drivers/net: delete non-required instances of include <linux/init.h>
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
blob394c0a538e1cacb5b189c0a4d16e40cf5825a967
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
44 #include "qlge.h"
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = -1; /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
81 "Default is OFF - Do Not allocate memory. ");
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
89 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 /* required last entry */
93 {0,}
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
103 /* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
109 u32 sem_bits = 0;
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138 return -EINVAL;
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
147 unsigned int wait_count = 30;
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
151 udelay(100);
152 } while (--wait_count);
153 return -ETIMEDOUT;
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
162 /* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
169 u32 temp;
170 int count = UDELAY_COUNT;
172 while (count) {
173 temp = ql_read32(qdev, reg);
175 /* check for errors */
176 if (temp & err_bit) {
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
188 return -ETIMEDOUT;
191 /* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
196 int count = UDELAY_COUNT;
197 u32 temp;
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
208 return -ETIMEDOUT;
212 /* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231 return -ENOMEM;
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
242 goto exit;
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
253 * Wait for the bit to clear after signaling hw.
255 status = ql_wait_cfg(qdev, bit);
256 exit:
257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
262 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
266 u32 offset = 0;
267 int status;
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
273 status =
274 ql_wait_reg_rdy(qdev,
275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312 MAC_ADDR_MR, 0);
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
317 break;
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
324 status = -EPERM;
326 exit:
327 return status;
330 /* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
336 u32 offset = 0;
337 int status = 0;
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
372 case MAC_ADDR_TYPE_CAM_MAC:
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
379 status =
380 ql_wait_reg_rdy(qdev,
381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417 break;
419 case MAC_ADDR_TYPE_VLAN:
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
427 status =
428 ql_wait_reg_rdy(qdev,
429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
442 status = -EPERM;
444 exit:
445 return status;
448 /* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
458 if (set) {
459 addr = &qdev->current_mac_addr[0];
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
462 } else {
463 memset(zero_mac_addr, 0, ETH_ALEN);
464 addr = &zero_mac_addr[0];
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
477 return status;
480 void ql_link_on(struct ql_adapter *qdev)
482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
487 void ql_link_off(struct ql_adapter *qdev)
489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
494 /* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
499 int status = 0;
501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502 if (status)
503 goto exit;
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511 exit:
512 return status;
515 /* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
523 int status = -EINVAL; /* Return error if no mask match. */
524 u32 value = 0;
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
573 value = RT_IDX_DST_DFLT_Q | /* dest */
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
580 value = RT_IDX_DST_DFLT_Q | /* dest */
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
592 case 0: /* Clear the E-bit on an entry. */
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
599 default:
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
602 status = -EPERM;
603 goto exit;
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
614 exit:
615 return status;
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
631 * incremented every time we queue a worker and decremented every time
632 * a worker finishes. Once it hits zero we enable the interrupt.
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
644 ql_write32(qdev, INTR_EN,
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
662 u32 var = 0;
663 struct intr_context *ctx;
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
671 ctx = qdev->intr_context + intr;
672 spin_lock(&qdev->hw_lock);
673 if (!atomic_read(&ctx->irq_cnt)) {
674 ql_write32(qdev, INTR_EN,
675 ctx->intr_dis_mask);
676 var = ql_read32(qdev, STS);
678 atomic_inc(&ctx->irq_cnt);
679 spin_unlock(&qdev->hw_lock);
680 return var;
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 ql_enable_completion_interrupt(qdev, i);
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708 return status;
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
714 if (csum)
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
718 return csum;
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742 return status;
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
751 u8 mac_addr[6];
753 /* Get flash offset for function and adjust
754 * for dword access.
756 if (!qdev->port)
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
770 goto exit;
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779 status = -EINVAL;
780 goto exit;
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
795 if (!is_valid_ether_addr(mac_addr)) {
796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797 status = -EINVAL;
798 goto exit;
801 memcpy(qdev->ndev->dev_addr,
802 mac_addr,
803 qdev->ndev->addr_len);
805 exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
812 int i;
813 int status;
814 __le32 *p = (__le32 *)&qdev->flash;
815 u32 offset = 0;
816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
818 /* Second function's parameters follow the first
819 * function's.
821 if (qdev->port)
822 offset = size;
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
827 for (i = 0; i < size; i++, p++) {
828 status = ql_read_flash_word(qdev, i+offset, p);
829 if (status) {
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
832 goto exit;
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842 status = -EINVAL;
843 goto exit;
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
855 exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901 return status;
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
919 *data = (u64) lo | ((u64) hi << 32);
921 exit:
922 return status;
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
927 int status;
929 * Get MPI firmware version for driver banner
930 * and ethool info.
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941 return status;
944 /* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
952 int status = 0;
953 u32 data;
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
966 return status;
969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
1047 dma_unmap_addr(lbq_desc, mapaddr),
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 GFP_ATOMIC,
1097 qdev->lbq_buf_order);
1098 if (unlikely(!rx_ring->pg_chunk.page)) {
1099 netif_err(qdev, drv, qdev->ndev,
1100 "page allocation failed.\n");
1101 return -ENOMEM;
1103 rx_ring->pg_chunk.offset = 0;
1104 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 0, ql_lbq_block_size(qdev),
1106 PCI_DMA_FROMDEVICE);
1107 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 __free_pages(rx_ring->pg_chunk.page,
1109 qdev->lbq_buf_order);
1110 rx_ring->pg_chunk.page = NULL;
1111 netif_err(qdev, drv, qdev->ndev,
1112 "PCI mapping failed.\n");
1113 return -ENOMEM;
1115 rx_ring->pg_chunk.map = map;
1116 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1119 /* Copy the current master pg_chunk info
1120 * to the current descriptor.
1122 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1124 /* Adjust the master page chunk for next
1125 * buffer get.
1127 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 rx_ring->pg_chunk.page = NULL;
1130 lbq_desc->p.pg_chunk.last_flag = 1;
1131 } else {
1132 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 get_page(rx_ring->pg_chunk.page);
1134 lbq_desc->p.pg_chunk.last_flag = 0;
1136 return 0;
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1141 u32 clean_idx = rx_ring->lbq_clean_idx;
1142 u32 start_idx = clean_idx;
1143 struct bq_desc *lbq_desc;
1144 u64 map;
1145 int i;
1147 while (rx_ring->lbq_free_cnt > 32) {
1148 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 "lbq: try cleaning clean_idx = %d.\n",
1151 clean_idx);
1152 lbq_desc = &rx_ring->lbq[clean_idx];
1153 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154 rx_ring->lbq_clean_idx = clean_idx;
1155 netif_err(qdev, ifup, qdev->ndev,
1156 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 i, clean_idx);
1158 return;
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
1163 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 dma_unmap_len_set(lbq_desc, maplen,
1165 rx_ring->lbq_buf_size);
1166 *lbq_desc->addr = cpu_to_le64(map);
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
1180 rx_ring->lbq_free_cnt -= 16;
1183 if (start_idx != clean_idx) {
1184 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
1197 struct bq_desc *sbq_desc;
1198 u64 map;
1199 int i;
1201 while (rx_ring->sbq_free_cnt > 16) {
1202 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203 sbq_desc = &rx_ring->sbq[clean_idx];
1204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
1207 if (sbq_desc->p.skb == NULL) {
1208 netif_printk(qdev, rx_status, KERN_DEBUG,
1209 qdev->ndev,
1210 "sbq: getting new skb for index %d.\n",
1211 sbq_desc->index);
1212 sbq_desc->p.skb =
1213 netdev_alloc_skb(qdev->ndev,
1214 SMALL_BUFFER_SIZE);
1215 if (sbq_desc->p.skb == NULL) {
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
1227 rx_ring->sbq_clean_idx = clean_idx;
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
1230 return;
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
1234 rx_ring->sbq_buf_size);
1235 *sbq_desc->addr = cpu_to_le64(map);
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
1246 rx_ring->sbq_free_cnt -= 16;
1249 if (start_idx != clean_idx) {
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1265 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1283 if (i == 7) {
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
1288 pci_unmap_single(qdev->pdev,
1289 dma_unmap_addr(&tx_ring_desc->map[i],
1290 mapaddr),
1291 dma_unmap_len(&tx_ring_desc->map[i],
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
1297 pci_unmap_page(qdev->pdev,
1298 dma_unmap_addr(&tx_ring_desc->map[i],
1299 mapaddr),
1300 dma_unmap_len(&tx_ring_desc->map[i],
1301 maplen), PCI_DMA_TODEVICE);
1307 /* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1310 static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1320 if (frag_cnt) {
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
1325 * Map the skb buffer first.
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
1334 return NETDEV_TX_BUSY;
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341 map_idx++;
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
1381 goto map_error;
1384 tbd->addr = cpu_to_le64(map);
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394 map);
1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402 DMA_TO_DEVICE);
1404 err = dma_mapping_error(&qdev->pdev->dev, map);
1405 if (err) {
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
1409 goto map_error;
1412 tbd->addr = cpu_to_le64(map);
1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 skb_frag_size(frag));
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1425 map_error:
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 struct rx_ring *rx_ring)
1440 struct nic_stats *stats = &qdev->nic_stats;
1442 stats->rx_err_count++;
1443 rx_ring->rx_errors++;
1445 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 stats->rx_code_err++;
1448 break;
1449 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 stats->rx_oversize_err++;
1451 break;
1452 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 stats->rx_undersize_err++;
1454 break;
1455 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 stats->rx_preamble_err++;
1457 break;
1458 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 stats->rx_frame_len_err++;
1460 break;
1461 case IB_MAC_IOCB_RSP_ERR_CRC:
1462 stats->rx_crc_err++;
1463 default:
1464 break;
1469 * ql_update_mac_hdr_len - helper routine to update the mac header length
1470 * based on vlan tags if present
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 void *page, size_t *len)
1476 u16 *tags;
1478 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 return;
1480 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 tags = (u16 *)page;
1482 /* Look for stacked vlan tags in ethertype field */
1483 if (tags[6] == ETH_P_8021Q &&
1484 tags[8] == ETH_P_8021Q)
1485 *len += 2 * VLAN_HLEN;
1486 else
1487 *len += VLAN_HLEN;
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 struct rx_ring *rx_ring,
1494 struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 u32 length,
1496 u16 vlan_id)
1498 struct sk_buff *skb;
1499 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500 struct napi_struct *napi = &rx_ring->napi;
1502 /* Frame error, so drop the packet. */
1503 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 put_page(lbq_desc->p.pg_chunk.page);
1506 return;
1508 napi->dev = qdev->ndev;
1510 skb = napi_get_frags(napi);
1511 if (!skb) {
1512 netif_err(qdev, drv, qdev->ndev,
1513 "Couldn't get an skb, exiting.\n");
1514 rx_ring->rx_dropped++;
1515 put_page(lbq_desc->p.pg_chunk.page);
1516 return;
1518 prefetch(lbq_desc->p.pg_chunk.va);
1519 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 lbq_desc->p.pg_chunk.page,
1521 lbq_desc->p.pg_chunk.offset,
1522 length);
1524 skb->len += length;
1525 skb->data_len += length;
1526 skb->truesize += length;
1527 skb_shinfo(skb)->nr_frags++;
1529 rx_ring->rx_packets++;
1530 rx_ring->rx_bytes += length;
1531 skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 skb_record_rx_queue(skb, rx_ring->cq_id);
1533 if (vlan_id != 0xffff)
1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535 napi_gro_frags(napi);
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 struct rx_ring *rx_ring,
1541 struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 u32 length,
1543 u16 vlan_id)
1545 struct net_device *ndev = qdev->ndev;
1546 struct sk_buff *skb = NULL;
1547 void *addr;
1548 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 struct napi_struct *napi = &rx_ring->napi;
1550 size_t hlen = ETH_HLEN;
1552 skb = netdev_alloc_skb(ndev, length);
1553 if (!skb) {
1554 rx_ring->rx_dropped++;
1555 put_page(lbq_desc->p.pg_chunk.page);
1556 return;
1559 addr = lbq_desc->p.pg_chunk.va;
1560 prefetch(addr);
1562 /* Frame error, so drop the packet. */
1563 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 goto err_out;
1568 /* Update the MAC header length*/
1569 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1571 /* The max framesize filter on this chip is set higher than
1572 * MTU since FCoE uses 2k frames.
