btrfs: add comments to barriers before waitqueue_active
[linux-2.6/btrfs-unstable.git] / fs / file.c
blob6c672ad329e9a8c6bf3b7925f9e344ea1c5991c4
1 /*
2 * linux/fs/file.c
4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 * Manage the dynamic fd arrays in the process files_struct.
7 */
9 #include <linux/syscalls.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/time.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18 #include <linux/file.h>
19 #include <linux/fdtable.h>
20 #include <linux/bitops.h>
21 #include <linux/interrupt.h>
22 #include <linux/spinlock.h>
23 #include <linux/rcupdate.h>
24 #include <linux/workqueue.h>
26 int sysctl_nr_open __read_mostly = 1024*1024;
27 int sysctl_nr_open_min = BITS_PER_LONG;
28 /* our max() is unusable in constant expressions ;-/ */
29 #define __const_max(x, y) ((x) < (y) ? (x) : (y))
30 int sysctl_nr_open_max = __const_max(INT_MAX, ~(size_t)0/sizeof(void *)) &
31 -BITS_PER_LONG;
33 static void *alloc_fdmem(size_t size)
36 * Very large allocations can stress page reclaim, so fall back to
37 * vmalloc() if the allocation size will be considered "large" by the VM.
39 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
40 void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN|__GFP_NORETRY);
41 if (data != NULL)
42 return data;
44 return vmalloc(size);
47 static void __free_fdtable(struct fdtable *fdt)
49 kvfree(fdt->fd);
50 kvfree(fdt->open_fds);
51 kfree(fdt);
54 static void free_fdtable_rcu(struct rcu_head *rcu)
56 __free_fdtable(container_of(rcu, struct fdtable, rcu));
60 * Expand the fdset in the files_struct. Called with the files spinlock
61 * held for write.
63 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
65 unsigned int cpy, set;
67 BUG_ON(nfdt->max_fds < ofdt->max_fds);
69 cpy = ofdt->max_fds * sizeof(struct file *);
70 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
71 memcpy(nfdt->fd, ofdt->fd, cpy);
72 memset((char *)(nfdt->fd) + cpy, 0, set);
74 cpy = ofdt->max_fds / BITS_PER_BYTE;
75 set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
76 memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
77 memset((char *)(nfdt->open_fds) + cpy, 0, set);
78 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
79 memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
82 static struct fdtable * alloc_fdtable(unsigned int nr)
84 struct fdtable *fdt;
85 void *data;
88 * Figure out how many fds we actually want to support in this fdtable.
89 * Allocation steps are keyed to the size of the fdarray, since it
90 * grows far faster than any of the other dynamic data. We try to fit
91 * the fdarray into comfortable page-tuned chunks: starting at 1024B
92 * and growing in powers of two from there on.
94 nr /= (1024 / sizeof(struct file *));
95 nr = roundup_pow_of_two(nr + 1);
96 nr *= (1024 / sizeof(struct file *));
98 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
99 * had been set lower between the check in expand_files() and here. Deal
100 * with that in caller, it's cheaper that way.
102 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
103 * bitmaps handling below becomes unpleasant, to put it mildly...
105 if (unlikely(nr > sysctl_nr_open))
106 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
108 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
109 if (!fdt)
110 goto out;
111 fdt->max_fds = nr;
112 data = alloc_fdmem(nr * sizeof(struct file *));
113 if (!data)
114 goto out_fdt;
115 fdt->fd = data;
117 data = alloc_fdmem(max_t(size_t,
118 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
119 if (!data)
120 goto out_arr;
121 fdt->open_fds = data;
122 data += nr / BITS_PER_BYTE;
123 fdt->close_on_exec = data;
125 return fdt;
127 out_arr:
128 kvfree(fdt->fd);
129 out_fdt:
130 kfree(fdt);
131 out:
132 return NULL;
136 * Expand the file descriptor table.
137 * This function will allocate a new fdtable and both fd array and fdset, of
138 * the given size.
139 * Return <0 error code on error; 1 on successful completion.
140 * The files->file_lock should be held on entry, and will be held on exit.
142 static int expand_fdtable(struct files_struct *files, int nr)
143 __releases(files->file_lock)
144 __acquires(files->file_lock)
146 struct fdtable *new_fdt, *cur_fdt;
148 spin_unlock(&files->file_lock);
149 new_fdt = alloc_fdtable(nr);
151 /* make sure all __fd_install() have seen resize_in_progress
152 * or have finished their rcu_read_lock_sched() section.
