stmmac: fix MDIO settings
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
blob78464fa7fe1f2ecfe93fbaa00e9b300f550cfded
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
60 /* Module parameters */
61 #define TX_TIMEO 5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, S_IRUGO | S_IWUSR);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70 static int phyaddr = -1;
71 module_param(phyaddr, int, S_IRUGO);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
74 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
90 #define DEFAULT_BUFSIZE 1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95 #define STMMAC_RX_COPYBREAK 256
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101 #define STMMAC_DEFAULT_LPI_TIMER 1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107 /* By default the driver will use the ring mode to manage tx and rx descriptors
108 * but passing this value so user can force to use the chain instead of the ring
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, S_IRUGO);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device *dev);
118 static void stmmac_exit_fs(struct net_device *dev);
119 #endif
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124 * stmmac_verify_args - verify the driver parameters.
125 * Description: it checks the driver parameters and set a default in case of
126 * errors.
128 static void stmmac_verify_args(void)
130 if (unlikely(watchdog < 0))
131 watchdog = TX_TIMEO;
132 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
133 buf_sz = DEFAULT_BUFSIZE;
134 if (unlikely(flow_ctrl > 1))
135 flow_ctrl = FLOW_AUTO;
136 else if (likely(flow_ctrl < 0))
137 flow_ctrl = FLOW_OFF;
138 if (unlikely((pause < 0) || (pause > 0xffff)))
139 pause = PAUSE_TIME;
140 if (eee_timer < 0)
141 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
145 * stmmac_clk_csr_set - dynamically set the MDC clock
146 * @priv: driver private structure
147 * Description: this is to dynamically set the MDC clock according to the csr
148 * clock input.
149 * Note:
150 * If a specific clk_csr value is passed from the platform
151 * this means that the CSR Clock Range selection cannot be
152 * changed at run-time and it is fixed (as reported in the driver
153 * documentation). Viceversa the driver will try to set the MDC
154 * clock dynamically according to the actual clock input.
156 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158 u32 clk_rate;
160 clk_rate = clk_get_rate(priv->stmmac_clk);
162 /* Platform provided default clk_csr would be assumed valid
163 * for all other cases except for the below mentioned ones.
164 * For values higher than the IEEE 802.3 specified frequency
165 * we can not estimate the proper divider as it is not known
166 * the frequency of clk_csr_i. So we do not change the default
167 * divider.
169 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
170 if (clk_rate < CSR_F_35M)
171 priv->clk_csr = STMMAC_CSR_20_35M;
172 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
173 priv->clk_csr = STMMAC_CSR_35_60M;
174 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
175 priv->clk_csr = STMMAC_CSR_60_100M;
176 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
177 priv->clk_csr = STMMAC_CSR_100_150M;
178 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
179 priv->clk_csr = STMMAC_CSR_150_250M;
180 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
181 priv->clk_csr = STMMAC_CSR_250_300M;
185 static void print_pkt(unsigned char *buf, int len)
187 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
188 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
191 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193 unsigned avail;
195 if (priv->dirty_tx > priv->cur_tx)
196 avail = priv->dirty_tx - priv->cur_tx - 1;
197 else
198 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200 return avail;
203 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205 unsigned dirty;
207 if (priv->dirty_rx <= priv->cur_rx)
208 dirty = priv->cur_rx - priv->dirty_rx;
209 else
210 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212 return dirty;
216 * stmmac_hw_fix_mac_speed - callback for speed selection
217 * @priv: driver private structure
218 * Description: on some platforms (e.g. ST), some HW system configuraton
219 * registers have to be set according to the link speed negotiated.
221 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223 struct phy_device *phydev = priv->phydev;
225 if (likely(priv->plat->fix_mac_speed))
226 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
230 * stmmac_enable_eee_mode - check and enter in LPI mode
231 * @priv: driver private structure
232 * Description: this function is to verify and enter in LPI mode in case of
233 * EEE.
235 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 /* Check and enter in LPI mode */
238 if ((priv->dirty_tx == priv->cur_tx) &&
239 (priv->tx_path_in_lpi_mode == false))
240 priv->hw->mac->set_eee_mode(priv->hw);
244 * stmmac_disable_eee_mode - disable and exit from LPI mode
245 * @priv: driver private structure
246 * Description: this function is to exit and disable EEE in case of
247 * LPI state is true. This is called by the xmit.
249 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
251 priv->hw->mac->reset_eee_mode(priv->hw);
252 del_timer_sync(&priv->eee_ctrl_timer);
253 priv->tx_path_in_lpi_mode = false;
257 * stmmac_eee_ctrl_timer - EEE TX SW timer.
258 * @arg : data hook
259 * Description:
260 * if there is no data transfer and if we are not in LPI state,
261 * then MAC Transmitter can be moved to LPI state.
263 static void stmmac_eee_ctrl_timer(unsigned long arg)
265 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
267 stmmac_enable_eee_mode(priv);
268 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
272 * stmmac_eee_init - init EEE
273 * @priv: driver private structure
274 * Description:
275 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
276 * can also manage EEE, this function enable the LPI state and start related
277 * timer.
279 bool stmmac_eee_init(struct stmmac_priv *priv)
281 unsigned long flags;
282 bool ret = false;
284 /* Using PCS we cannot dial with the phy registers at this stage
285 * so we do not support extra feature like EEE.
287 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
288 (priv->pcs == STMMAC_PCS_RTBI))
289 goto out;
291 /* Never init EEE in case of a switch is attached */
292 if (priv->phydev->is_pseudo_fixed_link)
293 goto out;
295 /* MAC core supports the EEE feature. */
296 if (priv->dma_cap.eee) {
297 int tx_lpi_timer = priv->tx_lpi_timer;
299 /* Check if the PHY supports EEE */
300 if (phy_init_eee(priv->phydev, 1)) {
301 /* To manage at run-time if the EEE cannot be supported
302 * anymore (for example because the lp caps have been
303 * changed).
304 * In that case the driver disable own timers.
306 spin_lock_irqsave(&priv->lock, flags);
307 if (priv->eee_active) {
308 pr_debug("stmmac: disable EEE\n");
309 del_timer_sync(&priv->eee_ctrl_timer);
310 priv->hw->mac->set_eee_timer(priv->hw, 0,
311 tx_lpi_timer);
313 priv->eee_active = 0;
314 spin_unlock_irqrestore(&priv->lock, flags);
315 goto out;
317 /* Activate the EEE and start timers */
318 spin_lock_irqsave(&priv->lock, flags);
319 if (!priv->eee_active) {
320 priv->eee_active = 1;
321 setup_timer(&priv->eee_ctrl_timer,
322 stmmac_eee_ctrl_timer,
323 (unsigned long)priv);
324 mod_timer(&priv->eee_ctrl_timer,
325 STMMAC_LPI_T(eee_timer));
327 priv->hw->mac->set_eee_timer(priv->hw,
328 STMMAC_DEFAULT_LIT_LS,
329 tx_lpi_timer);
331 /* Set HW EEE according to the speed */
332 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
334 ret = true;
335 spin_unlock_irqrestore(&priv->lock, flags);
337 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
339 out:
340 return ret;
343 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
344 * @priv: driver private structure
345 * @entry : descriptor index to be used.
346 * @skb : the socket buffer
347 * Description :
348 * This function will read timestamp from the descriptor & pass it to stack.
349 * and also perform some sanity checks.
351 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
352 unsigned int entry, struct sk_buff *skb)
354 struct skb_shared_hwtstamps shhwtstamp;
355 u64 ns;
356 void *desc = NULL;
358 if (!priv->hwts_tx_en)
359 return;
361 /* exit if skb doesn't support hw tstamp */
362 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
363 return;
365 if (priv->adv_ts)
366 desc = (priv->dma_etx + entry);
367 else
368 desc = (priv->dma_tx + entry);
370 /* check tx tstamp status */
371 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
372 return;
374 /* get the valid tstamp */
375 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
377 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
378 shhwtstamp.hwtstamp = ns_to_ktime(ns);
379 /* pass tstamp to stack */
380 skb_tstamp_tx(skb, &shhwtstamp);
382 return;
385 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
386 * @priv: driver private structure
387 * @entry : descriptor index to be used.
388 * @skb : the socket buffer
389 * Description :
390 * This function will read received packet's timestamp from the descriptor
391 * and pass it to stack. It also perform some sanity checks.
393 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
394 unsigned int entry, struct sk_buff *skb)
396 struct skb_shared_hwtstamps *shhwtstamp = NULL;
397 u64 ns;
398 void *desc = NULL;
400 if (!priv->hwts_rx_en)
401 return;
403 if (priv->adv_ts)
404 desc = (priv->dma_erx + entry);
405 else
406 desc = (priv->dma_rx + entry);
408 /* exit if rx tstamp is not valid */
409 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
410 return;
412 /* get valid tstamp */
413 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
414 shhwtstamp = skb_hwtstamps(skb);
415 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
416 shhwtstamp->hwtstamp = ns_to_ktime(ns);
420 * stmmac_hwtstamp_ioctl - control hardware timestamping.
421 * @dev: device pointer.
422 * @ifr: An IOCTL specefic structure, that can contain a pointer to
423 * a proprietary structure used to pass information to the driver.
424 * Description:
425 * This function configures the MAC to enable/disable both outgoing(TX)
426 * and incoming(RX) packets time stamping based on user input.
427 * Return Value:
428 * 0 on success and an appropriate -ve integer on failure.