1574 if (skb->len > ndev->mtu + hlen) {
1575 netif_err(qdev, drv, qdev->ndev,
1576 "Segment too small, dropping.\n");
1577 rx_ring->rx_dropped++;
1578 goto err_out;
1580 memcpy(skb_put(skb, hlen), addr, hlen);
1581 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 length);
1584 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585 lbq_desc->p.pg_chunk.offset + hlen,
1586 length - hlen);
1587 skb->len += length - hlen;
1588 skb->data_len += length - hlen;
1589 skb->truesize += length - hlen;
1591 rx_ring->rx_packets++;
1592 rx_ring->rx_bytes += skb->len;
1593 skb->protocol = eth_type_trans(skb, ndev);
1594 skb_checksum_none_assert(skb);
1596 if ((ndev->features & NETIF_F_RXCSUM) &&
1597 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 /* TCP frame. */
1599 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 "TCP checksum done!\n");
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 /* Unfragmented ipv4 UDP frame. */
1606 struct iphdr *iph =
1607 (struct iphdr *)((u8 *)addr + hlen);
1608 if (!(iph->frag_off &
1609 htons(IP_MF|IP_OFFSET))) {
1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611 netif_printk(qdev, rx_status, KERN_DEBUG,
1612 qdev->ndev,
1613 "UDP checksum done!\n");
1618 skb_record_rx_queue(skb, rx_ring->cq_id);
1619 if (vlan_id != 0xffff)
1620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 napi_gro_receive(napi, skb);
1623 else
1624 netif_receive_skb(skb);
1625 return;
1626 err_out:
1627 dev_kfree_skb_any(skb);
1628 put_page(lbq_desc->p.pg_chunk.page);
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 struct rx_ring *rx_ring,
1634 struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 u32 length,
1636 u16 vlan_id)
1638 struct net_device *ndev = qdev->ndev;
1639 struct sk_buff *skb = NULL;
1640 struct sk_buff *new_skb = NULL;
1641 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1643 skb = sbq_desc->p.skb;
1644 /* Allocate new_skb and copy */
1645 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 if (new_skb == NULL) {
1647 rx_ring->rx_dropped++;
1648 return;
1650 skb_reserve(new_skb, NET_IP_ALIGN);
1651 memcpy(skb_put(new_skb, length), skb->data, length);
1652 skb = new_skb;
1654 /* Frame error, so drop the packet. */
1655 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1656 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1657 dev_kfree_skb_any(skb);
1658 return;
1661 /* loopback self test for ethtool */
1662 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1663 ql_check_lb_frame(qdev, skb);
1664 dev_kfree_skb_any(skb);
1665 return;
1668 /* The max framesize filter on this chip is set higher than
1669 * MTU since FCoE uses 2k frames.
1671 if (skb->len > ndev->mtu + ETH_HLEN) {
1672 dev_kfree_skb_any(skb);
1673 rx_ring->rx_dropped++;
1674 return;
1677 prefetch(skb->data);
1678 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1679 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1680 "%s Multicast.\n",
1681 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1682 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1683 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1684 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1685 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1686 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1688 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1689 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690 "Promiscuous Packet.\n");
1692 rx_ring->rx_packets++;
1693 rx_ring->rx_bytes += skb->len;
1694 skb->protocol = eth_type_trans(skb, ndev);
1695 skb_checksum_none_assert(skb);
1697 /* If rx checksum is on, and there are no
1698 * csum or frame errors.
1700 if ((ndev->features & NETIF_F_RXCSUM) &&
1701 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1702 /* TCP frame. */
1703 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1704 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1705 "TCP checksum done!\n");
1706 skb->ip_summed = CHECKSUM_UNNECESSARY;
1707 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1708 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1709 /* Unfragmented ipv4 UDP frame. */
1710 struct iphdr *iph = (struct iphdr *) skb->data;
1711 if (!(iph->frag_off &
1712 htons(IP_MF|IP_OFFSET))) {
1713 skb->ip_summed = CHECKSUM_UNNECESSARY;
1714 netif_printk(qdev, rx_status, KERN_DEBUG,
1715 qdev->ndev,
1716 "UDP checksum done!\n");
1721 skb_record_rx_queue(skb, rx_ring->cq_id);
1722 if (vlan_id != 0xffff)
1723 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1724 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1725 napi_gro_receive(&rx_ring->napi, skb);
1726 else
1727 netif_receive_skb(skb);
1730 static void ql_realign_skb(struct sk_buff *skb, int len)
1732 void *temp_addr = skb->data;
1734 /* Undo the skb_reserve(skb,32) we did before
1735 * giving to hardware, and realign data on
1736 * a 2-byte boundary.
1738 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1739 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1740 skb_copy_to_linear_data(skb, temp_addr,
1741 (unsigned int)len);
1745 * This function builds an skb for the given inbound
1746 * completion. It will be rewritten for readability in the near
1747 * future, but for not it works well.
1749 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1750 struct rx_ring *rx_ring,
1751 struct ib_mac_iocb_rsp *ib_mac_rsp)
1753 struct bq_desc *lbq_desc;
1754 struct bq_desc *sbq_desc;
1755 struct sk_buff *skb = NULL;
1756 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1757 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1758 size_t hlen = ETH_HLEN;
1761 * Handle the header buffer if present.
1763 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1764 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1765 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766 "Header of %d bytes in small buffer.\n", hdr_len);
1768 * Headers fit nicely into a small buffer.
1770 sbq_desc = ql_get_curr_sbuf(rx_ring);
1771 pci_unmap_single(qdev->pdev,
1772 dma_unmap_addr(sbq_desc, mapaddr),
1773 dma_unmap_len(sbq_desc, maplen),
1774 PCI_DMA_FROMDEVICE);
1775 skb = sbq_desc->p.skb;
1776 ql_realign_skb(skb, hdr_len);
1777 skb_put(skb, hdr_len);
1778 sbq_desc->p.skb = NULL;
1782 * Handle the data buffer(s).
1784 if (unlikely(!length)) { /* Is there data too? */
1785 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786 "No Data buffer in this packet.\n");
1787 return skb;
1790 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1791 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1792 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793 "Headers in small, data of %d bytes in small, combine them.\n",
1794 length);
1796 * Data is less than small buffer size so it's
1797 * stuffed in a small buffer.
1798 * For this case we append the data
1799 * from the "data" small buffer to the "header" small
1800 * buffer.
1802 sbq_desc = ql_get_curr_sbuf(rx_ring);
1803 pci_dma_sync_single_for_cpu(qdev->pdev,
1804 dma_unmap_addr
1805 (sbq_desc, mapaddr),
1806 dma_unmap_len
1807 (sbq_desc, maplen),
1808 PCI_DMA_FROMDEVICE);
1809 memcpy(skb_put(skb, length),
1810 sbq_desc->p.skb->data, length);
1811 pci_dma_sync_single_for_device(qdev->pdev,
1812 dma_unmap_addr
1813 (sbq_desc,
1814 mapaddr),
1815 dma_unmap_len
1816 (sbq_desc,
1817 maplen),
1818 PCI_DMA_FROMDEVICE);
1819 } else {
1820 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1821 "%d bytes in a single small buffer.\n",
1822 length);
1823 sbq_desc = ql_get_curr_sbuf(rx_ring);
1824 skb = sbq_desc->p.skb;
1825 ql_realign_skb(skb, length);
1826 skb_put(skb, length);
1827 pci_unmap_single(qdev->pdev,
1828 dma_unmap_addr(sbq_desc,
1829 mapaddr),
1830 dma_unmap_len(sbq_desc,
1831 maplen),
1832 PCI_DMA_FROMDEVICE);
1833 sbq_desc->p.skb = NULL;
1835 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1836 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1837 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1838 "Header in small, %d bytes in large. Chain large to small!\n",
1839 length);
1841 * The data is in a single large buffer. We
1842 * chain it to the header buffer's skb and let
1843 * it rip.
1845 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1846 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1847 "Chaining page at offset = %d, for %d bytes to skb.\n",
1848 lbq_desc->p.pg_chunk.offset, length);
1849 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1850 lbq_desc->p.pg_chunk.offset,
1851 length);
1852 skb->len += length;
1853 skb->data_len += length;
1854 skb->truesize += length;
1855 } else {
1857 * The headers and data are in a single large buffer. We
1858 * copy it to a new skb and let it go. This can happen with
1859 * jumbo mtu on a non-TCP/UDP frame.
1861 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1862 skb = netdev_alloc_skb(qdev->ndev, length);
1863 if (skb == NULL) {
1864 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1865 "No skb available, drop the packet.\n");
1866 return NULL;
1868 pci_unmap_page(qdev->pdev,
1869 dma_unmap_addr(lbq_desc,
1870 mapaddr),
1871 dma_unmap_len(lbq_desc, maplen),
1872 PCI_DMA_FROMDEVICE);
1873 skb_reserve(skb, NET_IP_ALIGN);
1874 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1875 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1876 length);
1877 skb_fill_page_desc(skb, 0,
1878 lbq_desc->p.pg_chunk.page,
1879 lbq_desc->p.pg_chunk.offset,
1880 length);
1881 skb->len += length;
1882 skb->data_len += length;
1883 skb->truesize += length;
1884 length -= length;
1885 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1886 lbq_desc->p.pg_chunk.va,
1887 &hlen);
1888 __pskb_pull_tail(skb, hlen);
1890 } else {
1892 * The data is in a chain of large buffers
1893 * pointed to by a small buffer. We loop
1894 * thru and chain them to the our small header
1895 * buffer's skb.
1896 * frags: There are 18 max frags and our small
1897 * buffer will hold 32 of them. The thing is,
1898 * we'll use 3 max for our 9000 byte jumbo
1899 * frames. If the MTU goes up we could
1900 * eventually be in trouble.
1902 int size, i = 0;
1903 sbq_desc = ql_get_curr_sbuf(rx_ring);
1904 pci_unmap_single(qdev->pdev,
1905 dma_unmap_addr(sbq_desc, mapaddr),
1906 dma_unmap_len(sbq_desc, maplen),
1907 PCI_DMA_FROMDEVICE);
1908 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1910 * This is an non TCP/UDP IP frame, so
1911 * the headers aren't split into a small
1912 * buffer. We have to use the small buffer
1913 * that contains our sg list as our skb to
1914 * send upstairs. Copy the sg list here to
1915 * a local buffer and use it to find the
1916 * pages to chain.
1918 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919 "%d bytes of headers & data in chain of large.\n",
1920 length);
1921 skb = sbq_desc->p.skb;
1922 sbq_desc->p.skb = NULL;
1923 skb_reserve(skb, NET_IP_ALIGN);
1925 while (length > 0) {
1926 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1927 size = (length < rx_ring->lbq_buf_size) ? length :
1928 rx_ring->lbq_buf_size;
1930 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1931 "Adding page %d to skb for %d bytes.\n",
1932 i, size);
1933 skb_fill_page_desc(skb, i,
1934 lbq_desc->p.pg_chunk.page,
1935 lbq_desc->p.pg_chunk.offset,
1936 size);
1937 skb->len += size;
1938 skb->data_len += size;
1939 skb->truesize += size;
1940 length -= size;
1941 i++;
1943 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1944 &hlen);
1945 __pskb_pull_tail(skb, hlen);
1947 return skb;
1950 /* Process an inbound completion from an rx ring. */
1951 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1952 struct rx_ring *rx_ring,
1953 struct ib_mac_iocb_rsp *ib_mac_rsp,
1954 u16 vlan_id)
1956 struct net_device *ndev = qdev->ndev;
1957 struct sk_buff *skb = NULL;
1959 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1961 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1962 if (unlikely(!skb)) {
1963 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964 "No skb available, drop packet.\n");
1965 rx_ring->rx_dropped++;
1966 return;
1969 /* Frame error, so drop the packet. */
1970 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1971 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1972 dev_kfree_skb_any(skb);
1973 return;
1976 /* The max framesize filter on this chip is set higher than
1977 * MTU since FCoE uses 2k frames.
1979 if (skb->len > ndev->mtu + ETH_HLEN) {
1980 dev_kfree_skb_any(skb);
1981 rx_ring->rx_dropped++;
1982 return;
1985 /* loopback self test for ethtool */
1986 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1987 ql_check_lb_frame(qdev, skb);
1988 dev_kfree_skb_any(skb);
1989 return;
1992 prefetch(skb->data);
1993 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1994 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1995 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1996 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1997 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1998 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1999 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2000 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2001 rx_ring->rx_multicast++;
2003 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2004 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2005 "Promiscuous Packet.\n");
2008 skb->protocol = eth_type_trans(skb, ndev);
2009 skb_checksum_none_assert(skb);
2011 /* If rx checksum is on, and there are no
2012 * csum or frame errors.
2014 if ((ndev->features & NETIF_F_RXCSUM) &&
2015 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2016 /* TCP frame. */
2017 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2018 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019 "TCP checksum done!\n");
2020 skb->ip_summed = CHECKSUM_UNNECESSARY;
2021 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2022 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2023 /* Unfragmented ipv4 UDP frame. */
2024 struct iphdr *iph = (struct iphdr *) skb->data;
2025 if (!(iph->frag_off &
2026 htons(IP_MF|IP_OFFSET))) {
2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029 "TCP checksum done!\n");
2034 rx_ring->rx_packets++;
2035 rx_ring->rx_bytes += skb->len;
2036 skb_record_rx_queue(skb, rx_ring->cq_id);
2037 if (vlan_id != 0xffff)
2038 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2039 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2040 napi_gro_receive(&rx_ring->napi, skb);
2041 else
2042 netif_receive_skb(skb);
2045 /* Process an inbound completion from an rx ring. */
2046 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047 struct rx_ring *rx_ring,
2048 struct ib_mac_iocb_rsp *ib_mac_rsp)
2050 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2051 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2052 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2053 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2054 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2056 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2058 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2059 /* The data and headers are split into
2060 * separate buffers.
2062 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2063 vlan_id);
2064 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2065 /* The data fit in a single small buffer.
2066 * Allocate a new skb, copy the data and
2067 * return the buffer to the free pool.
2069 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2070 length, vlan_id);
2071 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2072 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2073 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2074 /* TCP packet in a page chunk that's been checksummed.
2075 * Tack it on to our GRO skb and let it go.
2077 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2078 length, vlan_id);
2079 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2080 /* Non-TCP packet in a page chunk. Allocate an
2081 * skb, tack it on frags, and send it up.
2083 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2084 length, vlan_id);
2085 } else {
2086 /* Non-TCP/UDP large frames that span multiple buffers
2087 * can be processed corrrectly by the split frame logic.