154 if (atomic_read(&files->count) > 1)
155 synchronize_sched();
157 spin_lock(&files->file_lock);
158 if (!new_fdt)
159 return -ENOMEM;
161 * extremely unlikely race - sysctl_nr_open decreased between the check in
162 * caller and alloc_fdtable(). Cheaper to catch it here...
164 if (unlikely(new_fdt->max_fds <= nr)) {
165 __free_fdtable(new_fdt);
166 return -EMFILE;
168 cur_fdt = files_fdtable(files);
169 BUG_ON(nr < cur_fdt->max_fds);
170 copy_fdtable(new_fdt, cur_fdt);
171 rcu_assign_pointer(files->fdt, new_fdt);
172 if (cur_fdt != &files->fdtab)
173 call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
174 /* coupled with smp_rmb() in __fd_install() */
175 smp_wmb();
176 return 1;
180 * Expand files.
181 * This function will expand the file structures, if the requested size exceeds
182 * the current capacity and there is room for expansion.
183 * Return <0 error code on error; 0 when nothing done; 1 when files were
184 * expanded and execution may have blocked.
185 * The files->file_lock should be held on entry, and will be held on exit.
187 static int expand_files(struct files_struct *files, int nr)
188 __releases(files->file_lock)
189 __acquires(files->file_lock)
191 struct fdtable *fdt;
192 int expanded = 0;
194 repeat:
195 fdt = files_fdtable(files);
197 /* Do we need to expand? */
198 if (nr < fdt->max_fds)
199 return expanded;
201 /* Can we expand? */
202 if (nr >= sysctl_nr_open)
203 return -EMFILE;
205 if (unlikely(files->resize_in_progress)) {
206 spin_unlock(&files->file_lock);
207 expanded = 1;
208 wait_event(files->resize_wait, !files->resize_in_progress);
209 spin_lock(&files->file_lock);
210 goto repeat;
213 /* All good, so we try */
214 files->resize_in_progress = true;
215 expanded = expand_fdtable(files, nr);
216 files->resize_in_progress = false;
218 wake_up_all(&files->resize_wait);
219 return expanded;
222 static inline void __set_close_on_exec(int fd, struct fdtable *fdt)
224 __set_bit(fd, fdt->close_on_exec);
227 static inline void __clear_close_on_exec(int fd, struct fdtable *fdt)
229 __clear_bit(fd, fdt->close_on_exec);
232 static inline void __set_open_fd(int fd, struct fdtable *fdt)
234 __set_bit(fd, fdt->open_fds);
237 static inline void __clear_open_fd(int fd, struct fdtable *fdt)
239 __clear_bit(fd, fdt->open_fds);
242 static int count_open_files(struct fdtable *fdt)
244 int size = fdt->max_fds;
245 int i;
247 /* Find the last open fd */
248 for (i = size / BITS_PER_LONG; i > 0; ) {
249 if (fdt->open_fds[--i])
250 break;
252 i = (i + 1) * BITS_PER_LONG;
253 return i;
257 * Allocate a new files structure and copy contents from the
258 * passed in files structure.
259 * errorp will be valid only when the returned files_struct is NULL.
261 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
263 struct files_struct *newf;
264 struct file **old_fds, **new_fds;
265 int open_files, size, i;
266 struct fdtable *old_fdt, *new_fdt;
268 *errorp = -ENOMEM;
269 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
270 if (!newf)
271 goto out;
273 atomic_set(&newf->count, 1);
275 spin_lock_init(&newf->file_lock);
276 newf->resize_in_progress = false;
277 init_waitqueue_head(&newf->resize_wait);
278 newf->next_fd = 0;
279 new_fdt = &newf->fdtab;
280 new_fdt->max_fds = NR_OPEN_DEFAULT;
281 new_fdt->close_on_exec = newf->close_on_exec_init;
282 new_fdt->open_fds = newf->open_fds_init;
283 new_fdt->fd = &newf->fd_array[0];
285 spin_lock(&oldf->file_lock);
286 old_fdt = files_fdtable(oldf);
287 open_files = count_open_files(old_fdt);
290 * Check whether we need to allocate a larger fd array and fd set.
