLL_CONTROLLER
145 /* for netdump / net console */
146 static void igb_netpoll(struct net_device *);
147 #endif
149 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
150 pci_channel_state_t);
151 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
152 static void igb_io_resume(struct pci_dev *);
154 static struct pci_error_handlers igb_err_handler = {
155 .error_detected = igb_io_error_detected,
156 .slot_reset = igb_io_slot_reset,
157 .resume = igb_io_resume,
161 static struct pci_driver igb_driver = {
162 .name = igb_driver_name,
163 .id_table = igb_pci_tbl,
164 .probe = igb_probe,
165 .remove = __devexit_p(igb_remove),
166 #ifdef CONFIG_PM
167 /* Power Managment Hooks */
168 .suspend = igb_suspend,
169 .resume = igb_resume,
170 #endif
171 .shutdown = igb_shutdown,
172 .err_handler = &igb_err_handler
175 static int global_quad_port_a; /* global quad port a indication */
177 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
178 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
179 MODULE_LICENSE("GPL");
180 MODULE_VERSION(DRV_VERSION);
182 #ifdef DEBUG
184 * igb_get_hw_dev_name - return device name string
185 * used by hardware layer to print debugging information
187 char *igb_get_hw_dev_name(struct e1000_hw *hw)
189 struct igb_adapter *adapter = hw->back;
190 return adapter->netdev->name;
192 #endif
195 * igb_init_module - Driver Registration Routine
197 * igb_init_module is the first routine called when the driver is
198 * loaded. All it does is register with the PCI subsystem.
200 static int __init igb_init_module(void)
202 int ret;
203 printk(KERN_INFO "%s - version %s\n",
204 igb_driver_string, igb_driver_version);
206 printk(KERN_INFO "%s\n", igb_copyright);
208 global_quad_port_a = 0;
210 ret = pci_register_driver(&igb_driver);
211 #ifdef CONFIG_DCA
212 dca_register_notify(&dca_notifier);
213 #endif
214 return ret;
217 module_init(igb_init_module);
220 * igb_exit_module - Driver Exit Cleanup Routine
222 * igb_exit_module is called just before the driver is removed
223 * from memory.
225 static void __exit igb_exit_module(void)
227 #ifdef CONFIG_DCA
228 dca_unregister_notify(&dca_notifier);
229 #endif
230 pci_unregister_driver(&igb_driver);
233 module_exit(igb_exit_module);
236 * igb_alloc_queues - Allocate memory for all rings
237 * @adapter: board private structure to initialize
239 * We allocate one ring per queue at run-time since we don't know the
240 * number of queues at compile-time.
242 static int igb_alloc_queues(struct igb_adapter *adapter)
244 int i;
246 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
247 sizeof(struct igb_ring), GFP_KERNEL);
248 if (!adapter->tx_ring)
249 return -ENOMEM;
251 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
252 sizeof(struct igb_ring), GFP_KERNEL);
253 if (!adapter->rx_ring) {
254 kfree(adapter->tx_ring);
255 return -ENOMEM;
258 for (i = 0; i < adapter->num_tx_queues; i++) {
259 struct igb_ring *ring = &(adapter->tx_ring[i]);
260 ring->adapter = adapter;
261 ring->queue_index = i;
263 for (i = 0; i < adapter->num_rx_queues; i++) {
264 struct igb_ring *ring = &(adapter->rx_ring[i]);
265 ring->adapter = adapter;
266 ring->queue_index = i;
267 ring->itr_register = E1000_ITR;
269 /* set a default napi handler for each rx_ring */
270 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
272 return 0;
275 static void igb_free_queues(struct igb_adapter *adapter)
277 int i;
279 for (i = 0; i < adapter->num_rx_queues; i++)
280 netif_napi_del(&adapter->rx_ring[i].napi);
282 kfree(adapter->tx_ring);
283 kfree(adapter->rx_ring);
286 #define IGB_N0_QUEUE -1
287 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
288 int tx_queue, int msix_vector)
290 u32 msixbm = 0;
291 struct e1000_hw *hw = &adapter->hw;
292 u32 ivar, index;
294 switch (hw->mac.type) {
295 case e1000_82575:
296 /* The 82575 assigns vectors using a bitmask, which matches the
297 bitmask for the EICR/EIMS/EIMC registers. To assign one
298 or more queues to a vector, we write the appropriate bits
299 into the MSIXBM register for that vector. */
300 if (rx_queue > IGB_N0_QUEUE) {
301 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
302 adapter->rx_ring[rx_queue].eims_value = msixbm;
304 if (tx_queue > IGB_N0_QUEUE) {
305 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
306 adapter->tx_ring[tx_queue].eims_value =
307 E1000_EICR_TX_QUEUE0 << tx_queue;
309 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
310 break;
311 case e1000_82576:
312 /* Kawela uses a table-based method for assigning vectors.
313 Each queue has a single entry in the table to which we write
314 a vector number along with a "valid" bit. Sadly, the layout
315 of the table is somewhat counterintuitive. */
316 if (rx_queue > IGB_N0_QUEUE) {
317 index = (rx_queue & 0x7);
318 ivar = array_rd32(E1000_IVAR0, index);
319 if (rx_queue < 8) {
320 /* vector goes into low byte of register */
321 ivar = ivar & 0xFFFFFF00;
322 ivar |= msix_vector | E1000_IVAR_VALID;
323 } else {
324 /* vector goes into third byte of register */
325 ivar = ivar & 0xFF00FFFF;
326 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
328 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
329 array_wr32(E1000_IVAR0, index, ivar);
331 if (tx_queue > IGB_N0_QUEUE) {
332 index = (tx_queue & 0x7);
333 ivar = array_rd32(E1000_IVAR0, index);
334 if (tx_queue < 8) {
335 /* vector goes into second byte of register */
336 ivar = ivar & 0xFFFF00FF;
337 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
338 } else {
339 /* vector goes into high byte of register */
340 ivar = ivar & 0x00FFFFFF;
341 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
343 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
344 array_wr32(E1000_IVAR0, index, ivar);
346 break;
347 default:
348 BUG();
349 break;
354 * igb_configure_msix - Configure MSI-X hardware
356 * igb_configure_msix sets up the hardware to properly
357 * generate MSI-X interrupts.
359 static void igb_configure_msix(struct igb_adapter *adapter)
361 u32 tmp;
362 int i, vector = 0;
363 struct e1000_hw *hw = &adapter->hw;
365 adapter->eims_enable_mask = 0;
366 if (hw->mac.type == e1000_82576)
367 /* Turn on MSI-X capability first, or our settings
368 * won't stick. And it will take days to debug. */
369 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
370 E1000_GPIE_PBA | E1000_GPIE_EIAME |
371 E1000_GPIE_NSICR);
373 for (i = 0; i < adapter->num_tx_queues; i++) {
374 struct igb_ring *tx_ring = &adapter->tx_ring[i];
375 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
376 adapter->eims_enable_mask |= tx_ring->eims_value;
377 if (tx_ring->itr_val)
378 writel(1000000000 / (tx_ring->itr_val * 256),
379 hw->hw_addr + tx_ring->itr_register);
380 else
381 writel(1, hw->hw_addr + tx_ring->itr_register);
384 for (i = 0; i < adapter->num_rx_queues; i++) {
385 struct igb_ring *rx_ring = &adapter->rx_ring[i];
386 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
387 adapter->eims_enable_mask |= rx_ring->eims_value;
388 if (rx_ring->itr_val)
389 writel(1000000000 / (rx_ring->itr_val * 256),
390 hw->hw_addr + rx_ring->itr_register);
391 else
392 writel(1, hw->hw_addr + rx_ring->itr_register);
396 /* set vector for other causes, i.e. link changes */
397 switch (hw->mac.type) {
398 case e1000_82575:
399 array_wr32(E1000_MSIXBM(0), vector++,
400 E1000_EIMS_OTHER);
402 tmp = rd32(E1000_CTRL_EXT);
403 /* enable MSI-X PBA support*/
404 tmp |= E1000_CTRL_EXT_PBA_CLR;
406 /* Auto-Mask interrupts upon ICR read. */
407 tmp |= E1000_CTRL_EXT_EIAME;
408 tmp |= E1000_CTRL_EXT_IRCA;
410 wr32(E1000_CTRL_EXT, tmp);
411 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
412 adapter->eims_other = E1000_EIMS_OTHER;
414 break;
416 case e1000_82576:
417 tmp = (vector++ | E1000_IVAR_VALID) << 8;
418 wr32(E1000_IVAR_MISC, tmp);
420 adapter->eims_enable_mask = (1 << (vector)) - 1;
421 adapter->eims_other = 1 << (vector - 1);
422 break;
423 default:
424 /* do nothing, since nothing else supports MSI-X */
425 break;
426 } /* switch (hw->mac.type) */
427 wrfl();
431 * igb_request_msix - Initialize MSI-X interrupts
433 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
434 * kernel.
436 static int igb_request_msix(struct igb_adapter *adapter)
438 struct net_device *netdev = adapter->netdev;
439 int i, err = 0, vector = 0;
441 vector = 0;
443 for (i = 0; i < adapter->num_tx_queues; i++) {
444 struct igb_ring *ring = &(adapter->tx_ring[i]);
445 sprintf(ring->name, "%s-tx%d", netdev->name, i);
446 err = request_irq(adapter->msix_entries[vector].vector,
447 &igb_msix_tx, 0, ring->name,
448 &(adapter->tx_ring[i]));
449 if (err)
450 goto out;
451 ring->itr_register = E1000_EITR(0) + (vector << 2);
452 ring->itr_val = adapter->itr;
453 vector++;
455 for (i = 0; i < adapter->num_rx_queues; i++) {
456 struct igb_ring *ring = &(adapter->rx_ring[i]);
457 if (strlen(netdev->name) < (IFNAMSIZ - 5))
458 sprintf(ring->name, "%s-rx%d", netdev->name, i);
459 else
460 memcpy(ring->name, netdev->name, IFNAMSIZ);
461 err = request_irq(adapter->msix_entries[vector].vector,
462 &igb_msix_rx, 0, ring->name,
463 &(adapter->rx_ring[i]));
464 if (err)
465 goto out;
466 ring->itr_register = E1000_EITR(0) + (vector << 2);
467 ring->itr_val = adapter->itr;
468 /* overwrite the poll routine for MSIX, we've already done
469 * netif_napi_add */
470 ring->napi.poll = &igb_clean_rx_ring_msix;
471 vector++;
474 err = request_irq(adapter->msix_entries[vector].vector,
475 &igb_msix_other, 0, netdev->name, netdev);
476 if (err)
477 goto out;
479 igb_configure_msix(adapter);
480 return 0;
481 out:
482 return err;
485 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
487 if (adapter->msix_entries) {
488 pci_disable_msix(adapter->pdev);
489 kfree(adapter->msix_entries);
490 adapter->msix_entries = NULL;
491 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
492 pci_disable_msi(adapter->pdev);
493 return;
498 * igb_set_interrupt_capability - set MSI or MSI-X if supported
500 * Attempt to configure interrupts using the best available
501 * capabilities of the hardware and kernel.
503 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
505 int err;
506 int numvecs, i;
508 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
509 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
510 GFP_KERNEL);
511 if (!adapter->msix_entries)
512 goto msi_only;
514 for (i = 0; i < numvecs; i++)
515 adapter->msix_entries[i].entry = i;
517 err = pci_enable_msix(adapter->pdev,
518 adapter->msix_entries,
519 numvecs);
520 if (err == 0)
521 return;
523 igb_reset_interrupt_capability(adapter);
525 /* If we can't do MSI-X, try MSI */
526 msi_only:
527 adapter->num_rx_queues = 1;
528 adapter->num_tx_queues = 1;
529 if (!pci_enable_msi(adapter->pdev))
530 adapter->flags |= IGB_FLAG_HAS_MSI;
532 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
533 /* Notify the stack of the (possibly) reduced Tx Queue count. */
534 adapter->netdev->egress_subqueue_count = adapter->num_tx_queues;
535 #endif
536 return;
540 * igb_request_irq - initialize interrupts
542 * Attempts to configure interrupts using the best available
543 * capabilities of the hardware and kernel.
545 static int igb_request_irq(struct igb_adapter *adapter)
547 struct net_device *netdev = adapter->netdev;
548 struct e1000_hw *hw = &adapter->hw;
549 int err = 0;
551 if (adapter->msix_entries) {
552 err = igb_request_msix(adapter);
553 if (!err)
554 goto request_done;
555 /* fall back to MSI */
556 igb_reset_interrupt_capability(adapter);
557 if (!pci_enable_msi(adapter->pdev))
558 adapter->flags |= IGB_FLAG_HAS_MSI;
559 igb_free_all_tx_resources(adapter);
560 igb_free_all_rx_resources(adapter);
561 adapter->num_rx_queues = 1;
562 igb_alloc_queues(adapter);
563 } else {
564 switch (hw->mac.type) {
565 case e1000_82575:
566 wr32(E1000_MSIXBM(0),
567 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
568 break;
569 case e1000_82576:
570 wr32(E1000_IVAR0, E1000_IVAR_VALID);
571 break;
572 default:
573 break;
577 if (adapter->flags & IGB_FLAG_HAS_MSI) {
578 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
579 netdev->name, netdev);
580 if (!err)
581 goto request_done;
582 /* fall back to legacy interrupts */
583 igb_reset_interrupt_capability(adapter);
584 adapter->flags &= ~IGB_FLAG_HAS_MSI;
587 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
588 netdev->name, netdev);
590 if (err)
591 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
592 err);
594 request_done:
595 return err;
598 static void igb_free_irq(struct igb_adapter *adapter)
600 struct net_device *netdev = adapter->netdev;
602 if (adapter->msix_entries) {
603 int vector = 0, i;
605 for (i = 0; i < adapter->num_tx_queues; i++)
606 free_irq(adapter->msix_entries[vector++].vector,
607 &(adapter->tx_ring[i]));
608 for (i = 0; i < adapter->num_rx_queues; i++)
609 free_irq(adapter->msix_entries[vector++].vector,
610 &(adapter->rx_ring[i]));
612 free_irq(adapter->msix_entries[vector++].vector, netdev);
613 return;
616 free_irq(adapter->pdev->irq, netdev);
620 * igb_irq_disable - Mask off interrupt generation on the NIC
621 * @adapter: board private structure
623 static void igb_irq_disable(struct igb_adapter *adapter)
625 struct e1000_hw *hw = &adapter->hw;
627 if (adapter->msix_entries) {
628 wr32(E1000_EIAM, 0);
629 wr32(E1000_EIMC, ~0);
630 wr32(E1000_EIAC, 0);
633 wr32(E1000_IAM, 0);
634 wr32(E1000_IMC, ~0);
635 wrfl();
636 synchronize_irq(adapter->pdev->irq);
640 * igb_irq_enable - Enable default interrupt generation settings
641 * @adapter: board private structure
643 static void igb_irq_enable(struct igb_adapter *adapter)
645 struct e1000_hw *hw = &adapter->hw;
647 if (adapter->msix_entries) {
648 wr32(E1000_EIAC, adapter->eims_enable_mask);
649 wr32(E1000_EIAM, adapter->eims_enable_mask);
650 wr32(E1000_EIMS, adapter->eims_enable_mask);
651 wr32(E1000_IMS, E1000_IMS_LSC);
652 } else {
653 wr32(E1000_IMS, IMS_ENABLE_MASK);
654 wr32(E1000_IAM, IMS_ENABLE_MASK);
658 static void igb_update_mng_vlan(struct igb_adapter *adapter)
660 struct net_device *netdev = adapter->netdev;
661 u16 vid = adapter->hw.mng_cookie.vlan_id;
662 u16 old_vid = adapter->mng_vlan_id;
663 if (adapter->vlgrp) {
664 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
665 if (adapter->hw.mng_cookie.status &
666 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
667 igb_vlan_rx_add_vid(netdev, vid);
668 adapter->mng_vlan_id = vid;
669 } else
670 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
672 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
673 (vid != old_vid) &&
674 !vlan_group_get_device(adapter->vlgrp, old_vid))
675 igb_vlan_rx_kill_vid(netdev, old_vid);
676 } else
677 adapter->mng_vlan_id = vid;
682 * igb_release_hw_control - release control of the h/w to f/w
683 * @adapter: address of board private structure
685 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
686 * For ASF and Pass Through versions of f/w this means that the
687 * driver is no longer loaded.