2089 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2090 vlan_id);
2093 return (unsigned long)length;
2096 /* Process an outbound completion from an rx ring. */
2097 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2098 struct ob_mac_iocb_rsp *mac_rsp)
2100 struct tx_ring *tx_ring;
2101 struct tx_ring_desc *tx_ring_desc;
2103 QL_DUMP_OB_MAC_RSP(mac_rsp);
2104 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2105 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2106 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2107 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2108 tx_ring->tx_packets++;
2109 dev_kfree_skb(tx_ring_desc->skb);
2110 tx_ring_desc->skb = NULL;
2112 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2113 OB_MAC_IOCB_RSP_S |
2114 OB_MAC_IOCB_RSP_L |
2115 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2116 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2117 netif_warn(qdev, tx_done, qdev->ndev,
2118 "Total descriptor length did not match transfer length.\n");
2120 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2121 netif_warn(qdev, tx_done, qdev->ndev,
2122 "Frame too short to be valid, not sent.\n");
2124 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2125 netif_warn(qdev, tx_done, qdev->ndev,
2126 "Frame too long, but sent anyway.\n");
2128 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2129 netif_warn(qdev, tx_done, qdev->ndev,
2130 "PCI backplane error. Frame not sent.\n");
2133 atomic_inc(&tx_ring->tx_count);
2136 /* Fire up a handler to reset the MPI processor. */
2137 void ql_queue_fw_error(struct ql_adapter *qdev)
2139 ql_link_off(qdev);
2140 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2143 void ql_queue_asic_error(struct ql_adapter *qdev)
2145 ql_link_off(qdev);
2146 ql_disable_interrupts(qdev);
2147 /* Clear adapter up bit to signal the recovery
2148 * process that it shouldn't kill the reset worker
2149 * thread
2151 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2152 /* Set asic recovery bit to indicate reset process that we are
2153 * in fatal error recovery process rather than normal close
2155 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2156 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2159 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2160 struct ib_ae_iocb_rsp *ib_ae_rsp)
2162 switch (ib_ae_rsp->event) {
2163 case MGMT_ERR_EVENT:
2164 netif_err(qdev, rx_err, qdev->ndev,
2165 "Management Processor Fatal Error.\n");
2166 ql_queue_fw_error(qdev);
2167 return;
2169 case CAM_LOOKUP_ERR_EVENT:
2170 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2171 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2172 ql_queue_asic_error(qdev);
2173 return;
2175 case SOFT_ECC_ERROR_EVENT:
2176 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2177 ql_queue_asic_error(qdev);
2178 break;
2180 case PCI_ERR_ANON_BUF_RD:
2181 netdev_err(qdev->ndev, "PCI error occurred when reading "
2182 "anonymous buffers from rx_ring %d.\n",
2183 ib_ae_rsp->q_id);
2184 ql_queue_asic_error(qdev);
2185 break;
2187 default:
2188 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2189 ib_ae_rsp->event);
2190 ql_queue_asic_error(qdev);
2191 break;
2195 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2197 struct ql_adapter *qdev = rx_ring->qdev;
2198 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2199 struct ob_mac_iocb_rsp *net_rsp = NULL;
2200 int count = 0;
2202 struct tx_ring *tx_ring;
2203 /* While there are entries in the completion queue. */
2204 while (prod != rx_ring->cnsmr_idx) {
2206 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2207 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2208 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2210 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2211 rmb();
2212 switch (net_rsp->opcode) {
2214 case OPCODE_OB_MAC_TSO_IOCB:
2215 case OPCODE_OB_MAC_IOCB:
2216 ql_process_mac_tx_intr(qdev, net_rsp);
2217 break;
2218 default:
2219 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2220 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2221 net_rsp->opcode);
2223 count++;
2224 ql_update_cq(rx_ring);
2225 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2227 if (!net_rsp)
2228 return 0;
2229 ql_write_cq_idx(rx_ring);
2230 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2231 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2232 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2234 * The queue got stopped because the tx_ring was full.
2235 * Wake it up, because it's now at least 25% empty.
2237 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2240 return count;
2243 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2245 struct ql_adapter *qdev = rx_ring->qdev;
2246 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2247 struct ql_net_rsp_iocb *net_rsp;
2248 int count = 0;
2250 /* While there are entries in the completion queue. */
2251 while (prod != rx_ring->cnsmr_idx) {
2253 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2255 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2257 net_rsp = rx_ring->curr_entry;
2258 rmb();
2259 switch (net_rsp->opcode) {
2260 case OPCODE_IB_MAC_IOCB:
2261 ql_process_mac_rx_intr(qdev, rx_ring,
2262 (struct ib_mac_iocb_rsp *)
2263 net_rsp);
2264 break;
2266 case OPCODE_IB_AE_IOCB:
2267 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2268 net_rsp);
2269 break;
2270 default:
2271 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2272 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2273 net_rsp->opcode);
2274 break;
2276 count++;
2277 ql_update_cq(rx_ring);
2278 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2279 if (count == budget)
2280 break;
2282 ql_update_buffer_queues(qdev, rx_ring);
2283 ql_write_cq_idx(rx_ring);
2284 return count;
2287 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2289 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2290 struct ql_adapter *qdev = rx_ring->qdev;
2291 struct rx_ring *trx_ring;
2292 int i, work_done = 0;
2293 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2295 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2296 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2298 /* Service the TX rings first. They start
2299 * right after the RSS rings. */
2300 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2301 trx_ring = &qdev->rx_ring[i];
2302 /* If this TX completion ring belongs to this vector and
2303 * it's not empty then service it.
2305 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2306 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2307 trx_ring->cnsmr_idx)) {
2308 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2309 "%s: Servicing TX completion ring %d.\n",
2310 __func__, trx_ring->cq_id);
2311 ql_clean_outbound_rx_ring(trx_ring);
2316 * Now service the RSS ring if it's active.
2318 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2319 rx_ring->cnsmr_idx) {
2320 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2321 "%s: Servicing RX completion ring %d.\n",
2322 __func__, rx_ring->cq_id);
2323 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2326 if (work_done < budget) {
2327 napi_complete(napi);
2328 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2330 return work_done;
2333 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2335 struct ql_adapter *qdev = netdev_priv(ndev);
2337 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2338 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2339 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2340 } else {
2341 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2346 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2347 * based on the features to enable/disable hardware vlan accel
2349 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2350 netdev_features_t features)
2352 struct ql_adapter *qdev = netdev_priv(ndev);
2353 int status = 0;
2355 status = ql_adapter_down(qdev);
2356 if (status) {
2357 netif_err(qdev, link, qdev->ndev,
2358 "Failed to bring down the adapter\n");
2359 return status;
2362 /* update the features with resent change */
2363 ndev->features = features;
2365 status = ql_adapter_up(qdev);
2366 if (status) {
2367 netif_err(qdev, link, qdev->ndev,
2368 "Failed to bring up the adapter\n");
2369 return status;
2371 return status;
2374 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2375 netdev_features_t features)
2377 int err;
2379 /* Update the behavior of vlan accel in the adapter */
2380 err = qlge_update_hw_vlan_features(ndev, features);
2381 if (err)
2382 return err;
2384 return features;
2387 static int qlge_set_features(struct net_device *ndev,
2388 netdev_features_t features)
2390 netdev_features_t changed = ndev->features ^ features;
2392 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2393 qlge_vlan_mode(ndev, features);
2395 return 0;
2398 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2400 u32 enable_bit = MAC_ADDR_E;
2401 int err;
2403 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2404 MAC_ADDR_TYPE_VLAN, vid);
2405 if (err)
2406 netif_err(qdev, ifup, qdev->ndev,
2407 "Failed to init vlan address.\n");
2408 return err;
2411 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2413 struct ql_adapter *qdev = netdev_priv(ndev);
2414 int status;
2415 int err;
2417 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2418 if (status)
2419 return status;
2421 err = __qlge_vlan_rx_add_vid(qdev, vid);
2422 set_bit(vid, qdev->active_vlans);
2424 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2426 return err;
2429 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2431 u32 enable_bit = 0;
2432 int err;
2434 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2435 MAC_ADDR_TYPE_VLAN, vid);
2436 if (err)
2437 netif_err(qdev, ifup, qdev->ndev,
2438 "Failed to clear vlan address.\n");
2439 return err;
2442 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2444 struct ql_adapter *qdev = netdev_priv(ndev);
2445 int status;
2446 int err;
2448 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2449 if (status)
2450 return status;
2452 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2453 clear_bit(vid, qdev->active_vlans);
2455 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2457 return err;
2460 static void qlge_restore_vlan(struct ql_adapter *qdev)
2462 int status;
2463 u16 vid;
2465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466 if (status)
2467 return;
2469 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2470 __qlge_vlan_rx_add_vid(qdev, vid);
2472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2475 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2476 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2478 struct rx_ring *rx_ring = dev_id;
2479 napi_schedule(&rx_ring->napi);
2480 return IRQ_HANDLED;
2483 /* This handles a fatal error, MPI activity, and the default
2484 * rx_ring in an MSI-X multiple vector environment.
2485 * In MSI/Legacy environment it also process the rest of
2486 * the rx_rings.
2488 static irqreturn_t qlge_isr(int irq, void *dev_id)
2490 struct rx_ring *rx_ring = dev_id;
2491 struct ql_adapter *qdev = rx_ring->qdev;
2492 struct intr_context *intr_context = &qdev->intr_context[0];
2493 u32 var;
2494 int work_done = 0;
2496 spin_lock(&qdev->hw_lock);
2497 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2498 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2499 "Shared Interrupt, Not ours!\n");
2500 spin_unlock(&qdev->hw_lock);
2501 return IRQ_NONE;
2503 spin_unlock(&qdev->hw_lock);
2505 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2508 * Check for fatal error.
2510 if (var & STS_FE) {
2511 ql_queue_asic_error(qdev);
2512 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2513 var = ql_read32(qdev, ERR_STS);
2514 netdev_err(qdev->ndev, "Resetting chip. "
2515 "Error Status Register = 0x%x\n", var);
2516 return IRQ_HANDLED;
2520 * Check MPI processor activity.
2522 if ((var & STS_PI) &&
2523 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2525 * We've got an async event or mailbox completion.
2526 * Handle it and clear the source of the interrupt.
2528 netif_err(qdev, intr, qdev->ndev,
2529 "Got MPI processor interrupt.\n");
2530 ql_disable_completion_interrupt(qdev, intr_context->intr);
2531 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2532 queue_delayed_work_on(smp_processor_id(),
2533 qdev->workqueue, &qdev->mpi_work, 0);
2534 work_done++;
2538 * Get the bit-mask that shows the active queues for this
2539 * pass. Compare it to the queues that this irq services
2540 * and call napi if there's a match.
2542 var = ql_read32(qdev, ISR1);
2543 if (var & intr_context->irq_mask) {
2544 netif_info(qdev, intr, qdev->ndev,
2545 "Waking handler for rx_ring[0].\n");
2546 ql_disable_completion_interrupt(qdev, intr_context->intr);
2547 napi_schedule(&rx_ring->napi);
2548 work_done++;
2550 ql_enable_completion_interrupt(qdev, intr_context->intr);
2551 return work_done ? IRQ_HANDLED : IRQ_NONE;
2554 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2557 if (skb_is_gso(skb)) {
2558 int err;
2559 if (skb_header_cloned(skb)) {
2560 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2561 if (err)
2562 return err;
2565 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2566 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2567 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2568 mac_iocb_ptr->total_hdrs_len =
2569 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2570 mac_iocb_ptr->net_trans_offset =
2571 cpu_to_le16(skb_network_offset(skb) |
2572 skb_transport_offset(skb)
2573 << OB_MAC_TRANSPORT_HDR_SHIFT);
2574 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2575 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2576 if (likely(skb->protocol == htons(ETH_P_IP))) {
2577 struct iphdr *iph = ip_hdr(skb);
2578 iph->check = 0;
2579 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2580 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2581 iph->daddr, 0,
2582 IPPROTO_TCP,
2584 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2585 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2586 tcp_hdr(skb)->check =
2587 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2588 &ipv6_hdr(skb)->daddr,
2589 0, IPPROTO_TCP, 0);
2591 return 1;
2593 return 0;
2596 static void ql_hw_csum_setup(struct sk_buff *skb,
2597 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2599 int len;
2600 struct iphdr *iph = ip_hdr(skb);
2601 __sum16 *check;
2602 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2603 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2604 mac_iocb_ptr->net_trans_offset =
2605 cpu_to_le16(skb_network_offset(skb) |
2606 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2608 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2609 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2610 if (likely(iph->protocol == IPPROTO_TCP)) {
2611 check = &(tcp_hdr(skb)->check);
2612 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2613 mac_iocb_ptr->total_hdrs_len =
2614 cpu_to_le16(skb_transport_offset(skb) +
2615 (tcp_hdr(skb)->doff << 2));
2616 } else {
2617 check = &(udp_hdr(skb)->check);
2618 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2619 mac_iocb_ptr->total_hdrs_len =
2620 cpu_to_le16(skb_transport_offset(skb) +
2621 sizeof(struct udphdr));
2623 *check = ~csum_tcpudp_magic(iph->saddr,
2624 iph->daddr, len, iph->protocol, 0);
2627 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2629 struct tx_ring_desc *tx_ring_desc;
2630 struct ob_mac_iocb_req *mac_iocb_ptr;
2631 struct ql_adapter *qdev = netdev_priv(ndev);
2632 int tso;
2633 struct tx_ring *tx_ring;
2634 u32 tx_ring_idx = (u32) skb->queue_mapping;
2636 tx_ring = &qdev->tx_ring[tx_ring_idx];
2638 if (skb_padto(skb, ETH_ZLEN))
2639 return NETDEV_TX_OK;
2641 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2642 netif_info(qdev, tx_queued, qdev->ndev,
2643 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2644 __func__, tx_ring_idx);
2645 netif_stop_subqueue(ndev, tx_ring->wq_id);
2646 tx_ring->tx_errors++;
2647 return NETDEV_TX_BUSY;
2649 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2650 mac_iocb_ptr = tx_ring_desc->queue_entry;
2651 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2653 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2654 mac_iocb_ptr->tid = tx_ring_desc->index;
2655 /* We use the upper 32-bits to store the tx queue for this IO.