430 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
432 struct stmmac_priv *priv = netdev_priv(dev);
433 struct hwtstamp_config config;
434 struct timespec64 now;
435 u64 temp = 0;
436 u32 ptp_v2 = 0;
437 u32 tstamp_all = 0;
438 u32 ptp_over_ipv4_udp = 0;
439 u32 ptp_over_ipv6_udp = 0;
440 u32 ptp_over_ethernet = 0;
441 u32 snap_type_sel = 0;
442 u32 ts_master_en = 0;
443 u32 ts_event_en = 0;
444 u32 value = 0;
445 u32 sec_inc;
447 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
448 netdev_alert(priv->dev, "No support for HW time stamping\n");
449 priv->hwts_tx_en = 0;
450 priv->hwts_rx_en = 0;
452 return -EOPNOTSUPP;
455 if (copy_from_user(&config, ifr->ifr_data,
456 sizeof(struct hwtstamp_config)))
457 return -EFAULT;
459 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
460 __func__, config.flags, config.tx_type, config.rx_filter);
462 /* reserved for future extensions */
463 if (config.flags)
464 return -EINVAL;
466 if (config.tx_type != HWTSTAMP_TX_OFF &&
467 config.tx_type != HWTSTAMP_TX_ON)
468 return -ERANGE;
470 if (priv->adv_ts) {
471 switch (config.rx_filter) {
472 case HWTSTAMP_FILTER_NONE:
473 /* time stamp no incoming packet at all */
474 config.rx_filter = HWTSTAMP_FILTER_NONE;
475 break;
477 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
478 /* PTP v1, UDP, any kind of event packet */
479 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
480 /* take time stamp for all event messages */
481 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
483 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
484 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
485 break;
487 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
488 /* PTP v1, UDP, Sync packet */
489 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
490 /* take time stamp for SYNC messages only */
491 ts_event_en = PTP_TCR_TSEVNTENA;
493 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
494 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
495 break;
497 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
498 /* PTP v1, UDP, Delay_req packet */
499 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
500 /* take time stamp for Delay_Req messages only */
501 ts_master_en = PTP_TCR_TSMSTRENA;
502 ts_event_en = PTP_TCR_TSEVNTENA;
504 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
505 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
506 break;
508 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
509 /* PTP v2, UDP, any kind of event packet */
510 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
511 ptp_v2 = PTP_TCR_TSVER2ENA;
512 /* take time stamp for all event messages */
513 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
515 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
516 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
517 break;
519 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
520 /* PTP v2, UDP, Sync packet */
521 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
522 ptp_v2 = PTP_TCR_TSVER2ENA;
523 /* take time stamp for SYNC messages only */
524 ts_event_en = PTP_TCR_TSEVNTENA;
526 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
527 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
528 break;
530 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
531 /* PTP v2, UDP, Delay_req packet */
532 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
533 ptp_v2 = PTP_TCR_TSVER2ENA;
534 /* take time stamp for Delay_Req messages only */
535 ts_master_en = PTP_TCR_TSMSTRENA;
536 ts_event_en = PTP_TCR_TSEVNTENA;
538 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
539 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
540 break;
542 case HWTSTAMP_FILTER_PTP_V2_EVENT:
543 /* PTP v2/802.AS1 any layer, any kind of event packet */
544 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
545 ptp_v2 = PTP_TCR_TSVER2ENA;
546 /* take time stamp for all event messages */
547 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
549 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
550 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
551 ptp_over_ethernet = PTP_TCR_TSIPENA;
552 break;
554 case HWTSTAMP_FILTER_PTP_V2_SYNC:
555 /* PTP v2/802.AS1, any layer, Sync packet */
556 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
557 ptp_v2 = PTP_TCR_TSVER2ENA;
558 /* take time stamp for SYNC messages only */
559 ts_event_en = PTP_TCR_TSEVNTENA;
561 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
562 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
563 ptp_over_ethernet = PTP_TCR_TSIPENA;
564 break;
566 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
567 /* PTP v2/802.AS1, any layer, Delay_req packet */
568 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
569 ptp_v2 = PTP_TCR_TSVER2ENA;
570 /* take time stamp for Delay_Req messages only */
571 ts_master_en = PTP_TCR_TSMSTRENA;
572 ts_event_en = PTP_TCR_TSEVNTENA;
574 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
575 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
576 ptp_over_ethernet = PTP_TCR_TSIPENA;
577 break;
579 case HWTSTAMP_FILTER_ALL:
580 /* time stamp any incoming packet */
581 config.rx_filter = HWTSTAMP_FILTER_ALL;
582 tstamp_all = PTP_TCR_TSENALL;
583 break;
585 default:
586 return -ERANGE;
588 } else {
589 switch (config.rx_filter) {
590 case HWTSTAMP_FILTER_NONE:
591 config.rx_filter = HWTSTAMP_FILTER_NONE;
592 break;
593 default:
594 /* PTP v1, UDP, any kind of event packet */
595 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
596 break;
599 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
600 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
602 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
603 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
604 else {
605 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
606 tstamp_all | ptp_v2 | ptp_over_ethernet |
607 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
608 ts_master_en | snap_type_sel);
609 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
611 /* program Sub Second Increment reg */
612 sec_inc = priv->hw->ptp->config_sub_second_increment(
613 priv->ioaddr, priv->clk_ptp_rate);
614 temp = div_u64(1000000000ULL, sec_inc);
616 /* calculate default added value:
617 * formula is :
618 * addend = (2^32)/freq_div_ratio;
619 * where, freq_div_ratio = 1e9ns/sec_inc
621 temp = (u64)(temp << 32);
622 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
623 priv->hw->ptp->config_addend(priv->ioaddr,
624 priv->default_addend);
626 /* initialize system time */
627 ktime_get_real_ts64(&now);
629 /* lower 32 bits of tv_sec are safe until y2106 */
630 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
631 now.tv_nsec);
634 return copy_to_user(ifr->ifr_data, &config,
635 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
639 * stmmac_init_ptp - init PTP
640 * @priv: driver private structure
641 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
642 * This is done by looking at the HW cap. register.
643 * This function also registers the ptp driver.
645 static int stmmac_init_ptp(struct stmmac_priv *priv)
647 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
648 return -EOPNOTSUPP;
650 /* Fall-back to main clock in case of no PTP ref is passed */
651 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
652 if (IS_ERR(priv->clk_ptp_ref)) {
653 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
654 priv->clk_ptp_ref = NULL;
655 } else {
656 clk_prepare_enable(priv->clk_ptp_ref);
657 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
660 priv->adv_ts = 0;
661 if (priv->dma_cap.atime_stamp && priv->extend_desc)
662 priv->adv_ts = 1;
664 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
665 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
667 if (netif_msg_hw(priv) && priv->adv_ts)
668 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
670 priv->hw->ptp = &stmmac_ptp;
671 priv->hwts_tx_en = 0;
672 priv->hwts_rx_en = 0;
674 return stmmac_ptp_register(priv);
677 static void stmmac_release_ptp(struct stmmac_priv *priv)
679 if (priv->clk_ptp_ref)
680 clk_disable_unprepare(priv->clk_ptp_ref);
681 stmmac_ptp_unregister(priv);
685 * stmmac_adjust_link - adjusts the link parameters
686 * @dev: net device structure
687 * Description: this is the helper called by the physical abstraction layer
688 * drivers to communicate the phy link status. According the speed and duplex
689 * this driver can invoke registered glue-logic as well.
690 * It also invoke the eee initialization because it could happen when switch
691 * on different networks (that are eee capable).
693 static void stmmac_adjust_link(struct net_device *dev)
695 struct stmmac_priv *priv = netdev_priv(dev);
696 struct phy_device *phydev = priv->phydev;
697 unsigned long flags;
698 int new_state = 0;
699 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
701 if (phydev == NULL)
702 return;
704 spin_lock_irqsave(&priv->lock, flags);
706 if (phydev->link) {
707 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
709 /* Now we make sure that we can be in full duplex mode.
710 * If not, we operate in half-duplex mode. */
711 if (phydev->duplex != priv->oldduplex) {
712 new_state = 1;
713 if (!(phydev->duplex))
714 ctrl &= ~priv->hw->link.duplex;
715 else
716 ctrl |= priv->hw->link.duplex;
717 priv->oldduplex = phydev->duplex;
719 /* Flow Control operation */
720 if (phydev->pause)
721 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
722 fc, pause_time);
724 if (phydev->speed != priv->speed) {
725 new_state = 1;
726 switch (phydev->speed) {
727 case 1000:
728 if (likely(priv->plat->has_gmac))
729 ctrl &= ~priv->hw->link.port;
730 stmmac_hw_fix_mac_speed(priv);
731 break;
732 case 100:
733 case 10:
734 if (priv->plat->has_gmac) {
735 ctrl |= priv->hw->link.port;
736 if (phydev->speed == SPEED_100) {
737 ctrl |= priv->hw->link.speed;
738 } else {
739 ctrl &= ~(priv->hw->link.speed);
741 } else {
742 ctrl &= ~priv->hw->link.port;
744 stmmac_hw_fix_mac_speed(priv);
745 break;
746 default:
747 if (netif_msg_link(priv))
748 pr_warn("%s: Speed (%d) not 10/100\n",
749 dev->name, phydev->speed);
750 break;
753 priv->speed = phydev->speed;
756 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
758 if (!priv->oldlink) {
759 new_state = 1;
760 priv->oldlink = 1;
762 } else if (priv->oldlink) {
763 new_state = 1;
764 priv->oldlink = 0;
765 priv->speed = 0;
766 priv->oldduplex = -1;
769 if (new_state && netif_msg_link(priv))
770 phy_print_status(phydev);
772 spin_unlock_irqrestore(&priv->lock, flags);
774 /* At this stage, it could be needed to setup the EEE or adjust some
775 * MAC related HW registers.
777 priv->eee_enabled = stmmac_eee_init(priv);
781 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
782 * @priv: driver private structure
783 * Description: this is to verify if the HW supports the PCS.
784 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
785 * configured for the TBI, RTBI, or SGMII PHY interface.
787 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
789 int interface = priv->plat->interface;
791 if (priv->dma_cap.pcs) {
792 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
793 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
794 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
795 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
796 pr_debug("STMMAC: PCS RGMII support enable\n");
797 priv->pcs = STMMAC_PCS_RGMII;
798 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
799 pr_debug("STMMAC: PCS SGMII support enable\n");
800 priv->pcs = STMMAC_PCS_SGMII;
806 * stmmac_init_phy - PHY initialization
807 * @dev: net device structure
808 * Description: it initializes the driver's PHY state, and attaches the PHY
809 * to the mac driver.
810 * Return value:
811 * 0 on success
813 static int stmmac_init_phy(struct net_device *dev)
815 struct stmmac_priv *priv = netdev_priv(dev);
816 struct phy_device *phydev;
817 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
818 char bus_id[MII_BUS_ID_SIZE];
819 int interface = priv->plat->interface;
820 int max_speed = priv->plat->max_speed;
821 priv->oldlink = 0;
822 priv->speed = 0;
823 priv->oldduplex = -1;
825 if (priv->plat->phy_node) {
826 phydev = of_phy_connect(dev, priv->plat->phy_node,
827 &stmmac_adjust_link, 0, interface);
828 } else {
829 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
830 priv->plat->bus_id);
832 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
833 priv->plat->phy_addr);
834 pr_debug("stmmac_init_phy: trying to attach to %s\n",
835 phy_id_fmt);
837 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
838 interface);
841 if (IS_ERR_OR_NULL(phydev)) {
842 pr_err("%s: Could not attach to PHY\n", dev->name);
843 if (!phydev)
844 return -ENODEV;
846 return PTR_ERR(phydev);
849 /* Stop Advertising 1000BASE Capability if interface is not GMII */
850 if ((interface == PHY_INTERFACE_MODE_MII) ||
851 (interface == PHY_INTERFACE_MODE_RMII) ||
852 (max_speed < 1000 && max_speed > 0))
853 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
854 SUPPORTED_1000baseT_Full);
857 * Broken HW is sometimes missing the pull-up resistor on the
858 * MDIO line, which results in reads to non-existent devices returning
859 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
860 * device as well.
861 * Note: phydev->phy_id is the result of reading the UID PHY registers.
863 if (!priv->plat->phy_node && phydev->phy_id == 0) {
864 phy_disconnect(phydev);
865 return -ENODEV;
868 /* If attached to a switch, there is no reason to poll phy handler */
869 if (phydev->is_pseudo_fixed_link)
870 phydev->irq = PHY_IGNORE_INTERRUPT;
872 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
873 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
875 priv->phydev = phydev;
877 return 0;
881 * stmmac_display_ring - display ring
882 * @head: pointer to the head of the ring passed.
883 * @size: size of the ring.
884 * @extend_desc: to verify if extended descriptors are used.
885 * Description: display the control/status and buffer descriptors.