690 static void igb_release_hw_control(struct igb_adapter *adapter)
692 struct e1000_hw *hw = &adapter->hw;
693 u32 ctrl_ext;
695 /* Let firmware take over control of h/w */
696 ctrl_ext = rd32(E1000_CTRL_EXT);
697 wr32(E1000_CTRL_EXT,
698 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
703 * igb_get_hw_control - get control of the h/w from f/w
704 * @adapter: address of board private structure
706 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
707 * For ASF and Pass Through versions of f/w this means that
708 * the driver is loaded.
711 static void igb_get_hw_control(struct igb_adapter *adapter)
713 struct e1000_hw *hw = &adapter->hw;
714 u32 ctrl_ext;
716 /* Let firmware know the driver has taken over */
717 ctrl_ext = rd32(E1000_CTRL_EXT);
718 wr32(E1000_CTRL_EXT,
719 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
722 static void igb_init_manageability(struct igb_adapter *adapter)
724 struct e1000_hw *hw = &adapter->hw;
726 if (adapter->en_mng_pt) {
727 u32 manc2h = rd32(E1000_MANC2H);
728 u32 manc = rd32(E1000_MANC);
730 /* enable receiving management packets to the host */
731 /* this will probably generate destination unreachable messages
732 * from the host OS, but the packets will be handled on SMBUS */
733 manc |= E1000_MANC_EN_MNG2HOST;
734 #define E1000_MNG2HOST_PORT_623 (1 << 5)
735 #define E1000_MNG2HOST_PORT_664 (1 << 6)
736 manc2h |= E1000_MNG2HOST_PORT_623;
737 manc2h |= E1000_MNG2HOST_PORT_664;
738 wr32(E1000_MANC2H, manc2h);
740 wr32(E1000_MANC, manc);
745 * igb_configure - configure the hardware for RX and TX
746 * @adapter: private board structure
748 static void igb_configure(struct igb_adapter *adapter)
750 struct net_device *netdev = adapter->netdev;
751 int i;
753 igb_get_hw_control(adapter);
754 igb_set_multi(netdev);
756 igb_restore_vlan(adapter);
757 igb_init_manageability(adapter);
759 igb_configure_tx(adapter);
760 igb_setup_rctl(adapter);
761 igb_configure_rx(adapter);
763 igb_rx_fifo_flush_82575(&adapter->hw);
765 /* call IGB_DESC_UNUSED which always leaves
766 * at least 1 descriptor unused to make sure
767 * next_to_use != next_to_clean */
768 for (i = 0; i < adapter->num_rx_queues; i++) {
769 struct igb_ring *ring = &adapter->rx_ring[i];
770 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
774 adapter->tx_queue_len = netdev->tx_queue_len;
779 * igb_up - Open the interface and prepare it to handle traffic
780 * @adapter: board private structure
783 int igb_up(struct igb_adapter *adapter)
785 struct e1000_hw *hw = &adapter->hw;
786 int i;
788 /* hardware has been reset, we need to reload some things */
789 igb_configure(adapter);
791 clear_bit(__IGB_DOWN, &adapter->state);
793 for (i = 0; i < adapter->num_rx_queues; i++)
794 napi_enable(&adapter->rx_ring[i].napi);
795 if (adapter->msix_entries)
796 igb_configure_msix(adapter);
798 /* Clear any pending interrupts. */
799 rd32(E1000_ICR);
800 igb_irq_enable(adapter);
802 /* Fire a link change interrupt to start the watchdog. */
803 wr32(E1000_ICS, E1000_ICS_LSC);
804 return 0;
807 void igb_down(struct igb_adapter *adapter)
809 struct e1000_hw *hw = &adapter->hw;
810 struct net_device *netdev = adapter->netdev;
811 u32 tctl, rctl;
812 int i;
814 /* signal that we're down so the interrupt handler does not
815 * reschedule our watchdog timer */
816 set_bit(__IGB_DOWN, &adapter->state);
818 /* disable receives in the hardware */
819 rctl = rd32(E1000_RCTL);
820 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
821 /* flush and sleep below */
823 netif_stop_queue(netdev);
824 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
825 for (i = 0; i < adapter->num_tx_queues; i++)
826 netif_stop_subqueue(netdev, i);
827 #endif
829 /* disable transmits in the hardware */
830 tctl = rd32(E1000_TCTL);
831 tctl &= ~E1000_TCTL_EN;
832 wr32(E1000_TCTL, tctl);
833 /* flush both disables and wait for them to finish */
834 wrfl();
835 msleep(10);
837 for (i = 0; i < adapter->num_rx_queues; i++)
838 napi_disable(&adapter->rx_ring[i].napi);
840 igb_irq_disable(adapter);
842 del_timer_sync(&adapter->watchdog_timer);
843 del_timer_sync(&adapter->phy_info_timer);
845 netdev->tx_queue_len = adapter->tx_queue_len;
846 netif_carrier_off(netdev);
847 adapter->link_speed = 0;
848 adapter->link_duplex = 0;
850 if (!pci_channel_offline(adapter->pdev))
851 igb_reset(adapter);
852 igb_clean_all_tx_rings(adapter);
853 igb_clean_all_rx_rings(adapter);
856 void igb_reinit_locked(struct igb_adapter *adapter)
858 WARN_ON(in_interrupt());
859 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
860 msleep(1);
861 igb_down(adapter);
862 igb_up(adapter);
863 clear_bit(__IGB_RESETTING, &adapter->state);
866 void igb_reset(struct igb_adapter *adapter)
868 struct e1000_hw *hw = &adapter->hw;
869 struct e1000_mac_info *mac = &hw->mac;
870 struct e1000_fc_info *fc = &hw->fc;
871 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
872 u16 hwm;
874 /* Repartition Pba for greater than 9k mtu
875 * To take effect CTRL.RST is required.
877 if (mac->type != e1000_82576) {
878 pba = E1000_PBA_34K;
880 else {
881 pba = E1000_PBA_64K;
884 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
885 (mac->type < e1000_82576)) {
886 /* adjust PBA for jumbo frames */
887 wr32(E1000_PBA, pba);
889 /* To maintain wire speed transmits, the Tx FIFO should be
890 * large enough to accommodate two full transmit packets,
891 * rounded up to the next 1KB and expressed in KB. Likewise,
892 * the Rx FIFO should be large enough to accommodate at least
893 * one full receive packet and is similarly rounded up and
894 * expressed in KB. */
895 pba = rd32(E1000_PBA);
896 /* upper 16 bits has Tx packet buffer allocation size in KB */
897 tx_space = pba >> 16;
898 /* lower 16 bits has Rx packet buffer allocation size in KB */
899 pba &= 0xffff;
900 /* the tx fifo also stores 16 bytes of information about the tx
901 * but don't include ethernet FCS because hardware appends it */
902 min_tx_space = (adapter->max_frame_size +
903 sizeof(struct e1000_tx_desc) -
904 ETH_FCS_LEN) * 2;
905 min_tx_space = ALIGN(min_tx_space, 1024);
906 min_tx_space >>= 10;
907 /* software strips receive CRC, so leave room for it */
908 min_rx_space = adapter->max_frame_size;
909 min_rx_space = ALIGN(min_rx_space, 1024);
910 min_rx_space >>= 10;
912 /* If current Tx allocation is less than the min Tx FIFO size,
913 * and the min Tx FIFO size is less than the current Rx FIFO
914 * allocation, take space away from current Rx allocation */
915 if (tx_space < min_tx_space &&
916 ((min_tx_space - tx_space) < pba)) {
917 pba = pba - (min_tx_space - tx_space);
919 /* if short on rx space, rx wins and must trump tx
920 * adjustment */
921 if (pba < min_rx_space)
922 pba = min_rx_space;
924 wr32(E1000_PBA, pba);
927 /* flow control settings */
928 /* The high water mark must be low enough to fit one full frame
929 * (or the size used for early receive) above it in the Rx FIFO.
930 * Set it to the lower of:
931 * - 90% of the Rx FIFO size, or
932 * - the full Rx FIFO size minus one full frame */
933 hwm = min(((pba << 10) * 9 / 10),
934 ((pba << 10) - 2 * adapter->max_frame_size));
936 if (mac->type < e1000_82576) {
937 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
938 fc->low_water = fc->high_water - 8;
939 } else {
940 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
941 fc->low_water = fc->high_water - 16;
943 fc->pause_time = 0xFFFF;
944 fc->send_xon = 1;
945 fc->type = fc->original_type;
947 /* Allow time for pending master requests to run */
948 adapter->hw.mac.ops.reset_hw(&adapter->hw);
949 wr32(E1000_WUC, 0);
951 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
952 dev_err(&adapter->pdev->dev, "Hardware Error\n");
954 igb_update_mng_vlan(adapter);
956 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
957 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
959 igb_reset_adaptive(&adapter->hw);
960 if (adapter->hw.phy.ops.get_phy_info)
961 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
965 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
966 * @pdev: PCI device information struct
968 * Returns true if an adapter needs ioport resources
970 static int igb_is_need_ioport(struct pci_dev *pdev)
972 switch (pdev->device) {
973 /* Currently there are no adapters that need ioport resources */
974 default:
975 return false;
980 * igb_probe - Device Initialization Routine
981 * @pdev: PCI device information struct
982 * @ent: entry in igb_pci_tbl
984 * Returns 0 on success, negative on failure
986 * igb_probe initializes an adapter identified by a pci_dev structure.
987 * The OS initialization, configuring of the adapter private structure,
988 * and a hardware reset occur.
990 static int __devinit igb_probe(struct pci_dev *pdev,
991 const struct pci_device_id *ent)
993 struct net_device *netdev;
994 struct igb_adapter *adapter;
995 struct e1000_hw *hw;
996 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
997 unsigned long mmio_start, mmio_len;
998 int i, err, pci_using_dac;
999 u16 eeprom_data = 0;
1000 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1001 u32 part_num;
1002 int bars, need_ioport;
1004 /* do not allocate ioport bars when not needed */
1005 need_ioport = igb_is_need_ioport(pdev);
1006 if (need_ioport) {
1007 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1008 err = pci_enable_device(pdev);
1009 } else {
1010 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1011 err = pci_enable_device_mem(pdev);
1013 if (err)
1014 return err;
1016 pci_using_dac = 0;
1017 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1018 if (!err) {
1019 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1020 if (!err)
1021 pci_using_dac = 1;
1022 } else {
1023 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1024 if (err) {
1025 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1026 if (err) {
1027 dev_err(&pdev->dev, "No usable DMA "
1028 "configuration, aborting\n");
1029 goto err_dma;
1034 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1035 if (err)
1036 goto err_pci_reg;
1038 pci_set_master(pdev);
1039 pci_save_state(pdev);
1041 err = -ENOMEM;
1042 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1043 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1044 #else
1045 netdev = alloc_etherdev(sizeof(struct igb_adapter));
1046 #endif /* CONFIG_NETDEVICES_MULTIQUEUE */
1047 if (!netdev)
1048 goto err_alloc_etherdev;
1050 SET_NETDEV_DEV(netdev, &pdev->dev);
1052 pci_set_drvdata(pdev, netdev);
1053 adapter = netdev_priv(netdev);
1054 adapter->netdev = netdev;
1055 adapter->pdev = pdev;
1056 hw = &adapter->hw;
1057 hw->back = adapter;
1058 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1059 adapter->bars = bars;
1060 adapter->need_ioport = need_ioport;
1062 mmio_start = pci_resource_start(pdev, 0);
1063 mmio_len = pci_resource_len(pdev, 0);
1065 err = -EIO;
1066 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1067 if (!adapter->hw.hw_addr)
1068 goto err_ioremap;
1070 netdev->open = &igb_open;
1071 netdev->stop = &igb_close;
1072 netdev->get_stats = &igb_get_stats;
1073 netdev->set_multicast_list = &igb_set_multi;
1074 netdev->set_mac_address = &igb_set_mac;
1075 netdev->change_mtu = &igb_change_mtu;
1076 netdev->do_ioctl = &igb_ioctl;
1077 igb_set_ethtool_ops(netdev);
1078 netdev->tx_timeout = &igb_tx_timeout;
1079 netdev->watchdog_timeo = 5 * HZ;
1080 netdev->vlan_rx_register = igb_vlan_rx_register;
1081 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
1082 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
1083 #ifdef CONFIG_NET_POLL_CONTROLLER
1084 netdev->poll_controller = igb_netpoll;
1085 #endif
1086 netdev->hard_start_xmit = &igb_xmit_frame_adv;
1088 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1090 netdev->mem_start = mmio_start;
1091 netdev->mem_end = mmio_start + mmio_len;
1093 /* PCI config space info */
1094 hw->vendor_id = pdev->vendor;
1095 hw->device_id = pdev->device;
1096 hw->revision_id = pdev->revision;
1097 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1098 hw->subsystem_device_id = pdev->subsystem_device;
1100 /* setup the private structure */
1101 hw->back = adapter;
1102 /* Copy the default MAC, PHY and NVM function pointers */
1103 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1104 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1105 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1106 /* Initialize skew-specific constants */
1107 err = ei->get_invariants(hw);
1108 if (err)
1109 goto err_hw_init;
1111 err = igb_sw_init(adapter);
1112 if (err)
1113 goto err_sw_init;
1115 igb_get_bus_info_pcie(hw);
1117 /* set flags */
1118 switch (hw->mac.type) {
1119 case e1000_82576:
1120 case e1000_82575:
1121 adapter->flags |= IGB_FLAG_HAS_DCA;
1122 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1123 break;
1124 default:
1125 break;
1128 hw->phy.autoneg_wait_to_complete = false;
1129 hw->mac.adaptive_ifs = true;
1131 /* Copper options */
1132 if (hw->phy.media_type == e1000_media_type_copper) {
1133 hw->phy.mdix = AUTO_ALL_MODES;
1134 hw->phy.disable_polarity_correction = false;
1135 hw->phy.ms_type = e1000_ms_hw_default;
1138 if (igb_check_reset_block(hw))
1139 dev_info(&pdev->dev,
1140 "PHY reset is blocked due to SOL/IDER session.\n");
1142 netdev->features = NETIF_F_SG |
1143 NETIF_F_HW_CSUM |
1144 NETIF_F_HW_VLAN_TX |
1145 NETIF_F_HW_VLAN_RX |
1146 NETIF_F_HW_VLAN_FILTER;
1148 netdev->features |= NETIF_F_TSO;
1149 netdev->features |= NETIF_F_TSO6;
1151 #ifdef CONFIG_IGB_LRO
1152 netdev->features |= NETIF_F_LRO;
1153 #endif
1155 netdev->vlan_features |= NETIF_F_TSO;
1156 netdev->vlan_features |= NETIF_F_TSO6;
1157 netdev->vlan_features |= NETIF_F_HW_CSUM;
1158 netdev->vlan_features |= NETIF_F_SG;
1160 if (pci_using_dac)
1161 netdev->features |= NETIF_F_HIGHDMA;
1163 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1164 netdev->features |= NETIF_F_MULTI_QUEUE;
1165 #endif
1167 netdev->features |= NETIF_F_LLTX;
1168 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1170 /* before reading the NVM, reset the controller to put the device in a
1171 * known good starting state */
1172 hw->mac.ops.reset_hw(hw);
1174 /* make sure the NVM is good */
1175 if (igb_validate_nvm_checksum(hw) < 0) {
1176 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1177 err = -EIO;
1178 goto err_eeprom;
1181 /* copy the MAC address out of the NVM */
1182 if (hw->mac.ops.read_mac_addr(hw))
1183 dev_err(&pdev->dev, "NVM Read Error\n");
1185 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1186 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1188 if (!is_valid_ether_addr(netdev->perm_addr)) {
1189 dev_err(&pdev->dev, "Invalid MAC Address\n");
1190 err = -EIO;
1191 goto err_eeprom;
1194 init_timer(&adapter->watchdog_timer);
1195 adapter->watchdog_timer.function = &igb_watchdog;
1196 adapter->watchdog_timer.data = (unsigned long) adapter;
1198 init_timer(&adapter->phy_info_timer);
1199 adapter->phy_info_timer.function = &igb_update_phy_info;
1200 adapter->phy_info_timer.data = (unsigned long) adapter;
1202 INIT_WORK(&adapter->reset_task, igb_reset_task);
1203 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1205 /* Initialize link & ring properties that are user-changeable */
1206 adapter->tx_ring->count = 256;
1207 for (i = 0; i < adapter->num_tx_queues; i++)
1208 adapter->tx_ring[i].count = adapter->tx_ring->count;
1209 adapter->rx_ring->count = 256;
1210 for (i = 0; i < adapter->num_rx_queues; i++)
1211 adapter->rx_ring[i].count = adapter->rx_ring->count;
1213 adapter->fc_autoneg = true;
1214 hw->mac.autoneg = true;
1215 hw->phy.autoneg_advertised = 0x2f;
1217 hw->fc.original_type = e1000_fc_default;
1218 hw->fc.type = e1000_fc_default;
1220 adapter->itr_setting = 3;
1221 adapter->itr = IGB_START_ITR;
1223 igb_validate_mdi_setting(hw);
1225 adapter->rx_csum = 1;
1227 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1228 * enable the ACPI Magic Packet filter
1231 if (hw->bus.func == 0 ||
1232 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1233 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1234 &eeprom_data);
1236 if (eeprom_data & eeprom_apme_mask)
1237 adapter->eeprom_wol |= E1000_WUFC_MAG;
1239 /* now that we have the eeprom settings, apply the special cases where
1240 * the eeprom may be wrong or the board simply won't support wake on
1241 * lan on a particular port */
1242 switch (pdev->device) {
1243 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1244 adapter->eeprom_wol = 0;
1245 break;
1246 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1247 case E1000_DEV_ID_82576_FIBER:
1248 case E1000_DEV_ID_82576_SERDES:
1249 /* Wake events only supported on port A for dual fiber
1250 * regardless of eeprom setting */
1251 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1252 adapter->eeprom_wol = 0;
1253 break;
1254 case E1000_DEV_ID_82576_QUAD_COPPER:
1255 /* if quad port adapter, disable WoL on all but port A */
1256 if (global_quad_port_a != 0)
1257 adapter->eeprom_wol = 0;
1258 else
1259 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1260 /* Reset for multiple quad port adapters */
1261 if (++global_quad_port_a == 4)
1262 global_quad_port_a = 0;
1263 break;
1266 /* initialize the wol settings based on the eeprom settings */
1267 adapter->wol = adapter->eeprom_wol;
1269 /* reset the hardware with the new settings */
1270 igb_reset(adapter);
1272 /* let the f/w know that the h/w is now under the control of the
1273 * driver. */
1274 igb_get_hw_control(adapter);
1276 /* tell the stack to leave us alone until igb_open() is called */
1277 netif_carrier_off(netdev);
1278 netif_stop_queue(netdev);
1279 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1280 for (i = 0; i < adapter->num_tx_queues; i++)
1281 netif_stop_subqueue(netdev, i);
1282 #endif
1284 strcpy(netdev->name, "eth%d");
1285 err = register_netdev(netdev);
1286 if (err)
1287 goto err_register;
1289 #ifdef CONFIG_DCA
1290 if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1291 (dca_add_requester(&pdev->dev) == 0)) {
1292 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1293 dev_info(&pdev->dev, "DCA enabled\n");
1294 /* Always use CB2 mode, difference is masked
1295 * in the CB driver. */
1296 wr32(E1000_DCA_CTRL, 2);
1297 igb_setup_dca(adapter);
1299 #endif
1301 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1302 /* print bus type/speed/width info */
1303 dev_info(&pdev->dev,
1304 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1305 netdev->name,
1306 ((hw->bus.speed == e1000_bus_speed_2500)
1307 ? "2.5Gb/s" : "unknown"),
1308 ((hw->bus.width == e1000_bus_width_pcie_x4)
1309 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1310 ? "Width x1" : "unknown"),
1311 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1312 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1314 igb_read_part_num(hw, &part_num);
1315 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1316 (part_num >> 8), (part_num & 0xff));
1318 dev_info(&pdev->dev,
1319 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1320 adapter->msix_entries ? "MSI-X" :
1321 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1322 adapter->num_rx_queues, adapter->num_tx_queues);
1324 return 0;
1326 err_register:
1327 igb_release_hw_control(adapter);
1328 err_eeprom:
1329 if (!igb_check_reset_block(hw))
1330 hw->phy.ops.reset_phy(hw);
1332 if (hw->flash_address)
1333 iounmap(hw->flash_address);
1335 igb_remove_device(hw);
1336 igb_free_queues(adapter);
1337 err_sw_init:
1338 err_hw_init:
1339 iounmap(hw->hw_addr);
1340 err_ioremap:
1341 free_netdev(netdev);
1342 err_alloc_etherdev:
1343 pci_release_selected_regions(pdev, bars);
1344 err_pci_reg:
1345 err_dma:
1346 pci_disable_device(pdev);
1347 return err;
1351 * igb_remove - Device Removal Routine
1352 * @pdev: PCI device information struct
1354 * igb_remove is called by the PCI subsystem to alert the driver
1355 * that it should release a PCI device. The could be caused by a
1356 * Hot-Plug event, or because the driver is going to be removed from
1357 * memory.