2656 * When we get the completion we can use it to establish the context.
2658 mac_iocb_ptr->txq_idx = tx_ring_idx;
2659 tx_ring_desc->skb = skb;
2661 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2663 if (vlan_tx_tag_present(skb)) {
2664 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2665 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2666 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2667 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2669 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2670 if (tso < 0) {
2671 dev_kfree_skb_any(skb);
2672 return NETDEV_TX_OK;
2673 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2674 ql_hw_csum_setup(skb,
2675 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2677 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2678 NETDEV_TX_OK) {
2679 netif_err(qdev, tx_queued, qdev->ndev,
2680 "Could not map the segments.\n");
2681 tx_ring->tx_errors++;
2682 return NETDEV_TX_BUSY;
2684 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2685 tx_ring->prod_idx++;
2686 if (tx_ring->prod_idx == tx_ring->wq_len)
2687 tx_ring->prod_idx = 0;
2688 wmb();
2690 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2691 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2692 "tx queued, slot %d, len %d\n",
2693 tx_ring->prod_idx, skb->len);
2695 atomic_dec(&tx_ring->tx_count);
2697 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2698 netif_stop_subqueue(ndev, tx_ring->wq_id);
2699 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2701 * The queue got stopped because the tx_ring was full.
2702 * Wake it up, because it's now at least 25% empty.
2704 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2706 return NETDEV_TX_OK;
2710 static void ql_free_shadow_space(struct ql_adapter *qdev)
2712 if (qdev->rx_ring_shadow_reg_area) {
2713 pci_free_consistent(qdev->pdev,
2714 PAGE_SIZE,
2715 qdev->rx_ring_shadow_reg_area,
2716 qdev->rx_ring_shadow_reg_dma);
2717 qdev->rx_ring_shadow_reg_area = NULL;
2719 if (qdev->tx_ring_shadow_reg_area) {
2720 pci_free_consistent(qdev->pdev,
2721 PAGE_SIZE,
2722 qdev->tx_ring_shadow_reg_area,
2723 qdev->tx_ring_shadow_reg_dma);
2724 qdev->tx_ring_shadow_reg_area = NULL;
2728 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2730 qdev->rx_ring_shadow_reg_area =
2731 pci_alloc_consistent(qdev->pdev,
2732 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2733 if (qdev->rx_ring_shadow_reg_area == NULL) {
2734 netif_err(qdev, ifup, qdev->ndev,
2735 "Allocation of RX shadow space failed.\n");
2736 return -ENOMEM;
2738 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2739 qdev->tx_ring_shadow_reg_area =
2740 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2741 &qdev->tx_ring_shadow_reg_dma);
2742 if (qdev->tx_ring_shadow_reg_area == NULL) {
2743 netif_err(qdev, ifup, qdev->ndev,
2744 "Allocation of TX shadow space failed.\n");
2745 goto err_wqp_sh_area;
2747 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2748 return 0;
2750 err_wqp_sh_area:
2751 pci_free_consistent(qdev->pdev,
2752 PAGE_SIZE,
2753 qdev->rx_ring_shadow_reg_area,
2754 qdev->rx_ring_shadow_reg_dma);
2755 return -ENOMEM;
2758 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2760 struct tx_ring_desc *tx_ring_desc;
2761 int i;
2762 struct ob_mac_iocb_req *mac_iocb_ptr;
2764 mac_iocb_ptr = tx_ring->wq_base;
2765 tx_ring_desc = tx_ring->q;
2766 for (i = 0; i < tx_ring->wq_len; i++) {
2767 tx_ring_desc->index = i;
2768 tx_ring_desc->skb = NULL;
2769 tx_ring_desc->queue_entry = mac_iocb_ptr;
2770 mac_iocb_ptr++;
2771 tx_ring_desc++;
2773 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2776 static void ql_free_tx_resources(struct ql_adapter *qdev,
2777 struct tx_ring *tx_ring)
2779 if (tx_ring->wq_base) {
2780 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2781 tx_ring->wq_base, tx_ring->wq_base_dma);
2782 tx_ring->wq_base = NULL;
2784 kfree(tx_ring->q);
2785 tx_ring->q = NULL;
2788 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2789 struct tx_ring *tx_ring)
2791 tx_ring->wq_base =
2792 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2793 &tx_ring->wq_base_dma);
2795 if ((tx_ring->wq_base == NULL) ||
2796 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2797 goto pci_alloc_err;
2799 tx_ring->q =
2800 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2801 if (tx_ring->q == NULL)
2802 goto err;
2804 return 0;
2805 err:
2806 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2807 tx_ring->wq_base, tx_ring->wq_base_dma);
2808 tx_ring->wq_base = NULL;
2809 pci_alloc_err:
2810 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2811 return -ENOMEM;
2814 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2816 struct bq_desc *lbq_desc;
2818 uint32_t curr_idx, clean_idx;
2820 curr_idx = rx_ring->lbq_curr_idx;
2821 clean_idx = rx_ring->lbq_clean_idx;
2822 while (curr_idx != clean_idx) {
2823 lbq_desc = &rx_ring->lbq[curr_idx];
2825 if (lbq_desc->p.pg_chunk.last_flag) {
2826 pci_unmap_page(qdev->pdev,
2827 lbq_desc->p.pg_chunk.map,
2828 ql_lbq_block_size(qdev),
2829 PCI_DMA_FROMDEVICE);
2830 lbq_desc->p.pg_chunk.last_flag = 0;
2833 put_page(lbq_desc->p.pg_chunk.page);
2834 lbq_desc->p.pg_chunk.page = NULL;
2836 if (++curr_idx == rx_ring->lbq_len)
2837 curr_idx = 0;
2840 if (rx_ring->pg_chunk.page) {
2841 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2842 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2843 put_page(rx_ring->pg_chunk.page);
2844 rx_ring->pg_chunk.page = NULL;
2848 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2850 int i;
2851 struct bq_desc *sbq_desc;
2853 for (i = 0; i < rx_ring->sbq_len; i++) {
2854 sbq_desc = &rx_ring->sbq[i];
2855 if (sbq_desc == NULL) {
2856 netif_err(qdev, ifup, qdev->ndev,
2857 "sbq_desc %d is NULL.\n", i);
2858 return;
2860 if (sbq_desc->p.skb) {
2861 pci_unmap_single(qdev->pdev,
2862 dma_unmap_addr(sbq_desc, mapaddr),
2863 dma_unmap_len(sbq_desc, maplen),
2864 PCI_DMA_FROMDEVICE);
2865 dev_kfree_skb(sbq_desc->p.skb);
2866 sbq_desc->p.skb = NULL;
2871 /* Free all large and small rx buffers associated
2872 * with the completion queues for this device.
2874 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2876 int i;
2877 struct rx_ring *rx_ring;
2879 for (i = 0; i < qdev->rx_ring_count; i++) {
2880 rx_ring = &qdev->rx_ring[i];
2881 if (rx_ring->lbq)
2882 ql_free_lbq_buffers(qdev, rx_ring);
2883 if (rx_ring->sbq)
2884 ql_free_sbq_buffers(qdev, rx_ring);
2888 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2890 struct rx_ring *rx_ring;
2891 int i;
2893 for (i = 0; i < qdev->rx_ring_count; i++) {
2894 rx_ring = &qdev->rx_ring[i];
2895 if (rx_ring->type != TX_Q)
2896 ql_update_buffer_queues(qdev, rx_ring);
2900 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2901 struct rx_ring *rx_ring)
2903 int i;
2904 struct bq_desc *lbq_desc;
2905 __le64 *bq = rx_ring->lbq_base;
2907 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2908 for (i = 0; i < rx_ring->lbq_len; i++) {
2909 lbq_desc = &rx_ring->lbq[i];
2910 memset(lbq_desc, 0, sizeof(*lbq_desc));
2911 lbq_desc->index = i;
2912 lbq_desc->addr = bq;
2913 bq++;
2917 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2918 struct rx_ring *rx_ring)
2920 int i;
2921 struct bq_desc *sbq_desc;
2922 __le64 *bq = rx_ring->sbq_base;
2924 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2925 for (i = 0; i < rx_ring->sbq_len; i++) {
2926 sbq_desc = &rx_ring->sbq[i];
2927 memset(sbq_desc, 0, sizeof(*sbq_desc));
2928 sbq_desc->index = i;
2929 sbq_desc->addr = bq;
2930 bq++;
2934 static void ql_free_rx_resources(struct ql_adapter *qdev,
2935 struct rx_ring *rx_ring)
2937 /* Free the small buffer queue. */
2938 if (rx_ring->sbq_base) {
2939 pci_free_consistent(qdev->pdev,
2940 rx_ring->sbq_size,
2941 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2942 rx_ring->sbq_base = NULL;
2945 /* Free the small buffer queue control blocks. */
2946 kfree(rx_ring->sbq);
2947 rx_ring->sbq = NULL;
2949 /* Free the large buffer queue. */
2950 if (rx_ring->lbq_base) {
2951 pci_free_consistent(qdev->pdev,
2952 rx_ring->lbq_size,
2953 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2954 rx_ring->lbq_base = NULL;
2957 /* Free the large buffer queue control blocks. */
2958 kfree(rx_ring->lbq);
2959 rx_ring->lbq = NULL;
2961 /* Free the rx queue. */
2962 if (rx_ring->cq_base) {
2963 pci_free_consistent(qdev->pdev,
2964 rx_ring->cq_size,
2965 rx_ring->cq_base, rx_ring->cq_base_dma);
2966 rx_ring->cq_base = NULL;
2970 /* Allocate queues and buffers for this completions queue based
2971 * on the values in the parameter structure. */
2972 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2973 struct rx_ring *rx_ring)
2977 * Allocate the completion queue for this rx_ring.
2979 rx_ring->cq_base =
2980 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2981 &rx_ring->cq_base_dma);
2983 if (rx_ring->cq_base == NULL) {
2984 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2985 return -ENOMEM;
2988 if (rx_ring->sbq_len) {
2990 * Allocate small buffer queue.
2992 rx_ring->sbq_base =
2993 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2994 &rx_ring->sbq_base_dma);
2996 if (rx_ring->sbq_base == NULL) {
2997 netif_err(qdev, ifup, qdev->ndev,
2998 "Small buffer queue allocation failed.\n");
2999 goto err_mem;
3003 * Allocate small buffer queue control blocks.
3005 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3006 sizeof(struct bq_desc),
3007 GFP_KERNEL);
3008 if (rx_ring->sbq == NULL)
3009 goto err_mem;
3011 ql_init_sbq_ring(qdev, rx_ring);
3014 if (rx_ring->lbq_len) {
3016 * Allocate large buffer queue.
3018 rx_ring->lbq_base =
3019 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3020 &rx_ring->lbq_base_dma);
3022 if (rx_ring->lbq_base == NULL) {
3023 netif_err(qdev, ifup, qdev->ndev,
3024 "Large buffer queue allocation failed.\n");
3025 goto err_mem;
3028 * Allocate large buffer queue control blocks.
3030 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3031 sizeof(struct bq_desc),
3032 GFP_KERNEL);
3033 if (rx_ring->lbq == NULL)
3034 goto err_mem;
3036 ql_init_lbq_ring(qdev, rx_ring);
3039 return 0;
3041 err_mem:
3042 ql_free_rx_resources(qdev, rx_ring);
3043 return -ENOMEM;
3046 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3048 struct tx_ring *tx_ring;
3049 struct tx_ring_desc *tx_ring_desc;
3050 int i, j;
3053 * Loop through all queues and free
3054 * any resources.
3056 for (j = 0; j < qdev->tx_ring_count; j++) {
3057 tx_ring = &qdev->tx_ring[j];
3058 for (i = 0; i < tx_ring->wq_len; i++) {
3059 tx_ring_desc = &tx_ring->q[i];
3060 if (tx_ring_desc && tx_ring_desc->skb) {
3061 netif_err(qdev, ifdown, qdev->ndev,
3062 "Freeing lost SKB %p, from queue %d, index %d.\n",
3063 tx_ring_desc->skb, j,
3064 tx_ring_desc->index);
3065 ql_unmap_send(qdev, tx_ring_desc,
3066 tx_ring_desc->map_cnt);
3067 dev_kfree_skb(tx_ring_desc->skb);
3068 tx_ring_desc->skb = NULL;
3074 static void ql_free_mem_resources(struct ql_adapter *qdev)
3076 int i;
3078 for (i = 0; i < qdev->tx_ring_count; i++)
3079 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3080 for (i = 0; i < qdev->rx_ring_count; i++)
3081 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3082 ql_free_shadow_space(qdev);
3085 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3087 int i;
3089 /* Allocate space for our shadow registers and such. */
3090 if (ql_alloc_shadow_space(qdev))
3091 return -ENOMEM;
3093 for (i = 0; i < qdev->rx_ring_count; i++) {
3094 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3095 netif_err(qdev, ifup, qdev->ndev,
3096 "RX resource allocation failed.\n");
3097 goto err_mem;
3100 /* Allocate tx queue resources */
3101 for (i = 0; i < qdev->tx_ring_count; i++) {
3102 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3103 netif_err(qdev, ifup, qdev->ndev,
3104 "TX resource allocation failed.\n");
3105 goto err_mem;
3108 return 0;
3110 err_mem:
3111 ql_free_mem_resources(qdev);
3112 return -ENOMEM;
3115 /* Set up the rx ring control block and pass it to the chip.