292 while (unlikely(open_files > new_fdt->max_fds)) {
293 spin_unlock(&oldf->file_lock);
295 if (new_fdt != &newf->fdtab)
296 __free_fdtable(new_fdt);
298 new_fdt = alloc_fdtable(open_files - 1);
299 if (!new_fdt) {
300 *errorp = -ENOMEM;
301 goto out_release;
304 /* beyond sysctl_nr_open; nothing to do */
305 if (unlikely(new_fdt->max_fds < open_files)) {
306 __free_fdtable(new_fdt);
307 *errorp = -EMFILE;
308 goto out_release;
312 * Reacquire the oldf lock and a pointer to its fd table
313 * who knows it may have a new bigger fd table. We need
314 * the latest pointer.
316 spin_lock(&oldf->file_lock);
317 old_fdt = files_fdtable(oldf);
318 open_files = count_open_files(old_fdt);
321 old_fds = old_fdt->fd;
322 new_fds = new_fdt->fd;
324 memcpy(new_fdt->open_fds, old_fdt->open_fds, open_files / 8);
325 memcpy(new_fdt->close_on_exec, old_fdt->close_on_exec, open_files / 8);
327 for (i = open_files; i != 0; i--) {
328 struct file *f = *old_fds++;
329 if (f) {
330 get_file(f);
331 } else {
333 * The fd may be claimed in the fd bitmap but not yet
334 * instantiated in the files array if a sibling thread
335 * is partway through open(). So make sure that this
336 * fd is available to the new process.
338 __clear_open_fd(open_files - i, new_fdt);
340 rcu_assign_pointer(*new_fds++, f);
342 spin_unlock(&oldf->file_lock);
344 /* compute the remainder to be cleared */
345 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
347 /* This is long word aligned thus could use a optimized version */
348 memset(new_fds, 0, size);
350 if (new_fdt->max_fds > open_files) {
351 int left = (new_fdt->max_fds - open_files) / 8;
352 int start = open_files / BITS_PER_LONG;
354 memset(&new_fdt->open_fds[start], 0, left);
355 memset(&new_fdt->close_on_exec[start], 0, left);
358 rcu_assign_pointer(newf->fdt, new_fdt);
360 return newf;
362 out_release:
363 kmem_cache_free(files_cachep, newf);
364 out:
365 return NULL;
368 static struct fdtable *close_files(struct files_struct * files)
371 * It is safe to dereference the fd table without RCU or
372 * ->file_lock because this is the last reference to the
373 * files structure.
375 struct fdtable *fdt = rcu_dereference_raw(files->fdt);
376 int i, j = 0;
378 for (;;) {
379 unsigned long set;
380 i = j * BITS_PER_LONG;
381 if (i >= fdt->max_fds)
382 break;
383 set = fdt->open_fds[j++];
384 while (set) {
385 if (set & 1) {
386 struct file * file = xchg(&fdt->fd[i], NULL);
387 if (file) {
388 filp_close(file, files);
389 cond_resched_rcu_qs();
392 i++;
393 set >>= 1;
397 return fdt;
400 struct files_struct *get_files_struct(struct task_struct *task)
402 struct files_struct *files;
404 task_lock(task);
405 files = task->files;
406 if (files)
407 atomic_inc(&files->count);
408 task_unlock(task);
410 return files;
413 void put_files_struct(struct files_struct *files)
415 if (atomic_dec_and_test(&files->count)) {
416 struct fdtable *fdt = close_files(files);
418 /* free the arrays if they are not embedded */
419 if (fdt != &files->fdtab)
420 __free_fdtable(fdt);
421 kmem_cache_free(files_cachep, files);
425 void reset_files_struct(struct files_struct *files)
427 struct task_struct *tsk = current;
428 struct files_struct *old;
430 old = tsk->files;
431 task_lock(tsk);
432 tsk->files = files;
433 task_unlock(tsk);
434 put_files_struct(old);
437 void exit_files(struct task_struct *tsk)
439 struct files_struct * files = tsk->files;
441 if (files) {
442 task_lock(tsk);
443 tsk->files = NULL;
444 task_unlock(tsk);
445 put_files_struct(files);
449 struct files_struct init_files = {
450 .count = ATOMIC_INIT(1),
451 .fdt = &init_files.fdtab,
452 .fdtab = {
453 .max_fds = NR_OPEN_DEFAULT,
454 .fd = &init_files.fd_array[0],
455 .close_on_exec = init_files.close_on_exec_init,
456 .open_fds = init_files.open_fds_init,
458 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock),
462 * allocate a file descriptor, mark it busy.