887 static void stmmac_display_ring(void *head, int size, int extend_desc)
889 int i;
890 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
891 struct dma_desc *p = (struct dma_desc *)head;
893 for (i = 0; i < size; i++) {
894 u64 x;
895 if (extend_desc) {
896 x = *(u64 *) ep;
897 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
898 i, (unsigned int)virt_to_phys(ep),
899 (unsigned int)x, (unsigned int)(x >> 32),
900 ep->basic.des2, ep->basic.des3);
901 ep++;
902 } else {
903 x = *(u64 *) p;
904 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
905 i, (unsigned int)virt_to_phys(p),
906 (unsigned int)x, (unsigned int)(x >> 32),
907 p->des2, p->des3);
908 p++;
910 pr_info("\n");
914 static void stmmac_display_rings(struct stmmac_priv *priv)
916 if (priv->extend_desc) {
917 pr_info("Extended RX descriptor ring:\n");
918 stmmac_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1);
919 pr_info("Extended TX descriptor ring:\n");
920 stmmac_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1);
921 } else {
922 pr_info("RX descriptor ring:\n");
923 stmmac_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0);
924 pr_info("TX descriptor ring:\n");
925 stmmac_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0);
929 static int stmmac_set_bfsize(int mtu, int bufsize)
931 int ret = bufsize;
933 if (mtu >= BUF_SIZE_4KiB)
934 ret = BUF_SIZE_8KiB;
935 else if (mtu >= BUF_SIZE_2KiB)
936 ret = BUF_SIZE_4KiB;
937 else if (mtu > DEFAULT_BUFSIZE)
938 ret = BUF_SIZE_2KiB;
939 else
940 ret = DEFAULT_BUFSIZE;
942 return ret;
946 * stmmac_clear_descriptors - clear descriptors
947 * @priv: driver private structure
948 * Description: this function is called to clear the tx and rx descriptors
949 * in case of both basic and extended descriptors are used.
951 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
953 int i;
955 /* Clear the Rx/Tx descriptors */
956 for (i = 0; i < DMA_RX_SIZE; i++)
957 if (priv->extend_desc)
958 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
959 priv->use_riwt, priv->mode,
960 (i == DMA_RX_SIZE - 1));
961 else
962 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
963 priv->use_riwt, priv->mode,
964 (i == DMA_RX_SIZE - 1));
965 for (i = 0; i < DMA_TX_SIZE; i++)
966 if (priv->extend_desc)
967 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
968 priv->mode,
969 (i == DMA_TX_SIZE - 1));
970 else
971 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
972 priv->mode,
973 (i == DMA_TX_SIZE - 1));
977 * stmmac_init_rx_buffers - init the RX descriptor buffer.
978 * @priv: driver private structure
979 * @p: descriptor pointer
980 * @i: descriptor index
981 * @flags: gfp flag.
982 * Description: this function is called to allocate a receive buffer, perform
983 * the DMA mapping and init the descriptor.
985 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
986 int i, gfp_t flags)
988 struct sk_buff *skb;
990 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
991 if (!skb) {
992 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
993 return -ENOMEM;
995 priv->rx_skbuff[i] = skb;
996 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
997 priv->dma_buf_sz,
998 DMA_FROM_DEVICE);
999 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
1000 pr_err("%s: DMA mapping error\n", __func__);
1001 dev_kfree_skb_any(skb);
1002 return -EINVAL;
1005 p->des2 = priv->rx_skbuff_dma[i];
1007 if ((priv->hw->mode->init_desc3) &&
1008 (priv->dma_buf_sz == BUF_SIZE_16KiB))
1009 priv->hw->mode->init_desc3(p);
1011 return 0;
1014 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1016 if (priv->rx_skbuff[i]) {
1017 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1018 priv->dma_buf_sz, DMA_FROM_DEVICE);
1019 dev_kfree_skb_any(priv->rx_skbuff[i]);
1021 priv->rx_skbuff[i] = NULL;
1025 * init_dma_desc_rings - init the RX/TX descriptor rings
1026 * @dev: net device structure
1027 * @flags: gfp flag.
1028 * Description: this function initializes the DMA RX/TX descriptors
1029 * and allocates the socket buffers. It suppors the chained and ring
1030 * modes.
1032 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1034 int i;
1035 struct stmmac_priv *priv = netdev_priv(dev);
1036 unsigned int bfsize = 0;
1037 int ret = -ENOMEM;
1039 if (priv->hw->mode->set_16kib_bfsize)
1040 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1042 if (bfsize < BUF_SIZE_16KiB)
1043 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1045 priv->dma_buf_sz = bfsize;
1047 if (netif_msg_probe(priv)) {
1048 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1049 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1051 /* RX INITIALIZATION */
1052 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1054 for (i = 0; i < DMA_RX_SIZE; i++) {
1055 struct dma_desc *p;
1056 if (priv->extend_desc)
1057 p = &((priv->dma_erx + i)->basic);
1058 else
1059 p = priv->dma_rx + i;
1061 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1062 if (ret)
1063 goto err_init_rx_buffers;
1065 if (netif_msg_probe(priv))
1066 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1067 priv->rx_skbuff[i]->data,
1068 (unsigned int)priv->rx_skbuff_dma[i]);
1070 priv->cur_rx = 0;
1071 priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1072 buf_sz = bfsize;
1074 /* Setup the chained descriptor addresses */
1075 if (priv->mode == STMMAC_CHAIN_MODE) {
1076 if (priv->extend_desc) {
1077 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1078 DMA_RX_SIZE, 1);
1079 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1080 DMA_TX_SIZE, 1);
1081 } else {
1082 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1083 DMA_RX_SIZE, 0);
1084 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1085 DMA_TX_SIZE, 0);
1089 /* TX INITIALIZATION */
1090 for (i = 0; i < DMA_TX_SIZE; i++) {
1091 struct dma_desc *p;
1092 if (priv->extend_desc)
1093 p = &((priv->dma_etx + i)->basic);
1094 else
1095 p = priv->dma_tx + i;
1096 p->des2 = 0;
1097 priv->tx_skbuff_dma[i].buf = 0;
1098 priv->tx_skbuff_dma[i].map_as_page = false;
1099 priv->tx_skbuff_dma[i].len = 0;
1100 priv->tx_skbuff_dma[i].last_segment = false;
1101 priv->tx_skbuff[i] = NULL;
1104 priv->dirty_tx = 0;
1105 priv->cur_tx = 0;
1106 netdev_reset_queue(priv->dev);
1108 stmmac_clear_descriptors(priv);
1110 if (netif_msg_hw(priv))
1111 stmmac_display_rings(priv);
1113 return 0;
1114 err_init_rx_buffers:
1115 while (--i >= 0)
1116 stmmac_free_rx_buffers(priv, i);
1117 return ret;
1120 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1122 int i;
1124 for (i = 0; i < DMA_RX_SIZE; i++)
1125 stmmac_free_rx_buffers(priv, i);
1128 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1130 int i;
1132 for (i = 0; i < DMA_TX_SIZE; i++) {
1133 struct dma_desc *p;
1135 if (priv->extend_desc)
1136 p = &((priv->dma_etx + i)->basic);
1137 else
1138 p = priv->dma_tx + i;
1140 if (priv->tx_skbuff_dma[i].buf) {
1141 if (priv->tx_skbuff_dma[i].map_as_page)
1142 dma_unmap_page(priv->device,
1143 priv->tx_skbuff_dma[i].buf,
1144 priv->tx_skbuff_dma[i].len,
1145 DMA_TO_DEVICE);
1146 else
1147 dma_unmap_single(priv->device,
1148 priv->tx_skbuff_dma[i].buf,
1149 priv->tx_skbuff_dma[i].len,
1150 DMA_TO_DEVICE);
1153 if (priv->tx_skbuff[i] != NULL) {
1154 dev_kfree_skb_any(priv->tx_skbuff[i]);
1155 priv->tx_skbuff[i] = NULL;
1156 priv->tx_skbuff_dma[i].buf = 0;
1157 priv->tx_skbuff_dma[i].map_as_page = false;
1163 * alloc_dma_desc_resources - alloc TX/RX resources.
1164 * @priv: private structure
1165 * Description: according to which descriptor can be used (extend or basic)
1166 * this function allocates the resources for TX and RX paths. In case of
1167 * reception, for example, it pre-allocated the RX socket buffer in order to
1168 * allow zero-copy mechanism.
1170 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1172 int ret = -ENOMEM;
1174 priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1175 GFP_KERNEL);
1176 if (!priv->rx_skbuff_dma)
1177 return -ENOMEM;
1179 priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1180 GFP_KERNEL);
1181 if (!priv->rx_skbuff)
1182 goto err_rx_skbuff;
1184 priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1185 sizeof(*priv->tx_skbuff_dma),
1186 GFP_KERNEL);
1187 if (!priv->tx_skbuff_dma)
1188 goto err_tx_skbuff_dma;
1190 priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1191 GFP_KERNEL);
1192 if (!priv->tx_skbuff)
1193 goto err_tx_skbuff;
1195 if (priv->extend_desc) {
1196 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1197 sizeof(struct
1198 dma_extended_desc),
1199 &priv->dma_rx_phy,
1200 GFP_KERNEL);
1201 if (!priv->dma_erx)
1202 goto err_dma;
1204 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1205 sizeof(struct
1206 dma_extended_desc),
1207 &priv->dma_tx_phy,
1208 GFP_KERNEL);
1209 if (!priv->dma_etx) {
1210 dma_free_coherent(priv->device, DMA_RX_SIZE *
1211 sizeof(struct dma_extended_desc),
1212 priv->dma_erx, priv->dma_rx_phy);
1213 goto err_dma;
1215 } else {
1216 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1217 sizeof(struct dma_desc),
1218 &priv->dma_rx_phy,
1219 GFP_KERNEL);
1220 if (!priv->dma_rx)
1221 goto err_dma;
1223 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1224 sizeof(struct dma_desc),
1225 &priv->dma_tx_phy,
1226 GFP_KERNEL);
1227 if (!priv->dma_tx) {
1228 dma_free_coherent(priv->device, DMA_RX_SIZE *
1229 sizeof(struct dma_desc),
1230 priv->dma_rx, priv->dma_rx_phy);
1231 goto err_dma;
1235 return 0;
1237 err_dma:
1238 kfree(priv->tx_skbuff);
1239 err_tx_skbuff:
1240 kfree(priv->tx_skbuff_dma);
1241 err_tx_skbuff_dma:
1242 kfree(priv->rx_skbuff);
1243 err_rx_skbuff:
1244 kfree(priv->rx_skbuff_dma);
1245 return ret;
1248 static void free_dma_desc_resources(struct stmmac_priv *priv)
1250 /* Release the DMA TX/RX socket buffers */
1251 dma_free_rx_skbufs(priv);
1252 dma_free_tx_skbufs(priv);
1254 /* Free DMA regions of consistent memory previously allocated */
1255 if (!priv->extend_desc) {
1256 dma_free_coherent(priv->device,
1257 DMA_TX_SIZE * sizeof(struct dma_desc),
1258 priv->dma_tx, priv->dma_tx_phy);
1259 dma_free_coherent(priv->device,
1260 DMA_RX_SIZE * sizeof(struct dma_desc),
1261 priv->dma_rx, priv->dma_rx_phy);
1262 } else {
1263 dma_free_coherent(priv->device, DMA_TX_SIZE *
1264 sizeof(struct dma_extended_desc),
1265 priv->dma_etx, priv->dma_tx_phy);
1266 dma_free_coherent(priv->device, DMA_RX_SIZE *
1267 sizeof(struct dma_extended_desc),
1268 priv->dma_erx, priv->dma_rx_phy);
1270 kfree(priv->rx_skbuff_dma);
1271 kfree(priv->rx_skbuff);
1272 kfree(priv->tx_skbuff_dma);
1273 kfree(priv->tx_skbuff);
1277 * stmmac_dma_operation_mode - HW DMA operation mode
1278 * @priv: driver private structure
1279 * Description: it is used for configuring the DMA operation mode register in
1280 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1282 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1284 int rxfifosz = priv->plat->rx_fifo_size;
1286 if (priv->plat->force_thresh_dma_mode)
1287 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1288 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1290 * In case of GMAC, SF mode can be enabled
1291 * to perform the TX COE in HW. This depends on:
1292 * 1) TX COE if actually supported
1293 * 2) There is no bugged Jumbo frame support
1294 * that needs to not insert csum in the TDES.