1359 static void __devexit igb_remove(struct pci_dev *pdev)
1361 struct net_device *netdev = pci_get_drvdata(pdev);
1362 struct igb_adapter *adapter = netdev_priv(netdev);
1363 struct e1000_hw *hw = &adapter->hw;
1365 /* flush_scheduled work may reschedule our watchdog task, so
1366 * explicitly disable watchdog tasks from being rescheduled */
1367 set_bit(__IGB_DOWN, &adapter->state);
1368 del_timer_sync(&adapter->watchdog_timer);
1369 del_timer_sync(&adapter->phy_info_timer);
1371 flush_scheduled_work();
1373 #ifdef CONFIG_DCA
1374 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1375 dev_info(&pdev->dev, "DCA disabled\n");
1376 dca_remove_requester(&pdev->dev);
1377 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1378 wr32(E1000_DCA_CTRL, 1);
1380 #endif
1382 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1383 * would have already happened in close and is redundant. */
1384 igb_release_hw_control(adapter);
1386 unregister_netdev(netdev);
1388 if (!igb_check_reset_block(&adapter->hw))
1389 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1391 igb_remove_device(&adapter->hw);
1392 igb_reset_interrupt_capability(adapter);
1394 igb_free_queues(adapter);
1396 iounmap(adapter->hw.hw_addr);
1397 if (adapter->hw.flash_address)
1398 iounmap(adapter->hw.flash_address);
1399 pci_release_selected_regions(pdev, adapter->bars);
1401 free_netdev(netdev);
1403 pci_disable_device(pdev);
1407 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1408 * @adapter: board private structure to initialize
1410 * igb_sw_init initializes the Adapter private data structure.
1411 * Fields are initialized based on PCI device information and
1412 * OS network device settings (MTU size).
1414 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1416 struct e1000_hw *hw = &adapter->hw;
1417 struct net_device *netdev = adapter->netdev;
1418 struct pci_dev *pdev = adapter->pdev;
1420 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1422 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1423 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1424 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1425 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1427 /* Number of supported queues. */
1428 /* Having more queues than CPUs doesn't make sense. */
1429 adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1430 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1431 adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1432 #else
1433 adapter->num_tx_queues = 1;
1434 #endif /* CONFIG_NET_MULTI_QUEUE_DEVICE */
1436 /* This call may decrease the number of queues depending on
1437 * interrupt mode. */
1438 igb_set_interrupt_capability(adapter);
1440 if (igb_alloc_queues(adapter)) {
1441 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1442 return -ENOMEM;
1445 /* Explicitly disable IRQ since the NIC can be in any state. */
1446 igb_irq_disable(adapter);
1448 set_bit(__IGB_DOWN, &adapter->state);
1449 return 0;
1453 * igb_open - Called when a network interface is made active
1454 * @netdev: network interface device structure
1456 * Returns 0 on success, negative value on failure
1458 * The open entry point is called when a network interface is made
1459 * active by the system (IFF_UP). At this point all resources needed
1460 * for transmit and receive operations are allocated, the interrupt
1461 * handler is registered with the OS, the watchdog timer is started,
1462 * and the stack is notified that the interface is ready.
1464 static int igb_open(struct net_device *netdev)
1466 struct igb_adapter *adapter = netdev_priv(netdev);
1467 struct e1000_hw *hw = &adapter->hw;
1468 int err;
1469 int i;
1471 /* disallow open during test */
1472 if (test_bit(__IGB_TESTING, &adapter->state))
1473 return -EBUSY;
1475 /* allocate transmit descriptors */
1476 err = igb_setup_all_tx_resources(adapter);
1477 if (err)
1478 goto err_setup_tx;
1480 /* allocate receive descriptors */
1481 err = igb_setup_all_rx_resources(adapter);
1482 if (err)
1483 goto err_setup_rx;
1485 /* e1000_power_up_phy(adapter); */
1487 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1488 if ((adapter->hw.mng_cookie.status &
1489 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1490 igb_update_mng_vlan(adapter);
1492 /* before we allocate an interrupt, we must be ready to handle it.
1493 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1494 * as soon as we call pci_request_irq, so we have to setup our
1495 * clean_rx handler before we do so. */
1496 igb_configure(adapter);
1498 err = igb_request_irq(adapter);
1499 if (err)
1500 goto err_req_irq;
1502 /* From here on the code is the same as igb_up() */
1503 clear_bit(__IGB_DOWN, &adapter->state);
1505 for (i = 0; i < adapter->num_rx_queues; i++)
1506 napi_enable(&adapter->rx_ring[i].napi);
1508 /* Clear any pending interrupts. */
1509 rd32(E1000_ICR);
1511 igb_irq_enable(adapter);
1513 /* Fire a link status change interrupt to start the watchdog. */
1514 wr32(E1000_ICS, E1000_ICS_LSC);
1516 return 0;
1518 err_req_irq:
1519 igb_release_hw_control(adapter);
1520 /* e1000_power_down_phy(adapter); */
1521 igb_free_all_rx_resources(adapter);
1522 err_setup_rx:
1523 igb_free_all_tx_resources(adapter);
1524 err_setup_tx:
1525 igb_reset(adapter);
1527 return err;
1531 * igb_close - Disables a network interface
1532 * @netdev: network interface device structure
1534 * Returns 0, this is not allowed to fail
1536 * The close entry point is called when an interface is de-activated
1537 * by the OS. The hardware is still under the driver's control, but
1538 * needs to be disabled. A global MAC reset is issued to stop the
1539 * hardware, and all transmit and receive resources are freed.
1541 static int igb_close(struct net_device *netdev)
1543 struct igb_adapter *adapter = netdev_priv(netdev);
1545 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1546 igb_down(adapter);
1548 igb_free_irq(adapter);
1550 igb_free_all_tx_resources(adapter);
1551 igb_free_all_rx_resources(adapter);
1553 /* kill manageability vlan ID if supported, but not if a vlan with
1554 * the same ID is registered on the host OS (let 8021q kill it) */
1555 if ((adapter->hw.mng_cookie.status &
1556 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1557 !(adapter->vlgrp &&
1558 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1559 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1561 return 0;
1565 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1566 * @adapter: board private structure
1567 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1569 * Return 0 on success, negative on failure
1572 int igb_setup_tx_resources(struct igb_adapter *adapter,
1573 struct igb_ring *tx_ring)
1575 struct pci_dev *pdev = adapter->pdev;
1576 int size;
1578 size = sizeof(struct igb_buffer) * tx_ring->count;
1579 tx_ring->buffer_info = vmalloc(size);
1580 if (!tx_ring->buffer_info)
1581 goto err;
1582 memset(tx_ring->buffer_info, 0, size);
1584 /* round up to nearest 4K */
1585 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1586 + sizeof(u32);
1587 tx_ring->size = ALIGN(tx_ring->size, 4096);
1589 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1590 &tx_ring->dma);
1592 if (!tx_ring->desc)
1593 goto err;
1595 tx_ring->adapter = adapter;
1596 tx_ring->next_to_use = 0;
1597 tx_ring->next_to_clean = 0;
1598 return 0;
1600 err:
1601 vfree(tx_ring->buffer_info);
1602 dev_err(&adapter->pdev->dev,
1603 "Unable to allocate memory for the transmit descriptor ring\n");
1604 return -ENOMEM;
1608 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1609 * (Descriptors) for all queues
1610 * @adapter: board private structure
1612 * Return 0 on success, negative on failure
1614 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1616 int i, err = 0;
1617 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1618 int r_idx;
1619 #endif
1621 for (i = 0; i < adapter->num_tx_queues; i++) {
1622 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1623 if (err) {
1624 dev_err(&adapter->pdev->dev,
1625 "Allocation for Tx Queue %u failed\n", i);
1626 for (i--; i >= 0; i--)
1627 igb_free_tx_resources(&adapter->tx_ring[i]);
1628 break;
1632 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1633 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1634 r_idx = i % adapter->num_tx_queues;
1635 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1637 #endif
1638 return err;
1642 * igb_configure_tx - Configure transmit Unit after Reset
1643 * @adapter: board private structure
1645 * Configure the Tx unit of the MAC after a reset.
1647 static void igb_configure_tx(struct igb_adapter *adapter)
1649 u64 tdba, tdwba;
1650 struct e1000_hw *hw = &adapter->hw;
1651 u32 tctl;
1652 u32 txdctl, txctrl;
1653 int i;
1655 for (i = 0; i < adapter->num_tx_queues; i++) {
1656 struct igb_ring *ring = &(adapter->tx_ring[i]);
1658 wr32(E1000_TDLEN(i),
1659 ring->count * sizeof(struct e1000_tx_desc));
1660 tdba = ring->dma;
1661 wr32(E1000_TDBAL(i),
1662 tdba & 0x00000000ffffffffULL);
1663 wr32(E1000_TDBAH(i), tdba >> 32);
1665 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1666 tdwba |= 1; /* enable head wb */
1667 wr32(E1000_TDWBAL(i),
1668 tdwba & 0x00000000ffffffffULL);
1669 wr32(E1000_TDWBAH(i), tdwba >> 32);
1671 ring->head = E1000_TDH(i);
1672 ring->tail = E1000_TDT(i);
1673 writel(0, hw->hw_addr + ring->tail);
1674 writel(0, hw->hw_addr + ring->head);
1675 txdctl = rd32(E1000_TXDCTL(i));
1676 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1677 wr32(E1000_TXDCTL(i), txdctl);
1679 /* Turn off Relaxed Ordering on head write-backs. The
1680 * writebacks MUST be delivered in order or it will
1681 * completely screw up our bookeeping.
1683 txctrl = rd32(E1000_DCA_TXCTRL(i));
1684 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1685 wr32(E1000_DCA_TXCTRL(i), txctrl);
1690 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1692 /* Program the Transmit Control Register */
1694 tctl = rd32(E1000_TCTL);
1695 tctl &= ~E1000_TCTL_CT;
1696 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1697 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1699 igb_config_collision_dist(hw);
1701 /* Setup Transmit Descriptor Settings for eop descriptor */
1702 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1704 /* Enable transmits */
1705 tctl |= E1000_TCTL_EN;
1707 wr32(E1000_TCTL, tctl);
1711 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1712 * @adapter: board private structure
1713 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1715 * Returns 0 on success, negative on failure
1718 int igb_setup_rx_resources(struct igb_adapter *adapter,
1719 struct igb_ring *rx_ring)
1721 struct pci_dev *pdev = adapter->pdev;
1722 int size, desc_len;
1724 #ifdef CONFIG_IGB_LRO
1725 size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1726 rx_ring->lro_mgr.lro_arr = vmalloc(size);
1727 if (!rx_ring->lro_mgr.lro_arr)
1728 goto err;
1729 memset(rx_ring->lro_mgr.lro_arr, 0, size);
1730 #endif
1732 size = sizeof(struct igb_buffer) * rx_ring->count;
1733 rx_ring->buffer_info = vmalloc(size);
1734 if (!rx_ring->buffer_info)
1735 goto err;
1736 memset(rx_ring->buffer_info, 0, size);
1738 desc_len = sizeof(union e1000_adv_rx_desc);
1740 /* Round up to nearest 4K */
1741 rx_ring->size = rx_ring->count * desc_len;
1742 rx_ring->size = ALIGN(rx_ring->size, 4096);
1744 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1745 &rx_ring->dma);
1747 if (!rx_ring->desc)
1748 goto err;
1750 rx_ring->next_to_clean = 0;
1751 rx_ring->next_to_use = 0;
1753 rx_ring->adapter = adapter;
1755 return 0;
1757 err:
1758 #ifdef CONFIG_IGB_LRO
1759 vfree(rx_ring->lro_mgr.lro_arr);
1760 rx_ring->lro_mgr.lro_arr = NULL;
1761 #endif
1762 vfree(rx_ring->buffer_info);
1763 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1764 "the receive descriptor ring\n");
1765 return -ENOMEM;
1769 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1770 * (Descriptors) for all queues
1771 * @adapter: board private structure
1773 * Return 0 on success, negative on failure
1775 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1777 int i, err = 0;
1779 for (i = 0; i < adapter->num_rx_queues; i++) {
1780 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1781 if (err) {
1782 dev_err(&adapter->pdev->dev,
1783 "Allocation for Rx Queue %u failed\n", i);
1784 for (i--; i >= 0; i--)
1785 igb_free_rx_resources(&adapter->rx_ring[i]);
1786 break;
1790 return err;
1794 * igb_setup_rctl - configure the receive control registers
1795 * @adapter: Board private structure
1797 static void igb_setup_rctl(struct igb_adapter *adapter)
1799 struct e1000_hw *hw = &adapter->hw;
1800 u32 rctl;
1801 u32 srrctl = 0;
1802 int i;
1804 rctl = rd32(E1000_RCTL);
1806 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1808 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1809 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1810 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1813 * enable stripping of CRC. It's unlikely this will break BMC
1814 * redirection as it did with e1000. Newer features require
1815 * that the HW strips the CRC.
