2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
40 static void blk_mq_poll_stats_start(struct request_queue
*q
);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
43 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
45 int ddir
, bytes
, bucket
;
47 ddir
= rq_data_dir(rq
);
48 bytes
= blk_rq_bytes(rq
);
50 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
54 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
55 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
61 * Check if any of the ctx's have pending work in this hardware queue
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
65 return sbitmap_any_bit_set(&hctx
->ctx_map
) ||
66 !list_empty_careful(&hctx
->dispatch
) ||
67 blk_mq_sched_has_work(hctx
);
71 * Mark this ctx as having pending work in this hardware queue
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
74 struct blk_mq_ctx
*ctx
)
76 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
77 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
81 struct blk_mq_ctx
*ctx
)
83 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
87 struct hd_struct
*part
;
88 unsigned int *inflight
;
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
92 struct request
*rq
, void *priv
,
95 struct mq_inflight
*mi
= priv
;
97 if (test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
) &&
98 !test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
)) {
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
105 if (rq
->part
== mi
->part
)
107 if (mi
->part
->partno
)
112 void blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
,
113 unsigned int inflight
[2])
115 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
117 inflight
[0] = inflight
[1] = 0;
118 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
121 void blk_freeze_queue_start(struct request_queue
*q
)
125 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
126 if (freeze_depth
== 1) {
127 percpu_ref_kill(&q
->q_usage_counter
);
128 blk_mq_run_hw_queues(q
, false);
131 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
133 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
135 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
137 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
139 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
140 unsigned long timeout
)
142 return wait_event_timeout(q
->mq_freeze_wq
,
143 percpu_ref_is_zero(&q
->q_usage_counter
),
146 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
149 * Guarantee no request is in use, so we can change any data structure of
150 * the queue afterward.
152 void blk_freeze_queue(struct request_queue
*q
)
155 * In the !blk_mq case we are only calling this to kill the
156 * q_usage_counter, otherwise this increases the freeze depth
157 * and waits for it to return to zero. For this reason there is
158 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
159 * exported to drivers as the only user for unfreeze is blk_mq.
161 blk_freeze_queue_start(q
);
162 blk_mq_freeze_queue_wait(q
);
165 void blk_mq_freeze_queue(struct request_queue
*q
)
168 * ...just an alias to keep freeze and unfreeze actions balanced
169 * in the blk_mq_* namespace
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
175 void blk_mq_unfreeze_queue(struct request_queue
*q
)
179 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
180 WARN_ON_ONCE(freeze_depth
< 0);
182 percpu_ref_reinit(&q
->q_usage_counter
);
183 wake_up_all(&q
->mq_freeze_wq
);
186 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
189 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
190 * mpt3sas driver such that this function can be removed.
192 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
196 spin_lock_irqsave(q
->queue_lock
, flags
);
197 queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
198 spin_unlock_irqrestore(q
->queue_lock
, flags
);
200 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
203 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206 * Note: this function does not prevent that the struct request end_io()
207 * callback function is invoked. Once this function is returned, we make
208 * sure no dispatch can happen until the queue is unquiesced via
209 * blk_mq_unquiesce_queue().
211 void blk_mq_quiesce_queue(struct request_queue
*q
)
213 struct blk_mq_hw_ctx
*hctx
;
217 blk_mq_quiesce_queue_nowait(q
);
219 queue_for_each_hw_ctx(q
, hctx
, i
) {
220 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
221 synchronize_srcu(hctx
->queue_rq_srcu
);
228 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
231 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
234 * This function recovers queue into the state before quiescing
235 * which is done by blk_mq_quiesce_queue.
237 void blk_mq_unquiesce_queue(struct request_queue
*q
)
241 spin_lock_irqsave(q
->queue_lock
, flags
);
242 queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
243 spin_unlock_irqrestore(q
->queue_lock
, flags
);
245 /* dispatch requests which are inserted during quiescing */
246 blk_mq_run_hw_queues(q
, true);
248 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
250 void blk_mq_wake_waiters(struct request_queue
*q
)
252 struct blk_mq_hw_ctx
*hctx
;
255 queue_for_each_hw_ctx(q
, hctx
, i
)
256 if (blk_mq_hw_queue_mapped(hctx
))
257 blk_mq_tag_wakeup_all(hctx
->tags
, true);
260 * If we are called because the queue has now been marked as
261 * dying, we need to ensure that processes currently waiting on
262 * the queue are notified as well.
264 wake_up_all(&q
->mq_freeze_wq
);
267 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
269 return blk_mq_has_free_tags(hctx
->tags
);
271 EXPORT_SYMBOL(blk_mq_can_queue
);
273 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
274 unsigned int tag
, unsigned int op
)
276 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
277 struct request
*rq
= tags
->static_rqs
[tag
];
281 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
283 rq
->internal_tag
= tag
;
285 if (blk_mq_tag_busy(data
->hctx
)) {
286 rq
->rq_flags
= RQF_MQ_INFLIGHT
;
287 atomic_inc(&data
->hctx
->nr_active
);
290 rq
->internal_tag
= -1;
291 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
294 INIT_LIST_HEAD(&rq
->queuelist
);
295 /* csd/requeue_work/fifo_time is initialized before use */
297 rq
->mq_ctx
= data
->ctx
;
299 if (blk_queue_io_stat(data
->q
))
300 rq
->rq_flags
|= RQF_IO_STAT
;
301 /* do not touch atomic flags, it needs atomic ops against the timer */
303 INIT_HLIST_NODE(&rq
->hash
);
304 RB_CLEAR_NODE(&rq
->rb_node
);
307 rq
->start_time
= jiffies
;
308 #ifdef CONFIG_BLK_CGROUP
310 set_start_time_ns(rq
);
311 rq
->io_start_time_ns
= 0;
313 rq
->nr_phys_segments
= 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq
->nr_integrity_segments
= 0;
318 /* tag was already set */
321 INIT_LIST_HEAD(&rq
->timeout_list
);
325 rq
->end_io_data
= NULL
;
328 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
332 static struct request
*blk_mq_get_request(struct request_queue
*q
,
333 struct bio
*bio
, unsigned int op
,
334 struct blk_mq_alloc_data
*data
)
336 struct elevator_queue
*e
= q
->elevator
;
339 struct blk_mq_ctx
*local_ctx
= NULL
;
341 blk_queue_enter_live(q
);
343 if (likely(!data
->ctx
))
344 data
->ctx
= local_ctx
= blk_mq_get_ctx(q
);
345 if (likely(!data
->hctx
))
346 data
->hctx
= blk_mq_map_queue(q
, data
->ctx
->cpu
);
348 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
351 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
354 * Flush requests are special and go directly to the
357 if (!op_is_flush(op
) && e
->type
->ops
.mq
.limit_depth
)
358 e
->type
->ops
.mq
.limit_depth(op
, data
);
361 tag
= blk_mq_get_tag(data
);
362 if (tag
== BLK_MQ_TAG_FAIL
) {
364 blk_mq_put_ctx(local_ctx
);
371 rq
= blk_mq_rq_ctx_init(data
, tag
, op
);
372 if (!op_is_flush(op
)) {
374 if (e
&& e
->type
->ops
.mq
.prepare_request
) {
375 if (e
->type
->icq_cache
&& rq_ioc(bio
))
376 blk_mq_sched_assign_ioc(rq
, bio
);
378 e
->type
->ops
.mq
.prepare_request(rq
, bio
);
379 rq
->rq_flags
|= RQF_ELVPRIV
;
382 data
->hctx
->queued
++;
386 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
389 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
393 ret
= blk_queue_enter(q
, flags
& BLK_MQ_REQ_NOWAIT
);
397 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
401 return ERR_PTR(-EWOULDBLOCK
);
403 blk_mq_put_ctx(alloc_data
.ctx
);
406 rq
->__sector
= (sector_t
) -1;
407 rq
->bio
= rq
->biotail
= NULL
;
410 EXPORT_SYMBOL(blk_mq_alloc_request
);
412 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
413 unsigned int op
, unsigned int flags
, unsigned int hctx_idx
)
415 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
421 * If the tag allocator sleeps we could get an allocation for a
422 * different hardware context. No need to complicate the low level
423 * allocator for this for the rare use case of a command tied to
426 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
427 return ERR_PTR(-EINVAL
);
429 if (hctx_idx
>= q
->nr_hw_queues
)
430 return ERR_PTR(-EIO
);
432 ret
= blk_queue_enter(q
, true);
437 * Check if the hardware context is actually mapped to anything.