3116 * The control block is defined as
3117 * "Completion Queue Initialization Control Block", or cqicb.
3119 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3121 struct cqicb *cqicb = &rx_ring->cqicb;
3122 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3123 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3124 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3125 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3126 void __iomem *doorbell_area =
3127 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3128 int err = 0;
3129 u16 bq_len;
3130 u64 tmp;
3131 __le64 *base_indirect_ptr;
3132 int page_entries;
3134 /* Set up the shadow registers for this ring. */
3135 rx_ring->prod_idx_sh_reg = shadow_reg;
3136 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3137 *rx_ring->prod_idx_sh_reg = 0;
3138 shadow_reg += sizeof(u64);
3139 shadow_reg_dma += sizeof(u64);
3140 rx_ring->lbq_base_indirect = shadow_reg;
3141 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3142 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3143 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3144 rx_ring->sbq_base_indirect = shadow_reg;
3145 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3147 /* PCI doorbell mem area + 0x00 for consumer index register */
3148 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3149 rx_ring->cnsmr_idx = 0;
3150 rx_ring->curr_entry = rx_ring->cq_base;
3152 /* PCI doorbell mem area + 0x04 for valid register */
3153 rx_ring->valid_db_reg = doorbell_area + 0x04;
3155 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3156 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3158 /* PCI doorbell mem area + 0x1c */
3159 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3161 memset((void *)cqicb, 0, sizeof(struct cqicb));
3162 cqicb->msix_vect = rx_ring->irq;
3164 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3165 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3167 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3169 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3172 * Set up the control block load flags.
3174 cqicb->flags = FLAGS_LC | /* Load queue base address */
3175 FLAGS_LV | /* Load MSI-X vector */
3176 FLAGS_LI; /* Load irq delay values */
3177 if (rx_ring->lbq_len) {
3178 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3179 tmp = (u64)rx_ring->lbq_base_dma;
3180 base_indirect_ptr = rx_ring->lbq_base_indirect;
3181 page_entries = 0;
3182 do {
3183 *base_indirect_ptr = cpu_to_le64(tmp);
3184 tmp += DB_PAGE_SIZE;
3185 base_indirect_ptr++;
3186 page_entries++;
3187 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3188 cqicb->lbq_addr =
3189 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3190 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3191 (u16) rx_ring->lbq_buf_size;
3192 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3193 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3194 (u16) rx_ring->lbq_len;
3195 cqicb->lbq_len = cpu_to_le16(bq_len);
3196 rx_ring->lbq_prod_idx = 0;
3197 rx_ring->lbq_curr_idx = 0;
3198 rx_ring->lbq_clean_idx = 0;
3199 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3201 if (rx_ring->sbq_len) {
3202 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3203 tmp = (u64)rx_ring->sbq_base_dma;
3204 base_indirect_ptr = rx_ring->sbq_base_indirect;
3205 page_entries = 0;
3206 do {
3207 *base_indirect_ptr = cpu_to_le64(tmp);
3208 tmp += DB_PAGE_SIZE;
3209 base_indirect_ptr++;
3210 page_entries++;
3211 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3212 cqicb->sbq_addr =
3213 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3214 cqicb->sbq_buf_size =
3215 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3216 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3217 (u16) rx_ring->sbq_len;
3218 cqicb->sbq_len = cpu_to_le16(bq_len);
3219 rx_ring->sbq_prod_idx = 0;
3220 rx_ring->sbq_curr_idx = 0;
3221 rx_ring->sbq_clean_idx = 0;
3222 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3224 switch (rx_ring->type) {
3225 case TX_Q:
3226 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3227 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3228 break;
3229 case RX_Q:
3230 /* Inbound completion handling rx_rings run in
3231 * separate NAPI contexts.
3233 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3234 64);
3235 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3236 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3237 break;
3238 default:
3239 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3240 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3242 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3243 CFG_LCQ, rx_ring->cq_id);
3244 if (err) {
3245 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3246 return err;
3248 return err;
3251 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3253 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3254 void __iomem *doorbell_area =
3255 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3256 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3257 (tx_ring->wq_id * sizeof(u64));
3258 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3259 (tx_ring->wq_id * sizeof(u64));
3260 int err = 0;
3263 * Assign doorbell registers for this tx_ring.
3265 /* TX PCI doorbell mem area for tx producer index */
3266 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3267 tx_ring->prod_idx = 0;
3268 /* TX PCI doorbell mem area + 0x04 */
3269 tx_ring->valid_db_reg = doorbell_area + 0x04;
3272 * Assign shadow registers for this tx_ring.
3274 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3275 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3277 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3278 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3279 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3280 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3281 wqicb->rid = 0;
3282 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3284 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3286 ql_init_tx_ring(qdev, tx_ring);
3288 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3289 (u16) tx_ring->wq_id);
3290 if (err) {
3291 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3292 return err;
3294 return err;
3297 static void ql_disable_msix(struct ql_adapter *qdev)
3299 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3300 pci_disable_msix(qdev->pdev);
3301 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3302 kfree(qdev->msi_x_entry);
3303 qdev->msi_x_entry = NULL;
3304 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3305 pci_disable_msi(qdev->pdev);
3306 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3310 /* We start by trying to get the number of vectors
3311 * stored in qdev->intr_count. If we don't get that
3312 * many then we reduce the count and try again.
3314 static void ql_enable_msix(struct ql_adapter *qdev)
3316 int i, err;
3318 /* Get the MSIX vectors. */
3319 if (qlge_irq_type == MSIX_IRQ) {
3320 /* Try to alloc space for the msix struct,
3321 * if it fails then go to MSI/legacy.
3323 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3324 sizeof(struct msix_entry),
3325 GFP_KERNEL);
3326 if (!qdev->msi_x_entry) {
3327 qlge_irq_type = MSI_IRQ;
3328 goto msi;
3331 for (i = 0; i < qdev->intr_count; i++)
3332 qdev->msi_x_entry[i].entry = i;
3334 /* Loop to get our vectors. We start with
3335 * what we want and settle for what we get.
3337 do {
3338 err = pci_enable_msix(qdev->pdev,
3339 qdev->msi_x_entry, qdev->intr_count);
3340 if (err > 0)
3341 qdev->intr_count = err;
3342 } while (err > 0);
3344 if (err < 0) {
3345 kfree(qdev->msi_x_entry);
3346 qdev->msi_x_entry = NULL;
3347 netif_warn(qdev, ifup, qdev->ndev,
3348 "MSI-X Enable failed, trying MSI.\n");
3349 qdev->intr_count = 1;
3350 qlge_irq_type = MSI_IRQ;
3351 } else if (err == 0) {
3352 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3353 netif_info(qdev, ifup, qdev->ndev,
3354 "MSI-X Enabled, got %d vectors.\n",
3355 qdev->intr_count);
3356 return;
3359 msi:
3360 qdev->intr_count = 1;
3361 if (qlge_irq_type == MSI_IRQ) {
3362 if (!pci_enable_msi(qdev->pdev)) {
3363 set_bit(QL_MSI_ENABLED, &qdev->flags);
3364 netif_info(qdev, ifup, qdev->ndev,
3365 "Running with MSI interrupts.\n");
3366 return;
3369 qlge_irq_type = LEG_IRQ;
3370 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3371 "Running with legacy interrupts.\n");
3374 /* Each vector services 1 RSS ring and and 1 or more
3375 * TX completion rings. This function loops through
3376 * the TX completion rings and assigns the vector that
3377 * will service it. An example would be if there are
3378 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3379 * This would mean that vector 0 would service RSS ring 0
3380 * and TX completion rings 0,1,2 and 3. Vector 1 would
3381 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3383 static void ql_set_tx_vect(struct ql_adapter *qdev)
3385 int i, j, vect;
3386 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3388 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3389 /* Assign irq vectors to TX rx_rings.*/
3390 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3391 i < qdev->rx_ring_count; i++) {
3392 if (j == tx_rings_per_vector) {
3393 vect++;
3394 j = 0;
3396 qdev->rx_ring[i].irq = vect;
3397 j++;
3399 } else {
3400 /* For single vector all rings have an irq
3401 * of zero.
3403 for (i = 0; i < qdev->rx_ring_count; i++)
3404 qdev->rx_ring[i].irq = 0;
3408 /* Set the interrupt mask for this vector. Each vector
3409 * will service 1 RSS ring and 1 or more TX completion
3410 * rings. This function sets up a bit mask per vector
3411 * that indicates which rings it services.
3413 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3415 int j, vect = ctx->intr;
3416 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3418 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3419 /* Add the RSS ring serviced by this vector
3420 * to the mask.
3422 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3423 /* Add the TX ring(s) serviced by this vector
3424 * to the mask. */
3425 for (j = 0; j < tx_rings_per_vector; j++) {
3426 ctx->irq_mask |=
3427 (1 << qdev->rx_ring[qdev->rss_ring_count +
3428 (vect * tx_rings_per_vector) + j].cq_id);
3430 } else {
3431 /* For single vector we just shift each queue's
3432 * ID into the mask.
3434 for (j = 0; j < qdev->rx_ring_count; j++)
3435 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3440 * Here we build the intr_context structures based on
3441 * our rx_ring count and intr vector count.
3442 * The intr_context structure is used to hook each vector
3443 * to possibly different handlers.
3445 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3447 int i = 0;
3448 struct intr_context *intr_context = &qdev->intr_context[0];
3450 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3451 /* Each rx_ring has it's
3452 * own intr_context since we have separate
3453 * vectors for each queue.
3455 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3456 qdev->rx_ring[i].irq = i;
3457 intr_context->intr = i;
3458 intr_context->qdev = qdev;
3459 /* Set up this vector's bit-mask that indicates
3460 * which queues it services.
3462 ql_set_irq_mask(qdev, intr_context);
3464 * We set up each vectors enable/disable/read bits so
3465 * there's no bit/mask calculations in the critical path.
3467 intr_context->intr_en_mask =
3468 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3469 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3470 | i;
3471 intr_context->intr_dis_mask =
3472 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3473 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3474 INTR_EN_IHD | i;
3475 intr_context->intr_read_mask =
3476 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3477 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3479 if (i == 0) {
3480 /* The first vector/queue handles
3481 * broadcast/multicast, fatal errors,
3482 * and firmware events. This in addition
3483 * to normal inbound NAPI processing.
3485 intr_context->handler = qlge_isr;
3486 sprintf(intr_context->name, "%s-rx-%d",
3487 qdev->ndev->name, i);
3488 } else {
3490 * Inbound queues handle unicast frames only.
3492 intr_context->handler = qlge_msix_rx_isr;
3493 sprintf(intr_context->name, "%s-rx-%d",
3494 qdev->ndev->name, i);
3497 } else {
3499 * All rx_rings use the same intr_context since
3500 * there is only one vector.
3502 intr_context->intr = 0;
3503 intr_context->qdev = qdev;
3505 * We set up each vectors enable/disable/read bits so
3506 * there's no bit/mask calculations in the critical path.
3508 intr_context->intr_en_mask =
3509 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3510 intr_context->intr_dis_mask =
3511 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3512 INTR_EN_TYPE_DISABLE;
3513 intr_context->intr_read_mask =
3514 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3516 * Single interrupt means one handler for all rings.
3518 intr_context->handler = qlge_isr;
3519 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3520 /* Set up this vector's bit-mask that indicates
3521 * which queues it services. In this case there is
3522 * a single vector so it will service all RSS and
3523 * TX completion rings.
3525 ql_set_irq_mask(qdev, intr_context);
3527 /* Tell the TX completion rings which MSIx vector
3528 * they will be using.
3530 ql_set_tx_vect(qdev);
3533 static void ql_free_irq(struct ql_adapter *qdev)
3535 int i;
3536 struct intr_context *intr_context = &qdev->intr_context[0];
3538 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3539 if (intr_context->hooked) {
3540 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3541 free_irq(qdev->msi_x_entry[i].vector,
3542 &qdev->rx_ring[i]);
3543 } else {
3544 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3548 ql_disable_msix(qdev);
3551 static int ql_request_irq(struct ql_adapter *qdev)
3553 int i;
3554 int status = 0;
3555 struct pci_dev *pdev = qdev->pdev;
3556 struct intr_context *intr_context = &qdev->intr_context[0];
3558 ql_resolve_queues_to_irqs(qdev);
3560 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3561 atomic_set(&intr_context->irq_cnt, 0);
3562 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3563 status = request_irq(qdev->msi_x_entry[i].vector,
3564 intr_context->handler,
3566 intr_context->name,
3567 &qdev->rx_ring[i]);
3568 if (status) {
3569 netif_err(qdev, ifup, qdev->ndev,
3570 "Failed request for MSIX interrupt %d.\n",
3572 goto err_irq;
3574 } else {
3575 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3576 "trying msi or legacy interrupts.\n");
3577 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3578 "%s: irq = %d.\n", __func__, pdev->irq);
3579 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3580 "%s: context->name = %s.\n", __func__,
3581 intr_context->name);
3582 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3583 "%s: dev_id = 0x%p.\n", __func__,
3584 &qdev->rx_ring[0]);
3585 status =
3586 request_irq(pdev->irq, qlge_isr,
3587 test_bit(QL_MSI_ENABLED,
3588 &qdev->
3589 flags) ? 0 : IRQF_SHARED,
3590 intr_context->name, &qdev->rx_ring[0]);
3591 if (status)
3592 goto err_irq;
3594 netif_err(qdev, ifup, qdev->ndev,
3595 "Hooked intr %d, queue type %s, with name %s.\n",
3597 qdev->rx_ring[0].type == DEFAULT_Q ?