1817 rctl |= E1000_RCTL_SECRC;
1819 rctl &= ~E1000_RCTL_SBP;
1821 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1822 rctl &= ~E1000_RCTL_LPE;
1823 else
1824 rctl |= E1000_RCTL_LPE;
1825 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1826 /* Setup buffer sizes */
1827 rctl &= ~E1000_RCTL_SZ_4096;
1828 rctl |= E1000_RCTL_BSEX;
1829 switch (adapter->rx_buffer_len) {
1830 case IGB_RXBUFFER_256:
1831 rctl |= E1000_RCTL_SZ_256;
1832 rctl &= ~E1000_RCTL_BSEX;
1833 break;
1834 case IGB_RXBUFFER_512:
1835 rctl |= E1000_RCTL_SZ_512;
1836 rctl &= ~E1000_RCTL_BSEX;
1837 break;
1838 case IGB_RXBUFFER_1024:
1839 rctl |= E1000_RCTL_SZ_1024;
1840 rctl &= ~E1000_RCTL_BSEX;
1841 break;
1842 case IGB_RXBUFFER_2048:
1843 default:
1844 rctl |= E1000_RCTL_SZ_2048;
1845 rctl &= ~E1000_RCTL_BSEX;
1846 break;
1848 } else {
1849 rctl &= ~E1000_RCTL_BSEX;
1850 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1853 /* 82575 and greater support packet-split where the protocol
1854 * header is placed in skb->data and the packet data is
1855 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1856 * In the case of a non-split, skb->data is linearly filled,
1857 * followed by the page buffers. Therefore, skb->data is
1858 * sized to hold the largest protocol header.
1860 /* allocations using alloc_page take too long for regular MTU
1861 * so only enable packet split for jumbo frames */
1862 if (rctl & E1000_RCTL_LPE) {
1863 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1864 srrctl |= adapter->rx_ps_hdr_size <<
1865 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1866 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1867 } else {
1868 adapter->rx_ps_hdr_size = 0;
1869 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1872 for (i = 0; i < adapter->num_rx_queues; i++)
1873 wr32(E1000_SRRCTL(i), srrctl);
1875 wr32(E1000_RCTL, rctl);
1879 * igb_configure_rx - Configure receive Unit after Reset
1880 * @adapter: board private structure
1882 * Configure the Rx unit of the MAC after a reset.
1884 static void igb_configure_rx(struct igb_adapter *adapter)
1886 u64 rdba;
1887 struct e1000_hw *hw = &adapter->hw;
1888 u32 rctl, rxcsum;
1889 u32 rxdctl;
1890 int i;
1892 /* disable receives while setting up the descriptors */
1893 rctl = rd32(E1000_RCTL);
1894 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1895 wrfl();
1896 mdelay(10);
1898 if (adapter->itr_setting > 3)
1899 wr32(E1000_ITR,
1900 1000000000 / (adapter->itr * 256));
1902 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1903 * the Base and Length of the Rx Descriptor Ring */
1904 for (i = 0; i < adapter->num_rx_queues; i++) {
1905 struct igb_ring *ring = &(adapter->rx_ring[i]);
1906 rdba = ring->dma;
1907 wr32(E1000_RDBAL(i),
1908 rdba & 0x00000000ffffffffULL);
1909 wr32(E1000_RDBAH(i), rdba >> 32);
1910 wr32(E1000_RDLEN(i),
1911 ring->count * sizeof(union e1000_adv_rx_desc));
1913 ring->head = E1000_RDH(i);
1914 ring->tail = E1000_RDT(i);
1915 writel(0, hw->hw_addr + ring->tail);
1916 writel(0, hw->hw_addr + ring->head);
1918 rxdctl = rd32(E1000_RXDCTL(i));
1919 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1920 rxdctl &= 0xFFF00000;
1921 rxdctl |= IGB_RX_PTHRESH;
1922 rxdctl |= IGB_RX_HTHRESH << 8;
1923 rxdctl |= IGB_RX_WTHRESH << 16;
1924 wr32(E1000_RXDCTL(i), rxdctl);
1925 #ifdef CONFIG_IGB_LRO
1926 /* Intitial LRO Settings */
1927 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1928 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1929 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1930 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1931 ring->lro_mgr.dev = adapter->netdev;
1932 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1933 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1934 #endif
1937 if (adapter->num_rx_queues > 1) {
1938 u32 random[10];
1939 u32 mrqc;
1940 u32 j, shift;
1941 union e1000_reta {
1942 u32 dword;
1943 u8 bytes[4];
1944 } reta;
1946 get_random_bytes(&random[0], 40);
1948 if (hw->mac.type >= e1000_82576)
1949 shift = 0;
1950 else
1951 shift = 6;
1952 for (j = 0; j < (32 * 4); j++) {
1953 reta.bytes[j & 3] =
1954 (j % adapter->num_rx_queues) << shift;
1955 if ((j & 3) == 3)
1956 writel(reta.dword,
1957 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1959 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1961 /* Fill out hash function seeds */
1962 for (j = 0; j < 10; j++)
1963 array_wr32(E1000_RSSRK(0), j, random[j]);
1965 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1966 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1967 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1968 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1969 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1970 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1971 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1972 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1975 wr32(E1000_MRQC, mrqc);
1977 /* Multiqueue and raw packet checksumming are mutually
1978 * exclusive. Note that this not the same as TCP/IP
1979 * checksumming, which works fine. */
1980 rxcsum = rd32(E1000_RXCSUM);
1981 rxcsum |= E1000_RXCSUM_PCSD;
1982 wr32(E1000_RXCSUM, rxcsum);
1983 } else {
1984 /* Enable Receive Checksum Offload for TCP and UDP */
1985 rxcsum = rd32(E1000_RXCSUM);
1986 if (adapter->rx_csum) {
1987 rxcsum |= E1000_RXCSUM_TUOFL;
1989 /* Enable IPv4 payload checksum for UDP fragments
1990 * Must be used in conjunction with packet-split. */
1991 if (adapter->rx_ps_hdr_size)
1992 rxcsum |= E1000_RXCSUM_IPPCSE;
1993 } else {
1994 rxcsum &= ~E1000_RXCSUM_TUOFL;
1995 /* don't need to clear IPPCSE as it defaults to 0 */
1997 wr32(E1000_RXCSUM, rxcsum);
2000 if (adapter->vlgrp)
2001 wr32(E1000_RLPML,
2002 adapter->max_frame_size + VLAN_TAG_SIZE);
2003 else
2004 wr32(E1000_RLPML, adapter->max_frame_size);
2006 /* Enable Receives */
2007 wr32(E1000_RCTL, rctl);
2011 * igb_free_tx_resources - Free Tx Resources per Queue
2012 * @adapter: board private structure
2013 * @tx_ring: Tx descriptor ring for a specific queue
2015 * Free all transmit software resources
2017 static void igb_free_tx_resources(struct igb_ring *tx_ring)
2019 struct pci_dev *pdev = tx_ring->adapter->pdev;
2021 igb_clean_tx_ring(tx_ring);
2023 vfree(tx_ring->buffer_info);
2024 tx_ring->buffer_info = NULL;
2026 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2028 tx_ring->desc = NULL;
2032 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2033 * @adapter: board private structure
2035 * Free all transmit software resources
2037 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2039 int i;
2041 for (i = 0; i < adapter->num_tx_queues; i++)
2042 igb_free_tx_resources(&adapter->tx_ring[i]);
2045 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2046 struct igb_buffer *buffer_info)
2048 if (buffer_info->dma) {
2049 pci_unmap_page(adapter->pdev,
2050 buffer_info->dma,
2051 buffer_info->length,
2052 PCI_DMA_TODEVICE);
2053 buffer_info->dma = 0;
2055 if (buffer_info->skb) {
2056 dev_kfree_skb_any(buffer_info->skb);
2057 buffer_info->skb = NULL;
2059 buffer_info->time_stamp = 0;
2060 /* buffer_info must be completely set up in the transmit path */
2064 * igb_clean_tx_ring - Free Tx Buffers
2065 * @adapter: board private structure
2066 * @tx_ring: ring to be cleaned
2068 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2070 struct igb_adapter *adapter = tx_ring->adapter;
2071 struct igb_buffer *buffer_info;
2072 unsigned long size;
2073 unsigned int i;
2075 if (!tx_ring->buffer_info)
2076 return;
2077 /* Free all the Tx ring sk_buffs */
2079 for (i = 0; i < tx_ring->count; i++) {
2080 buffer_info = &tx_ring->buffer_info[i];
2081 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2084 size = sizeof(struct igb_buffer) * tx_ring->count;
2085 memset(tx_ring->buffer_info, 0, size);
2087 /* Zero out the descriptor ring */
2089 memset(tx_ring->desc, 0, tx_ring->size);
2091 tx_ring->next_to_use = 0;
2092 tx_ring->next_to_clean = 0;
2094 writel(0, adapter->hw.hw_addr + tx_ring->head);
2095 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2099 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2100 * @adapter: board private structure
2102 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2104 int i;
2106 for (i = 0; i < adapter->num_tx_queues; i++)
2107 igb_clean_tx_ring(&adapter->tx_ring[i]);
2111 * igb_free_rx_resources - Free Rx Resources
2112 * @adapter: board private structure
2113 * @rx_ring: ring to clean the resources from
2115 * Free all receive software resources
2117 static void igb_free_rx_resources(struct igb_ring *rx_ring)
2119 struct pci_dev *pdev = rx_ring->adapter->pdev;
2121 igb_clean_rx_ring(rx_ring);
2123 vfree(rx_ring->buffer_info);
2124 rx_ring->buffer_info = NULL;
2126 #ifdef CONFIG_IGB_LRO
2127 vfree(rx_ring->lro_mgr.lro_arr);
2128 rx_ring->lro_mgr.lro_arr = NULL;
2129 #endif
2131 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2133 rx_ring->desc = NULL;
2137 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2138 * @adapter: board private structure
2140 * Free all receive software resources
2142 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2144 int i;
2146 for (i = 0; i < adapter->num_rx_queues; i++)
2147 igb_free_rx_resources(&adapter->rx_ring[i]);
2151 * igb_clean_rx_ring - Free Rx Buffers per Queue
2152 * @adapter: board private structure
2153 * @rx_ring: ring to free buffers from
2155 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2157 struct igb_adapter *adapter = rx_ring->adapter;
2158 struct igb_buffer *buffer_info;
2159 struct pci_dev *pdev = adapter->pdev;
2160 unsigned long size;
2161 unsigned int i;
2163 if (!rx_ring->buffer_info)
2164 return;
2165 /* Free all the Rx ring sk_buffs */
2166 for (i = 0; i < rx_ring->count; i++) {
2167 buffer_info = &rx_ring->buffer_info[i];
2168 if (buffer_info->dma) {
2169 if (adapter->rx_ps_hdr_size)
2170 pci_unmap_single(pdev, buffer_info->dma,
2171 adapter->rx_ps_hdr_size,
2172 PCI_DMA_FROMDEVICE);
2173 else
2174 pci_unmap_single(pdev, buffer_info->dma,
2175 adapter->rx_buffer_len,
2176 PCI_DMA_FROMDEVICE);
2177 buffer_info->dma = 0;
2180 if (buffer_info->skb) {
2181 dev_kfree_skb(buffer_info->skb);
2182 buffer_info->skb = NULL;
2184 if (buffer_info->page) {
2185 if (buffer_info->page_dma)
2186 pci_unmap_page(pdev, buffer_info->page_dma,
2187 PAGE_SIZE / 2,
2188 PCI_DMA_FROMDEVICE);
2189 put_page(buffer_info->page);
2190 buffer_info->page = NULL;
2191 buffer_info->page_dma = 0;
2192 buffer_info->page_offset = 0;
2196 size = sizeof(struct igb_buffer) * rx_ring->count;
2197 memset(rx_ring->buffer_info, 0, size);
2199 /* Zero out the descriptor ring */
2200 memset(rx_ring->desc, 0, rx_ring->size);
2202 rx_ring->next_to_clean = 0;
2203 rx_ring->next_to_use = 0;
2205 writel(0, adapter->hw.hw_addr + rx_ring->head);
2206 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2210 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2211 * @adapter: board private structure
2213 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2215 int i;
2217 for (i = 0; i < adapter->num_rx_queues; i++)
2218 igb_clean_rx_ring(&adapter->rx_ring[i]);
2222 * igb_set_mac - Change the Ethernet Address of the NIC
2223 * @netdev: network interface device structure
2224 * @p: pointer to an address structure
2226 * Returns 0 on success, negative on failure
2228 static int igb_set_mac(struct net_device *netdev, void *p)
2230 struct igb_adapter *adapter = netdev_priv(netdev);
2231 struct sockaddr *addr = p;
2233 if (!is_valid_ether_addr(addr->sa_data))
2234 return -EADDRNOTAVAIL;
2236 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2237 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2239 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2241 return 0;
2245 * igb_set_multi - Multicast and Promiscuous mode set
2246 * @netdev: network interface device structure
2248 * The set_multi entry point is called whenever the multicast address
2249 * list or the network interface flags are updated. This routine is
2250 * responsible for configuring the hardware for proper multicast,
2251 * promiscuous mode, and all-multi behavior.
2253 static void igb_set_multi(struct net_device *netdev)
2255 struct igb_adapter *adapter = netdev_priv(netdev);
2256 struct e1000_hw *hw = &adapter->hw;
2257 struct e1000_mac_info *mac = &hw->mac;
2258 struct dev_mc_list *mc_ptr;
2259 u8 *mta_list;
2260 u32 rctl;
2261 int i;
2263 /* Check for Promiscuous and All Multicast modes */
2265 rctl = rd32(E1000_RCTL);
2267 if (netdev->flags & IFF_PROMISC)
2268 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2269 else if (netdev->flags & IFF_ALLMULTI) {
2270 rctl |= E1000_RCTL_MPE;
2271 rctl &= ~E1000_RCTL_UPE;
2272 } else
2273 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2275 wr32(E1000_RCTL, rctl);
2277 if (!netdev->mc_count) {
2278 /* nothing to program, so clear mc list */
2279 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2280 mac->rar_entry_count);
2281 return;
2284 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2285 if (!mta_list)
2286 return;
2288 /* The shared function expects a packed array of only addresses. */
2289 mc_ptr = netdev->mc_list;
2291 for (i = 0; i < netdev->mc_count; i++) {
2292 if (!mc_ptr)
2293 break;
2294 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2295 mc_ptr = mc_ptr->next;
2297 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2298 mac->rar_entry_count);
2299 kfree(mta_list);
2302 /* Need to wait a few seconds after link up to get diagnostic information from
2303 * the phy */
2304 static void igb_update_phy_info(unsigned long data)
2306 struct igb_adapter *adapter = (struct igb_adapter *) data;
2307 if (adapter->hw.phy.ops.get_phy_info)
2308 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2312 * igb_watchdog - Timer Call-back
2313 * @data: pointer to adapter cast into an unsigned long
2315 static void igb_watchdog(unsigned long data)
2317 struct igb_adapter *adapter = (struct igb_adapter *)data;
2318 /* Do the rest outside of interrupt context */
2319 schedule_work(&adapter->watchdog_task);
2322 static void igb_watchdog_task(struct work_struct *work)
2324 struct igb_adapter *adapter = container_of(work,
2325 struct igb_adapter, watchdog_task);
2326 struct e1000_hw *hw = &adapter->hw;
2328 struct net_device *netdev = adapter->netdev;
2329 struct igb_ring *tx_ring = adapter->tx_ring;
2330 struct e1000_mac_info *mac = &adapter->hw.mac;
2331 u32 link;
2332 s32 ret_val;
2333 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2334 int i;
2335 #endif
2337 if ((netif_carrier_ok(netdev)) &&
2338 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2339 goto link_up;
2341 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2342 if ((ret_val == E1000_ERR_PHY) &&
2343 (hw->phy.type == e1000_phy_igp_3) &&
2344 (rd32(E1000_CTRL) &
2345 E1000_PHY_CTRL_GBE_DISABLE))
2346 dev_info(&adapter->pdev->dev,
2347 "Gigabit has been disabled, downgrading speed\n");
2349 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2350 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2351 link = mac->serdes_has_link;
2352 else
2353 link = rd32(E1000_STATUS) &
2354 E1000_STATUS_LU;
2356 if (link) {
2357 if (!netif_carrier_ok(netdev)) {
2358 u32 ctrl;
2359 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2360 &adapter->link_speed,
2361 &adapter->link_duplex);
2363 ctrl = rd32(E1000_CTRL);
2364 dev_info(&adapter->pdev->dev,
2365 "NIC Link is Up %d Mbps %s, "
2366 "Flow Control: %s\n",
2367 adapter->link_speed,
2368 adapter->link_duplex == FULL_DUPLEX ?