438 * If not tell the caller that it should skip this queue.
440 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
441 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
443 return ERR_PTR(-EXDEV
);
445 cpu
= cpumask_first(alloc_data
.hctx
->cpumask
);
446 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
448 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
452 return ERR_PTR(-EWOULDBLOCK
);
456 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
458 void blk_mq_free_request(struct request
*rq
)
460 struct request_queue
*q
= rq
->q
;
461 struct elevator_queue
*e
= q
->elevator
;
462 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
463 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
464 const int sched_tag
= rq
->internal_tag
;
466 if (rq
->rq_flags
& RQF_ELVPRIV
) {
467 if (e
&& e
->type
->ops
.mq
.finish_request
)
468 e
->type
->ops
.mq
.finish_request(rq
);
470 put_io_context(rq
->elv
.icq
->ioc
);
475 ctx
->rq_completed
[rq_is_sync(rq
)]++;
476 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
477 atomic_dec(&hctx
->nr_active
);
479 wbt_done(q
->rq_wb
, &rq
->issue_stat
);
481 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
482 clear_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
484 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
486 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
487 blk_mq_sched_restart(hctx
);
490 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
492 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
494 blk_account_io_done(rq
);
497 wbt_done(rq
->q
->rq_wb
, &rq
->issue_stat
);
498 rq
->end_io(rq
, error
);
500 if (unlikely(blk_bidi_rq(rq
)))
501 blk_mq_free_request(rq
->next_rq
);
502 blk_mq_free_request(rq
);
505 EXPORT_SYMBOL(__blk_mq_end_request
);
507 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
509 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
511 __blk_mq_end_request(rq
, error
);
513 EXPORT_SYMBOL(blk_mq_end_request
);
515 static void __blk_mq_complete_request_remote(void *data
)
517 struct request
*rq
= data
;
519 rq
->q
->softirq_done_fn(rq
);
522 static void __blk_mq_complete_request(struct request
*rq
)
524 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
528 if (rq
->internal_tag
!= -1)
529 blk_mq_sched_completed_request(rq
);
530 if (rq
->rq_flags
& RQF_STATS
) {
531 blk_mq_poll_stats_start(rq
->q
);
535 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
536 rq
->q
->softirq_done_fn(rq
);
541 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
542 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
544 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
545 rq
->csd
.func
= __blk_mq_complete_request_remote
;
548 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
550 rq
->q
->softirq_done_fn(rq
);
556 * blk_mq_complete_request - end I/O on a request
557 * @rq: the request being processed
560 * Ends all I/O on a request. It does not handle partial completions.
561 * The actual completion happens out-of-order, through a IPI handler.
563 void blk_mq_complete_request(struct request
*rq
)
565 struct request_queue
*q
= rq
->q
;
567 if (unlikely(blk_should_fake_timeout(q
)))
569 if (!blk_mark_rq_complete(rq
))
570 __blk_mq_complete_request(rq
);
572 EXPORT_SYMBOL(blk_mq_complete_request
);
574 int blk_mq_request_started(struct request
*rq
)
576 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
578 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
580 void blk_mq_start_request(struct request
*rq
)
582 struct request_queue
*q
= rq
->q
;
584 blk_mq_sched_started_request(rq
);
586 trace_block_rq_issue(q
, rq
);
588 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
589 blk_stat_set_issue(&rq
->issue_stat
, blk_rq_sectors(rq
));
590 rq
->rq_flags
|= RQF_STATS
;
591 wbt_issue(q
->rq_wb
, &rq
->issue_stat
);
597 * Ensure that ->deadline is visible before set the started
598 * flag and clear the completed flag.
600 smp_mb__before_atomic();
603 * Mark us as started and clear complete. Complete might have been
604 * set if requeue raced with timeout, which then marked it as
605 * complete. So be sure to clear complete again when we start
606 * the request, otherwise we'll ignore the completion event.
608 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
609 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
610 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
611 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
613 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
615 * Make sure space for the drain appears. We know we can do
616 * this because max_hw_segments has been adjusted to be one
617 * fewer than the device can handle.
619 rq
->nr_phys_segments
++;
622 EXPORT_SYMBOL(blk_mq_start_request
);
625 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
626 * flag isn't set yet, so there may be race with timeout handler,
627 * but given rq->deadline is just set in .queue_rq() under
628 * this situation, the race won't be possible in reality because
629 * rq->timeout should be set as big enough to cover the window
630 * between blk_mq_start_request() called from .queue_rq() and
631 * clearing REQ_ATOM_STARTED here.
633 static void __blk_mq_requeue_request(struct request
*rq
)
635 struct request_queue
*q
= rq
->q
;
637 trace_block_rq_requeue(q
, rq
);
638 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
639 blk_mq_sched_requeue_request(rq
);
641 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
642 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
643 rq
->nr_phys_segments
--;
647 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
649 __blk_mq_requeue_request(rq
);
651 BUG_ON(blk_queued_rq(rq
));
652 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
654 EXPORT_SYMBOL(blk_mq_requeue_request
);
656 static void blk_mq_requeue_work(struct work_struct
*work
)
658 struct request_queue
*q
=
659 container_of(work
, struct request_queue
, requeue_work
.work
);
661 struct request
*rq
, *next
;
663 spin_lock_irq(&q
->requeue_lock
);
664 list_splice_init(&q
->requeue_list
, &rq_list
);
665 spin_unlock_irq(&q
->requeue_lock
);
667 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
668 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
671 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
672 list_del_init(&rq
->queuelist
);
673 blk_mq_sched_insert_request(rq
, true, false, false, true);
676 while (!list_empty(&rq_list
)) {
677 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
678 list_del_init(&rq
->queuelist
);
679 blk_mq_sched_insert_request(rq
, false, false, false, true);
682 blk_mq_run_hw_queues(q
, false);
685 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
686 bool kick_requeue_list
)
688 struct request_queue
*q
= rq
->q
;
692 * We abuse this flag that is otherwise used by the I/O scheduler to
693 * request head insertation from the workqueue.
695 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
697 spin_lock_irqsave(&q
->requeue_lock
, flags
);
699 rq
->rq_flags
|= RQF_SOFTBARRIER
;
700 list_add(&rq
->queuelist
, &q
->requeue_list
);
702 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
704 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
706 if (kick_requeue_list
)
707 blk_mq_kick_requeue_list(q
);
709 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
711 void blk_mq_kick_requeue_list(struct request_queue
*q
)
713 kblockd_schedule_delayed_work(&q
->requeue_work
, 0);
715 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
717 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
720 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
721 msecs_to_jiffies(msecs
));
723 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
725 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
727 if (tag
< tags
->nr_tags
) {
728 prefetch(tags
->rqs
[tag
]);
729 return tags
->rqs
[tag
];
734 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
736 struct blk_mq_timeout_data
{
738 unsigned int next_set
;
741 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
743 const struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
744 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
747 * We know that complete is set at this point. If STARTED isn't set
748 * anymore, then the request isn't active and the "timeout" should
749 * just be ignored. This can happen due to the bitflag ordering.