1296 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1297 rxfifosz);
1298 priv->xstats.threshold = SF_DMA_MODE;
1299 } else
1300 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1301 rxfifosz);
1305 * stmmac_tx_clean - to manage the transmission completion
1306 * @priv: driver private structure
1307 * Description: it reclaims the transmit resources after transmission completes.
1309 static void stmmac_tx_clean(struct stmmac_priv *priv)
1311 unsigned int bytes_compl = 0, pkts_compl = 0;
1312 unsigned int entry = priv->dirty_tx;
1314 spin_lock(&priv->tx_lock);
1316 priv->xstats.tx_clean++;
1318 while (entry != priv->cur_tx) {
1319 struct sk_buff *skb = priv->tx_skbuff[entry];
1320 struct dma_desc *p;
1321 int status;
1323 if (priv->extend_desc)
1324 p = (struct dma_desc *)(priv->dma_etx + entry);
1325 else
1326 p = priv->dma_tx + entry;
1328 status = priv->hw->desc->tx_status(&priv->dev->stats,
1329 &priv->xstats, p,
1330 priv->ioaddr);
1331 /* Check if the descriptor is owned by the DMA */
1332 if (unlikely(status & tx_dma_own))
1333 break;
1335 /* Just consider the last segment and ...*/
1336 if (likely(!(status & tx_not_ls))) {
1337 /* ... verify the status error condition */
1338 if (unlikely(status & tx_err)) {
1339 priv->dev->stats.tx_errors++;
1340 } else {
1341 priv->dev->stats.tx_packets++;
1342 priv->xstats.tx_pkt_n++;
1344 stmmac_get_tx_hwtstamp(priv, entry, skb);
1347 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1348 if (priv->tx_skbuff_dma[entry].map_as_page)
1349 dma_unmap_page(priv->device,
1350 priv->tx_skbuff_dma[entry].buf,
1351 priv->tx_skbuff_dma[entry].len,
1352 DMA_TO_DEVICE);
1353 else
1354 dma_unmap_single(priv->device,
1355 priv->tx_skbuff_dma[entry].buf,
1356 priv->tx_skbuff_dma[entry].len,
1357 DMA_TO_DEVICE);
1358 priv->tx_skbuff_dma[entry].buf = 0;
1359 priv->tx_skbuff_dma[entry].map_as_page = false;
1361 priv->hw->mode->clean_desc3(priv, p);
1362 priv->tx_skbuff_dma[entry].last_segment = false;
1363 priv->tx_skbuff_dma[entry].is_jumbo = false;
1365 if (likely(skb != NULL)) {
1366 pkts_compl++;
1367 bytes_compl += skb->len;
1368 dev_consume_skb_any(skb);
1369 priv->tx_skbuff[entry] = NULL;
1372 priv->hw->desc->release_tx_desc(p, priv->mode);
1374 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1376 priv->dirty_tx = entry;
1378 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1380 if (unlikely(netif_queue_stopped(priv->dev) &&
1381 stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1382 netif_tx_lock(priv->dev);
1383 if (netif_queue_stopped(priv->dev) &&
1384 stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1385 if (netif_msg_tx_done(priv))
1386 pr_debug("%s: restart transmit\n", __func__);
1387 netif_wake_queue(priv->dev);
1389 netif_tx_unlock(priv->dev);
1392 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1393 stmmac_enable_eee_mode(priv);
1394 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1396 spin_unlock(&priv->tx_lock);
1399 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1401 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1404 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1406 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1410 * stmmac_tx_err - to manage the tx error
1411 * @priv: driver private structure
1412 * Description: it cleans the descriptors and restarts the transmission
1413 * in case of transmission errors.
1415 static void stmmac_tx_err(struct stmmac_priv *priv)
1417 int i;
1418 netif_stop_queue(priv->dev);
1420 priv->hw->dma->stop_tx(priv->ioaddr);
1421 dma_free_tx_skbufs(priv);
1422 for (i = 0; i < DMA_TX_SIZE; i++)
1423 if (priv->extend_desc)
1424 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1425 priv->mode,
1426 (i == DMA_TX_SIZE - 1));
1427 else
1428 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1429 priv->mode,
1430 (i == DMA_TX_SIZE - 1));
1431 priv->dirty_tx = 0;
1432 priv->cur_tx = 0;
1433 netdev_reset_queue(priv->dev);
1434 priv->hw->dma->start_tx(priv->ioaddr);
1436 priv->dev->stats.tx_errors++;
1437 netif_wake_queue(priv->dev);
1441 * stmmac_dma_interrupt - DMA ISR
1442 * @priv: driver private structure
1443 * Description: this is the DMA ISR. It is called by the main ISR.
1444 * It calls the dwmac dma routine and schedule poll method in case of some
1445 * work can be done.
1447 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1449 int status;
1450 int rxfifosz = priv->plat->rx_fifo_size;
1452 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1453 if (likely((status & handle_rx)) || (status & handle_tx)) {
1454 if (likely(napi_schedule_prep(&priv->napi))) {
1455 stmmac_disable_dma_irq(priv);
1456 __napi_schedule(&priv->napi);
1459 if (unlikely(status & tx_hard_error_bump_tc)) {
1460 /* Try to bump up the dma threshold on this failure */
1461 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1462 (tc <= 256)) {
1463 tc += 64;
1464 if (priv->plat->force_thresh_dma_mode)
1465 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1466 rxfifosz);
1467 else
1468 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1469 SF_DMA_MODE, rxfifosz);
1470 priv->xstats.threshold = tc;
1472 } else if (unlikely(status == tx_hard_error))
1473 stmmac_tx_err(priv);
1477 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1478 * @priv: driver private structure
1479 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1481 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1483 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1484 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1486 dwmac_mmc_intr_all_mask(priv->ioaddr);
1488 if (priv->dma_cap.rmon) {
1489 dwmac_mmc_ctrl(priv->ioaddr, mode);
1490 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1491 } else
1492 pr_info(" No MAC Management Counters available\n");
1496 * stmmac_get_synopsys_id - return the SYINID.
1497 * @priv: driver private structure
1498 * Description: this simple function is to decode and return the SYINID
1499 * starting from the HW core register.
1501 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1503 u32 hwid = priv->hw->synopsys_uid;
1505 /* Check Synopsys Id (not available on old chips) */
1506 if (likely(hwid)) {
1507 u32 uid = ((hwid & 0x0000ff00) >> 8);
1508 u32 synid = (hwid & 0x000000ff);
1510 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1511 uid, synid);
1513 return synid;
1515 return 0;
1519 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1520 * @priv: driver private structure
1521 * Description: select the Enhanced/Alternate or Normal descriptors.
1522 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1523 * supported by the HW capability register.
1525 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1527 if (priv->plat->enh_desc) {
1528 pr_info(" Enhanced/Alternate descriptors\n");
1530 /* GMAC older than 3.50 has no extended descriptors */
1531 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1532 pr_info("\tEnabled extended descriptors\n");
1533 priv->extend_desc = 1;
1534 } else
1535 pr_warn("Extended descriptors not supported\n");
1537 priv->hw->desc = &enh_desc_ops;
1538 } else {
1539 pr_info(" Normal descriptors\n");
1540 priv->hw->desc = &ndesc_ops;
1545 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1546 * @priv: driver private structure
1547 * Description:
1548 * new GMAC chip generations have a new register to indicate the
1549 * presence of the optional feature/functions.
1550 * This can be also used to override the value passed through the
1551 * platform and necessary for old MAC10/100 and GMAC chips.
1553 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1555 u32 hw_cap = 0;
1557 if (priv->hw->dma->get_hw_feature) {
1558 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1560 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1561 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1562 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1563 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1564 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1565 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1566 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1567 priv->dma_cap.pmt_remote_wake_up =
1568 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1569 priv->dma_cap.pmt_magic_frame =
1570 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1571 /* MMC */
1572 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1573 /* IEEE 1588-2002 */
1574 priv->dma_cap.time_stamp =
1575 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1576 /* IEEE 1588-2008 */
1577 priv->dma_cap.atime_stamp =
1578 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1579 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1580 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1581 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1582 /* TX and RX csum */
1583 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1584 priv->dma_cap.rx_coe_type1 =
1585 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1586 priv->dma_cap.rx_coe_type2 =
1587 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1588 priv->dma_cap.rxfifo_over_2048 =
1589 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1590 /* TX and RX number of channels */
1591 priv->dma_cap.number_rx_channel =
1592 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1593 priv->dma_cap.number_tx_channel =
1594 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1595 /* Alternate (enhanced) DESC mode */
1596 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1599 return hw_cap;
1603 * stmmac_check_ether_addr - check if the MAC addr is valid
1604 * @priv: driver private structure
1605 * Description:
1606 * it is to verify if the MAC address is valid, in case of failures it
1607 * generates a random MAC address
1609 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1611 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1612 priv->hw->mac->get_umac_addr(priv->hw,
1613 priv->dev->dev_addr, 0);
1614 if (!is_valid_ether_addr(priv->dev->dev_addr))
1615 eth_hw_addr_random(priv->dev);
1616 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1617 priv->dev->dev_addr);
1622 * stmmac_init_dma_engine - DMA init.
1623 * @priv: driver private structure
1624 * Description:
1625 * It inits the DMA invoking the specific MAC/GMAC callback.
1626 * Some DMA parameters can be passed from the platform;
1627 * in case of these are not passed a default is kept for the MAC or GMAC.
1629 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1631 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1632 int mixed_burst = 0;
1633 int atds = 0;
1634 int ret = 0;
1636 if (priv->plat->dma_cfg) {
1637 pbl = priv->plat->dma_cfg->pbl;
1638 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1639 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1640 aal = priv->plat->dma_cfg->aal;
1643 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1644 atds = 1;
1646 ret = priv->hw->dma->reset(priv->ioaddr);
1647 if (ret) {
1648 dev_err(priv->device, "Failed to reset the dma\n");
1649 return ret;
1652 priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1653 aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1655 if ((priv->synopsys_id >= DWMAC_CORE_3_50) &&
1656 (priv->plat->axi && priv->hw->dma->axi))
1657 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1659 return ret;
1663 * stmmac_tx_timer - mitigation sw timer for tx.
1664 * @data: data pointer
1665 * Description:
1666 * This is the timer handler to directly invoke the stmmac_tx_clean.
1668 static void stmmac_tx_timer(unsigned long data)
1670 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1672 stmmac_tx_clean(priv);
1676 * stmmac_init_tx_coalesce - init tx mitigation options.
1677 * @priv: driver private structure
1678 * Description:
1679 * This inits the transmit coalesce parameters: i.e. timer rate,
1680 * timer handler and default threshold used for enabling the
1681 * interrupt on completion bit.
1683 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1685 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1686 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1687 init_timer(&priv->txtimer);
1688 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1689 priv->txtimer.data = (unsigned long)priv;
1690 priv->txtimer.function = stmmac_tx_timer;
1691 add_timer(&priv->txtimer);
1695 * stmmac_hw_setup - setup mac in a usable state.