2369 "Full Duplex" : "Half Duplex",
2370 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2371 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2372 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2373 E1000_CTRL_TFCE) ? "TX" : "None")));
2375 /* tweak tx_queue_len according to speed/duplex and
2376 * adjust the timeout factor */
2377 netdev->tx_queue_len = adapter->tx_queue_len;
2378 adapter->tx_timeout_factor = 1;
2379 switch (adapter->link_speed) {
2380 case SPEED_10:
2381 netdev->tx_queue_len = 10;
2382 adapter->tx_timeout_factor = 14;
2383 break;
2384 case SPEED_100:
2385 netdev->tx_queue_len = 100;
2386 /* maybe add some timeout factor ? */
2387 break;
2390 netif_carrier_on(netdev);
2391 netif_wake_queue(netdev);
2392 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2393 for (i = 0; i < adapter->num_tx_queues; i++)
2394 netif_wake_subqueue(netdev, i);
2395 #endif
2397 if (!test_bit(__IGB_DOWN, &adapter->state))
2398 mod_timer(&adapter->phy_info_timer,
2399 round_jiffies(jiffies + 2 * HZ));
2401 } else {
2402 if (netif_carrier_ok(netdev)) {
2403 adapter->link_speed = 0;
2404 adapter->link_duplex = 0;
2405 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2406 netif_carrier_off(netdev);
2407 netif_stop_queue(netdev);
2408 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2409 for (i = 0; i < adapter->num_tx_queues; i++)
2410 netif_stop_subqueue(netdev, i);
2411 #endif
2412 if (!test_bit(__IGB_DOWN, &adapter->state))
2413 mod_timer(&adapter->phy_info_timer,
2414 round_jiffies(jiffies + 2 * HZ));
2418 link_up:
2419 igb_update_stats(adapter);
2421 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2422 adapter->tpt_old = adapter->stats.tpt;
2423 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2424 adapter->colc_old = adapter->stats.colc;
2426 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2427 adapter->gorc_old = adapter->stats.gorc;
2428 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2429 adapter->gotc_old = adapter->stats.gotc;
2431 igb_update_adaptive(&adapter->hw);
2433 if (!netif_carrier_ok(netdev)) {
2434 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2435 /* We've lost link, so the controller stops DMA,
2436 * but we've got queued Tx work that's never going
2437 * to get done, so reset controller to flush Tx.
2438 * (Do the reset outside of interrupt context). */
2439 adapter->tx_timeout_count++;
2440 schedule_work(&adapter->reset_task);
2444 /* Cause software interrupt to ensure rx ring is cleaned */
2445 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2447 /* Force detection of hung controller every watchdog period */
2448 tx_ring->detect_tx_hung = true;
2450 /* Reset the timer */
2451 if (!test_bit(__IGB_DOWN, &adapter->state))
2452 mod_timer(&adapter->watchdog_timer,
2453 round_jiffies(jiffies + 2 * HZ));
2456 enum latency_range {
2457 lowest_latency = 0,
2458 low_latency = 1,
2459 bulk_latency = 2,
2460 latency_invalid = 255
2464 static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2465 struct igb_ring *rx_ring)
2467 struct e1000_hw *hw = &adapter->hw;
2468 int new_val;
2470 new_val = rx_ring->itr_val / 2;
2471 if (new_val < IGB_MIN_DYN_ITR)
2472 new_val = IGB_MIN_DYN_ITR;
2474 if (new_val != rx_ring->itr_val) {
2475 rx_ring->itr_val = new_val;
2476 wr32(rx_ring->itr_register,
2477 1000000000 / (new_val * 256));
2481 static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2482 struct igb_ring *rx_ring)
2484 struct e1000_hw *hw = &adapter->hw;
2485 int new_val;
2487 new_val = rx_ring->itr_val * 2;
2488 if (new_val > IGB_MAX_DYN_ITR)
2489 new_val = IGB_MAX_DYN_ITR;
2491 if (new_val != rx_ring->itr_val) {
2492 rx_ring->itr_val = new_val;
2493 wr32(rx_ring->itr_register,
2494 1000000000 / (new_val * 256));
2499 * igb_update_itr - update the dynamic ITR value based on statistics
2500 * Stores a new ITR value based on packets and byte
2501 * counts during the last interrupt. The advantage of per interrupt
2502 * computation is faster updates and more accurate ITR for the current
2503 * traffic pattern. Constants in this function were computed
2504 * based on theoretical maximum wire speed and thresholds were set based
2505 * on testing data as well as attempting to minimize response time
2506 * while increasing bulk throughput.
2507 * this functionality is controlled by the InterruptThrottleRate module
2508 * parameter (see igb_param.c)
2509 * NOTE: These calculations are only valid when operating in a single-
2510 * queue environment.
2511 * @adapter: pointer to adapter
2512 * @itr_setting: current adapter->itr
2513 * @packets: the number of packets during this measurement interval
2514 * @bytes: the number of bytes during this measurement interval
2516 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2517 int packets, int bytes)
2519 unsigned int retval = itr_setting;
2521 if (packets == 0)
2522 goto update_itr_done;
2524 switch (itr_setting) {
2525 case lowest_latency:
2526 /* handle TSO and jumbo frames */
2527 if (bytes/packets > 8000)
2528 retval = bulk_latency;
2529 else if ((packets < 5) && (bytes > 512))
2530 retval = low_latency;
2531 break;
2532 case low_latency: /* 50 usec aka 20000 ints/s */
2533 if (bytes > 10000) {
2534 /* this if handles the TSO accounting */
2535 if (bytes/packets > 8000) {
2536 retval = bulk_latency;
2537 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2538 retval = bulk_latency;
2539 } else if ((packets > 35)) {
2540 retval = lowest_latency;
2542 } else if (bytes/packets > 2000) {
2543 retval = bulk_latency;
2544 } else if (packets <= 2 && bytes < 512) {
2545 retval = lowest_latency;
2547 break;
2548 case bulk_latency: /* 250 usec aka 4000 ints/s */
2549 if (bytes > 25000) {
2550 if (packets > 35)
2551 retval = low_latency;
2552 } else if (bytes < 6000) {
2553 retval = low_latency;
2555 break;
2558 update_itr_done:
2559 return retval;
2562 static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2563 int rx_only)
2565 u16 current_itr;
2566 u32 new_itr = adapter->itr;
2568 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2569 if (adapter->link_speed != SPEED_1000) {
2570 current_itr = 0;
2571 new_itr = 4000;
2572 goto set_itr_now;
2575 adapter->rx_itr = igb_update_itr(adapter,
2576 adapter->rx_itr,
2577 adapter->rx_ring->total_packets,
2578 adapter->rx_ring->total_bytes);
2579 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2580 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2581 adapter->rx_itr = low_latency;
2583 if (!rx_only) {
2584 adapter->tx_itr = igb_update_itr(adapter,
2585 adapter->tx_itr,
2586 adapter->tx_ring->total_packets,
2587 adapter->tx_ring->total_bytes);
2588 /* conservative mode (itr 3) eliminates the
2589 * lowest_latency setting */
2590 if (adapter->itr_setting == 3 &&
2591 adapter->tx_itr == lowest_latency)
2592 adapter->tx_itr = low_latency;
2594 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2595 } else {
2596 current_itr = adapter->rx_itr;
2599 switch (current_itr) {
2600 /* counts and packets in update_itr are dependent on these numbers */
2601 case lowest_latency:
2602 new_itr = 70000;
2603 break;
2604 case low_latency:
2605 new_itr = 20000; /* aka hwitr = ~200 */
2606 break;
2607 case bulk_latency:
2608 new_itr = 4000;
2609 break;
2610 default:
2611 break;
2614 set_itr_now:
2615 if (new_itr != adapter->itr) {
2616 /* this attempts to bias the interrupt rate towards Bulk
2617 * by adding intermediate steps when interrupt rate is
2618 * increasing */
2619 new_itr = new_itr > adapter->itr ?
2620 min(adapter->itr + (new_itr >> 2), new_itr) :
2621 new_itr;
2622 /* Don't write the value here; it resets the adapter's
2623 * internal timer, and causes us to delay far longer than
2624 * we should between interrupts. Instead, we write the ITR
2625 * value at the beginning of the next interrupt so the timing
2626 * ends up being correct.
2628 adapter->itr = new_itr;
2629 adapter->set_itr = 1;
2632 return;
2636 #define IGB_TX_FLAGS_CSUM 0x00000001
2637 #define IGB_TX_FLAGS_VLAN 0x00000002
2638 #define IGB_TX_FLAGS_TSO 0x00000004
2639 #define IGB_TX_FLAGS_IPV4 0x00000008
2640 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2641 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2643 static inline int igb_tso_adv(struct igb_adapter *adapter,
2644 struct igb_ring *tx_ring,
2645 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2647 struct e1000_adv_tx_context_desc *context_desc;
2648 unsigned int i;
2649 int err;
2650 struct igb_buffer *buffer_info;
2651 u32 info = 0, tu_cmd = 0;
2652 u32 mss_l4len_idx, l4len;
2653 *hdr_len = 0;
2655 if (skb_header_cloned(skb)) {
2656 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657 if (err)
2658 return err;
2661 l4len = tcp_hdrlen(skb);
2662 *hdr_len += l4len;
2664 if (skb->protocol == htons(ETH_P_IP)) {
2665 struct iphdr *iph = ip_hdr(skb);
2666 iph->tot_len = 0;
2667 iph->check = 0;
2668 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2669 iph->daddr, 0,
2670 IPPROTO_TCP,
2672 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2673 ipv6_hdr(skb)->payload_len = 0;
2674 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2675 &ipv6_hdr(skb)->daddr,
2676 0, IPPROTO_TCP, 0);
2679 i = tx_ring->next_to_use;
2681 buffer_info = &tx_ring->buffer_info[i];
2682 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2683 /* VLAN MACLEN IPLEN */
2684 if (tx_flags & IGB_TX_FLAGS_VLAN)
2685 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2686 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2687 *hdr_len += skb_network_offset(skb);
2688 info |= skb_network_header_len(skb);
2689 *hdr_len += skb_network_header_len(skb);
2690 context_desc->vlan_macip_lens = cpu_to_le32(info);
2692 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2693 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2695 if (skb->protocol == htons(ETH_P_IP))
2696 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2697 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2699 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2701 /* MSS L4LEN IDX */
2702 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2703 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2705 /* Context index must be unique per ring. */
2706 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2707 mss_l4len_idx |= tx_ring->queue_index << 4;
2709 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2710 context_desc->seqnum_seed = 0;
2712 buffer_info->time_stamp = jiffies;
2713 buffer_info->dma = 0;
2714 i++;
2715 if (i == tx_ring->count)
2716 i = 0;
2718 tx_ring->next_to_use = i;
2720 return true;
2723 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2724 struct igb_ring *tx_ring,
2725 struct sk_buff *skb, u32 tx_flags)
2727 struct e1000_adv_tx_context_desc *context_desc;
2728 unsigned int i;
2729 struct igb_buffer *buffer_info;
2730 u32 info = 0, tu_cmd = 0;
2732 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2733 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2734 i = tx_ring->next_to_use;
2735 buffer_info = &tx_ring->buffer_info[i];
2736 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2738 if (tx_flags & IGB_TX_FLAGS_VLAN)
2739 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2740 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2741 if (skb->ip_summed == CHECKSUM_PARTIAL)
2742 info |= skb_network_header_len(skb);
2744 context_desc->vlan_macip_lens = cpu_to_le32(info);
2746 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2748 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2749 switch (skb->protocol) {
2750 case __constant_htons(ETH_P_IP):
2751 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2752 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2753 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2754 break;
2755 case __constant_htons(ETH_P_IPV6):
2756 /* XXX what about other V6 headers?? */
2757 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2758 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2759 break;
2760 default:
2761 if (unlikely(net_ratelimit()))
2762 dev_warn(&adapter->pdev->dev,
2763 "partial checksum but proto=%x!\n",
2764 skb->protocol);
2765 break;
2769 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2770 context_desc->seqnum_seed = 0;
2771 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2772 context_desc->mss_l4len_idx =
2773 cpu_to_le32(tx_ring->queue_index << 4);
2775 buffer_info->time_stamp = jiffies;
2776 buffer_info->dma = 0;
2778 i++;
2779 if (i == tx_ring->count)
2780 i = 0;
2781 tx_ring->next_to_use = i;
2783 return true;
2787 return false;
2790 #define IGB_MAX_TXD_PWR 16
2791 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2793 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2794 struct igb_ring *tx_ring,
2795 struct sk_buff *skb)
2797 struct igb_buffer *buffer_info;
2798 unsigned int len = skb_headlen(skb);
2799 unsigned int count = 0, i;
2800 unsigned int f;
2802 i = tx_ring->next_to_use;
2804 buffer_info = &tx_ring->buffer_info[i];
2805 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2806 buffer_info->length = len;
2807 /* set time_stamp *before* dma to help avoid a possible race */
2808 buffer_info->time_stamp = jiffies;
2809 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2810 PCI_DMA_TODEVICE);
2811 count++;
2812 i++;
2813 if (i == tx_ring->count)
2814 i = 0;
2816 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2817 struct skb_frag_struct *frag;
2819 frag = &skb_shinfo(skb)->frags[f];
2820 len = frag->size;
2822 buffer_info = &tx_ring->buffer_info[i];
2823 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2824 buffer_info->length = len;
2825 buffer_info->time_stamp = jiffies;
2826 buffer_info->dma = pci_map_page(adapter->pdev,
2827 frag->page,
2828 frag->page_offset,
2829 len,
2830 PCI_DMA_TODEVICE);
2832 count++;
2833 i++;
2834 if (i == tx_ring->count)
2835 i = 0;
2838 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2839 tx_ring->buffer_info[i].skb = skb;
2841 return count;
2844 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2845 struct igb_ring *tx_ring,
2846 int tx_flags, int count, u32 paylen,
2847 u8 hdr_len)
2849 union e1000_adv_tx_desc *tx_desc = NULL;
2850 struct igb_buffer *buffer_info;
2851 u32 olinfo_status = 0, cmd_type_len;
2852 unsigned int i;
2854 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2855 E1000_ADVTXD_DCMD_DEXT);
2857 if (tx_flags & IGB_TX_FLAGS_VLAN)
2858 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2860 if (tx_flags & IGB_TX_FLAGS_TSO) {
2861 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2863 /* insert tcp checksum */
2864 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2866 /* insert ip checksum */
2867 if (tx_flags & IGB_TX_FLAGS_IPV4)
2868 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2870 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2871 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2874 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2875 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2876 IGB_TX_FLAGS_VLAN)))
2877 olinfo_status |= tx_ring->queue_index << 4;
2879 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2881 i = tx_ring->next_to_use;
2882 while (count--) {
2883 buffer_info = &tx_ring->buffer_info[i];
2884 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2885 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2886 tx_desc->read.cmd_type_len =
2887 cpu_to_le32(cmd_type_len | buffer_info->length);
2888 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2889 i++;
2890 if (i == tx_ring->count)
2891 i = 0;
2894 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2895 /* Force memory writes to complete before letting h/w
2896 * know there are new descriptors to fetch. (Only
2897 * applicable for weak-ordered memory model archs,
2898 * such as IA-64). */
2899 wmb();
2901 tx_ring->next_to_use = i;
2902 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2903 /* we need this if more than one processor can write to our tail
2904 * at a time, it syncronizes IO on IA64/Altix systems */
2905 mmiowb();
2908 static int __igb_maybe_stop_tx(struct net_device *netdev,
2909 struct igb_ring *tx_ring, int size)
2911 struct igb_adapter *adapter = netdev_priv(netdev);
2913 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2914 netif_stop_subqueue(netdev, tx_ring->queue_index);
2915 #else
2916 netif_stop_queue(netdev);
2917 #endif
2919 /* Herbert's original patch had:
2920 * smp_mb__after_netif_stop_queue();
2921 * but since that doesn't exist yet, just open code it. */
2922 smp_mb();
2924 /* We need to check again in a case another CPU has just
2925 * made room available. */
2926 if (IGB_DESC_UNUSED(tx_ring) < size)
2927 return -EBUSY;
2929 /* A reprieve! */
2930 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2931 netif_wake_subqueue(netdev, tx_ring->queue_index);
2932 #else
2933 netif_wake_queue(netdev);
2934 #endif
2935 ++adapter->restart_queue;
2936 return 0;
2939 static int igb_maybe_stop_tx(struct net_device *netdev,
2940 struct igb_ring *tx_ring, int size)
2942 if (IGB_DESC_UNUSED(tx_ring) >= size)
2943 return 0;
2944 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2947 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2949 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2950 struct net_device *netdev,
2951 struct igb_ring *tx_ring)
2953 struct igb_adapter *adapter = netdev_priv(netdev);
2954 unsigned int tx_flags = 0;
2955 unsigned int len;
2956 u8 hdr_len = 0;
2957 int tso = 0;
2959 len = skb_headlen(skb);
2961 if (test_bit(__IGB_DOWN, &adapter->state)) {
2962 dev_kfree_skb_any(skb);
2963 return NETDEV_TX_OK;
2966 if (skb->len <= 0) {
2967 dev_kfree_skb_any(skb);
2968 return NETDEV_TX_OK;
2971 /* need: 1 descriptor per page,
2972 * + 2 desc gap to keep tail from touching head,
2973 * + 1 desc for skb->data,
2974 * + 1 desc for context descriptor,
2975 * otherwise try next time */
2976 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2977 /* this is a hard error */
2978 return NETDEV_TX_BUSY;
2981 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2982 tx_flags |= IGB_TX_FLAGS_VLAN;
2983 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2986 if (skb->protocol == htons(ETH_P_IP))
2987 tx_flags |= IGB_TX_FLAGS_IPV4;
2989 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2990 &hdr_len) : 0;
2992 if (tso < 0) {
2993 dev_kfree_skb_any(skb);
2994 return NETDEV_TX_OK;
2997 if (tso)
2998 tx_flags |= IGB_TX_FLAGS_TSO;
2999 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3000 if (skb->ip_summed == CHECKSUM_PARTIAL)
3001 tx_flags |= IGB_TX_FLAGS_CSUM;
3003 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3004 igb_tx_map_adv(adapter, tx_ring, skb),
3005 skb->len, hdr_len);
3007 netdev->trans_start = jiffies;
3009 /* Make sure there is space in the ring for the next send. */
3010 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3012 return NETDEV_TX_OK;
3015 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3017 struct igb_adapter *adapter = netdev_priv(netdev);
3018 struct igb_ring *tx_ring;
3020 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
3021 int r_idx = 0;
3022 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3023 tx_ring = adapter->multi_tx_table[r_idx];
3024 #else
3025 tx_ring = &adapter->tx_ring[0];
3026 #endif
3029 /* This goes back to the question of how to logically map a tx queue
3030 * to a flow. Right now, performance is impacted slightly negatively
3031 * if using multiple tx queues. If the stack breaks away from a
3032 * single qdisc implementation, we can look at this again. */
3033 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3037 * igb_tx_timeout - Respond to a Tx Hang
3038 * @netdev: network interface device structure
3040 static void igb_tx_timeout(struct net_device *netdev)
3042 struct igb_adapter *adapter = netdev_priv(netdev);
3043 struct e1000_hw *hw = &adapter->hw;
3045 /* Do the reset outside of interrupt context */
3046 adapter->tx_timeout_count++;
3047 schedule_work(&adapter->reset_task);
3048 wr32(E1000_EICS, adapter->eims_enable_mask &
3049 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3052 static void igb_reset_task(struct work_struct *work)
3054 struct igb_adapter *adapter;
3055 adapter = container_of(work, struct igb_adapter, reset_task);
3057 igb_reinit_locked(adapter);
3061 * igb_get_stats - Get System Network Statistics
3062 * @netdev: network interface device structure
3064 * Returns the address of the device statistics structure.