750 * Timeout first checks if STARTED is set, and if it is, assumes
751 * the request is active. But if we race with completion, then
752 * both flags will get cleared. So check here again, and ignore
753 * a timeout event with a request that isn't active.
755 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
759 ret
= ops
->timeout(req
, reserved
);
763 __blk_mq_complete_request(req
);
765 case BLK_EH_RESET_TIMER
:
767 blk_clear_rq_complete(req
);
769 case BLK_EH_NOT_HANDLED
:
772 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
777 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
778 struct request
*rq
, void *priv
, bool reserved
)
780 struct blk_mq_timeout_data
*data
= priv
;
782 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
786 * The rq being checked may have been freed and reallocated
787 * out already here, we avoid this race by checking rq->deadline
788 * and REQ_ATOM_COMPLETE flag together:
790 * - if rq->deadline is observed as new value because of
791 * reusing, the rq won't be timed out because of timing.
792 * - if rq->deadline is observed as previous value,
793 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
794 * because we put a barrier between setting rq->deadline
795 * and clearing the flag in blk_mq_start_request(), so
796 * this rq won't be timed out too.
798 if (time_after_eq(jiffies
, rq
->deadline
)) {
799 if (!blk_mark_rq_complete(rq
))
800 blk_mq_rq_timed_out(rq
, reserved
);
801 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
802 data
->next
= rq
->deadline
;
807 static void blk_mq_timeout_work(struct work_struct
*work
)
809 struct request_queue
*q
=
810 container_of(work
, struct request_queue
, timeout_work
);
811 struct blk_mq_timeout_data data
= {
817 /* A deadlock might occur if a request is stuck requiring a
818 * timeout at the same time a queue freeze is waiting
819 * completion, since the timeout code would not be able to
820 * acquire the queue reference here.
822 * That's why we don't use blk_queue_enter here; instead, we use
823 * percpu_ref_tryget directly, because we need to be able to
824 * obtain a reference even in the short window between the queue
825 * starting to freeze, by dropping the first reference in
826 * blk_freeze_queue_start, and the moment the last request is
827 * consumed, marked by the instant q_usage_counter reaches
830 if (!percpu_ref_tryget(&q
->q_usage_counter
))
833 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
836 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
837 mod_timer(&q
->timeout
, data
.next
);
839 struct blk_mq_hw_ctx
*hctx
;
841 queue_for_each_hw_ctx(q
, hctx
, i
) {
842 /* the hctx may be unmapped, so check it here */
843 if (blk_mq_hw_queue_mapped(hctx
))
844 blk_mq_tag_idle(hctx
);
850 struct flush_busy_ctx_data
{
851 struct blk_mq_hw_ctx
*hctx
;
852 struct list_head
*list
;
855 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
857 struct flush_busy_ctx_data
*flush_data
= data
;
858 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
859 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
861 sbitmap_clear_bit(sb
, bitnr
);
862 spin_lock(&ctx
->lock
);
863 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
864 spin_unlock(&ctx
->lock
);
869 * Process software queues that have been marked busy, splicing them
870 * to the for-dispatch
872 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
874 struct flush_busy_ctx_data data
= {
879 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
881 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
883 static inline unsigned int queued_to_index(unsigned int queued
)
888 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
891 bool blk_mq_get_driver_tag(struct request
*rq
, struct blk_mq_hw_ctx
**hctx
,
894 struct blk_mq_alloc_data data
= {
896 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
897 .flags
= wait
? 0 : BLK_MQ_REQ_NOWAIT
,
900 might_sleep_if(wait
);
905 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
906 data
.flags
|= BLK_MQ_REQ_RESERVED
;
908 rq
->tag
= blk_mq_get_tag(&data
);
910 if (blk_mq_tag_busy(data
.hctx
)) {
911 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
912 atomic_inc(&data
.hctx
->nr_active
);
914 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
920 return rq
->tag
!= -1;
923 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx
*hctx
,
926 blk_mq_put_tag(hctx
, hctx
->tags
, rq
->mq_ctx
, rq
->tag
);
929 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
) {
930 rq
->rq_flags
&= ~RQF_MQ_INFLIGHT
;
931 atomic_dec(&hctx
->nr_active
);
935 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx
*hctx
,
938 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
941 __blk_mq_put_driver_tag(hctx
, rq
);
944 static void blk_mq_put_driver_tag(struct request
*rq
)
946 struct blk_mq_hw_ctx
*hctx
;
948 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
951 hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
);
952 __blk_mq_put_driver_tag(hctx
, rq
);
956 * If we fail getting a driver tag because all the driver tags are already
957 * assigned and on the dispatch list, BUT the first entry does not have a
958 * tag, then we could deadlock. For that case, move entries with assigned
959 * driver tags to the front, leaving the set of tagged requests in the
960 * same order, and the untagged set in the same order.
962 static bool reorder_tags_to_front(struct list_head
*list
)
964 struct request
*rq
, *tmp
, *first
= NULL
;
966 list_for_each_entry_safe_reverse(rq
, tmp
, list
, queuelist
) {
970 list_move(&rq
->queuelist
, list
);
976 return first
!= NULL
;
979 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
, int flags
,
982 struct blk_mq_hw_ctx
*hctx
;
984 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
986 list_del(&wait
->entry
);
987 clear_bit_unlock(BLK_MQ_S_TAG_WAITING
, &hctx
->state
);
988 blk_mq_run_hw_queue(hctx
, true);
992 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx
*hctx
)
994 struct sbq_wait_state
*ws
;
997 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
998 * The thread which wins the race to grab this bit adds the hardware
999 * queue to the wait queue.
1001 if (test_bit(BLK_MQ_S_TAG_WAITING
, &hctx
->state
) ||
1002 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING
, &hctx
->state
))
1005 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
1006 ws
= bt_wait_ptr(&hctx
->tags
->bitmap_tags
, hctx
);
1009 * As soon as this returns, it's no longer safe to fiddle with
1010 * hctx->dispatch_wait, since a completion can wake up the wait queue
1011 * and unlock the bit.
1013 add_wait_queue(&ws
->wait
, &hctx
->dispatch_wait
);
1017 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
)
1019 struct blk_mq_hw_ctx
*hctx
;
1023 if (list_empty(list
))
1027 * Now process all the entries, sending them to the driver.
1029 errors
= queued
= 0;
1031 struct blk_mq_queue_data bd
;
1034 rq
= list_first_entry(list
, struct request
, queuelist
);
1035 if (!blk_mq_get_driver_tag(rq
, &hctx
, false)) {
1036 if (!queued
&& reorder_tags_to_front(list
))
1040 * The initial allocation attempt failed, so we need to
1041 * rerun the hardware queue when a tag is freed.
1043 if (!blk_mq_dispatch_wait_add(hctx
))
1047 * It's possible that a tag was freed in the window
1048 * between the allocation failure and adding the
1049 * hardware queue to the wait queue.
1051 if (!blk_mq_get_driver_tag(rq
, &hctx
, false))
1055 list_del_init(&rq
->queuelist
);
1060 * Flag last if we have no more requests, or if we have more
1061 * but can't assign a driver tag to it.
1063 if (list_empty(list
))
1066 struct request
*nxt
;
1068 nxt
= list_first_entry(list
, struct request
, queuelist
);
1069 bd
.last
= !blk_mq_get_driver_tag(nxt
, NULL
, false);
1072 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1073 if (ret
== BLK_STS_RESOURCE
) {
1074 blk_mq_put_driver_tag_hctx(hctx
, rq
);
1075 list_add(&rq
->queuelist
, list
);
1076 __blk_mq_requeue_request(rq
);
1080 if (unlikely(ret
!= BLK_STS_OK
)) {
1082 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1087 } while (!list_empty(list
));
1089 hctx
->dispatched
[queued_to_index(queued
)]++;
1092 * Any items that need requeuing? Stuff them into hctx->dispatch,
1093 * that is where we will continue on next queue run.