1696 * @dev : pointer to the device structure.
1697 * Description:
1698 * this is the main function to setup the HW in a usable state because the
1699 * dma engine is reset, the core registers are configured (e.g. AXI,
1700 * Checksum features, timers). The DMA is ready to start receiving and
1701 * transmitting.
1702 * Return value:
1703 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1704 * file on failure.
1706 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1708 struct stmmac_priv *priv = netdev_priv(dev);
1709 int ret;
1711 /* DMA initialization and SW reset */
1712 ret = stmmac_init_dma_engine(priv);
1713 if (ret < 0) {
1714 pr_err("%s: DMA engine initialization failed\n", __func__);
1715 return ret;
1718 /* Copy the MAC addr into the HW */
1719 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1721 /* If required, perform hw setup of the bus. */
1722 if (priv->plat->bus_setup)
1723 priv->plat->bus_setup(priv->ioaddr);
1725 /* Initialize the MAC Core */
1726 priv->hw->mac->core_init(priv->hw, dev->mtu);
1728 ret = priv->hw->mac->rx_ipc(priv->hw);
1729 if (!ret) {
1730 pr_warn(" RX IPC Checksum Offload disabled\n");
1731 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1732 priv->hw->rx_csum = 0;
1735 /* Enable the MAC Rx/Tx */
1736 stmmac_set_mac(priv->ioaddr, true);
1738 /* Set the HW DMA mode and the COE */
1739 stmmac_dma_operation_mode(priv);
1741 stmmac_mmc_setup(priv);
1743 if (init_ptp) {
1744 ret = stmmac_init_ptp(priv);
1745 if (ret && ret != -EOPNOTSUPP)
1746 pr_warn("%s: failed PTP initialisation\n", __func__);
1749 #ifdef CONFIG_DEBUG_FS
1750 ret = stmmac_init_fs(dev);
1751 if (ret < 0)
1752 pr_warn("%s: failed debugFS registration\n", __func__);
1753 #endif
1754 /* Start the ball rolling... */
1755 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1756 priv->hw->dma->start_tx(priv->ioaddr);
1757 priv->hw->dma->start_rx(priv->ioaddr);
1759 /* Dump DMA/MAC registers */
1760 if (netif_msg_hw(priv)) {
1761 priv->hw->mac->dump_regs(priv->hw);
1762 priv->hw->dma->dump_regs(priv->ioaddr);
1764 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1766 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1767 priv->rx_riwt = MAX_DMA_RIWT;
1768 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1771 if (priv->pcs && priv->hw->mac->ctrl_ane)
1772 priv->hw->mac->ctrl_ane(priv->hw, 0);
1774 return 0;
1778 * stmmac_open - open entry point of the driver
1779 * @dev : pointer to the device structure.
1780 * Description:
1781 * This function is the open entry point of the driver.
1782 * Return value:
1783 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1784 * file on failure.
1786 static int stmmac_open(struct net_device *dev)
1788 struct stmmac_priv *priv = netdev_priv(dev);
1789 int ret;
1791 stmmac_check_ether_addr(priv);
1793 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1794 priv->pcs != STMMAC_PCS_RTBI) {
1795 ret = stmmac_init_phy(dev);
1796 if (ret) {
1797 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1798 __func__, ret);
1799 return ret;
1803 /* Extra statistics */
1804 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1805 priv->xstats.threshold = tc;
1807 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1808 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1810 ret = alloc_dma_desc_resources(priv);
1811 if (ret < 0) {
1812 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1813 goto dma_desc_error;
1816 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1817 if (ret < 0) {
1818 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1819 goto init_error;
1822 ret = stmmac_hw_setup(dev, true);
1823 if (ret < 0) {
1824 pr_err("%s: Hw setup failed\n", __func__);
1825 goto init_error;
1828 stmmac_init_tx_coalesce(priv);
1830 if (priv->phydev)
1831 phy_start(priv->phydev);
1833 /* Request the IRQ lines */
1834 ret = request_irq(dev->irq, stmmac_interrupt,
1835 IRQF_SHARED, dev->name, dev);
1836 if (unlikely(ret < 0)) {
1837 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1838 __func__, dev->irq, ret);
1839 goto init_error;
1842 /* Request the Wake IRQ in case of another line is used for WoL */
1843 if (priv->wol_irq != dev->irq) {
1844 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1845 IRQF_SHARED, dev->name, dev);
1846 if (unlikely(ret < 0)) {
1847 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1848 __func__, priv->wol_irq, ret);
1849 goto wolirq_error;
1853 /* Request the IRQ lines */
1854 if (priv->lpi_irq > 0) {
1855 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1856 dev->name, dev);
1857 if (unlikely(ret < 0)) {
1858 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1859 __func__, priv->lpi_irq, ret);
1860 goto lpiirq_error;
1864 napi_enable(&priv->napi);
1865 netif_start_queue(dev);
1867 return 0;
1869 lpiirq_error:
1870 if (priv->wol_irq != dev->irq)
1871 free_irq(priv->wol_irq, dev);
1872 wolirq_error:
1873 free_irq(dev->irq, dev);
1875 init_error:
1876 free_dma_desc_resources(priv);
1877 dma_desc_error:
1878 if (priv->phydev)
1879 phy_disconnect(priv->phydev);
1881 return ret;
1885 * stmmac_release - close entry point of the driver
1886 * @dev : device pointer.
1887 * Description:
1888 * This is the stop entry point of the driver.
1890 static int stmmac_release(struct net_device *dev)
1892 struct stmmac_priv *priv = netdev_priv(dev);
1894 if (priv->eee_enabled)
1895 del_timer_sync(&priv->eee_ctrl_timer);
1897 /* Stop and disconnect the PHY */
1898 if (priv->phydev) {
1899 phy_stop(priv->phydev);
1900 phy_disconnect(priv->phydev);
1901 priv->phydev = NULL;
1904 netif_stop_queue(dev);
1906 napi_disable(&priv->napi);
1908 del_timer_sync(&priv->txtimer);
1910 /* Free the IRQ lines */
1911 free_irq(dev->irq, dev);
1912 if (priv->wol_irq != dev->irq)
1913 free_irq(priv->wol_irq, dev);
1914 if (priv->lpi_irq > 0)
1915 free_irq(priv->lpi_irq, dev);
1917 /* Stop TX/RX DMA and clear the descriptors */
1918 priv->hw->dma->stop_tx(priv->ioaddr);
1919 priv->hw->dma->stop_rx(priv->ioaddr);
1921 /* Release and free the Rx/Tx resources */
1922 free_dma_desc_resources(priv);
1924 /* Disable the MAC Rx/Tx */
1925 stmmac_set_mac(priv->ioaddr, false);
1927 netif_carrier_off(dev);
1929 #ifdef CONFIG_DEBUG_FS
1930 stmmac_exit_fs(dev);
1931 #endif
1933 stmmac_release_ptp(priv);
1935 return 0;
1939 * stmmac_xmit - Tx entry point of the driver
1940 * @skb : the socket buffer
1941 * @dev : device pointer
1942 * Description : this is the tx entry point of the driver.
1943 * It programs the chain or the ring and supports oversized frames
1944 * and SG feature.
1946 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1948 struct stmmac_priv *priv = netdev_priv(dev);
1949 unsigned int nopaged_len = skb_headlen(skb);
1950 int i, csum_insertion = 0, is_jumbo = 0;
1951 int nfrags = skb_shinfo(skb)->nr_frags;
1952 unsigned int entry, first_entry;
1953 struct dma_desc *desc, *first;
1954 unsigned int enh_desc;
1956 spin_lock(&priv->tx_lock);
1958 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1959 spin_unlock(&priv->tx_lock);
1960 if (!netif_queue_stopped(dev)) {
1961 netif_stop_queue(dev);
1962 /* This is a hard error, log it. */
1963 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1965 return NETDEV_TX_BUSY;
1968 if (priv->tx_path_in_lpi_mode)
1969 stmmac_disable_eee_mode(priv);
1971 entry = priv->cur_tx;
1972 first_entry = entry;
1974 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1976 if (likely(priv->extend_desc))
1977 desc = (struct dma_desc *)(priv->dma_etx + entry);
1978 else
1979 desc = priv->dma_tx + entry;
1981 first = desc;
1983 priv->tx_skbuff[first_entry] = skb;
1985 enh_desc = priv->plat->enh_desc;
1986 /* To program the descriptors according to the size of the frame */
1987 if (enh_desc)
1988 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1990 if (unlikely(is_jumbo)) {
1991 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1992 if (unlikely(entry < 0))
1993 goto dma_map_err;
1996 for (i = 0; i < nfrags; i++) {
1997 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1998 int len = skb_frag_size(frag);
1999 bool last_segment = (i == (nfrags - 1));
2001 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2003 if (likely(priv->extend_desc))
2004 desc = (struct dma_desc *)(priv->dma_etx + entry);
2005 else
2006 desc = priv->dma_tx + entry;
2008 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2009 DMA_TO_DEVICE);
2010 if (dma_mapping_error(priv->device, desc->des2))
2011 goto dma_map_err; /* should reuse desc w/o issues */
2013 priv->tx_skbuff[entry] = NULL;
2014 priv->tx_skbuff_dma[entry].buf = desc->des2;
2015 priv->tx_skbuff_dma[entry].map_as_page = true;
2016 priv->tx_skbuff_dma[entry].len = len;
2017 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2019 /* Prepare the descriptor and set the own bit too */
2020 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2021 priv->mode, 1, last_segment);
2024 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2026 priv->cur_tx = entry;
2028 if (netif_msg_pktdata(priv)) {
2029 pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2030 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2031 entry, first, nfrags);
2033 if (priv->extend_desc)
2034 stmmac_display_ring((void *)priv->dma_etx,
2035 DMA_TX_SIZE, 1);
2036 else
2037 stmmac_display_ring((void *)priv->dma_tx,
2038 DMA_TX_SIZE, 0);
2040 pr_debug(">>> frame to be transmitted: ");
2041 print_pkt(skb->data, skb->len);
2044 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2045 if (netif_msg_hw(priv))
2046 pr_debug("%s: stop transmitted packets\n", __func__);
2047 netif_stop_queue(dev);
2050 dev->stats.tx_bytes += skb->len;
2052 /* According to the coalesce parameter the IC bit for the latest
2053 * segment is reset and the timer re-started to clean the tx status.
2054 * This approach takes care about the fragments: desc is the first
2055 * element in case of no SG.
2057 priv->tx_count_frames += nfrags + 1;
2058 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2059 mod_timer(&priv->txtimer,
2060 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2061 } else {
2062 priv->tx_count_frames = 0;
2063 priv->hw->desc->set_tx_ic(desc);
2064 priv->xstats.tx_set_ic_bit++;
2067 if (!priv->hwts_tx_en)
2068 skb_tx_timestamp(skb);
2070 /* Ready to fill the first descriptor and set the OWN bit w/o any
2071 * problems because all the descriptors are actually ready to be
2072 * passed to the DMA engine.