464 int __alloc_fd(struct files_struct *files,
465 unsigned start, unsigned end, unsigned flags)
467 unsigned int fd;
468 int error;
469 struct fdtable *fdt;
471 spin_lock(&files->file_lock);
472 repeat:
473 fdt = files_fdtable(files);
474 fd = start;
475 if (fd < files->next_fd)
476 fd = files->next_fd;
478 if (fd < fdt->max_fds)
479 fd = find_next_zero_bit(fdt->open_fds, fdt->max_fds, fd);
482 * N.B. For clone tasks sharing a files structure, this test
483 * will limit the total number of files that can be opened.
485 error = -EMFILE;
486 if (fd >= end)
487 goto out;
489 error = expand_files(files, fd);
490 if (error < 0)
491 goto out;
494 * If we needed to expand the fs array we
495 * might have blocked - try again.
497 if (error)
498 goto repeat;
500 if (start <= files->next_fd)
501 files->next_fd = fd + 1;
503 __set_open_fd(fd, fdt);
504 if (flags & O_CLOEXEC)
505 __set_close_on_exec(fd, fdt);
506 else
507 __clear_close_on_exec(fd, fdt);
508 error = fd;
509 #if 1
510 /* Sanity check */
511 if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
512 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
513 rcu_assign_pointer(fdt->fd[fd], NULL);
515 #endif
517 out:
518 spin_unlock(&files->file_lock);
519 return error;
522 static int alloc_fd(unsigned start, unsigned flags)
524 return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags);
527 int get_unused_fd_flags(unsigned flags)
529 return __alloc_fd(current->files, 0, rlimit(RLIMIT_NOFILE), flags);
531 EXPORT_SYMBOL(get_unused_fd_flags);
533 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
535 struct fdtable *fdt = files_fdtable(files);
536 __clear_open_fd(fd, fdt);
537 if (fd < files->next_fd)
538 files->next_fd = fd;
541 void put_unused_fd(unsigned int fd)
543 struct files_struct *files = current->files;
544 spin_lock(&files->file_lock);
545 __put_unused_fd(files, fd);
546 spin_unlock(&files->file_lock);
549 EXPORT_SYMBOL(put_unused_fd);
552 * Install a file pointer in the fd array.
554 * The VFS is full of places where we drop the files lock between
555 * setting the open_fds bitmap and installing the file in the file
556 * array. At any such point, we are vulnerable to a dup2() race
557 * installing a file in the array before us. We need to detect this and
558 * fput() the struct file we are about to overwrite in this case.
560 * It should never happen - if we allow dup2() do it, _really_ bad things
561 * will follow.
563 * NOTE: __fd_install() variant is really, really low-level; don't
564 * use it unless you are forced to by truly lousy API shoved down
565 * your throat. 'files' *MUST* be either current->files or obtained
566 * by get_files_struct(current) done by whoever had given it to you,
567 * or really bad things will happen. Normally you want to use
568 * fd_install() instead.
571 void __fd_install(struct files_struct *files, unsigned int fd,
572 struct file *file)
574 struct fdtable *fdt;
576 might_sleep();
577 rcu_read_lock_sched();
579 while (unlikely(files->resize_in_progress)) {
580 rcu_read_unlock_sched();
581 wait_event(files->resize_wait, !files->resize_in_progress);
582 rcu_read_lock_sched();
584 /* coupled with smp_wmb() in expand_fdtable() */
585 smp_rmb();
586 fdt = rcu_dereference_sched(files->fdt);
587 BUG_ON(fdt->fd[fd] != NULL);
588 rcu_assign_pointer(fdt->fd[fd], file);
589 rcu_read_unlock_sched();
592 void fd_install(unsigned int fd, struct file *file)
594 __fd_install(current->files, fd, file);
597 EXPORT_SYMBOL(fd_install);
600 * The same warnings as for __alloc_fd()/__fd_install() apply here...