1095 if (!list_empty(list
)) {
1097 * If an I/O scheduler has been configured and we got a driver
1098 * tag for the next request already, free it again.
1100 rq
= list_first_entry(list
, struct request
, queuelist
);
1101 blk_mq_put_driver_tag(rq
);
1103 spin_lock(&hctx
->lock
);
1104 list_splice_init(list
, &hctx
->dispatch
);
1105 spin_unlock(&hctx
->lock
);
1108 * If SCHED_RESTART was set by the caller of this function and
1109 * it is no longer set that means that it was cleared by another
1110 * thread and hence that a queue rerun is needed.
1112 * If TAG_WAITING is set that means that an I/O scheduler has
1113 * been configured and another thread is waiting for a driver
1114 * tag. To guarantee fairness, do not rerun this hardware queue
1115 * but let the other thread grab the driver tag.
1117 * If no I/O scheduler has been configured it is possible that
1118 * the hardware queue got stopped and restarted before requests
1119 * were pushed back onto the dispatch list. Rerun the queue to
1120 * avoid starvation. Notes:
1121 * - blk_mq_run_hw_queue() checks whether or not a queue has
1122 * been stopped before rerunning a queue.
1123 * - Some but not all block drivers stop a queue before
1124 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1127 if (!blk_mq_sched_needs_restart(hctx
) &&
1128 !test_bit(BLK_MQ_S_TAG_WAITING
, &hctx
->state
))
1129 blk_mq_run_hw_queue(hctx
, true);
1132 return (queued
+ errors
) != 0;
1135 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1140 * We should be running this queue from one of the CPUs that
1143 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1144 cpu_online(hctx
->next_cpu
));
1147 * We can't run the queue inline with ints disabled. Ensure that
1148 * we catch bad users of this early.
1150 WARN_ON_ONCE(in_interrupt());
1152 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1154 blk_mq_sched_dispatch_requests(hctx
);
1159 srcu_idx
= srcu_read_lock(hctx
->queue_rq_srcu
);
1160 blk_mq_sched_dispatch_requests(hctx
);
1161 srcu_read_unlock(hctx
->queue_rq_srcu
, srcu_idx
);
1166 * It'd be great if the workqueue API had a way to pass
1167 * in a mask and had some smarts for more clever placement.
1168 * For now we just round-robin here, switching for every
1169 * BLK_MQ_CPU_WORK_BATCH queued items.
1171 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1173 if (hctx
->queue
->nr_hw_queues
== 1)
1174 return WORK_CPU_UNBOUND
;
1176 if (--hctx
->next_cpu_batch
<= 0) {
1179 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
1180 if (next_cpu
>= nr_cpu_ids
)
1181 next_cpu
= cpumask_first(hctx
->cpumask
);
1183 hctx
->next_cpu
= next_cpu
;
1184 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1187 return hctx
->next_cpu
;
1190 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1191 unsigned long msecs
)
1193 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx
)))
1196 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1199 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1200 int cpu
= get_cpu();
1201 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1202 __blk_mq_run_hw_queue(hctx
);
1210 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1212 msecs_to_jiffies(msecs
));
1215 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1217 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1219 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1221 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1223 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1225 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1227 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1229 struct blk_mq_hw_ctx
*hctx
;
1232 queue_for_each_hw_ctx(q
, hctx
, i
) {
1233 if (!blk_mq_hctx_has_pending(hctx
) ||
1234 blk_mq_hctx_stopped(hctx
))
1237 blk_mq_run_hw_queue(hctx
, async
);
1240 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1243 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1244 * @q: request queue.
1246 * The caller is responsible for serializing this function against
1247 * blk_mq_{start,stop}_hw_queue().
1249 bool blk_mq_queue_stopped(struct request_queue
*q
)
1251 struct blk_mq_hw_ctx
*hctx
;
1254 queue_for_each_hw_ctx(q
, hctx
, i
)
1255 if (blk_mq_hctx_stopped(hctx
))
1260 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1263 * This function is often used for pausing .queue_rq() by driver when
1264 * there isn't enough resource or some conditions aren't satisfied, and
1265 * BLK_STS_RESOURCE is usually returned.
1267 * We do not guarantee that dispatch can be drained or blocked
1268 * after blk_mq_stop_hw_queue() returns. Please use
1269 * blk_mq_quiesce_queue() for that requirement.
1271 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1273 cancel_delayed_work(&hctx
->run_work
);
1275 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1277 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1280 * This function is often used for pausing .queue_rq() by driver when
1281 * there isn't enough resource or some conditions aren't satisfied, and
1282 * BLK_STS_RESOURCE is usually returned.
1284 * We do not guarantee that dispatch can be drained or blocked
1285 * after blk_mq_stop_hw_queues() returns. Please use
1286 * blk_mq_quiesce_queue() for that requirement.
1288 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1290 struct blk_mq_hw_ctx
*hctx
;
1293 queue_for_each_hw_ctx(q
, hctx
, i
)
1294 blk_mq_stop_hw_queue(hctx
);
1296 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1298 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1300 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1302 blk_mq_run_hw_queue(hctx
, false);
1304 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1306 void blk_mq_start_hw_queues(struct request_queue
*q
)
1308 struct blk_mq_hw_ctx
*hctx
;
1311 queue_for_each_hw_ctx(q
, hctx
, i
)
1312 blk_mq_start_hw_queue(hctx
);
1314 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1316 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1318 if (!blk_mq_hctx_stopped(hctx
))
1321 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1322 blk_mq_run_hw_queue(hctx
, async
);
1324 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1326 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1328 struct blk_mq_hw_ctx
*hctx
;
1331 queue_for_each_hw_ctx(q
, hctx
, i
)
1332 blk_mq_start_stopped_hw_queue(hctx
, async
);
1334 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1336 static void blk_mq_run_work_fn(struct work_struct
*work
)
1338 struct blk_mq_hw_ctx
*hctx
;
1340 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1343 * If we are stopped, don't run the queue. The exception is if
1344 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1345 * the STOPPED bit and run it.
1347 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)) {
1348 if (!test_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
))
1351 clear_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1352 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1355 __blk_mq_run_hw_queue(hctx
);
1359 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1361 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx
)))
1365 * Stop the hw queue, then modify currently delayed work.
1366 * This should prevent us from running the queue prematurely.
1367 * Mark the queue as auto-clearing STOPPED when it runs.
1369 blk_mq_stop_hw_queue(hctx
);
1370 set_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1371 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1373 msecs_to_jiffies(msecs
));
1375 EXPORT_SYMBOL(blk_mq_delay_queue
);
1377 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1381 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1383 lockdep_assert_held(&ctx
->lock
);
1385 trace_block_rq_insert(hctx
->queue
, rq
);
1388 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1390 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1393 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1396 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1398 lockdep_assert_held(&ctx
->lock
);
1400 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1401 blk_mq_hctx_mark_pending(hctx
, ctx
);
1405 * Should only be used carefully, when the caller knows we want to
1406 * bypass a potential IO scheduler on the target device.