3598 "DEFAULT_Q" :
3599 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3600 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3601 intr_context->name);
3603 intr_context->hooked = 1;
3605 return status;
3606 err_irq:
3607 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3608 ql_free_irq(qdev);
3609 return status;
3612 static int ql_start_rss(struct ql_adapter *qdev)
3614 static const u8 init_hash_seed[] = {
3615 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3616 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3617 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3618 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3619 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3621 struct ricb *ricb = &qdev->ricb;
3622 int status = 0;
3623 int i;
3624 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3626 memset((void *)ricb, 0, sizeof(*ricb));
3628 ricb->base_cq = RSS_L4K;
3629 ricb->flags =
3630 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3631 ricb->mask = cpu_to_le16((u16)(0x3ff));
3634 * Fill out the Indirection Table.
3636 for (i = 0; i < 1024; i++)
3637 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3639 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3640 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3642 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3643 if (status) {
3644 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3645 return status;
3647 return status;
3650 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3652 int i, status = 0;
3654 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3655 if (status)
3656 return status;
3657 /* Clear all the entries in the routing table. */
3658 for (i = 0; i < 16; i++) {
3659 status = ql_set_routing_reg(qdev, i, 0, 0);
3660 if (status) {
3661 netif_err(qdev, ifup, qdev->ndev,
3662 "Failed to init routing register for CAM packets.\n");
3663 break;
3666 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3667 return status;
3670 /* Initialize the frame-to-queue routing. */
3671 static int ql_route_initialize(struct ql_adapter *qdev)
3673 int status = 0;
3675 /* Clear all the entries in the routing table. */
3676 status = ql_clear_routing_entries(qdev);
3677 if (status)
3678 return status;
3680 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3681 if (status)
3682 return status;
3684 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3685 RT_IDX_IP_CSUM_ERR, 1);
3686 if (status) {
3687 netif_err(qdev, ifup, qdev->ndev,
3688 "Failed to init routing register "
3689 "for IP CSUM error packets.\n");
3690 goto exit;
3692 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3693 RT_IDX_TU_CSUM_ERR, 1);
3694 if (status) {
3695 netif_err(qdev, ifup, qdev->ndev,
3696 "Failed to init routing register "
3697 "for TCP/UDP CSUM error packets.\n");
3698 goto exit;
3700 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3701 if (status) {
3702 netif_err(qdev, ifup, qdev->ndev,
3703 "Failed to init routing register for broadcast packets.\n");
3704 goto exit;
3706 /* If we have more than one inbound queue, then turn on RSS in the
3707 * routing block.
3709 if (qdev->rss_ring_count > 1) {
3710 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3711 RT_IDX_RSS_MATCH, 1);
3712 if (status) {
3713 netif_err(qdev, ifup, qdev->ndev,
3714 "Failed to init routing register for MATCH RSS packets.\n");
3715 goto exit;
3719 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3720 RT_IDX_CAM_HIT, 1);
3721 if (status)
3722 netif_err(qdev, ifup, qdev->ndev,
3723 "Failed to init routing register for CAM packets.\n");
3724 exit:
3725 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3726 return status;
3729 int ql_cam_route_initialize(struct ql_adapter *qdev)
3731 int status, set;
3733 /* If check if the link is up and use to
3734 * determine if we are setting or clearing
3735 * the MAC address in the CAM.
3737 set = ql_read32(qdev, STS);
3738 set &= qdev->port_link_up;
3739 status = ql_set_mac_addr(qdev, set);
3740 if (status) {
3741 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3742 return status;
3745 status = ql_route_initialize(qdev);
3746 if (status)
3747 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3749 return status;
3752 static int ql_adapter_initialize(struct ql_adapter *qdev)
3754 u32 value, mask;
3755 int i;
3756 int status = 0;
3759 * Set up the System register to halt on errors.
3761 value = SYS_EFE | SYS_FAE;
3762 mask = value << 16;
3763 ql_write32(qdev, SYS, mask | value);
3765 /* Set the default queue, and VLAN behavior. */
3766 value = NIC_RCV_CFG_DFQ;
3767 mask = NIC_RCV_CFG_DFQ_MASK;
3768 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3769 value |= NIC_RCV_CFG_RV;
3770 mask |= (NIC_RCV_CFG_RV << 16);
3772 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3774 /* Set the MPI interrupt to enabled. */
3775 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3777 /* Enable the function, set pagesize, enable error checking. */
3778 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3779 FSC_EC | FSC_VM_PAGE_4K;
3780 value |= SPLT_SETTING;
3782 /* Set/clear header splitting. */
3783 mask = FSC_VM_PAGESIZE_MASK |
3784 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3785 ql_write32(qdev, FSC, mask | value);
3787 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3789 /* Set RX packet routing to use port/pci function on which the
3790 * packet arrived on in addition to usual frame routing.
3791 * This is helpful on bonding where both interfaces can have
3792 * the same MAC address.
3794 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3795 /* Reroute all packets to our Interface.
3796 * They may have been routed to MPI firmware
3797 * due to WOL.
3799 value = ql_read32(qdev, MGMT_RCV_CFG);
3800 value &= ~MGMT_RCV_CFG_RM;
3801 mask = 0xffff0000;
3803 /* Sticky reg needs clearing due to WOL. */
3804 ql_write32(qdev, MGMT_RCV_CFG, mask);
3805 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3807 /* Default WOL is enable on Mezz cards */
3808 if (qdev->pdev->subsystem_device == 0x0068 ||
3809 qdev->pdev->subsystem_device == 0x0180)
3810 qdev->wol = WAKE_MAGIC;
3812 /* Start up the rx queues. */
3813 for (i = 0; i < qdev->rx_ring_count; i++) {
3814 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3815 if (status) {
3816 netif_err(qdev, ifup, qdev->ndev,
3817 "Failed to start rx ring[%d].\n", i);
3818 return status;
3822 /* If there is more than one inbound completion queue
3823 * then download a RICB to configure RSS.
3825 if (qdev->rss_ring_count > 1) {
3826 status = ql_start_rss(qdev);
3827 if (status) {
3828 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3829 return status;
3833 /* Start up the tx queues. */
3834 for (i = 0; i < qdev->tx_ring_count; i++) {
3835 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3836 if (status) {
3837 netif_err(qdev, ifup, qdev->ndev,
3838 "Failed to start tx ring[%d].\n", i);
3839 return status;
3843 /* Initialize the port and set the max framesize. */
3844 status = qdev->nic_ops->port_initialize(qdev);
3845 if (status)
3846 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3848 /* Set up the MAC address and frame routing filter. */
3849 status = ql_cam_route_initialize(qdev);
3850 if (status) {
3851 netif_err(qdev, ifup, qdev->ndev,
3852 "Failed to init CAM/Routing tables.\n");
3853 return status;
3856 /* Start NAPI for the RSS queues. */
3857 for (i = 0; i < qdev->rss_ring_count; i++)
3858 napi_enable(&qdev->rx_ring[i].napi);
3860 return status;
3863 /* Issue soft reset to chip. */
3864 static int ql_adapter_reset(struct ql_adapter *qdev)
3866 u32 value;
3867 int status = 0;
3868 unsigned long end_jiffies;
3870 /* Clear all the entries in the routing table. */
3871 status = ql_clear_routing_entries(qdev);
3872 if (status) {
3873 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3874 return status;
3877 end_jiffies = jiffies +
3878 max((unsigned long)1, usecs_to_jiffies(30));
3880 /* Check if bit is set then skip the mailbox command and
3881 * clear the bit, else we are in normal reset process.
3883 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3884 /* Stop management traffic. */
3885 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3887 /* Wait for the NIC and MGMNT FIFOs to empty. */
3888 ql_wait_fifo_empty(qdev);
3889 } else
3890 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3892 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3894 do {
3895 value = ql_read32(qdev, RST_FO);
3896 if ((value & RST_FO_FR) == 0)
3897 break;
3898 cpu_relax();
3899 } while (time_before(jiffies, end_jiffies));
3901 if (value & RST_FO_FR) {
3902 netif_err(qdev, ifdown, qdev->ndev,
3903 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3904 status = -ETIMEDOUT;
3907 /* Resume management traffic. */
3908 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3909 return status;
3912 static void ql_display_dev_info(struct net_device *ndev)
3914 struct ql_adapter *qdev = netdev_priv(ndev);
3916 netif_info(qdev, probe, qdev->ndev,
3917 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3918 "XG Roll = %d, XG Rev = %d.\n",
3919 qdev->func,
3920 qdev->port,
3921 qdev->chip_rev_id & 0x0000000f,
3922 qdev->chip_rev_id >> 4 & 0x0000000f,
3923 qdev->chip_rev_id >> 8 & 0x0000000f,
3924 qdev->chip_rev_id >> 12 & 0x0000000f);
3925 netif_info(qdev, probe, qdev->ndev,
3926 "MAC address %pM\n", ndev->dev_addr);
3929 static int ql_wol(struct ql_adapter *qdev)
3931 int status = 0;
3932 u32 wol = MB_WOL_DISABLE;
3934 /* The CAM is still intact after a reset, but if we
3935 * are doing WOL, then we may need to program the
3936 * routing regs. We would also need to issue the mailbox
3937 * commands to instruct the MPI what to do per the ethtool
3938 * settings.
3941 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3942 WAKE_MCAST | WAKE_BCAST)) {
3943 netif_err(qdev, ifdown, qdev->ndev,
3944 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3945 qdev->wol);
3946 return -EINVAL;
3949 if (qdev->wol & WAKE_MAGIC) {
3950 status = ql_mb_wol_set_magic(qdev, 1);
3951 if (status) {
3952 netif_err(qdev, ifdown, qdev->ndev,
3953 "Failed to set magic packet on %s.\n",
3954 qdev->ndev->name);
3955 return status;
3956 } else
3957 netif_info(qdev, drv, qdev->ndev,
3958 "Enabled magic packet successfully on %s.\n",
3959 qdev->ndev->name);
3961 wol |= MB_WOL_MAGIC_PKT;
3964 if (qdev->wol) {
3965 wol |= MB_WOL_MODE_ON;
3966 status = ql_mb_wol_mode(qdev, wol);
3967 netif_err(qdev, drv, qdev->ndev,
3968 "WOL %s (wol code 0x%x) on %s\n",
3969 (status == 0) ? "Successfully set" : "Failed",
3970 wol, qdev->ndev->name);
3973 return status;
3976 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3979 /* Don't kill the reset worker thread if we
3980 * are in the process of recovery.
3982 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3983 cancel_delayed_work_sync(&qdev->asic_reset_work);
3984 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3985 cancel_delayed_work_sync(&qdev->mpi_work);
3986 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3987 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3988 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3991 static int ql_adapter_down(struct ql_adapter *qdev)
3993 int i, status = 0;
3995 ql_link_off(qdev);
3997 ql_cancel_all_work_sync(qdev);
3999 for (i = 0; i < qdev->rss_ring_count; i++)
4000 napi_disable(&qdev->rx_ring[i].napi);
4002 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4004 ql_disable_interrupts(qdev);
4006 ql_tx_ring_clean(qdev);
4008 /* Call netif_napi_del() from common point.
4010 for (i = 0; i < qdev->rss_ring_count; i++)
4011 netif_napi_del(&qdev->rx_ring[i].napi);
4013 status = ql_adapter_reset(qdev);
4014 if (status)
4015 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4016 qdev->func);
4017 ql_free_rx_buffers(qdev);
4019 return status;
4022 static int ql_adapter_up(struct ql_adapter *qdev)
4024 int err = 0;
4026 err = ql_adapter_initialize(qdev);
4027 if (err) {
4028 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4029 goto err_init;
4031 set_bit(QL_ADAPTER_UP, &qdev->flags);
4032 ql_alloc_rx_buffers(qdev);
4033 /* If the port is initialized and the
4034 * link is up the turn on the carrier.
4036 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4037 (ql_read32(qdev, STS) & qdev->port_link_up))
4038 ql_link_on(qdev);
4039 /* Restore rx mode. */
4040 clear_bit(QL_ALLMULTI, &qdev->flags);
4041 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4042 qlge_set_multicast_list(qdev->ndev);
4044 /* Restore vlan setting. */
4045 qlge_restore_vlan(qdev);
4047 ql_enable_interrupts(qdev);
4048 ql_enable_all_completion_interrupts(qdev);
4049 netif_tx_start_all_queues(qdev->ndev);
4051 return 0;
4052 err_init:
4053 ql_adapter_reset(qdev);
4054 return err;
4057 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4059 ql_free_mem_resources(qdev);
4060 ql_free_irq(qdev);
4063 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4065 int status = 0;
4067 if (ql_alloc_mem_resources(qdev)) {
4068 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4069 return -ENOMEM;
4071 status = ql_request_irq(qdev);
4072 return status;
4075 static int qlge_close(struct net_device *ndev)
4077 struct ql_adapter *qdev = netdev_priv(ndev);
4079 /* If we hit pci_channel_io_perm_failure
4080 * failure condition, then we already
4081 * brought the adapter down.