2074 if (likely(!is_jumbo)) {
2075 bool last_segment = (nfrags == 0);
2077 first->des2 = dma_map_single(priv->device, skb->data,
2078 nopaged_len, DMA_TO_DEVICE);
2079 if (dma_mapping_error(priv->device, first->des2))
2080 goto dma_map_err;
2082 priv->tx_skbuff_dma[first_entry].buf = first->des2;
2083 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2084 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2086 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2087 priv->hwts_tx_en)) {
2088 /* declare that device is doing timestamping */
2089 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2090 priv->hw->desc->enable_tx_timestamp(first);
2093 /* Prepare the first descriptor setting the OWN bit too */
2094 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2095 csum_insertion, priv->mode, 1,
2096 last_segment);
2098 /* The own bit must be the latest setting done when prepare the
2099 * descriptor and then barrier is needed to make sure that
2100 * all is coherent before granting the DMA engine.
2102 smp_wmb();
2105 netdev_sent_queue(dev, skb->len);
2106 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2108 spin_unlock(&priv->tx_lock);
2109 return NETDEV_TX_OK;
2111 dma_map_err:
2112 spin_unlock(&priv->tx_lock);
2113 dev_err(priv->device, "Tx dma map failed\n");
2114 dev_kfree_skb(skb);
2115 priv->dev->stats.tx_dropped++;
2116 return NETDEV_TX_OK;
2119 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2121 struct ethhdr *ehdr;
2122 u16 vlanid;
2124 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2125 NETIF_F_HW_VLAN_CTAG_RX &&
2126 !__vlan_get_tag(skb, &vlanid)) {
2127 /* pop the vlan tag */
2128 ehdr = (struct ethhdr *)skb->data;
2129 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2130 skb_pull(skb, VLAN_HLEN);
2131 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2136 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2138 if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2139 return 0;
2141 return 1;
2145 * stmmac_rx_refill - refill used skb preallocated buffers
2146 * @priv: driver private structure
2147 * Description : this is to reallocate the skb for the reception process
2148 * that is based on zero-copy.
2150 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2152 int bfsize = priv->dma_buf_sz;
2153 unsigned int entry = priv->dirty_rx;
2154 int dirty = stmmac_rx_dirty(priv);
2156 while (dirty-- > 0) {
2157 struct dma_desc *p;
2159 if (priv->extend_desc)
2160 p = (struct dma_desc *)(priv->dma_erx + entry);
2161 else
2162 p = priv->dma_rx + entry;
2164 if (likely(priv->rx_skbuff[entry] == NULL)) {
2165 struct sk_buff *skb;
2167 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2168 if (unlikely(!skb)) {
2169 /* so for a while no zero-copy! */
2170 priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2171 if (unlikely(net_ratelimit()))
2172 dev_err(priv->device,
2173 "fail to alloc skb entry %d\n",
2174 entry);
2175 break;
2178 priv->rx_skbuff[entry] = skb;
2179 priv->rx_skbuff_dma[entry] =
2180 dma_map_single(priv->device, skb->data, bfsize,
2181 DMA_FROM_DEVICE);
2182 if (dma_mapping_error(priv->device,
2183 priv->rx_skbuff_dma[entry])) {
2184 dev_err(priv->device, "Rx dma map failed\n");
2185 dev_kfree_skb(skb);
2186 break;
2188 p->des2 = priv->rx_skbuff_dma[entry];
2190 priv->hw->mode->refill_desc3(priv, p);
2192 if (priv->rx_zeroc_thresh > 0)
2193 priv->rx_zeroc_thresh--;
2195 if (netif_msg_rx_status(priv))
2196 pr_debug("\trefill entry #%d\n", entry);
2199 wmb();
2200 priv->hw->desc->set_rx_owner(p);
2201 wmb();
2203 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2205 priv->dirty_rx = entry;
2209 * stmmac_rx - manage the receive process
2210 * @priv: driver private structure
2211 * @limit: napi bugget.
2212 * Description : this the function called by the napi poll method.
2213 * It gets all the frames inside the ring.
2215 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2217 unsigned int entry = priv->cur_rx;
2218 unsigned int next_entry;
2219 unsigned int count = 0;
2220 int coe = priv->hw->rx_csum;
2222 if (netif_msg_rx_status(priv)) {
2223 pr_debug("%s: descriptor ring:\n", __func__);
2224 if (priv->extend_desc)
2225 stmmac_display_ring((void *)priv->dma_erx,
2226 DMA_RX_SIZE, 1);
2227 else
2228 stmmac_display_ring((void *)priv->dma_rx,
2229 DMA_RX_SIZE, 0);
2231 while (count < limit) {
2232 int status;
2233 struct dma_desc *p;
2235 if (priv->extend_desc)
2236 p = (struct dma_desc *)(priv->dma_erx + entry);
2237 else
2238 p = priv->dma_rx + entry;
2240 /* read the status of the incoming frame */
2241 status = priv->hw->desc->rx_status(&priv->dev->stats,
2242 &priv->xstats, p);
2243 /* check if managed by the DMA otherwise go ahead */
2244 if (unlikely(status & dma_own))
2245 break;
2247 count++;
2249 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2250 next_entry = priv->cur_rx;
2252 if (priv->extend_desc)
2253 prefetch(priv->dma_erx + next_entry);
2254 else
2255 prefetch(priv->dma_rx + next_entry);
2257 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2258 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2259 &priv->xstats,
2260 priv->dma_erx +
2261 entry);
2262 if (unlikely(status == discard_frame)) {
2263 priv->dev->stats.rx_errors++;
2264 if (priv->hwts_rx_en && !priv->extend_desc) {
2265 /* DESC2 & DESC3 will be overwitten by device
2266 * with timestamp value, hence reinitialize
2267 * them in stmmac_rx_refill() function so that
2268 * device can reuse it.
2270 priv->rx_skbuff[entry] = NULL;
2271 dma_unmap_single(priv->device,
2272 priv->rx_skbuff_dma[entry],
2273 priv->dma_buf_sz,
2274 DMA_FROM_DEVICE);
2276 } else {
2277 struct sk_buff *skb;
2278 int frame_len;
2280 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2282 /* check if frame_len fits the preallocated memory */
2283 if (frame_len > priv->dma_buf_sz) {
2284 priv->dev->stats.rx_length_errors++;
2285 break;
2288 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2289 * Type frames (LLC/LLC-SNAP)
2291 if (unlikely(status != llc_snap))
2292 frame_len -= ETH_FCS_LEN;
2294 if (netif_msg_rx_status(priv)) {
2295 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2296 p, entry, p->des2);
2297 if (frame_len > ETH_FRAME_LEN)
2298 pr_debug("\tframe size %d, COE: %d\n",
2299 frame_len, status);
2302 if (unlikely((frame_len < priv->rx_copybreak) ||
2303 stmmac_rx_threshold_count(priv))) {
2304 skb = netdev_alloc_skb_ip_align(priv->dev,
2305 frame_len);
2306 if (unlikely(!skb)) {
2307 if (net_ratelimit())
2308 dev_warn(priv->device,
2309 "packet dropped\n");
2310 priv->dev->stats.rx_dropped++;
2311 break;
2314 dma_sync_single_for_cpu(priv->device,
2315 priv->rx_skbuff_dma
2316 [entry], frame_len,
2317 DMA_FROM_DEVICE);
2318 skb_copy_to_linear_data(skb,
2319 priv->
2320 rx_skbuff[entry]->data,
2321 frame_len);
2323 skb_put(skb, frame_len);
2324 dma_sync_single_for_device(priv->device,
2325 priv->rx_skbuff_dma
2326 [entry], frame_len,
2327 DMA_FROM_DEVICE);
2328 } else {
2329 skb = priv->rx_skbuff[entry];
2330 if (unlikely(!skb)) {
2331 pr_err("%s: Inconsistent Rx chain\n",
2332 priv->dev->name);
2333 priv->dev->stats.rx_dropped++;
2334 break;
2336 prefetch(skb->data - NET_IP_ALIGN);
2337 priv->rx_skbuff[entry] = NULL;
2338 priv->rx_zeroc_thresh++;
2340 skb_put(skb, frame_len);
2341 dma_unmap_single(priv->device,
2342 priv->rx_skbuff_dma[entry],
2343 priv->dma_buf_sz,
2344 DMA_FROM_DEVICE);
2347 stmmac_get_rx_hwtstamp(priv, entry, skb);
2349 if (netif_msg_pktdata(priv)) {
2350 pr_debug("frame received (%dbytes)", frame_len);
2351 print_pkt(skb->data, frame_len);
2354 stmmac_rx_vlan(priv->dev, skb);
2356 skb->protocol = eth_type_trans(skb, priv->dev);
2358 if (unlikely(!coe))
2359 skb_checksum_none_assert(skb);
2360 else
2361 skb->ip_summed = CHECKSUM_UNNECESSARY;
2363 napi_gro_receive(&priv->napi, skb);
2365 priv->dev->stats.rx_packets++;
2366 priv->dev->stats.rx_bytes += frame_len;
2368 entry = next_entry;
2371 stmmac_rx_refill(priv);
2373 priv->xstats.rx_pkt_n += count;
2375 return count;
2379 * stmmac_poll - stmmac poll method (NAPI)
2380 * @napi : pointer to the napi structure.
2381 * @budget : maximum number of packets that the current CPU can receive from
2382 * all interfaces.
2383 * Description :
2384 * To look at the incoming frames and clear the tx resources.
2386 static int stmmac_poll(struct napi_struct *napi, int budget)
2388 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2389 int work_done = 0;
2391 priv->xstats.napi_poll++;
2392 stmmac_tx_clean(priv);
2394 work_done = stmmac_rx(priv, budget);
2395 if (work_done < budget) {
2396 napi_complete(napi);
2397 stmmac_enable_dma_irq(priv);
2399 return work_done;
2403 * stmmac_tx_timeout
2404 * @dev : Pointer to net device structure
2405 * Description: this function is called when a packet transmission fails to
2406 * complete within a reasonable time. The driver will mark the error in the
2407 * netdev structure and arrange for the device to be reset to a sane state
2408 * in order to transmit a new packet.
2410 static void stmmac_tx_timeout(struct net_device *dev)
2412 struct stmmac_priv *priv = netdev_priv(dev);
2414 /* Clear Tx resources and restart transmitting again */
2415 stmmac_tx_err(priv);
2419 * stmmac_set_rx_mode - entry point for multicast addressing
2420 * @dev : pointer to the device structure
2421 * Description:
2422 * This function is a driver entry point which gets called by the kernel
2423 * whenever multicast addresses must be enabled/disabled.
2424 * Return value:
2425 * void.
2427 static void stmmac_set_rx_mode(struct net_device *dev)
2429 struct stmmac_priv *priv = netdev_priv(dev);
2431 priv->hw->mac->set_filter(priv->hw, dev);
2435 * stmmac_change_mtu - entry point to change MTU size for the device.
2436 * @dev : device pointer.
2437 * @new_mtu : the new MTU size for the device.
2438 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2439 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2440 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2441 * Return value:
2442 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2443 * file on failure.
2445 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2447 struct stmmac_priv *priv = netdev_priv(dev);
2448 int max_mtu;
2450 if (netif_running(dev)) {
2451 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2452 return -EBUSY;
2455 if (priv->plat->enh_desc)
2456 max_mtu = JUMBO_LEN;
2457 else
2458 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2460 if (priv->plat->maxmtu < max_mtu)
2461 max_mtu = priv->plat->maxmtu;
2463 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2464 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2465 return -EINVAL;
2468 dev->mtu = new_mtu;
2469 netdev_update_features(dev);
2471 return 0;
2474 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2475 netdev_features_t features)
2477 struct stmmac_priv *priv = netdev_priv(dev);
2479 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2480 features &= ~NETIF_F_RXCSUM;
2482 if (!priv->plat->tx_coe)
2483 features &= ~NETIF_F_CSUM_MASK;
2485 /* Some GMAC devices have a bugged Jumbo frame support that
2486 * needs to have the Tx COE disabled for oversized frames
2487 * (due to limited buffer sizes). In this case we disable
2488 * the TX csum insertionin the TDES and not use SF.