1408 void blk_mq_request_bypass_insert(struct request
*rq
)
1410 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1411 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1413 spin_lock(&hctx
->lock
);
1414 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1415 spin_unlock(&hctx
->lock
);
1417 blk_mq_run_hw_queue(hctx
, false);
1420 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1421 struct list_head
*list
)
1425 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1428 spin_lock(&ctx
->lock
);
1429 while (!list_empty(list
)) {
1432 rq
= list_first_entry(list
, struct request
, queuelist
);
1433 BUG_ON(rq
->mq_ctx
!= ctx
);
1434 list_del_init(&rq
->queuelist
);
1435 __blk_mq_insert_req_list(hctx
, rq
, false);
1437 blk_mq_hctx_mark_pending(hctx
, ctx
);
1438 spin_unlock(&ctx
->lock
);
1441 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1443 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1444 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1446 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1447 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1448 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1451 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1453 struct blk_mq_ctx
*this_ctx
;
1454 struct request_queue
*this_q
;
1457 LIST_HEAD(ctx_list
);
1460 list_splice_init(&plug
->mq_list
, &list
);
1462 list_sort(NULL
, &list
, plug_ctx_cmp
);
1468 while (!list_empty(&list
)) {
1469 rq
= list_entry_rq(list
.next
);
1470 list_del_init(&rq
->queuelist
);
1472 if (rq
->mq_ctx
!= this_ctx
) {
1474 trace_block_unplug(this_q
, depth
, from_schedule
);
1475 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1480 this_ctx
= rq
->mq_ctx
;
1486 list_add_tail(&rq
->queuelist
, &ctx_list
);
1490 * If 'this_ctx' is set, we know we have entries to complete
1491 * on 'ctx_list'. Do those.
1494 trace_block_unplug(this_q
, depth
, from_schedule
);
1495 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1500 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1502 blk_init_request_from_bio(rq
, bio
);
1504 blk_account_io_start(rq
, true);
1507 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1509 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1510 !blk_queue_nomerges(hctx
->queue
);
1513 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx
*hctx
,
1514 struct blk_mq_ctx
*ctx
,
1517 spin_lock(&ctx
->lock
);
1518 __blk_mq_insert_request(hctx
, rq
, false);
1519 spin_unlock(&ctx
->lock
);
1522 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1525 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1527 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1530 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1532 blk_qc_t
*cookie
, bool may_sleep
)
1534 struct request_queue
*q
= rq
->q
;
1535 struct blk_mq_queue_data bd
= {
1539 blk_qc_t new_cookie
;
1541 bool run_queue
= true;
1543 /* RCU or SRCU read lock is needed before checking quiesced flag */
1544 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1552 if (!blk_mq_get_driver_tag(rq
, NULL
, false))
1555 new_cookie
= request_to_qc_t(hctx
, rq
);
1558 * For OK queue, we are done. For error, kill it. Any other
1559 * error (busy), just add it to our list as we previously
1562 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1565 *cookie
= new_cookie
;
1567 case BLK_STS_RESOURCE
:
1568 __blk_mq_requeue_request(rq
);
1571 *cookie
= BLK_QC_T_NONE
;
1572 blk_mq_end_request(rq
, ret
);
1577 blk_mq_sched_insert_request(rq
, false, run_queue
, false, may_sleep
);
1580 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1581 struct request
*rq
, blk_qc_t
*cookie
)
1583 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1585 __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1588 unsigned int srcu_idx
;
1592 srcu_idx
= srcu_read_lock(hctx
->queue_rq_srcu
);
1593 __blk_mq_try_issue_directly(hctx
, rq
, cookie
, true);
1594 srcu_read_unlock(hctx
->queue_rq_srcu
, srcu_idx
);
1598 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1600 const int is_sync
= op_is_sync(bio
->bi_opf
);
1601 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1602 struct blk_mq_alloc_data data
= { .flags
= 0 };
1604 unsigned int request_count
= 0;
1605 struct blk_plug
*plug
;
1606 struct request
*same_queue_rq
= NULL
;
1608 unsigned int wb_acct
;
1610 blk_queue_bounce(q
, &bio
);
1612 blk_queue_split(q
, &bio
);
1614 if (!bio_integrity_prep(bio
))
1615 return BLK_QC_T_NONE
;
1617 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1618 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1619 return BLK_QC_T_NONE
;
1621 if (blk_mq_sched_bio_merge(q
, bio
))
1622 return BLK_QC_T_NONE
;
1624 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1626 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1628 rq
= blk_mq_get_request(q
, bio
, bio
->bi_opf
, &data
);
1629 if (unlikely(!rq
)) {
1630 __wbt_done(q
->rq_wb
, wb_acct
);
1631 if (bio
->bi_opf
& REQ_NOWAIT
)
1632 bio_wouldblock_error(bio
);
1633 return BLK_QC_T_NONE
;
1636 wbt_track(&rq
->issue_stat
, wb_acct
);
1638 cookie
= request_to_qc_t(data
.hctx
, rq
);
1640 plug
= current
->plug
;
1641 if (unlikely(is_flush_fua
)) {
1642 blk_mq_put_ctx(data
.ctx
);
1643 blk_mq_bio_to_request(rq
, bio
);
1645 blk_mq_sched_insert_request(rq
, false, true, true,
1648 blk_insert_flush(rq
);
1649 blk_mq_run_hw_queue(data
.hctx
, true);
1651 } else if (plug
&& q
->nr_hw_queues
== 1) {
1652 struct request
*last
= NULL
;
1654 blk_mq_put_ctx(data
.ctx
);
1655 blk_mq_bio_to_request(rq
, bio
);
1658 * @request_count may become stale because of schedule
1659 * out, so check the list again.
1661 if (list_empty(&plug
->mq_list
))
1663 else if (blk_queue_nomerges(q
))
1664 request_count
= blk_plug_queued_count(q
);
1667 trace_block_plug(q
);
1669 last
= list_entry_rq(plug
->mq_list
.prev
);
1671 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1672 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1673 blk_flush_plug_list(plug
, false);
1674 trace_block_plug(q
);
1677 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1678 } else if (plug
&& !blk_queue_nomerges(q
)) {
1679 blk_mq_bio_to_request(rq
, bio
);
1682 * We do limited plugging. If the bio can be merged, do that.
1683 * Otherwise the existing request in the plug list will be
1684 * issued. So the plug list will have one request at most
1685 * The plug list might get flushed before this. If that happens,
1686 * the plug list is empty, and same_queue_rq is invalid.
1688 if (list_empty(&plug
->mq_list
))
1689 same_queue_rq
= NULL
;
1691 list_del_init(&same_queue_rq
->queuelist
);
1692 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1694 blk_mq_put_ctx(data
.ctx
);
1696 if (same_queue_rq
) {
1697 data
.hctx
= blk_mq_map_queue(q
,
1698 same_queue_rq
->mq_ctx
->cpu
);
1699 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1702 } else if (q
->nr_hw_queues
> 1 && is_sync
) {
1703 blk_mq_put_ctx(data
.ctx
);
1704 blk_mq_bio_to_request(rq
, bio
);
1705 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1706 } else if (q
->elevator
) {
1707 blk_mq_put_ctx(data
.ctx
);
1708 blk_mq_bio_to_request(rq
, bio
);
1709 blk_mq_sched_insert_request(rq
, false, true, true, true);
1711 blk_mq_put_ctx(data
.ctx
);
1712 blk_mq_bio_to_request(rq
, bio
);
1713 blk_mq_queue_io(data
.hctx
, data
.ctx
, rq
);
1714 blk_mq_run_hw_queue(data
.hctx
, true);
1720 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1721 unsigned int hctx_idx
)
1725 if (tags
->rqs
&& set
->ops
->exit_request
) {
1728 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1729 struct request
*rq
= tags
->static_rqs
[i
];
1733 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1734 tags
->static_rqs
[i
] = NULL
;
1738 while (!list_empty(&tags
->page_list
)) {
1739 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1740 list_del_init(&page
->lru
);
1742 * Remove kmemleak object previously allocated in
1743 * blk_mq_init_rq_map().