3065 * The statistics are actually updated from the timer callback.
3067 static struct net_device_stats *
3068 igb_get_stats(struct net_device *netdev)
3070 struct igb_adapter *adapter = netdev_priv(netdev);
3072 /* only return the current stats */
3073 return &adapter->net_stats;
3077 * igb_change_mtu - Change the Maximum Transfer Unit
3078 * @netdev: network interface device structure
3079 * @new_mtu: new value for maximum frame size
3081 * Returns 0 on success, negative on failure
3083 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3085 struct igb_adapter *adapter = netdev_priv(netdev);
3086 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3088 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3089 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3090 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3091 return -EINVAL;
3094 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3095 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3096 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3097 return -EINVAL;
3100 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3101 msleep(1);
3102 /* igb_down has a dependency on max_frame_size */
3103 adapter->max_frame_size = max_frame;
3104 if (netif_running(netdev))
3105 igb_down(adapter);
3107 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3108 * means we reserve 2 more, this pushes us to allocate from the next
3109 * larger slab size.
3110 * i.e. RXBUFFER_2048 --> size-4096 slab
3113 if (max_frame <= IGB_RXBUFFER_256)
3114 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3115 else if (max_frame <= IGB_RXBUFFER_512)
3116 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3117 else if (max_frame <= IGB_RXBUFFER_1024)
3118 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3119 else if (max_frame <= IGB_RXBUFFER_2048)
3120 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3121 else
3122 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3123 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3124 #else
3125 adapter->rx_buffer_len = PAGE_SIZE / 2;
3126 #endif
3127 /* adjust allocation if LPE protects us, and we aren't using SBP */
3128 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3129 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3130 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3132 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3133 netdev->mtu, new_mtu);
3134 netdev->mtu = new_mtu;
3136 if (netif_running(netdev))
3137 igb_up(adapter);
3138 else
3139 igb_reset(adapter);
3141 clear_bit(__IGB_RESETTING, &adapter->state);
3143 return 0;
3147 * igb_update_stats - Update the board statistics counters
3148 * @adapter: board private structure
3151 void igb_update_stats(struct igb_adapter *adapter)
3153 struct e1000_hw *hw = &adapter->hw;
3154 struct pci_dev *pdev = adapter->pdev;
3155 u16 phy_tmp;
3157 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3160 * Prevent stats update while adapter is being reset, or if the pci
3161 * connection is down.
3163 if (adapter->link_speed == 0)
3164 return;
3165 if (pci_channel_offline(pdev))
3166 return;
3168 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3169 adapter->stats.gprc += rd32(E1000_GPRC);
3170 adapter->stats.gorc += rd32(E1000_GORCL);
3171 rd32(E1000_GORCH); /* clear GORCL */
3172 adapter->stats.bprc += rd32(E1000_BPRC);
3173 adapter->stats.mprc += rd32(E1000_MPRC);
3174 adapter->stats.roc += rd32(E1000_ROC);
3176 adapter->stats.prc64 += rd32(E1000_PRC64);
3177 adapter->stats.prc127 += rd32(E1000_PRC127);
3178 adapter->stats.prc255 += rd32(E1000_PRC255);
3179 adapter->stats.prc511 += rd32(E1000_PRC511);
3180 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3181 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3182 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3183 adapter->stats.sec += rd32(E1000_SEC);
3185 adapter->stats.mpc += rd32(E1000_MPC);
3186 adapter->stats.scc += rd32(E1000_SCC);
3187 adapter->stats.ecol += rd32(E1000_ECOL);
3188 adapter->stats.mcc += rd32(E1000_MCC);
3189 adapter->stats.latecol += rd32(E1000_LATECOL);
3190 adapter->stats.dc += rd32(E1000_DC);
3191 adapter->stats.rlec += rd32(E1000_RLEC);
3192 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3193 adapter->stats.xontxc += rd32(E1000_XONTXC);
3194 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3195 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3196 adapter->stats.fcruc += rd32(E1000_FCRUC);
3197 adapter->stats.gptc += rd32(E1000_GPTC);
3198 adapter->stats.gotc += rd32(E1000_GOTCL);
3199 rd32(E1000_GOTCH); /* clear GOTCL */
3200 adapter->stats.rnbc += rd32(E1000_RNBC);
3201 adapter->stats.ruc += rd32(E1000_RUC);
3202 adapter->stats.rfc += rd32(E1000_RFC);
3203 adapter->stats.rjc += rd32(E1000_RJC);
3204 adapter->stats.tor += rd32(E1000_TORH);
3205 adapter->stats.tot += rd32(E1000_TOTH);
3206 adapter->stats.tpr += rd32(E1000_TPR);
3208 adapter->stats.ptc64 += rd32(E1000_PTC64);
3209 adapter->stats.ptc127 += rd32(E1000_PTC127);
3210 adapter->stats.ptc255 += rd32(E1000_PTC255);
3211 adapter->stats.ptc511 += rd32(E1000_PTC511);
3212 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3213 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3215 adapter->stats.mptc += rd32(E1000_MPTC);
3216 adapter->stats.bptc += rd32(E1000_BPTC);
3218 /* used for adaptive IFS */
3220 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3221 adapter->stats.tpt += hw->mac.tx_packet_delta;
3222 hw->mac.collision_delta = rd32(E1000_COLC);
3223 adapter->stats.colc += hw->mac.collision_delta;
3225 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3226 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3227 adapter->stats.tncrs += rd32(E1000_TNCRS);
3228 adapter->stats.tsctc += rd32(E1000_TSCTC);
3229 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3231 adapter->stats.iac += rd32(E1000_IAC);
3232 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3233 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3234 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3235 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3236 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3237 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3238 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3239 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3241 /* Fill out the OS statistics structure */
3242 adapter->net_stats.multicast = adapter->stats.mprc;
3243 adapter->net_stats.collisions = adapter->stats.colc;
3245 /* Rx Errors */
3247 /* RLEC on some newer hardware can be incorrect so build
3248 * our own version based on RUC and ROC */
3249 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3250 adapter->stats.crcerrs + adapter->stats.algnerrc +
3251 adapter->stats.ruc + adapter->stats.roc +
3252 adapter->stats.cexterr;
3253 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3254 adapter->stats.roc;
3255 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3256 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3257 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3259 /* Tx Errors */
3260 adapter->net_stats.tx_errors = adapter->stats.ecol +
3261 adapter->stats.latecol;
3262 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3263 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3264 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3266 /* Tx Dropped needs to be maintained elsewhere */
3268 /* Phy Stats */
3269 if (hw->phy.media_type == e1000_media_type_copper) {
3270 if ((adapter->link_speed == SPEED_1000) &&
3271 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3272 &phy_tmp))) {
3273 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3274 adapter->phy_stats.idle_errors += phy_tmp;
3278 /* Management Stats */
3279 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3280 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3281 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3285 static irqreturn_t igb_msix_other(int irq, void *data)
3287 struct net_device *netdev = data;
3288 struct igb_adapter *adapter = netdev_priv(netdev);
3289 struct e1000_hw *hw = &adapter->hw;
3290 u32 icr = rd32(E1000_ICR);
3292 /* reading ICR causes bit 31 of EICR to be cleared */
3293 if (!(icr & E1000_ICR_LSC))
3294 goto no_link_interrupt;
3295 hw->mac.get_link_status = 1;
3296 /* guard against interrupt when we're going down */
3297 if (!test_bit(__IGB_DOWN, &adapter->state))
3298 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3300 no_link_interrupt:
3301 wr32(E1000_IMS, E1000_IMS_LSC);
3302 wr32(E1000_EIMS, adapter->eims_other);
3304 return IRQ_HANDLED;
3307 static irqreturn_t igb_msix_tx(int irq, void *data)
3309 struct igb_ring *tx_ring = data;
3310 struct igb_adapter *adapter = tx_ring->adapter;
3311 struct e1000_hw *hw = &adapter->hw;
3313 if (!tx_ring->itr_val)
3314 wr32(E1000_EIMC, tx_ring->eims_value);
3315 #ifdef CONFIG_DCA
3316 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3317 igb_update_tx_dca(tx_ring);
3318 #endif
3319 tx_ring->total_bytes = 0;
3320 tx_ring->total_packets = 0;
3322 /* auto mask will automatically reenable the interrupt when we write
3323 * EICS */
3324 if (!igb_clean_tx_irq(tx_ring))
3325 /* Ring was not completely cleaned, so fire another interrupt */
3326 wr32(E1000_EICS, tx_ring->eims_value);
3327 else
3328 wr32(E1000_EIMS, tx_ring->eims_value);
3330 return IRQ_HANDLED;
3333 static irqreturn_t igb_msix_rx(int irq, void *data)
3335 struct igb_ring *rx_ring = data;
3336 struct igb_adapter *adapter = rx_ring->adapter;
3337 struct e1000_hw *hw = &adapter->hw;
3339 /* Write the ITR value calculated at the end of the
3340 * previous interrupt.
3343 if (adapter->set_itr) {
3344 wr32(rx_ring->itr_register,
3345 1000000000 / (rx_ring->itr_val * 256));
3346 adapter->set_itr = 0;
3349 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3350 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3352 #ifdef CONFIG_DCA
3353 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3354 igb_update_rx_dca(rx_ring);
3355 #endif
3356 return IRQ_HANDLED;
3359 #ifdef CONFIG_DCA
3360 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3362 u32 dca_rxctrl;
3363 struct igb_adapter *adapter = rx_ring->adapter;
3364 struct e1000_hw *hw = &adapter->hw;
3365 int cpu = get_cpu();
3366 int q = rx_ring - adapter->rx_ring;
3368 if (rx_ring->cpu != cpu) {
3369 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3370 if (hw->mac.type == e1000_82576) {
3371 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3372 dca_rxctrl |= dca_get_tag(cpu) <<
3373 E1000_DCA_RXCTRL_CPUID_SHIFT;
3374 } else {
3375 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3376 dca_rxctrl |= dca_get_tag(cpu);
3378 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3379 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3380 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3381 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3382 rx_ring->cpu = cpu;
3384 put_cpu();
3387 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3389 u32 dca_txctrl;
3390 struct igb_adapter *adapter = tx_ring->adapter;
3391 struct e1000_hw *hw = &adapter->hw;
3392 int cpu = get_cpu();
3393 int q = tx_ring - adapter->tx_ring;
3395 if (tx_ring->cpu != cpu) {
3396 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3397 if (hw->mac.type == e1000_82576) {
3398 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3399 dca_txctrl |= dca_get_tag(cpu) <<
3400 E1000_DCA_TXCTRL_CPUID_SHIFT;
3401 } else {
3402 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3403 dca_txctrl |= dca_get_tag(cpu);
3405 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3406 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3407 tx_ring->cpu = cpu;
3409 put_cpu();
3412 static void igb_setup_dca(struct igb_adapter *adapter)
3414 int i;
3416 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3417 return;
3419 for (i = 0; i < adapter->num_tx_queues; i++) {
3420 adapter->tx_ring[i].cpu = -1;
3421 igb_update_tx_dca(&adapter->tx_ring[i]);
3423 for (i = 0; i < adapter->num_rx_queues; i++) {
3424 adapter->rx_ring[i].cpu = -1;
3425 igb_update_rx_dca(&adapter->rx_ring[i]);
3429 static int __igb_notify_dca(struct device *dev, void *data)
3431 struct net_device *netdev = dev_get_drvdata(dev);
3432 struct igb_adapter *adapter = netdev_priv(netdev);
3433 struct e1000_hw *hw = &adapter->hw;
3434 unsigned long event = *(unsigned long *)data;
3436 if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3437 goto out;
3439 switch (event) {
3440 case DCA_PROVIDER_ADD:
3441 /* if already enabled, don't do it again */
3442 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3443 break;
3444 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3445 /* Always use CB2 mode, difference is masked
3446 * in the CB driver. */
3447 wr32(E1000_DCA_CTRL, 2);
3448 if (dca_add_requester(dev) == 0) {
3449 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3450 igb_setup_dca(adapter);
3451 break;
3453 /* Fall Through since DCA is disabled. */
3454 case DCA_PROVIDER_REMOVE:
3455 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3456 /* without this a class_device is left
3457 * hanging around in the sysfs model */
3458 dca_remove_requester(dev);
3459 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3460 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3461 wr32(E1000_DCA_CTRL, 1);
3463 break;
3465 out:
3466 return 0;
3469 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3470 void *p)
3472 int ret_val;
3474 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3475 __igb_notify_dca);
3477 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3479 #endif /* CONFIG_DCA */
3482 * igb_intr_msi - Interrupt Handler
3483 * @irq: interrupt number
3484 * @data: pointer to a network interface device structure
3486 static irqreturn_t igb_intr_msi(int irq, void *data)
3488 struct net_device *netdev = data;
3489 struct igb_adapter *adapter = netdev_priv(netdev);
3490 struct e1000_hw *hw = &adapter->hw;
3491 /* read ICR disables interrupts using IAM */
3492 u32 icr = rd32(E1000_ICR);
3494 /* Write the ITR value calculated at the end of the
3495 * previous interrupt.