602 int __close_fd(struct files_struct *files, unsigned fd)
604 struct file *file;
605 struct fdtable *fdt;
607 spin_lock(&files->file_lock);
608 fdt = files_fdtable(files);
609 if (fd >= fdt->max_fds)
610 goto out_unlock;
611 file = fdt->fd[fd];
612 if (!file)
613 goto out_unlock;
614 rcu_assign_pointer(fdt->fd[fd], NULL);
615 __clear_close_on_exec(fd, fdt);
616 __put_unused_fd(files, fd);
617 spin_unlock(&files->file_lock);
618 return filp_close(file, files);
620 out_unlock:
621 spin_unlock(&files->file_lock);
622 return -EBADF;
625 void do_close_on_exec(struct files_struct *files)
627 unsigned i;
628 struct fdtable *fdt;
630 /* exec unshares first */
631 spin_lock(&files->file_lock);
632 for (i = 0; ; i++) {
633 unsigned long set;
634 unsigned fd = i * BITS_PER_LONG;
635 fdt = files_fdtable(files);
636 if (fd >= fdt->max_fds)
637 break;
638 set = fdt->close_on_exec[i];
639 if (!set)
640 continue;
641 fdt->close_on_exec[i] = 0;
642 for ( ; set ; fd++, set >>= 1) {
643 struct file *file;
644 if (!(set & 1))
645 continue;
646 file = fdt->fd[fd];
647 if (!file)
648 continue;
649 rcu_assign_pointer(fdt->fd[fd], NULL);
650 __put_unused_fd(files, fd);
651 spin_unlock(&files->file_lock);
652 filp_close(file, files);
653 cond_resched();
654 spin_lock(&files->file_lock);
658 spin_unlock(&files->file_lock);
661 static struct file *__fget(unsigned int fd, fmode_t mask)
663 struct files_struct *files = current->files;
664 struct file *file;
666 rcu_read_lock();
667 loop:
668 file = fcheck_files(files, fd);
669 if (file) {
670 /* File object ref couldn't be taken.
671 * dup2() atomicity guarantee is the reason
672 * we loop to catch the new file (or NULL pointer)
674 if (file->f_mode & mask)
675 file = NULL;
676 else if (!get_file_rcu(file))
677 goto loop;
679 rcu_read_unlock();
681 return file;
684 struct file *fget(unsigned int fd)
686 return __fget(fd, FMODE_PATH);
688 EXPORT_SYMBOL(fget);
690 struct file *fget_raw(unsigned int fd)
692 return __fget(fd, 0);
694 EXPORT_SYMBOL(fget_raw);
697 * Lightweight file lookup - no refcnt increment if fd table isn't shared.
699 * You can use this instead of fget if you satisfy all of the following
700 * conditions:
701 * 1) You must call fput_light before exiting the syscall and returning control
702 * to userspace (i.e. you cannot remember the returned struct file * after
703 * returning to userspace).
704 * 2) You must not call filp_close on the returned struct file * in between
705 * calls to fget_light and fput_light.
706 * 3) You must not clone the current task in between the calls to fget_light
707 * and fput_light.
709 * The fput_needed flag returned by fget_light should be passed to the
710 * corresponding fput_light.
712 static unsigned long __fget_light(unsigned int fd, fmode_t mask)
714 struct files_struct *files = current->files;
715 struct file *file;
717 if (atomic_read(&files->count) == 1) {
718 file = __fcheck_files(files, fd);
719 if (!file || unlikely(file->f_mode & mask))
720 return 0;
721 return (unsigned long)file;
722 } else {
723 file = __fget(fd, mask);
724 if (!file)
725 return 0;
726 return FDPUT_FPUT | (unsigned long)file;
729 unsigned long __fdget(unsigned int fd)
731 return __fget_light(fd, FMODE_PATH);
733 EXPORT_SYMBOL(__fdget);
735 unsigned long __fdget_raw(unsigned int fd)
737 return __fget_light(fd, 0);
740 unsigned long __fdget_pos(unsigned int fd)
742 unsigned long v = __fdget(fd);
743 struct file *file = (struct file *)(v & ~3);
745 if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
746 if (file_count(file) > 1) {
747 v |= FDPUT_POS_UNLOCK;
748 mutex_lock(&file->f_pos_lock);
751 return v;
755 * We only lock f_pos if we have threads or if the file might be
756 * shared with another process. In both cases we'll have an elevated
757 * file count (done either by fdget() or by fork()).
760 void set_close_on_exec(unsigned int fd, int flag)
762 struct files_struct *files = current->files;
763 struct fdtable *fdt;
764 spin_lock(&files->file_lock);
765 fdt = files_fdtable(files);
766 if (flag)
767 __set_close_on_exec(fd, fdt);
768 else
769 __clear_close_on_exec(fd, fdt);
770 spin_unlock(&files->file_lock);
773 bool get_close_on_exec(unsigned int fd)
775 struct files_struct *files = current->files;
776 struct fdtable *fdt;
777 bool res;
778 rcu_read_lock();
779 fdt = files_fdtable(files);
780 res = close_on_exec(fd, fdt);
781 rcu_read_unlock();
782 return res;
785 static int do_dup2(struct files_struct *files,
786 struct file *file, unsigned fd, unsigned flags)
787 __releases(&files->file_lock)
789 struct file *tofree;
790 struct fdtable *fdt;
793 * We need to detect attempts to do dup2() over allocated but still
794 * not finished descriptor. NB: OpenBSD avoids that at the price of
795 * extra work in their equivalent of fget() - they insert struct
796 * file immediately after grabbing descriptor, mark it larval if
797 * more work (e.g. actual opening) is needed and make sure that
798 * fget() treats larval files as absent. Potentially interesting,
799 * but while extra work in fget() is trivial, locking implications
800 * and amount of surgery on open()-related paths in VFS are not.