2490 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2491 features &= ~NETIF_F_CSUM_MASK;
2493 return features;
2496 static int stmmac_set_features(struct net_device *netdev,
2497 netdev_features_t features)
2499 struct stmmac_priv *priv = netdev_priv(netdev);
2501 /* Keep the COE Type in case of csum is supporting */
2502 if (features & NETIF_F_RXCSUM)
2503 priv->hw->rx_csum = priv->plat->rx_coe;
2504 else
2505 priv->hw->rx_csum = 0;
2506 /* No check needed because rx_coe has been set before and it will be
2507 * fixed in case of issue.
2509 priv->hw->mac->rx_ipc(priv->hw);
2511 return 0;
2515 * stmmac_interrupt - main ISR
2516 * @irq: interrupt number.
2517 * @dev_id: to pass the net device pointer.
2518 * Description: this is the main driver interrupt service routine.
2519 * It can call:
2520 * o DMA service routine (to manage incoming frame reception and transmission
2521 * status)
2522 * o Core interrupts to manage: remote wake-up, management counter, LPI
2523 * interrupts.
2525 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2527 struct net_device *dev = (struct net_device *)dev_id;
2528 struct stmmac_priv *priv = netdev_priv(dev);
2530 if (priv->irq_wake)
2531 pm_wakeup_event(priv->device, 0);
2533 if (unlikely(!dev)) {
2534 pr_err("%s: invalid dev pointer\n", __func__);
2535 return IRQ_NONE;
2538 /* To handle GMAC own interrupts */
2539 if (priv->plat->has_gmac) {
2540 int status = priv->hw->mac->host_irq_status(priv->hw,
2541 &priv->xstats);
2542 if (unlikely(status)) {
2543 /* For LPI we need to save the tx status */
2544 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2545 priv->tx_path_in_lpi_mode = true;
2546 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2547 priv->tx_path_in_lpi_mode = false;
2551 /* To handle DMA interrupts */
2552 stmmac_dma_interrupt(priv);
2554 return IRQ_HANDLED;
2557 #ifdef CONFIG_NET_POLL_CONTROLLER
2558 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2559 * to allow network I/O with interrupts disabled.
2561 static void stmmac_poll_controller(struct net_device *dev)
2563 disable_irq(dev->irq);
2564 stmmac_interrupt(dev->irq, dev);
2565 enable_irq(dev->irq);
2567 #endif
2570 * stmmac_ioctl - Entry point for the Ioctl
2571 * @dev: Device pointer.
2572 * @rq: An IOCTL specefic structure, that can contain a pointer to
2573 * a proprietary structure used to pass information to the driver.
2574 * @cmd: IOCTL command
2575 * Description:
2576 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2578 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2580 struct stmmac_priv *priv = netdev_priv(dev);
2581 int ret = -EOPNOTSUPP;
2583 if (!netif_running(dev))
2584 return -EINVAL;
2586 switch (cmd) {
2587 case SIOCGMIIPHY:
2588 case SIOCGMIIREG:
2589 case SIOCSMIIREG:
2590 if (!priv->phydev)
2591 return -EINVAL;
2592 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2593 break;
2594 case SIOCSHWTSTAMP:
2595 ret = stmmac_hwtstamp_ioctl(dev, rq);
2596 break;
2597 default:
2598 break;
2601 return ret;
2604 #ifdef CONFIG_DEBUG_FS
2605 static struct dentry *stmmac_fs_dir;
2607 static void sysfs_display_ring(void *head, int size, int extend_desc,
2608 struct seq_file *seq)
2610 int i;
2611 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2612 struct dma_desc *p = (struct dma_desc *)head;
2614 for (i = 0; i < size; i++) {
2615 u64 x;
2616 if (extend_desc) {
2617 x = *(u64 *) ep;
2618 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2619 i, (unsigned int)virt_to_phys(ep),
2620 (unsigned int)x, (unsigned int)(x >> 32),
2621 ep->basic.des2, ep->basic.des3);
2622 ep++;
2623 } else {
2624 x = *(u64 *) p;
2625 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2626 i, (unsigned int)virt_to_phys(ep),
2627 (unsigned int)x, (unsigned int)(x >> 32),
2628 p->des2, p->des3);
2629 p++;
2631 seq_printf(seq, "\n");
2635 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2637 struct net_device *dev = seq->private;
2638 struct stmmac_priv *priv = netdev_priv(dev);
2640 if (priv->extend_desc) {
2641 seq_printf(seq, "Extended RX descriptor ring:\n");
2642 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2643 seq_printf(seq, "Extended TX descriptor ring:\n");
2644 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2645 } else {
2646 seq_printf(seq, "RX descriptor ring:\n");
2647 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2648 seq_printf(seq, "TX descriptor ring:\n");
2649 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2652 return 0;
2655 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2657 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2660 static const struct file_operations stmmac_rings_status_fops = {
2661 .owner = THIS_MODULE,
2662 .open = stmmac_sysfs_ring_open,
2663 .read = seq_read,
2664 .llseek = seq_lseek,
2665 .release = single_release,
2668 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2670 struct net_device *dev = seq->private;
2671 struct stmmac_priv *priv = netdev_priv(dev);
2673 if (!priv->hw_cap_support) {
2674 seq_printf(seq, "DMA HW features not supported\n");
2675 return 0;
2678 seq_printf(seq, "==============================\n");
2679 seq_printf(seq, "\tDMA HW features\n");
2680 seq_printf(seq, "==============================\n");
2682 seq_printf(seq, "\t10/100 Mbps %s\n",
2683 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2684 seq_printf(seq, "\t1000 Mbps %s\n",
2685 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2686 seq_printf(seq, "\tHalf duple %s\n",
2687 (priv->dma_cap.half_duplex) ? "Y" : "N");
2688 seq_printf(seq, "\tHash Filter: %s\n",
2689 (priv->dma_cap.hash_filter) ? "Y" : "N");
2690 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2691 (priv->dma_cap.multi_addr) ? "Y" : "N");
2692 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2693 (priv->dma_cap.pcs) ? "Y" : "N");
2694 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2695 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2696 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2697 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2698 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2699 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2700 seq_printf(seq, "\tRMON module: %s\n",
2701 (priv->dma_cap.rmon) ? "Y" : "N");
2702 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2703 (priv->dma_cap.time_stamp) ? "Y" : "N");
2704 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2705 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2706 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2707 (priv->dma_cap.eee) ? "Y" : "N");
2708 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2709 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2710 (priv->dma_cap.tx_coe) ? "Y" : "N");
2711 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2712 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2713 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2714 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2715 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2716 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2717 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2718 priv->dma_cap.number_rx_channel);
2719 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2720 priv->dma_cap.number_tx_channel);
2721 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2722 (priv->dma_cap.enh_desc) ? "Y" : "N");
2724 return 0;
2727 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2729 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2732 static const struct file_operations stmmac_dma_cap_fops = {
2733 .owner = THIS_MODULE,
2734 .open = stmmac_sysfs_dma_cap_open,
2735 .read = seq_read,
2736 .llseek = seq_lseek,
2737 .release = single_release,
2740 static int stmmac_init_fs(struct net_device *dev)
2742 struct stmmac_priv *priv = netdev_priv(dev);
2744 /* Create per netdev entries */
2745 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2747 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2748 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2749 STMMAC_RESOURCE_NAME, dev->name);
2751 return -ENOMEM;
2754 /* Entry to report DMA RX/TX rings */
2755 priv->dbgfs_rings_status =
2756 debugfs_create_file("descriptors_status", S_IRUGO,
2757 priv->dbgfs_dir, dev,
2758 &stmmac_rings_status_fops);
2760 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2761 pr_info("ERROR creating stmmac ring debugfs file\n");
2762 debugfs_remove_recursive(priv->dbgfs_dir);
2764 return -ENOMEM;
2767 /* Entry to report the DMA HW features */
2768 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2769 priv->dbgfs_dir,
2770 dev, &stmmac_dma_cap_fops);
2772 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2773 pr_info("ERROR creating stmmac MMC debugfs file\n");
2774 debugfs_remove_recursive(priv->dbgfs_dir);
2776 return -ENOMEM;
2779 return 0;
2782 static void stmmac_exit_fs(struct net_device *dev)
2784 struct stmmac_priv *priv = netdev_priv(dev);
2786 debugfs_remove_recursive(priv->dbgfs_dir);
2788 #endif /* CONFIG_DEBUG_FS */
2790 static const struct net_device_ops stmmac_netdev_ops = {
2791 .ndo_open = stmmac_open,
2792 .ndo_start_xmit = stmmac_xmit,
2793 .ndo_stop = stmmac_release,
2794 .ndo_change_mtu = stmmac_change_mtu,
2795 .ndo_fix_features = stmmac_fix_features,
2796 .ndo_set_features = stmmac_set_features,
2797 .ndo_set_rx_mode = stmmac_set_rx_mode,
2798 .ndo_tx_timeout = stmmac_tx_timeout,
2799 .ndo_do_ioctl = stmmac_ioctl,
2800 #ifdef CONFIG_NET_POLL_CONTROLLER
2801 .ndo_poll_controller = stmmac_poll_controller,
2802 #endif
2803 .ndo_set_mac_address = eth_mac_addr,
2807 * stmmac_hw_init - Init the MAC device
2808 * @priv: driver private structure
2809 * Description: this function is to configure the MAC device according to
2810 * some platform parameters or the HW capability register. It prepares the
2811 * driver to use either ring or chain modes and to setup either enhanced or
2812 * normal descriptors.
2814 static int stmmac_hw_init(struct stmmac_priv *priv)
2816 struct mac_device_info *mac;
2818 /* Identify the MAC HW device */
2819 if (priv->plat->has_gmac) {
2820 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2821 mac = dwmac1000_setup(priv->ioaddr,
2822 priv->plat->multicast_filter_bins,
2823 priv->plat->unicast_filter_entries);
2824 } else {
2825 mac = dwmac100_setup(priv->ioaddr);
2827 if (!mac)
2828 return -ENOMEM;
2830 priv->hw = mac;
2832 /* Get and dump the chip ID */
2833 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2835 /* To use the chained or ring mode */
2836 if (chain_mode) {
2837 priv->hw->mode = &chain_mode_ops;
2838 pr_info(" Chain mode enabled\n");
2839 priv->mode = STMMAC_CHAIN_MODE;
2840 } else {
2841 priv->hw->mode = &ring_mode_ops;
2842 pr_info(" Ring mode enabled\n");
2843 priv->mode = STMMAC_RING_MODE;
2846 /* Get the HW capability (new GMAC newer than 3.50a) */
2847 priv->hw_cap_support = stmmac_get_hw_features(priv);
2848 if (priv->hw_cap_support) {
2849 pr_info(" DMA HW capability register supported");
2851 /* We can override some gmac/dma configuration fields: e.g.
2852 * enh_desc, tx_coe (e.g. that are passed through the
2853 * platform) with the values from the HW capability
2854 * register (if supported).