1745 kmemleak_free(page_address(page
));
1746 __free_pages(page
, page
->private);
1750 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1754 kfree(tags
->static_rqs
);
1755 tags
->static_rqs
= NULL
;
1757 blk_mq_free_tags(tags
);
1760 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1761 unsigned int hctx_idx
,
1762 unsigned int nr_tags
,
1763 unsigned int reserved_tags
)
1765 struct blk_mq_tags
*tags
;
1768 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1769 if (node
== NUMA_NO_NODE
)
1770 node
= set
->numa_node
;
1772 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1773 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1777 tags
->rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1778 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1781 blk_mq_free_tags(tags
);
1785 tags
->static_rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1786 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1788 if (!tags
->static_rqs
) {
1790 blk_mq_free_tags(tags
);
1797 static size_t order_to_size(unsigned int order
)
1799 return (size_t)PAGE_SIZE
<< order
;
1802 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1803 unsigned int hctx_idx
, unsigned int depth
)
1805 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1806 size_t rq_size
, left
;
1809 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1810 if (node
== NUMA_NO_NODE
)
1811 node
= set
->numa_node
;
1813 INIT_LIST_HEAD(&tags
->page_list
);
1816 * rq_size is the size of the request plus driver payload, rounded
1817 * to the cacheline size
1819 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1821 left
= rq_size
* depth
;
1823 for (i
= 0; i
< depth
; ) {
1824 int this_order
= max_order
;
1829 while (this_order
&& left
< order_to_size(this_order
- 1))
1833 page
= alloc_pages_node(node
,
1834 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1840 if (order_to_size(this_order
) < rq_size
)
1847 page
->private = this_order
;
1848 list_add_tail(&page
->lru
, &tags
->page_list
);
1850 p
= page_address(page
);
1852 * Allow kmemleak to scan these pages as they contain pointers
1853 * to additional allocations like via ops->init_request().
1855 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
1856 entries_per_page
= order_to_size(this_order
) / rq_size
;
1857 to_do
= min(entries_per_page
, depth
- i
);
1858 left
-= to_do
* rq_size
;
1859 for (j
= 0; j
< to_do
; j
++) {
1860 struct request
*rq
= p
;
1862 tags
->static_rqs
[i
] = rq
;
1863 if (set
->ops
->init_request
) {
1864 if (set
->ops
->init_request(set
, rq
, hctx_idx
,
1866 tags
->static_rqs
[i
] = NULL
;
1878 blk_mq_free_rqs(set
, tags
, hctx_idx
);
1883 * 'cpu' is going away. splice any existing rq_list entries from this
1884 * software queue to the hw queue dispatch list, and ensure that it
1887 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
1889 struct blk_mq_hw_ctx
*hctx
;
1890 struct blk_mq_ctx
*ctx
;
1893 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
1894 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1896 spin_lock(&ctx
->lock
);
1897 if (!list_empty(&ctx
->rq_list
)) {
1898 list_splice_init(&ctx
->rq_list
, &tmp
);
1899 blk_mq_hctx_clear_pending(hctx
, ctx
);
1901 spin_unlock(&ctx
->lock
);
1903 if (list_empty(&tmp
))
1906 spin_lock(&hctx
->lock
);
1907 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
1908 spin_unlock(&hctx
->lock
);
1910 blk_mq_run_hw_queue(hctx
, true);
1914 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
1916 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
1920 /* hctx->ctxs will be freed in queue's release handler */
1921 static void blk_mq_exit_hctx(struct request_queue
*q
,
1922 struct blk_mq_tag_set
*set
,
1923 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1925 blk_mq_debugfs_unregister_hctx(hctx
);
1927 blk_mq_tag_idle(hctx
);
1929 if (set
->ops
->exit_request
)
1930 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
1932 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
1934 if (set
->ops
->exit_hctx
)
1935 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1937 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1938 cleanup_srcu_struct(hctx
->queue_rq_srcu
);
1940 blk_mq_remove_cpuhp(hctx
);
1941 blk_free_flush_queue(hctx
->fq
);
1942 sbitmap_free(&hctx
->ctx_map
);
1945 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1946 struct blk_mq_tag_set
*set
, int nr_queue
)
1948 struct blk_mq_hw_ctx
*hctx
;
1951 queue_for_each_hw_ctx(q
, hctx
, i
) {
1954 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1958 static int blk_mq_init_hctx(struct request_queue
*q
,
1959 struct blk_mq_tag_set
*set
,
1960 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1964 node
= hctx
->numa_node
;
1965 if (node
== NUMA_NO_NODE
)
1966 node
= hctx
->numa_node
= set
->numa_node
;
1968 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1969 spin_lock_init(&hctx
->lock
);
1970 INIT_LIST_HEAD(&hctx
->dispatch
);
1972 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
1974 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
1976 hctx
->tags
= set
->tags
[hctx_idx
];
1979 * Allocate space for all possible cpus to avoid allocation at
1982 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1985 goto unregister_cpu_notifier
;
1987 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
1993 if (set
->ops
->init_hctx
&&
1994 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1997 if (blk_mq_sched_init_hctx(q
, hctx
, hctx_idx
))
2000 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
2002 goto sched_exit_hctx
;
2004 if (set
->ops
->init_request
&&
2005 set
->ops
->init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
2009 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2010 init_srcu_struct(hctx
->queue_rq_srcu
);
2012 blk_mq_debugfs_register_hctx(q
, hctx
);
2019 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
2021 if (set
->ops
->exit_hctx
)
2022 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2024 sbitmap_free(&hctx
->ctx_map
);
2027 unregister_cpu_notifier
:
2028 blk_mq_remove_cpuhp(hctx
);
2032 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2033 unsigned int nr_hw_queues
)
2037 for_each_possible_cpu(i
) {
2038 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2039 struct blk_mq_hw_ctx
*hctx
;
2042 spin_lock_init(&__ctx
->lock
);
2043 INIT_LIST_HEAD(&__ctx
->rq_list
);
2046 /* If the cpu isn't present, the cpu is mapped to first hctx */
2047 if (!cpu_present(i
))
2050 hctx
= blk_mq_map_queue(q
, i
);
2053 * Set local node, IFF we have more than one hw queue. If
2054 * not, we remain on the home node of the device
2056 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2057 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2061 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2065 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2066 set
->queue_depth
, set
->reserved_tags
);
2067 if (!set
->tags
[hctx_idx
])
2070 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2075 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2076 set
->tags
[hctx_idx
] = NULL
;
2080 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2081 unsigned int hctx_idx
)
2083 if (set
->tags
[hctx_idx
]) {
2084 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2085 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2086 set
->tags
[hctx_idx
] = NULL
;
2090 static void blk_mq_map_swqueue(struct request_queue
*q
)
2092 unsigned int i
, hctx_idx
;
2093 struct blk_mq_hw_ctx
*hctx
;
2094 struct blk_mq_ctx
*ctx
;
2095 struct blk_mq_tag_set
*set
= q
->tag_set
;
2098 * Avoid others reading imcomplete hctx->cpumask through sysfs
2100 mutex_lock(&q
->sysfs_lock
);
2102 queue_for_each_hw_ctx(q
, hctx
, i
) {
2103 cpumask_clear(hctx
->cpumask
);
2108 * Map software to hardware queues.
2110 * If the cpu isn't present, the cpu is mapped to first hctx.
2112 for_each_present_cpu(i
) {
2113 hctx_idx
= q
->mq_map
[i
];
2114 /* unmapped hw queue can be remapped after CPU topo changed */
2115 if (!set
->tags
[hctx_idx
] &&
2116 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2118 * If tags initialization fail for some hctx,
2119 * that hctx won't be brought online. In this
2120 * case, remap the current ctx to hctx[0] which
2121 * is guaranteed to always have tags allocated
2126 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2127 hctx
= blk_mq_map_queue(q
, i
);
2129 cpumask_set_cpu(i
, hctx
->cpumask
);
2130 ctx
->index_hw
= hctx
->nr_ctx
;
2131 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2134 mutex_unlock(&q
->sysfs_lock
);
2136 queue_for_each_hw_ctx(q
, hctx
, i
) {
2138 * If no software queues are mapped to this hardware queue,
2139 * disable it and free the request entries.