4083 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4084 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4085 clear_bit(QL_EEH_FATAL, &qdev->flags);
4086 return 0;
4090 * Wait for device to recover from a reset.
4091 * (Rarely happens, but possible.)
4093 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4094 msleep(1);
4095 ql_adapter_down(qdev);
4096 ql_release_adapter_resources(qdev);
4097 return 0;
4100 static int ql_configure_rings(struct ql_adapter *qdev)
4102 int i;
4103 struct rx_ring *rx_ring;
4104 struct tx_ring *tx_ring;
4105 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4106 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4107 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4109 qdev->lbq_buf_order = get_order(lbq_buf_len);
4111 /* In a perfect world we have one RSS ring for each CPU
4112 * and each has it's own vector. To do that we ask for
4113 * cpu_cnt vectors. ql_enable_msix() will adjust the
4114 * vector count to what we actually get. We then
4115 * allocate an RSS ring for each.
4116 * Essentially, we are doing min(cpu_count, msix_vector_count).
4118 qdev->intr_count = cpu_cnt;
4119 ql_enable_msix(qdev);
4120 /* Adjust the RSS ring count to the actual vector count. */
4121 qdev->rss_ring_count = qdev->intr_count;
4122 qdev->tx_ring_count = cpu_cnt;
4123 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4125 for (i = 0; i < qdev->tx_ring_count; i++) {
4126 tx_ring = &qdev->tx_ring[i];
4127 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4128 tx_ring->qdev = qdev;
4129 tx_ring->wq_id = i;
4130 tx_ring->wq_len = qdev->tx_ring_size;
4131 tx_ring->wq_size =
4132 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4135 * The completion queue ID for the tx rings start
4136 * immediately after the rss rings.
4138 tx_ring->cq_id = qdev->rss_ring_count + i;
4141 for (i = 0; i < qdev->rx_ring_count; i++) {
4142 rx_ring = &qdev->rx_ring[i];
4143 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4144 rx_ring->qdev = qdev;
4145 rx_ring->cq_id = i;
4146 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4147 if (i < qdev->rss_ring_count) {
4149 * Inbound (RSS) queues.
4151 rx_ring->cq_len = qdev->rx_ring_size;
4152 rx_ring->cq_size =
4153 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4154 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4155 rx_ring->lbq_size =
4156 rx_ring->lbq_len * sizeof(__le64);
4157 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4158 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4159 rx_ring->sbq_size =
4160 rx_ring->sbq_len * sizeof(__le64);
4161 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4162 rx_ring->type = RX_Q;
4163 } else {
4165 * Outbound queue handles outbound completions only.
4167 /* outbound cq is same size as tx_ring it services. */
4168 rx_ring->cq_len = qdev->tx_ring_size;
4169 rx_ring->cq_size =
4170 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4171 rx_ring->lbq_len = 0;
4172 rx_ring->lbq_size = 0;
4173 rx_ring->lbq_buf_size = 0;
4174 rx_ring->sbq_len = 0;
4175 rx_ring->sbq_size = 0;
4176 rx_ring->sbq_buf_size = 0;
4177 rx_ring->type = TX_Q;
4180 return 0;
4183 static int qlge_open(struct net_device *ndev)
4185 int err = 0;
4186 struct ql_adapter *qdev = netdev_priv(ndev);
4188 err = ql_adapter_reset(qdev);
4189 if (err)
4190 return err;
4192 err = ql_configure_rings(qdev);
4193 if (err)
4194 return err;
4196 err = ql_get_adapter_resources(qdev);
4197 if (err)
4198 goto error_up;
4200 err = ql_adapter_up(qdev);
4201 if (err)
4202 goto error_up;
4204 return err;
4206 error_up:
4207 ql_release_adapter_resources(qdev);
4208 return err;
4211 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4213 struct rx_ring *rx_ring;
4214 int i, status;
4215 u32 lbq_buf_len;
4217 /* Wait for an outstanding reset to complete. */
4218 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4219 int i = 3;
4220 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4221 netif_err(qdev, ifup, qdev->ndev,
4222 "Waiting for adapter UP...\n");
4223 ssleep(1);
4226 if (!i) {
4227 netif_err(qdev, ifup, qdev->ndev,
4228 "Timed out waiting for adapter UP\n");
4229 return -ETIMEDOUT;
4233 status = ql_adapter_down(qdev);
4234 if (status)
4235 goto error;
4237 /* Get the new rx buffer size. */
4238 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4239 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4240 qdev->lbq_buf_order = get_order(lbq_buf_len);
4242 for (i = 0; i < qdev->rss_ring_count; i++) {
4243 rx_ring = &qdev->rx_ring[i];
4244 /* Set the new size. */
4245 rx_ring->lbq_buf_size = lbq_buf_len;
4248 status = ql_adapter_up(qdev);
4249 if (status)
4250 goto error;
4252 return status;
4253 error:
4254 netif_alert(qdev, ifup, qdev->ndev,
4255 "Driver up/down cycle failed, closing device.\n");
4256 set_bit(QL_ADAPTER_UP, &qdev->flags);
4257 dev_close(qdev->ndev);
4258 return status;
4261 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4263 struct ql_adapter *qdev = netdev_priv(ndev);
4264 int status;
4266 if (ndev->mtu == 1500 && new_mtu == 9000) {
4267 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4268 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4269 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4270 } else
4271 return -EINVAL;
4273 queue_delayed_work(qdev->workqueue,
4274 &qdev->mpi_port_cfg_work, 3*HZ);
4276 ndev->mtu = new_mtu;
4278 if (!netif_running(qdev->ndev)) {
4279 return 0;
4282 status = ql_change_rx_buffers(qdev);
4283 if (status) {
4284 netif_err(qdev, ifup, qdev->ndev,
4285 "Changing MTU failed.\n");
4288 return status;
4291 static struct net_device_stats *qlge_get_stats(struct net_device
4292 *ndev)
4294 struct ql_adapter *qdev = netdev_priv(ndev);
4295 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4296 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4297 unsigned long pkts, mcast, dropped, errors, bytes;
4298 int i;
4300 /* Get RX stats. */
4301 pkts = mcast = dropped = errors = bytes = 0;
4302 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4303 pkts += rx_ring->rx_packets;
4304 bytes += rx_ring->rx_bytes;
4305 dropped += rx_ring->rx_dropped;
4306 errors += rx_ring->rx_errors;
4307 mcast += rx_ring->rx_multicast;
4309 ndev->stats.rx_packets = pkts;
4310 ndev->stats.rx_bytes = bytes;
4311 ndev->stats.rx_dropped = dropped;
4312 ndev->stats.rx_errors = errors;
4313 ndev->stats.multicast = mcast;
4315 /* Get TX stats. */
4316 pkts = errors = bytes = 0;
4317 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4318 pkts += tx_ring->tx_packets;
4319 bytes += tx_ring->tx_bytes;
4320 errors += tx_ring->tx_errors;
4322 ndev->stats.tx_packets = pkts;
4323 ndev->stats.tx_bytes = bytes;
4324 ndev->stats.tx_errors = errors;
4325 return &ndev->stats;
4328 static void qlge_set_multicast_list(struct net_device *ndev)
4330 struct ql_adapter *qdev = netdev_priv(ndev);
4331 struct netdev_hw_addr *ha;
4332 int i, status;
4334 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4335 if (status)
4336 return;
4338 * Set or clear promiscuous mode if a
4339 * transition is taking place.
4341 if (ndev->flags & IFF_PROMISC) {
4342 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4343 if (ql_set_routing_reg
4344 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4345 netif_err(qdev, hw, qdev->ndev,
4346 "Failed to set promiscuous mode.\n");
4347 } else {
4348 set_bit(QL_PROMISCUOUS, &qdev->flags);
4351 } else {
4352 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4353 if (ql_set_routing_reg
4354 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4355 netif_err(qdev, hw, qdev->ndev,
4356 "Failed to clear promiscuous mode.\n");
4357 } else {
4358 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4364 * Set or clear all multicast mode if a
4365 * transition is taking place.
4367 if ((ndev->flags & IFF_ALLMULTI) ||
4368 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4369 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4370 if (ql_set_routing_reg
4371 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4372 netif_err(qdev, hw, qdev->ndev,
4373 "Failed to set all-multi mode.\n");
4374 } else {
4375 set_bit(QL_ALLMULTI, &qdev->flags);
4378 } else {
4379 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4380 if (ql_set_routing_reg
4381 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4382 netif_err(qdev, hw, qdev->ndev,
4383 "Failed to clear all-multi mode.\n");
4384 } else {
4385 clear_bit(QL_ALLMULTI, &qdev->flags);
4390 if (!netdev_mc_empty(ndev)) {
4391 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4392 if (status)
4393 goto exit;
4394 i = 0;
4395 netdev_for_each_mc_addr(ha, ndev) {
4396 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4397 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4398 netif_err(qdev, hw, qdev->ndev,
4399 "Failed to loadmulticast address.\n");
4400 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4401 goto exit;
4403 i++;
4405 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4406 if (ql_set_routing_reg
4407 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4408 netif_err(qdev, hw, qdev->ndev,
4409 "Failed to set multicast match mode.\n");
4410 } else {
4411 set_bit(QL_ALLMULTI, &qdev->flags);
4414 exit:
4415 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4418 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4420 struct ql_adapter *qdev = netdev_priv(ndev);
4421 struct sockaddr *addr = p;
4422 int status;
4424 if (!is_valid_ether_addr(addr->sa_data))
4425 return -EADDRNOTAVAIL;
4426 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4427 /* Update local copy of current mac address. */
4428 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4430 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4431 if (status)
4432 return status;
4433 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4434 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4435 if (status)
4436 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4437 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4438 return status;
4441 static void qlge_tx_timeout(struct net_device *ndev)
4443 struct ql_adapter *qdev = netdev_priv(ndev);
4444 ql_queue_asic_error(qdev);
4447 static void ql_asic_reset_work(struct work_struct *work)
4449 struct ql_adapter *qdev =
4450 container_of(work, struct ql_adapter, asic_reset_work.work);
4451 int status;
4452 rtnl_lock();
4453 status = ql_adapter_down(qdev);
4454 if (status)
4455 goto error;
4457 status = ql_adapter_up(qdev);
4458 if (status)
4459 goto error;
4461 /* Restore rx mode. */
4462 clear_bit(QL_ALLMULTI, &qdev->flags);
4463 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4464 qlge_set_multicast_list(qdev->ndev);
4466 rtnl_unlock();
4467 return;
4468 error:
4469 netif_alert(qdev, ifup, qdev->ndev,
4470 "Driver up/down cycle failed, closing device\n");
4472 set_bit(QL_ADAPTER_UP, &qdev->flags);
4473 dev_close(qdev->ndev);
4474 rtnl_unlock();
4477 static const struct nic_operations qla8012_nic_ops = {
4478 .get_flash = ql_get_8012_flash_params,
4479 .port_initialize = ql_8012_port_initialize,
4482 static const struct nic_operations qla8000_nic_ops = {
4483 .get_flash = ql_get_8000_flash_params,
4484 .port_initialize = ql_8000_port_initialize,
4487 /* Find the pcie function number for the other NIC
4488 * on this chip. Since both NIC functions share a
4489 * common firmware we have the lowest enabled function
4490 * do any common work. Examples would be resetting
4491 * after a fatal firmware error, or doing a firmware
4492 * coredump.