801 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
802 * deadlocks in rather amusing ways, AFAICS. All of that is out of
803 * scope of POSIX or SUS, since neither considers shared descriptor
804 * tables and this condition does not arise without those.
806 fdt = files_fdtable(files);
807 tofree = fdt->fd[fd];
808 if (!tofree && fd_is_open(fd, fdt))
809 goto Ebusy;
810 get_file(file);
811 rcu_assign_pointer(fdt->fd[fd], file);
812 __set_open_fd(fd, fdt);
813 if (flags & O_CLOEXEC)
814 __set_close_on_exec(fd, fdt);
815 else
816 __clear_close_on_exec(fd, fdt);
817 spin_unlock(&files->file_lock);
819 if (tofree)
820 filp_close(tofree, files);
822 return fd;
824 Ebusy:
825 spin_unlock(&files->file_lock);
826 return -EBUSY;
829 int replace_fd(unsigned fd, struct file *file, unsigned flags)
831 int err;
832 struct files_struct *files = current->files;
834 if (!file)
835 return __close_fd(files, fd);
837 if (fd >= rlimit(RLIMIT_NOFILE))
838 return -EBADF;
840 spin_lock(&files->file_lock);
841 err = expand_files(files, fd);
842 if (unlikely(err < 0))
843 goto out_unlock;
844 return do_dup2(files, file, fd, flags);
846 out_unlock:
847 spin_unlock(&files->file_lock);
848 return err;
851 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
853 int err = -EBADF;
854 struct file *file;
855 struct files_struct *files = current->files;
857 if ((flags & ~O_CLOEXEC) != 0)
858 return -EINVAL;
860 if (unlikely(oldfd == newfd))
861 return -EINVAL;
863 if (newfd >= rlimit(RLIMIT_NOFILE))
864 return -EBADF;
866 spin_lock(&files->file_lock);
867 err = expand_files(files, newfd);
868 file = fcheck(oldfd);
869 if (unlikely(!file))
870 goto Ebadf;
871 if (unlikely(err < 0)) {
872 if (err == -EMFILE)
873 goto Ebadf;
874 goto out_unlock;
876 return do_dup2(files, file, newfd, flags);
878 Ebadf:
879 err = -EBADF;
880 out_unlock:
881 spin_unlock(&files->file_lock);
882 return err;
885 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
887 if (unlikely(newfd == oldfd)) { /* corner case */
888 struct files_struct *files = current->files;
889 int retval = oldfd;
891 rcu_read_lock();
892 if (!fcheck_files(files, oldfd))
893 retval = -EBADF;
894 rcu_read_unlock();
895 return retval;
897 return sys_dup3(oldfd, newfd, 0);
900 SYSCALL_DEFINE1(dup, unsigned int, fildes)
902 int ret = -EBADF;
903 struct file *file = fget_raw(fildes);
905 if (file) {
906 ret = get_unused_fd_flags(0);
907 if (ret >= 0)
908 fd_install(ret, file);
909 else
910 fput(file);
912 return ret;
915 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
917 int err;
918 if (from >= rlimit(RLIMIT_NOFILE))
919 return -EINVAL;
920 err = alloc_fd(from, flags);
921 if (err >= 0) {
922 get_file(file);
923 fd_install(err, file);
925 return err;
928 int iterate_fd(struct files_struct *files, unsigned n,
929 int (*f)(const void *, struct file *, unsigned),
930 const void *p)
932 struct fdtable *fdt;
933 int res = 0;
934 if (!files)
935 return 0;
936 spin_lock(&files->file_lock);
937 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
938 struct file *file;
939 file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
940 if (!file)
941 continue;
942 res = f(p, file, n);
943 if (res)
944 break;
946 spin_unlock(&files->file_lock);
947 return res;
949 EXPORT_SYMBOL(iterate_fd);