2141 if (!hctx
->nr_ctx
) {
2142 /* Never unmap queue 0. We need it as a
2143 * fallback in case of a new remap fails
2146 if (i
&& set
->tags
[i
])
2147 blk_mq_free_map_and_requests(set
, i
);
2153 hctx
->tags
= set
->tags
[i
];
2154 WARN_ON(!hctx
->tags
);
2157 * Set the map size to the number of mapped software queues.
2158 * This is more accurate and more efficient than looping
2159 * over all possibly mapped software queues.
2161 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2164 * Initialize batch roundrobin counts
2166 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
2167 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2172 * Caller needs to ensure that we're either frozen/quiesced, or that
2173 * the queue isn't live yet.
2175 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2177 struct blk_mq_hw_ctx
*hctx
;
2180 queue_for_each_hw_ctx(q
, hctx
, i
) {
2182 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2183 atomic_inc(&q
->shared_hctx_restart
);
2184 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2186 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2187 atomic_dec(&q
->shared_hctx_restart
);
2188 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2193 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2196 struct request_queue
*q
;
2198 lockdep_assert_held(&set
->tag_list_lock
);
2200 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2201 blk_mq_freeze_queue(q
);
2202 queue_set_hctx_shared(q
, shared
);
2203 blk_mq_unfreeze_queue(q
);
2207 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2209 struct blk_mq_tag_set
*set
= q
->tag_set
;
2211 mutex_lock(&set
->tag_list_lock
);
2212 list_del_rcu(&q
->tag_set_list
);
2213 INIT_LIST_HEAD(&q
->tag_set_list
);
2214 if (list_is_singular(&set
->tag_list
)) {
2215 /* just transitioned to unshared */
2216 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2217 /* update existing queue */
2218 blk_mq_update_tag_set_depth(set
, false);
2220 mutex_unlock(&set
->tag_list_lock
);
2225 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2226 struct request_queue
*q
)
2230 mutex_lock(&set
->tag_list_lock
);
2232 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2233 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2234 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2235 /* update existing queue */
2236 blk_mq_update_tag_set_depth(set
, true);
2238 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2239 queue_set_hctx_shared(q
, true);
2240 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2242 mutex_unlock(&set
->tag_list_lock
);
2246 * It is the actual release handler for mq, but we do it from
2247 * request queue's release handler for avoiding use-after-free
2248 * and headache because q->mq_kobj shouldn't have been introduced,
2249 * but we can't group ctx/kctx kobj without it.
2251 void blk_mq_release(struct request_queue
*q
)
2253 struct blk_mq_hw_ctx
*hctx
;
2256 /* hctx kobj stays in hctx */
2257 queue_for_each_hw_ctx(q
, hctx
, i
) {
2260 kobject_put(&hctx
->kobj
);
2265 kfree(q
->queue_hw_ctx
);
2268 * release .mq_kobj and sw queue's kobject now because
2269 * both share lifetime with request queue.
2271 blk_mq_sysfs_deinit(q
);
2273 free_percpu(q
->queue_ctx
);
2276 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2278 struct request_queue
*uninit_q
, *q
;
2280 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2282 return ERR_PTR(-ENOMEM
);
2284 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2286 blk_cleanup_queue(uninit_q
);
2290 EXPORT_SYMBOL(blk_mq_init_queue
);
2292 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2294 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2296 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, queue_rq_srcu
),
2297 __alignof__(struct blk_mq_hw_ctx
)) !=
2298 sizeof(struct blk_mq_hw_ctx
));
2300 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2301 hw_ctx_size
+= sizeof(struct srcu_struct
);
2306 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2307 struct request_queue
*q
)
2310 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2312 blk_mq_sysfs_unregister(q
);
2313 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2319 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2320 hctxs
[i
] = kzalloc_node(blk_mq_hw_ctx_size(set
),
2325 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2332 atomic_set(&hctxs
[i
]->nr_active
, 0);
2333 hctxs
[i
]->numa_node
= node
;
2334 hctxs
[i
]->queue_num
= i
;
2336 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2337 free_cpumask_var(hctxs
[i
]->cpumask
);
2342 blk_mq_hctx_kobj_init(hctxs
[i
]);
2344 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2345 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2349 blk_mq_free_map_and_requests(set
, j
);
2350 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2351 kobject_put(&hctx
->kobj
);
2356 q
->nr_hw_queues
= i
;
2357 blk_mq_sysfs_register(q
);
2360 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2361 struct request_queue
*q
)
2363 /* mark the queue as mq asap */
2364 q
->mq_ops
= set
->ops
;
2366 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2367 blk_mq_poll_stats_bkt
,
2368 BLK_MQ_POLL_STATS_BKTS
, q
);
2372 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2376 /* init q->mq_kobj and sw queues' kobjects */
2377 blk_mq_sysfs_init(q
);
2379 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2380 GFP_KERNEL
, set
->numa_node
);
2381 if (!q
->queue_hw_ctx
)
2384 q
->mq_map
= set
->mq_map
;
2386 blk_mq_realloc_hw_ctxs(set
, q
);
2387 if (!q
->nr_hw_queues
)
2390 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2391 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2393 q
->nr_queues
= nr_cpu_ids
;
2395 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2397 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2398 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2400 q
->sg_reserved_size
= INT_MAX
;
2402 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2403 INIT_LIST_HEAD(&q
->requeue_list
);
2404 spin_lock_init(&q
->requeue_lock
);
2406 blk_queue_make_request(q
, blk_mq_make_request
);
2409 * Do this after blk_queue_make_request() overrides it...
2411 q
->nr_requests
= set
->queue_depth
;
2414 * Default to classic polling
2418 if (set
->ops
->complete
)
2419 blk_queue_softirq_done(q
, set
->ops
->complete
);
2421 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2422 blk_mq_add_queue_tag_set(set
, q
);
2423 blk_mq_map_swqueue(q
);
2425 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2428 ret
= blk_mq_sched_init(q
);
2430 return ERR_PTR(ret
);
2436 kfree(q
->queue_hw_ctx
);
2438 free_percpu(q
->queue_ctx
);
2441 return ERR_PTR(-ENOMEM
);
2443 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2445 void blk_mq_free_queue(struct request_queue
*q
)
2447 struct blk_mq_tag_set
*set
= q
->tag_set
;
2449 blk_mq_del_queue_tag_set(q
);
2450 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2453 /* Basically redo blk_mq_init_queue with queue frozen */
2454 static void blk_mq_queue_reinit(struct request_queue
*q
)
2456 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2458 blk_mq_debugfs_unregister_hctxs(q
);
2459 blk_mq_sysfs_unregister(q
);
2462 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2463 * we should change hctx numa_node according to new topology (this
2464 * involves free and re-allocate memory, worthy doing?)
2467 blk_mq_map_swqueue(q
);
2469 blk_mq_sysfs_register(q
);
2470 blk_mq_debugfs_register_hctxs(q
);
2473 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2477 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2478 if (!__blk_mq_alloc_rq_map(set
, i
))
2485 blk_mq_free_rq_map(set
->tags
[i
]);
2491 * Allocate the request maps associated with this tag_set. Note that this
2492 * may reduce the depth asked for, if memory is tight. set->queue_depth
2493 * will be updated to reflect the allocated depth.
2495 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2500 depth
= set
->queue_depth
;
2502 err
= __blk_mq_alloc_rq_maps(set
);
2506 set
->queue_depth
>>= 1;
2507 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2511 } while (set
->queue_depth
);
2513 if (!set
->queue_depth
|| err
) {
2514 pr_err("blk-mq: failed to allocate request map\n");
2518 if (depth
!= set
->queue_depth
)
2519 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2520 depth
, set
->queue_depth
);
2525 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2527 if (set
->ops
->map_queues
)
2528 return set
->ops
->map_queues(set
);
2530 return blk_mq_map_queues(set
);
2534 * Alloc a tag set to be associated with one or more request queues.