4494 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4496 int status = 0;
4497 u32 temp;
4498 u32 nic_func1, nic_func2;
4500 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4501 &temp);
4502 if (status)
4503 return status;
4505 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4506 MPI_TEST_NIC_FUNC_MASK);
4507 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4508 MPI_TEST_NIC_FUNC_MASK);
4510 if (qdev->func == nic_func1)
4511 qdev->alt_func = nic_func2;
4512 else if (qdev->func == nic_func2)
4513 qdev->alt_func = nic_func1;
4514 else
4515 status = -EIO;
4517 return status;
4520 static int ql_get_board_info(struct ql_adapter *qdev)
4522 int status;
4523 qdev->func =
4524 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4525 if (qdev->func > 3)
4526 return -EIO;
4528 status = ql_get_alt_pcie_func(qdev);
4529 if (status)
4530 return status;
4532 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4533 if (qdev->port) {
4534 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4535 qdev->port_link_up = STS_PL1;
4536 qdev->port_init = STS_PI1;
4537 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4538 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4539 } else {
4540 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4541 qdev->port_link_up = STS_PL0;
4542 qdev->port_init = STS_PI0;
4543 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4544 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4546 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4547 qdev->device_id = qdev->pdev->device;
4548 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4549 qdev->nic_ops = &qla8012_nic_ops;
4550 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4551 qdev->nic_ops = &qla8000_nic_ops;
4552 return status;
4555 static void ql_release_all(struct pci_dev *pdev)
4557 struct net_device *ndev = pci_get_drvdata(pdev);
4558 struct ql_adapter *qdev = netdev_priv(ndev);
4560 if (qdev->workqueue) {
4561 destroy_workqueue(qdev->workqueue);
4562 qdev->workqueue = NULL;
4565 if (qdev->reg_base)
4566 iounmap(qdev->reg_base);
4567 if (qdev->doorbell_area)
4568 iounmap(qdev->doorbell_area);
4569 vfree(qdev->mpi_coredump);
4570 pci_release_regions(pdev);
4573 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4574 int cards_found)
4576 struct ql_adapter *qdev = netdev_priv(ndev);
4577 int err = 0;
4579 memset((void *)qdev, 0, sizeof(*qdev));
4580 err = pci_enable_device(pdev);
4581 if (err) {
4582 dev_err(&pdev->dev, "PCI device enable failed.\n");
4583 return err;
4586 qdev->ndev = ndev;
4587 qdev->pdev = pdev;
4588 pci_set_drvdata(pdev, ndev);
4590 /* Set PCIe read request size */
4591 err = pcie_set_readrq(pdev, 4096);
4592 if (err) {
4593 dev_err(&pdev->dev, "Set readrq failed.\n");
4594 goto err_out1;
4597 err = pci_request_regions(pdev, DRV_NAME);
4598 if (err) {
4599 dev_err(&pdev->dev, "PCI region request failed.\n");
4600 return err;
4603 pci_set_master(pdev);
4604 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4605 set_bit(QL_DMA64, &qdev->flags);
4606 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4607 } else {
4608 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4609 if (!err)
4610 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4613 if (err) {
4614 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4615 goto err_out2;
4618 /* Set PCIe reset type for EEH to fundamental. */
4619 pdev->needs_freset = 1;
4620 pci_save_state(pdev);
4621 qdev->reg_base =
4622 ioremap_nocache(pci_resource_start(pdev, 1),
4623 pci_resource_len(pdev, 1));
4624 if (!qdev->reg_base) {
4625 dev_err(&pdev->dev, "Register mapping failed.\n");
4626 err = -ENOMEM;
4627 goto err_out2;
4630 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4631 qdev->doorbell_area =
4632 ioremap_nocache(pci_resource_start(pdev, 3),
4633 pci_resource_len(pdev, 3));
4634 if (!qdev->doorbell_area) {
4635 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4636 err = -ENOMEM;
4637 goto err_out2;
4640 err = ql_get_board_info(qdev);
4641 if (err) {
4642 dev_err(&pdev->dev, "Register access failed.\n");
4643 err = -EIO;
4644 goto err_out2;
4646 qdev->msg_enable = netif_msg_init(debug, default_msg);
4647 spin_lock_init(&qdev->hw_lock);
4648 spin_lock_init(&qdev->stats_lock);
4650 if (qlge_mpi_coredump) {
4651 qdev->mpi_coredump =
4652 vmalloc(sizeof(struct ql_mpi_coredump));
4653 if (qdev->mpi_coredump == NULL) {
4654 err = -ENOMEM;
4655 goto err_out2;
4657 if (qlge_force_coredump)
4658 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4660 /* make sure the EEPROM is good */
4661 err = qdev->nic_ops->get_flash(qdev);
4662 if (err) {
4663 dev_err(&pdev->dev, "Invalid FLASH.\n");
4664 goto err_out2;
4667 /* Keep local copy of current mac address. */
4668 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4670 /* Set up the default ring sizes. */
4671 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4672 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4674 /* Set up the coalescing parameters. */
4675 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4676 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4677 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4678 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4681 * Set up the operating parameters.
4683 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4684 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4685 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4686 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4687 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4688 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4689 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4690 init_completion(&qdev->ide_completion);
4691 mutex_init(&qdev->mpi_mutex);
4693 if (!cards_found) {
4694 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4695 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4696 DRV_NAME, DRV_VERSION);
4698 return 0;
4699 err_out2:
4700 ql_release_all(pdev);
4701 err_out1:
4702 pci_disable_device(pdev);
4703 return err;
4706 static const struct net_device_ops qlge_netdev_ops = {
4707 .ndo_open = qlge_open,
4708 .ndo_stop = qlge_close,
4709 .ndo_start_xmit = qlge_send,
4710 .ndo_change_mtu = qlge_change_mtu,
4711 .ndo_get_stats = qlge_get_stats,
4712 .ndo_set_rx_mode = qlge_set_multicast_list,
4713 .ndo_set_mac_address = qlge_set_mac_address,
4714 .ndo_validate_addr = eth_validate_addr,
4715 .ndo_tx_timeout = qlge_tx_timeout,
4716 .ndo_fix_features = qlge_fix_features,
4717 .ndo_set_features = qlge_set_features,
4718 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4719 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4722 static void ql_timer(unsigned long data)
4724 struct ql_adapter *qdev = (struct ql_adapter *)data;
4725 u32 var = 0;
4727 var = ql_read32(qdev, STS);
4728 if (pci_channel_offline(qdev->pdev)) {
4729 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4730 return;
4733 mod_timer(&qdev->timer, jiffies + (5*HZ));
4736 static int qlge_probe(struct pci_dev *pdev,
4737 const struct pci_device_id *pci_entry)
4739 struct net_device *ndev = NULL;
4740 struct ql_adapter *qdev = NULL;
4741 static int cards_found = 0;
4742 int err = 0;
4744 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4745 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4746 if (!ndev)
4747 return -ENOMEM;
4749 err = ql_init_device(pdev, ndev, cards_found);
4750 if (err < 0) {
4751 free_netdev(ndev);
4752 return err;
4755 qdev = netdev_priv(ndev);
4756 SET_NETDEV_DEV(ndev, &pdev->dev);
4757 ndev->hw_features = NETIF_F_SG |
4758 NETIF_F_IP_CSUM |
4759 NETIF_F_TSO |
4760 NETIF_F_TSO_ECN |
4761 NETIF_F_HW_VLAN_CTAG_TX |
4762 NETIF_F_HW_VLAN_CTAG_RX |
4763 NETIF_F_HW_VLAN_CTAG_FILTER |
4764 NETIF_F_RXCSUM;
4765 ndev->features = ndev->hw_features;
4766 ndev->vlan_features = ndev->hw_features;
4768 if (test_bit(QL_DMA64, &qdev->flags))
4769 ndev->features |= NETIF_F_HIGHDMA;
4772 * Set up net_device structure.
4774 ndev->tx_queue_len = qdev->tx_ring_size;
4775 ndev->irq = pdev->irq;
4777 ndev->netdev_ops = &qlge_netdev_ops;
4778 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4779 ndev->watchdog_timeo = 10 * HZ;
4781 err = register_netdev(ndev);
4782 if (err) {
4783 dev_err(&pdev->dev, "net device registration failed.\n");
4784 ql_release_all(pdev);
4785 pci_disable_device(pdev);
4786 free_netdev(ndev);
4787 return err;
4789 /* Start up the timer to trigger EEH if
4790 * the bus goes dead
4792 init_timer_deferrable(&qdev->timer);
4793 qdev->timer.data = (unsigned long)qdev;
4794 qdev->timer.function = ql_timer;
4795 qdev->timer.expires = jiffies + (5*HZ);
4796 add_timer(&qdev->timer);
4797 ql_link_off(qdev);
4798 ql_display_dev_info(ndev);
4799 atomic_set(&qdev->lb_count, 0);
4800 cards_found++;
4801 return 0;
4804 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4806 return qlge_send(skb, ndev);
4809 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4811 return ql_clean_inbound_rx_ring(rx_ring, budget);
4814 static void qlge_remove(struct pci_dev *pdev)
4816 struct net_device *ndev = pci_get_drvdata(pdev);
4817 struct ql_adapter *qdev = netdev_priv(ndev);
4818 del_timer_sync(&qdev->timer);
4819 ql_cancel_all_work_sync(qdev);
4820 unregister_netdev(ndev);
4821 ql_release_all(pdev);
4822 pci_disable_device(pdev);
4823 free_netdev(ndev);
4826 /* Clean up resources without touching hardware. */
4827 static void ql_eeh_close(struct net_device *ndev)
4829 int i;
4830 struct ql_adapter *qdev = netdev_priv(ndev);
4832 if (netif_carrier_ok(ndev)) {
4833 netif_carrier_off(ndev);
4834 netif_stop_queue(ndev);
4837 /* Disabling the timer */
4838 del_timer_sync(&qdev->timer);
4839 ql_cancel_all_work_sync(qdev);
4841 for (i = 0; i < qdev->rss_ring_count; i++)
4842 netif_napi_del(&qdev->rx_ring[i].napi);
4844 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4845 ql_tx_ring_clean(qdev);
4846 ql_free_rx_buffers(qdev);
4847 ql_release_adapter_resources(qdev);
4851 * This callback is called by the PCI subsystem whenever
4852 * a PCI bus error is detected.
4854 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4855 enum pci_channel_state state)
4857 struct net_device *ndev = pci_get_drvdata(pdev);
4858 struct ql_adapter *qdev = netdev_priv(ndev);
4860 switch (state) {
4861 case pci_channel_io_normal:
4862 return PCI_ERS_RESULT_CAN_RECOVER;
4863 case pci_channel_io_frozen:
4864 netif_device_detach(ndev);
4865 if (netif_running(ndev))
4866 ql_eeh_close(ndev);
4867 pci_disable_device(pdev);
4868 return PCI_ERS_RESULT_NEED_RESET;
4869 case pci_channel_io_perm_failure:
4870 dev_err(&pdev->dev,
4871 "%s: pci_channel_io_perm_failure.\n", __func__);
4872 ql_eeh_close(ndev);
4873 set_bit(QL_EEH_FATAL, &qdev->flags);
4874 return PCI_ERS_RESULT_DISCONNECT;
4877 /* Request a slot reset. */
4878 return PCI_ERS_RESULT_NEED_RESET;
4882 * This callback is called after the PCI buss has been reset.
4883 * Basically, this tries to restart the card from scratch.
4884 * This is a shortened version of the device probe/discovery code,
4885 * it resembles the first-half of the () routine.
4887 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4889 struct net_device *ndev = pci_get_drvdata(pdev);
4890 struct ql_adapter *qdev = netdev_priv(ndev);
4892 pdev->error_state = pci_channel_io_normal;
4894 pci_restore_state(pdev);
4895 if (pci_enable_device(pdev)) {
4896 netif_err(qdev, ifup, qdev->ndev,
4897 "Cannot re-enable PCI device after reset.\n");
4898 return PCI_ERS_RESULT_DISCONNECT;
4900 pci_set_master(pdev);
4902 if (ql_adapter_reset(qdev)) {
4903 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4904 set_bit(QL_EEH_FATAL, &qdev->flags);
4905 return PCI_ERS_RESULT_DISCONNECT;
4908 return PCI_ERS_RESULT_RECOVERED;
4911 static void qlge_io_resume(struct pci_dev *pdev)
4913 struct net_device *ndev = pci_get_drvdata(pdev);
4914 struct ql_adapter *qdev = netdev_priv(ndev);
4915 int err = 0;
4917 if (netif_running(ndev)) {
4918 err = qlge_open(ndev);
4919 if (err) {
4920 netif_err(qdev, ifup, qdev->ndev,
4921 "Device initialization failed after reset.\n");
4922 return;
4924 } else {
4925 netif_err(qdev, ifup, qdev->ndev,
4926 "Device was not running prior to EEH.\n");
4928 mod_timer(&qdev->timer, jiffies + (5*HZ));
4929 netif_device_attach(ndev);
4932 static const struct pci_error_handlers qlge_err_handler = {
4933 .error_detected = qlge_io_error_detected,
4934 .slot_reset = qlge_io_slot_reset,
4935 .resume = qlge_io_resume,
4938 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4940 struct net_device *ndev = pci_get_drvdata(pdev);
4941 struct ql_adapter *qdev = netdev_priv(ndev);
4942 int err;
4944 netif_device_detach(ndev);
4945 del_timer_sync(&qdev->timer);
4947 if (netif_running(ndev)) {
4948 err = ql_adapter_down(qdev);
4949 if (!err)
4950 return err;
4953 ql_wol(qdev);
4954 err = pci_save_state(pdev);
4955 if (err)
4956 return err;
4958 pci_disable_device(pdev);
4960 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4962 return 0;
4965 #ifdef CONFIG_PM
4966 static int qlge_resume(struct pci_dev *pdev)
4968 struct net_device *ndev = pci_get_drvdata(pdev);
4969 struct ql_adapter *qdev = netdev_priv(ndev);
4970 int err;
4972 pci_set_power_state(pdev, PCI_D0);
4973 pci_restore_state(pdev);
4974 err = pci_enable_device(pdev);
4975 if (err) {
4976 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4977 return err;
4979 pci_set_master(pdev);
4981 pci_enable_wake(pdev, PCI_D3hot, 0);
4982 pci_enable_wake(pdev, PCI_D3cold, 0);
4984 if (netif_running(ndev)) {
4985 err = ql_adapter_up(qdev);
4986 if (err)
4987 return err;
4990 mod_timer(&qdev->timer, jiffies + (5*HZ));
4991 netif_device_attach(ndev);
4993 return 0;
4995 #endif /* CONFIG_PM */
4997 static void qlge_shutdown(struct pci_dev *pdev)
4999 qlge_suspend(pdev, PMSG_SUSPEND);
5002 static struct pci_driver qlge_driver = {
5003 .name = DRV_NAME,
5004 .id_table = qlge_pci_tbl,
5005 .probe = qlge_probe,
5006 .remove = qlge_remove,
5007 #ifdef CONFIG_PM
5008 .suspend = qlge_suspend,
5009 .resume = qlge_resume,
5010 #endif
5011 .shutdown = qlge_shutdown,
5012 .err_handler = &qlge_err_handler
5015 module_pci_driver(qlge_driver);