3497 if (adapter->set_itr) {
3498 wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
3499 adapter->set_itr = 0;
3502 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3503 hw->mac.get_link_status = 1;
3504 if (!test_bit(__IGB_DOWN, &adapter->state))
3505 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3508 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3510 return IRQ_HANDLED;
3514 * igb_intr - Interrupt Handler
3515 * @irq: interrupt number
3516 * @data: pointer to a network interface device structure
3518 static irqreturn_t igb_intr(int irq, void *data)
3520 struct net_device *netdev = data;
3521 struct igb_adapter *adapter = netdev_priv(netdev);
3522 struct e1000_hw *hw = &adapter->hw;
3523 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3524 * need for the IMC write */
3525 u32 icr = rd32(E1000_ICR);
3526 u32 eicr = 0;
3527 if (!icr)
3528 return IRQ_NONE; /* Not our interrupt */
3530 /* Write the ITR value calculated at the end of the
3531 * previous interrupt.
3533 if (adapter->set_itr) {
3534 wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
3535 adapter->set_itr = 0;
3538 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3539 * not set, then the adapter didn't send an interrupt */
3540 if (!(icr & E1000_ICR_INT_ASSERTED))
3541 return IRQ_NONE;
3543 eicr = rd32(E1000_EICR);
3545 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3546 hw->mac.get_link_status = 1;
3547 /* guard against interrupt when we're going down */
3548 if (!test_bit(__IGB_DOWN, &adapter->state))
3549 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3552 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3554 return IRQ_HANDLED;
3558 * igb_poll - NAPI Rx polling callback
3559 * @napi: napi polling structure
3560 * @budget: count of how many packets we should handle
3562 static int igb_poll(struct napi_struct *napi, int budget)
3564 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3565 struct igb_adapter *adapter = rx_ring->adapter;
3566 struct net_device *netdev = adapter->netdev;
3567 int tx_clean_complete, work_done = 0;
3569 /* this poll routine only supports one tx and one rx queue */
3570 #ifdef CONFIG_DCA
3571 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3572 igb_update_tx_dca(&adapter->tx_ring[0]);
3573 #endif
3574 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3576 #ifdef CONFIG_DCA
3577 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3578 igb_update_rx_dca(&adapter->rx_ring[0]);
3579 #endif
3580 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3582 /* If no Tx and not enough Rx work done, exit the polling mode */
3583 if ((tx_clean_complete && (work_done < budget)) ||
3584 !netif_running(netdev)) {
3585 if (adapter->itr_setting & 3)
3586 igb_set_itr(adapter, E1000_ITR, false);
3587 netif_rx_complete(netdev, napi);
3588 if (!test_bit(__IGB_DOWN, &adapter->state))
3589 igb_irq_enable(adapter);
3590 return 0;
3593 return 1;
3596 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3598 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3599 struct igb_adapter *adapter = rx_ring->adapter;
3600 struct e1000_hw *hw = &adapter->hw;
3601 struct net_device *netdev = adapter->netdev;
3602 int work_done = 0;
3604 /* Keep link state information with original netdev */
3605 if (!netif_carrier_ok(netdev))
3606 goto quit_polling;
3608 #ifdef CONFIG_DCA
3609 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3610 igb_update_rx_dca(rx_ring);
3611 #endif
3612 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3615 /* If not enough Rx work done, exit the polling mode */
3616 if ((work_done == 0) || !netif_running(netdev)) {
3617 quit_polling:
3618 netif_rx_complete(netdev, napi);
3620 wr32(E1000_EIMS, rx_ring->eims_value);
3621 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3622 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3623 int mean_size = rx_ring->total_bytes /
3624 rx_ring->total_packets;
3625 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3626 igb_raise_rx_eitr(adapter, rx_ring);
3627 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3628 igb_lower_rx_eitr(adapter, rx_ring);
3631 if (!test_bit(__IGB_DOWN, &adapter->state))
3632 wr32(E1000_EIMS, rx_ring->eims_value);
3634 return 0;
3637 return 1;
3640 static inline u32 get_head(struct igb_ring *tx_ring)
3642 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3643 return le32_to_cpu(*(volatile __le32 *)end);
3647 * igb_clean_tx_irq - Reclaim resources after transmit completes
3648 * @adapter: board private structure
3649 * returns true if ring is completely cleaned
3651 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3653 struct igb_adapter *adapter = tx_ring->adapter;
3654 struct e1000_hw *hw = &adapter->hw;
3655 struct net_device *netdev = adapter->netdev;
3656 struct e1000_tx_desc *tx_desc;
3657 struct igb_buffer *buffer_info;
3658 struct sk_buff *skb;
3659 unsigned int i;
3660 u32 head, oldhead;
3661 unsigned int count = 0;
3662 bool cleaned = false;
3663 bool retval = true;
3664 unsigned int total_bytes = 0, total_packets = 0;
3666 rmb();
3667 head = get_head(tx_ring);
3668 i = tx_ring->next_to_clean;
3669 while (1) {
3670 while (i != head) {
3671 cleaned = true;
3672 tx_desc = E1000_TX_DESC(*tx_ring, i);
3673 buffer_info = &tx_ring->buffer_info[i];
3674 skb = buffer_info->skb;
3676 if (skb) {
3677 unsigned int segs, bytecount;
3678 /* gso_segs is currently only valid for tcp */
3679 segs = skb_shinfo(skb)->gso_segs ?: 1;
3680 /* multiply data chunks by size of headers */
3681 bytecount = ((segs - 1) * skb_headlen(skb)) +
3682 skb->len;
3683 total_packets += segs;
3684 total_bytes += bytecount;
3687 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3688 tx_desc->upper.data = 0;
3690 i++;
3691 if (i == tx_ring->count)
3692 i = 0;
3694 count++;
3695 if (count == IGB_MAX_TX_CLEAN) {
3696 retval = false;
3697 goto done_cleaning;
3700 oldhead = head;
3701 rmb();
3702 head = get_head(tx_ring);
3703 if (head == oldhead)
3704 goto done_cleaning;
3705 } /* while (1) */
3707 done_cleaning:
3708 tx_ring->next_to_clean = i;
3710 if (unlikely(cleaned &&
3711 netif_carrier_ok(netdev) &&
3712 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3713 /* Make sure that anybody stopping the queue after this
3714 * sees the new next_to_clean.
3716 smp_mb();
3717 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
3718 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3719 !(test_bit(__IGB_DOWN, &adapter->state))) {
3720 netif_wake_subqueue(netdev, tx_ring->queue_index);
3721 ++adapter->restart_queue;
3723 #else
3724 if (netif_queue_stopped(netdev) &&
3725 !(test_bit(__IGB_DOWN, &adapter->state))) {
3726 netif_wake_queue(netdev);
3727 ++adapter->restart_queue;
3729 #endif
3732 if (tx_ring->detect_tx_hung) {
3733 /* Detect a transmit hang in hardware, this serializes the
3734 * check with the clearing of time_stamp and movement of i */
3735 tx_ring->detect_tx_hung = false;
3736 if (tx_ring->buffer_info[i].time_stamp &&
3737 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3738 (adapter->tx_timeout_factor * HZ))
3739 && !(rd32(E1000_STATUS) &
3740 E1000_STATUS_TXOFF)) {
3742 tx_desc = E1000_TX_DESC(*tx_ring, i);
3743 /* detected Tx unit hang */
3744 dev_err(&adapter->pdev->dev,
3745 "Detected Tx Unit Hang\n"
3746 " Tx Queue <%d>\n"
3747 " TDH <%x>\n"
3748 " TDT <%x>\n"
3749 " next_to_use <%x>\n"
3750 " next_to_clean <%x>\n"
3751 " head (WB) <%x>\n"
3752 "buffer_info[next_to_clean]\n"
3753 " time_stamp <%lx>\n"
3754 " jiffies <%lx>\n"
3755 " desc.status <%x>\n",
3756 tx_ring->queue_index,
3757 readl(adapter->hw.hw_addr + tx_ring->head),
3758 readl(adapter->hw.hw_addr + tx_ring->tail),
3759 tx_ring->next_to_use,
3760 tx_ring->next_to_clean,
3761 head,
3762 tx_ring->buffer_info[i].time_stamp,
3763 jiffies,
3764 tx_desc->upper.fields.status);
3765 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
3766 netif_stop_subqueue(netdev, tx_ring->queue_index);
3767 #else
3768 netif_stop_queue(netdev);
3769 #endif
3772 tx_ring->total_bytes += total_bytes;
3773 tx_ring->total_packets += total_packets;
3774 tx_ring->tx_stats.bytes += total_bytes;
3775 tx_ring->tx_stats.packets += total_packets;
3776 adapter->net_stats.tx_bytes += total_bytes;
3777 adapter->net_stats.tx_packets += total_packets;
3778 return retval;
3781 #ifdef CONFIG_IGB_LRO
3783 * igb_get_skb_hdr - helper function for LRO header processing
3784 * @skb: pointer to sk_buff to be added to LRO packet
3785 * @iphdr: pointer to ip header structure
3786 * @tcph: pointer to tcp header structure
3787 * @hdr_flags: pointer to header flags
3788 * @priv: pointer to the receive descriptor for the current sk_buff
3790 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3791 u64 *hdr_flags, void *priv)
3793 union e1000_adv_rx_desc *rx_desc = priv;
3794 u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3795 (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3797 /* Verify that this is a valid IPv4 TCP packet */
3798 if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3799 E1000_RXDADV_PKTTYPE_TCP))
3800 return -1;
3802 /* Set network headers */
3803 skb_reset_network_header(skb);
3804 skb_set_transport_header(skb, ip_hdrlen(skb));
3805 *iphdr = ip_hdr(skb);
3806 *tcph = tcp_hdr(skb);
3807 *hdr_flags = LRO_IPV4 | LRO_TCP;
3809 return 0;
3812 #endif /* CONFIG_IGB_LRO */
3815 * igb_receive_skb - helper function to handle rx indications
3816 * @ring: pointer to receive ring receving this packet
3817 * @status: descriptor status field as written by hardware
3818 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3819 * @skb: pointer to sk_buff to be indicated to stack
3821 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3822 union e1000_adv_rx_desc * rx_desc,
3823 struct sk_buff *skb)
3825 struct igb_adapter * adapter = ring->adapter;
3826 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3828 #ifdef CONFIG_IGB_LRO
3829 if (adapter->netdev->features & NETIF_F_LRO &&
3830 skb->ip_summed == CHECKSUM_UNNECESSARY) {
3831 if (vlan_extracted)
3832 lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3833 adapter->vlgrp,
3834 le16_to_cpu(rx_desc->wb.upper.vlan),
3835 rx_desc);
3836 else
3837 lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3838 ring->lro_used = 1;
3839 } else {
3840 #endif
3841 if (vlan_extracted)
3842 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3843 le16_to_cpu(rx_desc->wb.upper.vlan));
3844 else
3846 netif_receive_skb(skb);
3847 #ifdef CONFIG_IGB_LRO
3849 #endif
3853 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3854 u32 status_err, struct sk_buff *skb)
3856 skb->ip_summed = CHECKSUM_NONE;
3858 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3859 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3860 return;
3861 /* TCP/UDP checksum error bit is set */
3862 if (status_err &
3863 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3864 /* let the stack verify checksum errors */
3865 adapter->hw_csum_err++;
3866 return;
3868 /* It must be a TCP or UDP packet with a valid checksum */
3869 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3870 skb->ip_summed = CHECKSUM_UNNECESSARY;
3872 adapter->hw_csum_good++;
3875 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3876 int *work_done, int budget)
3878 struct igb_adapter *adapter = rx_ring->adapter;
3879 struct net_device *netdev = adapter->netdev;
3880 struct pci_dev *pdev = adapter->pdev;
3881 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3882 struct igb_buffer *buffer_info , *next_buffer;
3883 struct sk_buff *skb;
3884 unsigned int i;
3885 u32 length, hlen, staterr;
3886 bool cleaned = false;
3887 int cleaned_count = 0;
3888 unsigned int total_bytes = 0, total_packets = 0;
3890 i = rx_ring->next_to_clean;
3891 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3892 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3894 while (staterr & E1000_RXD_STAT_DD) {
3895 if (*work_done >= budget)
3896 break;
3897 (*work_done)++;
3898 buffer_info = &rx_ring->buffer_info[i];
3900 /* HW will not DMA in data larger than the given buffer, even
3901 * if it parses the (NFS, of course) header to be larger. In
3902 * that case, it fills the header buffer and spills the rest
3903 * into the page.