2535 * May fail with EINVAL for various error conditions. May adjust the
2536 * requested depth down, if if it too large. In that case, the set
2537 * value will be stored in set->queue_depth.
2539 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2543 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2545 if (!set
->nr_hw_queues
)
2547 if (!set
->queue_depth
)
2549 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2552 if (!set
->ops
->queue_rq
)
2555 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2556 pr_info("blk-mq: reduced tag depth to %u\n",
2558 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2562 * If a crashdump is active, then we are potentially in a very
2563 * memory constrained environment. Limit us to 1 queue and
2564 * 64 tags to prevent using too much memory.
2566 if (is_kdump_kernel()) {
2567 set
->nr_hw_queues
= 1;
2568 set
->queue_depth
= min(64U, set
->queue_depth
);
2571 * There is no use for more h/w queues than cpus.
2573 if (set
->nr_hw_queues
> nr_cpu_ids
)
2574 set
->nr_hw_queues
= nr_cpu_ids
;
2576 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2577 GFP_KERNEL
, set
->numa_node
);
2582 set
->mq_map
= kzalloc_node(sizeof(*set
->mq_map
) * nr_cpu_ids
,
2583 GFP_KERNEL
, set
->numa_node
);
2587 ret
= blk_mq_update_queue_map(set
);
2589 goto out_free_mq_map
;
2591 ret
= blk_mq_alloc_rq_maps(set
);
2593 goto out_free_mq_map
;
2595 mutex_init(&set
->tag_list_lock
);
2596 INIT_LIST_HEAD(&set
->tag_list
);
2608 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2610 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2614 for (i
= 0; i
< nr_cpu_ids
; i
++)
2615 blk_mq_free_map_and_requests(set
, i
);
2623 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2625 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2627 struct blk_mq_tag_set
*set
= q
->tag_set
;
2628 struct blk_mq_hw_ctx
*hctx
;
2634 blk_mq_freeze_queue(q
);
2637 queue_for_each_hw_ctx(q
, hctx
, i
) {
2641 * If we're using an MQ scheduler, just update the scheduler
2642 * queue depth. This is similar to what the old code would do.
2644 if (!hctx
->sched_tags
) {
2645 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
,
2646 min(nr
, set
->queue_depth
),
2649 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2657 q
->nr_requests
= nr
;
2659 blk_mq_unfreeze_queue(q
);
2664 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
2667 struct request_queue
*q
;
2669 lockdep_assert_held(&set
->tag_list_lock
);
2671 if (nr_hw_queues
> nr_cpu_ids
)
2672 nr_hw_queues
= nr_cpu_ids
;
2673 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2676 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2677 blk_mq_freeze_queue(q
);
2679 set
->nr_hw_queues
= nr_hw_queues
;
2680 blk_mq_update_queue_map(set
);
2681 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2682 blk_mq_realloc_hw_ctxs(set
, q
);
2683 blk_mq_queue_reinit(q
);
2686 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2687 blk_mq_unfreeze_queue(q
);
2690 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2692 mutex_lock(&set
->tag_list_lock
);
2693 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
2694 mutex_unlock(&set
->tag_list_lock
);
2696 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2698 /* Enable polling stats and return whether they were already enabled. */
2699 static bool blk_poll_stats_enable(struct request_queue
*q
)
2701 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2702 test_and_set_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
))
2704 blk_stat_add_callback(q
, q
->poll_cb
);
2708 static void blk_mq_poll_stats_start(struct request_queue
*q
)
2711 * We don't arm the callback if polling stats are not enabled or the
2712 * callback is already active.
2714 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2715 blk_stat_is_active(q
->poll_cb
))
2718 blk_stat_activate_msecs(q
->poll_cb
, 100);
2721 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
2723 struct request_queue
*q
= cb
->data
;
2726 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
2727 if (cb
->stat
[bucket
].nr_samples
)
2728 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
2732 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
2733 struct blk_mq_hw_ctx
*hctx
,
2736 unsigned long ret
= 0;
2740 * If stats collection isn't on, don't sleep but turn it on for
2743 if (!blk_poll_stats_enable(q
))
2747 * As an optimistic guess, use half of the mean service time
2748 * for this type of request. We can (and should) make this smarter.
2749 * For instance, if the completion latencies are tight, we can
2750 * get closer than just half the mean. This is especially
2751 * important on devices where the completion latencies are longer
2752 * than ~10 usec. We do use the stats for the relevant IO size
2753 * if available which does lead to better estimates.
2755 bucket
= blk_mq_poll_stats_bkt(rq
);
2759 if (q
->poll_stat
[bucket
].nr_samples
)
2760 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
2765 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
2766 struct blk_mq_hw_ctx
*hctx
,
2769 struct hrtimer_sleeper hs
;
2770 enum hrtimer_mode mode
;
2774 if (test_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
))
2780 * -1: don't ever hybrid sleep
2781 * 0: use half of prev avg
2782 * >0: use this specific value
2784 if (q
->poll_nsec
== -1)
2786 else if (q
->poll_nsec
> 0)
2787 nsecs
= q
->poll_nsec
;
2789 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
2794 set_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
2797 * This will be replaced with the stats tracking code, using
2798 * 'avg_completion_time / 2' as the pre-sleep target.
2802 mode
= HRTIMER_MODE_REL
;
2803 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
2804 hrtimer_set_expires(&hs
.timer
, kt
);
2806 hrtimer_init_sleeper(&hs
, current
);
2808 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
2810 set_current_state(TASK_UNINTERRUPTIBLE
);
2811 hrtimer_start_expires(&hs
.timer
, mode
);
2814 hrtimer_cancel(&hs
.timer
);
2815 mode
= HRTIMER_MODE_ABS
;
2816 } while (hs
.task
&& !signal_pending(current
));
2818 __set_current_state(TASK_RUNNING
);
2819 destroy_hrtimer_on_stack(&hs
.timer
);
2823 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
2825 struct request_queue
*q
= hctx
->queue
;
2829 * If we sleep, have the caller restart the poll loop to reset
2830 * the state. Like for the other success return cases, the
2831 * caller is responsible for checking if the IO completed. If
2832 * the IO isn't complete, we'll get called again and will go
2833 * straight to the busy poll loop.
2835 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
2838 hctx
->poll_considered
++;
2840 state
= current
->state
;
2841 while (!need_resched()) {
2844 hctx
->poll_invoked
++;
2846 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
2848 hctx
->poll_success
++;
2849 set_current_state(TASK_RUNNING
);
2853 if (signal_pending_state(state
, current
))
2854 set_current_state(TASK_RUNNING
);
2856 if (current
->state
== TASK_RUNNING
)
2866 bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
2868 struct blk_mq_hw_ctx
*hctx
;
2869 struct blk_plug
*plug
;
2872 if (!q
->mq_ops
|| !q
->mq_ops
->poll
|| !blk_qc_t_valid(cookie
) ||
2873 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
2876 plug
= current
->plug
;
2878 blk_flush_plug_list(plug
, false);
2880 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
2881 if (!blk_qc_t_is_internal(cookie
))
2882 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
2884 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
2886 * With scheduling, if the request has completed, we'll
2887 * get a NULL return here, as we clear the sched tag when
2888 * that happens. The request still remains valid, like always,
2889 * so we should be safe with just the NULL check.
2895 return __blk_mq_poll(hctx
, rq
);
2897 EXPORT_SYMBOL_GPL(blk_mq_poll
);
2899 static int __init
blk_mq_init(void)
2901 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
2902 blk_mq_hctx_notify_dead
);
2905 subsys_initcall(blk_mq_init
);