3905 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3906 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3907 if (hlen > adapter->rx_ps_hdr_size)
3908 hlen = adapter->rx_ps_hdr_size;
3910 length = le16_to_cpu(rx_desc->wb.upper.length);
3911 cleaned = true;
3912 cleaned_count++;
3914 skb = buffer_info->skb;
3915 prefetch(skb->data - NET_IP_ALIGN);
3916 buffer_info->skb = NULL;
3917 if (!adapter->rx_ps_hdr_size) {
3918 pci_unmap_single(pdev, buffer_info->dma,
3919 adapter->rx_buffer_len +
3920 NET_IP_ALIGN,
3921 PCI_DMA_FROMDEVICE);
3922 skb_put(skb, length);
3923 goto send_up;
3926 if (!skb_shinfo(skb)->nr_frags) {
3927 pci_unmap_single(pdev, buffer_info->dma,
3928 adapter->rx_ps_hdr_size +
3929 NET_IP_ALIGN,
3930 PCI_DMA_FROMDEVICE);
3931 skb_put(skb, hlen);
3934 if (length) {
3935 pci_unmap_page(pdev, buffer_info->page_dma,
3936 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3937 buffer_info->page_dma = 0;
3939 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3940 buffer_info->page,
3941 buffer_info->page_offset,
3942 length);
3944 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3945 (page_count(buffer_info->page) != 1))
3946 buffer_info->page = NULL;
3947 else
3948 get_page(buffer_info->page);
3950 skb->len += length;
3951 skb->data_len += length;
3953 skb->truesize += length;
3955 send_up:
3956 i++;
3957 if (i == rx_ring->count)
3958 i = 0;
3959 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3960 prefetch(next_rxd);
3961 next_buffer = &rx_ring->buffer_info[i];
3963 if (!(staterr & E1000_RXD_STAT_EOP)) {
3964 buffer_info->skb = xchg(&next_buffer->skb, skb);
3965 buffer_info->dma = xchg(&next_buffer->dma, 0);
3966 goto next_desc;
3969 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3970 dev_kfree_skb_irq(skb);
3971 goto next_desc;
3973 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3975 total_bytes += skb->len;
3976 total_packets++;
3978 igb_rx_checksum_adv(adapter, staterr, skb);
3980 skb->protocol = eth_type_trans(skb, netdev);
3982 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3984 netdev->last_rx = jiffies;
3986 next_desc:
3987 rx_desc->wb.upper.status_error = 0;
3989 /* return some buffers to hardware, one at a time is too slow */
3990 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3991 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3992 cleaned_count = 0;
3995 /* use prefetched values */
3996 rx_desc = next_rxd;
3997 buffer_info = next_buffer;
3999 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4002 rx_ring->next_to_clean = i;
4003 cleaned_count = IGB_DESC_UNUSED(rx_ring);
4005 #ifdef CONFIG_IGB_LRO
4006 if (rx_ring->lro_used) {
4007 lro_flush_all(&rx_ring->lro_mgr);
4008 rx_ring->lro_used = 0;
4010 #endif
4012 if (cleaned_count)
4013 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4015 rx_ring->total_packets += total_packets;
4016 rx_ring->total_bytes += total_bytes;
4017 rx_ring->rx_stats.packets += total_packets;
4018 rx_ring->rx_stats.bytes += total_bytes;
4019 adapter->net_stats.rx_bytes += total_bytes;
4020 adapter->net_stats.rx_packets += total_packets;
4021 return cleaned;
4026 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4027 * @adapter: address of board private structure
4029 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4030 int cleaned_count)
4032 struct igb_adapter *adapter = rx_ring->adapter;
4033 struct net_device *netdev = adapter->netdev;
4034 struct pci_dev *pdev = adapter->pdev;
4035 union e1000_adv_rx_desc *rx_desc;
4036 struct igb_buffer *buffer_info;
4037 struct sk_buff *skb;
4038 unsigned int i;
4040 i = rx_ring->next_to_use;
4041 buffer_info = &rx_ring->buffer_info[i];
4043 while (cleaned_count--) {
4044 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4046 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4047 if (!buffer_info->page) {
4048 buffer_info->page = alloc_page(GFP_ATOMIC);
4049 if (!buffer_info->page) {
4050 adapter->alloc_rx_buff_failed++;
4051 goto no_buffers;
4053 buffer_info->page_offset = 0;
4054 } else {
4055 buffer_info->page_offset ^= PAGE_SIZE / 2;
4057 buffer_info->page_dma =
4058 pci_map_page(pdev,
4059 buffer_info->page,
4060 buffer_info->page_offset,
4061 PAGE_SIZE / 2,
4062 PCI_DMA_FROMDEVICE);
4065 if (!buffer_info->skb) {
4066 int bufsz;
4068 if (adapter->rx_ps_hdr_size)
4069 bufsz = adapter->rx_ps_hdr_size;
4070 else
4071 bufsz = adapter->rx_buffer_len;
4072 bufsz += NET_IP_ALIGN;
4073 skb = netdev_alloc_skb(netdev, bufsz);
4075 if (!skb) {
4076 adapter->alloc_rx_buff_failed++;
4077 goto no_buffers;
4080 /* Make buffer alignment 2 beyond a 16 byte boundary
4081 * this will result in a 16 byte aligned IP header after
4082 * the 14 byte MAC header is removed
4084 skb_reserve(skb, NET_IP_ALIGN);
4086 buffer_info->skb = skb;
4087 buffer_info->dma = pci_map_single(pdev, skb->data,
4088 bufsz,
4089 PCI_DMA_FROMDEVICE);
4092 /* Refresh the desc even if buffer_addrs didn't change because
4093 * each write-back erases this info. */
4094 if (adapter->rx_ps_hdr_size) {
4095 rx_desc->read.pkt_addr =
4096 cpu_to_le64(buffer_info->page_dma);
4097 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4098 } else {
4099 rx_desc->read.pkt_addr =
4100 cpu_to_le64(buffer_info->dma);
4101 rx_desc->read.hdr_addr = 0;
4104 i++;
4105 if (i == rx_ring->count)
4106 i = 0;
4107 buffer_info = &rx_ring->buffer_info[i];
4110 no_buffers:
4111 if (rx_ring->next_to_use != i) {
4112 rx_ring->next_to_use = i;
4113 if (i == 0)
4114 i = (rx_ring->count - 1);
4115 else
4116 i--;
4118 /* Force memory writes to complete before letting h/w
4119 * know there are new descriptors to fetch. (Only
4120 * applicable for weak-ordered memory model archs,
4121 * such as IA-64). */
4122 wmb();
4123 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4128 * igb_mii_ioctl -
4129 * @netdev:
4130 * @ifreq:
4131 * @cmd:
4133 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4135 struct igb_adapter *adapter = netdev_priv(netdev);
4136 struct mii_ioctl_data *data = if_mii(ifr);
4138 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4139 return -EOPNOTSUPP;
4141 switch (cmd) {
4142 case SIOCGMIIPHY:
4143 data->phy_id = adapter->hw.phy.addr;
4144 break;
4145 case SIOCGMIIREG:
4146 if (!capable(CAP_NET_ADMIN))
4147 return -EPERM;
4148 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4149 data->reg_num
4150 & 0x1F, &data->val_out))
4151 return -EIO;
4152 break;
4153 case SIOCSMIIREG:
4154 default:
4155 return -EOPNOTSUPP;
4157 return 0;
4161 * igb_ioctl -
4162 * @netdev:
4163 * @ifreq:
4164 * @cmd:
4166 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4168 switch (cmd) {
4169 case SIOCGMIIPHY:
4170 case SIOCGMIIREG:
4171 case SIOCSMIIREG:
4172 return igb_mii_ioctl(netdev, ifr, cmd);
4173 default:
4174 return -EOPNOTSUPP;
4178 static void igb_vlan_rx_register(struct net_device *netdev,
4179 struct vlan_group *grp)
4181 struct igb_adapter *adapter = netdev_priv(netdev);
4182 struct e1000_hw *hw = &adapter->hw;
4183 u32 ctrl, rctl;
4185 igb_irq_disable(adapter);
4186 adapter->vlgrp = grp;
4188 if (grp) {
4189 /* enable VLAN tag insert/strip */
4190 ctrl = rd32(E1000_CTRL);
4191 ctrl |= E1000_CTRL_VME;
4192 wr32(E1000_CTRL, ctrl);
4194 /* enable VLAN receive filtering */
4195 rctl = rd32(E1000_RCTL);
4196 rctl |= E1000_RCTL_VFE;
4197 rctl &= ~E1000_RCTL_CFIEN;
4198 wr32(E1000_RCTL, rctl);
4199 igb_update_mng_vlan(adapter);
4200 wr32(E1000_RLPML,
4201 adapter->max_frame_size + VLAN_TAG_SIZE);
4202 } else {
4203 /* disable VLAN tag insert/strip */
4204 ctrl = rd32(E1000_CTRL);
4205 ctrl &= ~E1000_CTRL_VME;
4206 wr32(E1000_CTRL, ctrl);
4208 /* disable VLAN filtering */
4209 rctl = rd32(E1000_RCTL);
4210 rctl &= ~E1000_RCTL_VFE;
4211 wr32(E1000_RCTL, rctl);
4212 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4213 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4214 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4216 wr32(E1000_RLPML,
4217 adapter->max_frame_size);
4220 if (!test_bit(__IGB_DOWN, &adapter->state))
4221 igb_irq_enable(adapter);
4224 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4226 struct igb_adapter *adapter = netdev_priv(netdev);
4227 struct e1000_hw *hw = &adapter->hw;
4228 u32 vfta, index;
4230 if ((adapter->hw.mng_cookie.status &
4231 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4232 (vid == adapter->mng_vlan_id))
4233 return;
4234 /* add VID to filter table */
4235 index = (vid >> 5) & 0x7F;
4236 vfta = array_rd32(E1000_VFTA, index);
4237 vfta |= (1 << (vid & 0x1F));
4238 igb_write_vfta(&adapter->hw, index, vfta);
4241 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4243 struct igb_adapter *adapter = netdev_priv(netdev);
4244 struct e1000_hw *hw = &adapter->hw;
4245 u32 vfta, index;
4247 igb_irq_disable(adapter);
4248 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4250 if (!test_bit(__IGB_DOWN, &adapter->state))
4251 igb_irq_enable(adapter);
4253 if ((adapter->hw.mng_cookie.status &
4254 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4255 (vid == adapter->mng_vlan_id)) {
4256 /* release control to f/w */
4257 igb_release_hw_control(adapter);
4258 return;
4261 /* remove VID from filter table */
4262 index = (vid >> 5) & 0x7F;
4263 vfta = array_rd32(E1000_VFTA, index);
4264 vfta &= ~(1 << (vid & 0x1F));
4265 igb_write_vfta(&adapter->hw, index, vfta);
4268 static void igb_restore_vlan(struct igb_adapter *adapter)
4270 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4272 if (adapter->vlgrp) {
4273 u16 vid;
4274 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4275 if (!vlan_group_get_device(adapter->vlgrp, vid))
4276 continue;
4277 igb_vlan_rx_add_vid(adapter->netdev, vid);
4282 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4284 struct e1000_mac_info *mac = &adapter->hw.mac;
4286 mac->autoneg = 0;
4288 /* Fiber NICs only allow 1000 gbps Full duplex */
4289 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4290 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4291 dev_err(&adapter->pdev->dev,
4292 "Unsupported Speed/Duplex configuration\n");
4293 return -EINVAL;
4296 switch (spddplx) {
4297 case SPEED_10 + DUPLEX_HALF:
4298 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4299 break;
4300 case SPEED_10 + DUPLEX_FULL:
4301 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4302 break;
4303 case SPEED_100 + DUPLEX_HALF:
4304 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4305 break;
4306 case SPEED_100 + DUPLEX_FULL:
4307 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4308 break;
4309 case SPEED_1000 + DUPLEX_FULL:
4310 mac->autoneg = 1;
4311 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4312 break;
4313 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4314 default:
4315 dev_err(&adapter->pdev->dev,
4316 "Unsupported Speed/Duplex configuration\n");
4317 return -EINVAL;
4319 return 0;
4323 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4325 struct net_device *netdev = pci_get_drvdata(pdev);
4326 struct igb_adapter *adapter = netdev_priv(netdev);
4327 struct e1000_hw *hw = &adapter->hw;
4328 u32 ctrl, rctl, status;
4329 u32 wufc = adapter->wol;
4330 #ifdef CONFIG_PM
4331 int retval = 0;
4332 #endif
4334 netif_device_detach(netdev);
4336 if (netif_running(netdev))
4337 igb_close(netdev);
4339 igb_reset_interrupt_capability(adapter);
4341 igb_free_queues(adapter);
4343 #ifdef CONFIG_PM
4344 retval = pci_save_state(pdev);
4345 if (retval)
4346 return retval;
4347 #endif
4349 status = rd32(E1000_STATUS);
4350 if (status & E1000_STATUS_LU)
4351 wufc &= ~E1000_WUFC_LNKC;
4353 if (wufc) {
4354 igb_setup_rctl(adapter);
4355 igb_set_multi(netdev);
4357 /* turn on all-multi mode if wake on multicast is enabled */
4358 if (wufc & E1000_WUFC_MC) {
4359 rctl = rd32(E1000_RCTL);
4360 rctl |= E1000_RCTL_MPE;
4361 wr32(E1000_RCTL, rctl);
4364 ctrl = rd32(E1000_CTRL);
4365 /* advertise wake from D3Cold */
4366 #define E1000_CTRL_ADVD3WUC 0x00100000
4367 /* phy power management enable */
4368 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4369 ctrl |= E1000_CTRL_ADVD3WUC;
4370 wr32(E1000_CTRL, ctrl);
4372 /* Allow time for pending master requests to run */
4373 igb_disable_pcie_master(&adapter->hw);
4375 wr32(E1000_WUC, E1000_WUC_PME_EN);
4376 wr32(E1000_WUFC, wufc);
4377 } else {
4378 wr32(E1000_WUC, 0);
4379 wr32(E1000_WUFC, 0);
4382 /* make sure adapter isn't asleep if manageability/wol is enabled */
4383 if (wufc || adapter->en_mng_pt) {
4384 pci_enable_wake(pdev, PCI_D3hot, 1);
4385 pci_enable_wake(pdev, PCI_D3cold, 1);
4386 } else {
4387 igb_shutdown_fiber_serdes_link_82575(hw);
4388 pci_enable_wake(pdev, PCI_D3hot, 0);
4389 pci_enable_wake(pdev, PCI_D3cold, 0);
4392 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4393 * would have already happened in close and is redundant. */
4394 igb_release_hw_control(adapter);
4396 pci_disable_device(pdev);
4398 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4400 return 0;
4403 #ifdef CONFIG_PM
4404 static int igb_resume(struct pci_dev *pdev)
4406 struct net_device *netdev = pci_get_drvdata(pdev);
4407 struct igb_adapter *adapter = netdev_priv(netdev);
4408 struct e1000_hw *hw = &adapter->hw;
4409 u32 err;
4411 pci_set_power_state(pdev, PCI_D0);
4412 pci_restore_state(pdev);
4414 if (adapter->need_ioport)
4415 err = pci_enable_device(pdev);
4416 else
4417 err = pci_enable_device_mem(pdev);
4418 if (err) {
4419 dev_err(&pdev->dev,
4420 "igb: Cannot enable PCI device from suspend\n");
4421 return err;
4423 pci_set_master(pdev);
4425 pci_enable_wake(pdev, PCI_D3hot, 0);
4426 pci_enable_wake(pdev, PCI_D3cold, 0);
4428 igb_set_interrupt_capability(adapter);
4430 if (igb_alloc_queues(adapter)) {
4431 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4432 return -ENOMEM;
4435 /* e1000_power_up_phy(adapter); */
4437 igb_reset(adapter);
4438 wr32(E1000_WUS, ~0);
4440 if (netif_running(netdev)) {
4441 err = igb_open(netdev);
4442 if (err)
4443 return err;
4446 netif_device_attach(netdev);
4448 /* let the f/w know that the h/w is now under the control of the
4449 * driver. */
4450 igb_get_hw_control(adapter);
4452 return 0;
4454 #endif
4456 static void igb_shutdown(struct pci_dev *pdev)
4458 igb_suspend(pdev, PMSG_SUSPEND);
4461 #ifdef CONFIG_NET_POLL_CONTROLLER
4463 * Polling 'interrupt' - used by things like netconsole to send skbs
4464 * without having to re-enable interrupts. It's not called while
4465 * the interrupt routine is executing.
4467 static void igb_netpoll(struct net_device *netdev)
4469 struct igb_adapter *adapter = netdev_priv(netdev);
4470 int i;
4471 int work_done = 0;
4473 igb_irq_disable(adapter);
4474 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4476 for (i = 0; i < adapter->num_tx_queues; i++)
4477 igb_clean_tx_irq(&adapter->tx_ring[i]);
4479 for (i = 0; i < adapter->num_rx_queues; i++)
4480 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4481 &work_done,
4482 adapter->rx_ring[i].napi.weight);
4484 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4485 igb_irq_enable(adapter);
4487 #endif /* CONFIG_NET_POLL_CONTROLLER */
4490 * igb_io_error_detected - called when PCI error is detected
4491 * @pdev: Pointer to PCI device
4492 * @state: The current pci connection state
4494 * This function is called after a PCI bus error affecting
4495 * this device has been detected.
4497 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4498 pci_channel_state_t state)
4500 struct net_device *netdev = pci_get_drvdata(pdev);
4501 struct igb_adapter *adapter = netdev_priv(netdev);
4503 netif_device_detach(netdev);
4505 if (netif_running(netdev))
4506 igb_down(adapter);
4507 pci_disable_device(pdev);
4509 /* Request a slot slot reset. */
4510 return PCI_ERS_RESULT_NEED_RESET;
4514 * igb_io_slot_reset - called after the pci bus has been reset.
4515 * @pdev: Pointer to PCI device
4517 * Restart the card from scratch, as if from a cold-boot. Implementation
4518 * resembles the first-half of the igb_resume routine.
4520 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4522 struct net_device *netdev = pci_get_drvdata(pdev);
4523 struct igb_adapter *adapter = netdev_priv(netdev);
4524 struct e1000_hw *hw = &adapter->hw;
4525 int err;
4527 if (adapter->need_ioport)
4528 err = pci_enable_device(pdev);
4529 else
4530 err = pci_enable_device_mem(pdev);
4531 if (err) {
4532 dev_err(&pdev->dev,
4533 "Cannot re-enable PCI device after reset.\n");
4534 return PCI_ERS_RESULT_DISCONNECT;
4536 pci_set_master(pdev);
4537 pci_restore_state(pdev);
4539 pci_enable_wake(pdev, PCI_D3hot, 0);
4540 pci_enable_wake(pdev, PCI_D3cold, 0);
4542 igb_reset(adapter);
4543 wr32(E1000_WUS, ~0);
4545 return PCI_ERS_RESULT_RECOVERED;
4549 * igb_io_resume - called when traffic can start flowing again.
4550 * @pdev: Pointer to PCI device
4552 * This callback is called when the error recovery driver tells us that
4553 * its OK to resume normal operation. Implementation resembles the
4554 * second-half of the igb_resume routine.
4556 static void igb_io_resume(struct pci_dev *pdev)
4558 struct net_device *netdev = pci_get_drvdata(pdev);
4559 struct igb_adapter *adapter = netdev_priv(netdev);
4561 igb_init_manageability(adapter);
4563 if (netif_running(netdev)) {
4564 if (igb_up(adapter)) {
4565 dev_err(&pdev->dev, "igb_up failed after reset\n");
4566 return;
4570 netif_device_attach(netdev);
4572 /* let the f/w know that the h/w is now under the control of the
4573 * driver. */
4574 igb_get_hw_control(adapter);
4578 /* igb_main.c */