2856 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2857 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2859 /* TXCOE doesn't work in thresh DMA mode */
2860 if (priv->plat->force_thresh_dma_mode)
2861 priv->plat->tx_coe = 0;
2862 else
2863 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2865 if (priv->dma_cap.rx_coe_type2)
2866 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2867 else if (priv->dma_cap.rx_coe_type1)
2868 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2870 } else
2871 pr_info(" No HW DMA feature register supported");
2873 /* To use alternate (extended) or normal descriptor structures */
2874 stmmac_selec_desc_mode(priv);
2876 if (priv->plat->rx_coe) {
2877 priv->hw->rx_csum = priv->plat->rx_coe;
2878 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2879 priv->plat->rx_coe);
2881 if (priv->plat->tx_coe)
2882 pr_info(" TX Checksum insertion supported\n");
2884 if (priv->plat->pmt) {
2885 pr_info(" Wake-Up On Lan supported\n");
2886 device_set_wakeup_capable(priv->device, 1);
2889 return 0;
2893 * stmmac_dvr_probe
2894 * @device: device pointer
2895 * @plat_dat: platform data pointer
2896 * @res: stmmac resource pointer
2897 * Description: this is the main probe function used to
2898 * call the alloc_etherdev, allocate the priv structure.
2899 * Return:
2900 * returns 0 on success, otherwise errno.
2902 int stmmac_dvr_probe(struct device *device,
2903 struct plat_stmmacenet_data *plat_dat,
2904 struct stmmac_resources *res)
2906 int ret = 0;
2907 struct net_device *ndev = NULL;
2908 struct stmmac_priv *priv;
2910 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2911 if (!ndev)
2912 return -ENOMEM;
2914 SET_NETDEV_DEV(ndev, device);
2916 priv = netdev_priv(ndev);
2917 priv->device = device;
2918 priv->dev = ndev;
2920 stmmac_set_ethtool_ops(ndev);
2921 priv->pause = pause;
2922 priv->plat = plat_dat;
2923 priv->ioaddr = res->addr;
2924 priv->dev->base_addr = (unsigned long)res->addr;
2926 priv->dev->irq = res->irq;
2927 priv->wol_irq = res->wol_irq;
2928 priv->lpi_irq = res->lpi_irq;
2930 if (res->mac)
2931 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2933 dev_set_drvdata(device, priv->dev);
2935 /* Verify driver arguments */
2936 stmmac_verify_args();
2938 /* Override with kernel parameters if supplied XXX CRS XXX
2939 * this needs to have multiple instances
2941 if ((phyaddr >= 0) && (phyaddr <= 31))
2942 priv->plat->phy_addr = phyaddr;
2944 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2945 if (IS_ERR(priv->stmmac_clk)) {
2946 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2947 __func__);
2948 /* If failed to obtain stmmac_clk and specific clk_csr value
2949 * is NOT passed from the platform, probe fail.
2951 if (!priv->plat->clk_csr) {
2952 ret = PTR_ERR(priv->stmmac_clk);
2953 goto error_clk_get;
2954 } else {
2955 priv->stmmac_clk = NULL;
2958 clk_prepare_enable(priv->stmmac_clk);
2960 priv->pclk = devm_clk_get(priv->device, "pclk");
2961 if (IS_ERR(priv->pclk)) {
2962 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2963 ret = -EPROBE_DEFER;
2964 goto error_pclk_get;
2966 priv->pclk = NULL;
2968 clk_prepare_enable(priv->pclk);
2970 priv->stmmac_rst = devm_reset_control_get(priv->device,
2971 STMMAC_RESOURCE_NAME);
2972 if (IS_ERR(priv->stmmac_rst)) {
2973 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2974 ret = -EPROBE_DEFER;
2975 goto error_hw_init;
2977 dev_info(priv->device, "no reset control found\n");
2978 priv->stmmac_rst = NULL;
2980 if (priv->stmmac_rst)
2981 reset_control_deassert(priv->stmmac_rst);
2983 /* Init MAC and get the capabilities */
2984 ret = stmmac_hw_init(priv);
2985 if (ret)
2986 goto error_hw_init;
2988 ndev->netdev_ops = &stmmac_netdev_ops;
2990 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2991 NETIF_F_RXCSUM;
2992 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2993 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2994 #ifdef STMMAC_VLAN_TAG_USED
2995 /* Both mac100 and gmac support receive VLAN tag detection */
2996 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2997 #endif
2998 priv->msg_enable = netif_msg_init(debug, default_msg_level);
3000 if (flow_ctrl)
3001 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
3003 /* Rx Watchdog is available in the COREs newer than the 3.40.
3004 * In some case, for example on bugged HW this feature
3005 * has to be disable and this can be done by passing the
3006 * riwt_off field from the platform.
3008 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3009 priv->use_riwt = 1;
3010 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3013 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3015 spin_lock_init(&priv->lock);
3016 spin_lock_init(&priv->tx_lock);
3018 ret = register_netdev(ndev);
3019 if (ret) {
3020 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
3021 goto error_netdev_register;
3024 /* If a specific clk_csr value is passed from the platform
3025 * this means that the CSR Clock Range selection cannot be
3026 * changed at run-time and it is fixed. Viceversa the driver'll try to
3027 * set the MDC clock dynamically according to the csr actual
3028 * clock input.
3030 if (!priv->plat->clk_csr)
3031 stmmac_clk_csr_set(priv);
3032 else
3033 priv->clk_csr = priv->plat->clk_csr;
3035 stmmac_check_pcs_mode(priv);
3037 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3038 priv->pcs != STMMAC_PCS_RTBI) {
3039 /* MDIO bus Registration */
3040 ret = stmmac_mdio_register(ndev);
3041 if (ret < 0) {
3042 pr_debug("%s: MDIO bus (id: %d) registration failed",
3043 __func__, priv->plat->bus_id);
3044 goto error_mdio_register;
3048 return 0;
3050 error_mdio_register:
3051 unregister_netdev(ndev);
3052 error_netdev_register:
3053 netif_napi_del(&priv->napi);
3054 error_hw_init:
3055 clk_disable_unprepare(priv->pclk);
3056 error_pclk_get:
3057 clk_disable_unprepare(priv->stmmac_clk);
3058 error_clk_get:
3059 free_netdev(ndev);
3061 return ret;
3063 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3066 * stmmac_dvr_remove
3067 * @ndev: net device pointer
3068 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3069 * changes the link status, releases the DMA descriptor rings.
3071 int stmmac_dvr_remove(struct net_device *ndev)
3073 struct stmmac_priv *priv = netdev_priv(ndev);
3075 pr_info("%s:\n\tremoving driver", __func__);
3077 priv->hw->dma->stop_rx(priv->ioaddr);
3078 priv->hw->dma->stop_tx(priv->ioaddr);
3080 stmmac_set_mac(priv->ioaddr, false);
3081 netif_carrier_off(ndev);
3082 unregister_netdev(ndev);
3083 if (priv->stmmac_rst)
3084 reset_control_assert(priv->stmmac_rst);
3085 clk_disable_unprepare(priv->pclk);
3086 clk_disable_unprepare(priv->stmmac_clk);
3087 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3088 priv->pcs != STMMAC_PCS_RTBI)
3089 stmmac_mdio_unregister(ndev);
3090 free_netdev(ndev);
3092 return 0;
3094 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3097 * stmmac_suspend - suspend callback
3098 * @ndev: net device pointer
3099 * Description: this is the function to suspend the device and it is called
3100 * by the platform driver to stop the network queue, release the resources,
3101 * program the PMT register (for WoL), clean and release driver resources.
3103 int stmmac_suspend(struct net_device *ndev)
3105 struct stmmac_priv *priv = netdev_priv(ndev);
3106 unsigned long flags;
3108 if (!ndev || !netif_running(ndev))
3109 return 0;
3111 if (priv->phydev)
3112 phy_stop(priv->phydev);
3114 spin_lock_irqsave(&priv->lock, flags);
3116 netif_device_detach(ndev);
3117 netif_stop_queue(ndev);
3119 napi_disable(&priv->napi);
3121 /* Stop TX/RX DMA */
3122 priv->hw->dma->stop_tx(priv->ioaddr);
3123 priv->hw->dma->stop_rx(priv->ioaddr);
3125 /* Enable Power down mode by programming the PMT regs */
3126 if (device_may_wakeup(priv->device)) {
3127 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3128 priv->irq_wake = 1;
3129 } else {
3130 stmmac_set_mac(priv->ioaddr, false);
3131 pinctrl_pm_select_sleep_state(priv->device);
3132 /* Disable clock in case of PWM is off */
3133 clk_disable(priv->pclk);
3134 clk_disable(priv->stmmac_clk);
3136 spin_unlock_irqrestore(&priv->lock, flags);
3138 priv->oldlink = 0;
3139 priv->speed = 0;
3140 priv->oldduplex = -1;
3141 return 0;
3143 EXPORT_SYMBOL_GPL(stmmac_suspend);
3146 * stmmac_resume - resume callback
3147 * @ndev: net device pointer
3148 * Description: when resume this function is invoked to setup the DMA and CORE
3149 * in a usable state.
3151 int stmmac_resume(struct net_device *ndev)
3153 struct stmmac_priv *priv = netdev_priv(ndev);
3154 unsigned long flags;
3156 if (!netif_running(ndev))
3157 return 0;
3159 spin_lock_irqsave(&priv->lock, flags);
3161 /* Power Down bit, into the PM register, is cleared
3162 * automatically as soon as a magic packet or a Wake-up frame
3163 * is received. Anyway, it's better to manually clear
3164 * this bit because it can generate problems while resuming
3165 * from another devices (e.g. serial console).
3167 if (device_may_wakeup(priv->device)) {
3168 priv->hw->mac->pmt(priv->hw, 0);
3169 priv->irq_wake = 0;
3170 } else {
3171 pinctrl_pm_select_default_state(priv->device);
3172 /* enable the clk prevously disabled */
3173 clk_enable(priv->stmmac_clk);
3174 clk_enable(priv->pclk);
3175 /* reset the phy so that it's ready */
3176 if (priv->mii)
3177 stmmac_mdio_reset(priv->mii);
3180 netif_device_attach(ndev);
3182 priv->cur_rx = 0;
3183 priv->dirty_rx = 0;
3184 priv->dirty_tx = 0;
3185 priv->cur_tx = 0;
3186 stmmac_clear_descriptors(priv);
3188 stmmac_hw_setup(ndev, false);
3189 stmmac_init_tx_coalesce(priv);
3190 stmmac_set_rx_mode(ndev);
3192 napi_enable(&priv->napi);
3194 netif_start_queue(ndev);
3196 spin_unlock_irqrestore(&priv->lock, flags);
3198 if (priv->phydev)
3199 phy_start(priv->phydev);
3201 return 0;
3203 EXPORT_SYMBOL_GPL(stmmac_resume);
3205 #ifndef MODULE
3206 static int __init stmmac_cmdline_opt(char *str)
3208 char *opt;
3210 if (!str || !*str)
3211 return -EINVAL;
3212 while ((opt = strsep(&str, ",")) != NULL) {
3213 if (!strncmp(opt, "debug:", 6)) {
3214 if (kstrtoint(opt + 6, 0, &debug))
3215 goto err;
3216 } else if (!strncmp(opt, "phyaddr:", 8)) {
3217 if (kstrtoint(opt + 8, 0, &phyaddr))
3218 goto err;
3219 } else if (!strncmp(opt, "buf_sz:", 7)) {
3220 if (kstrtoint(opt + 7, 0, &buf_sz))
3221 goto err;
3222 } else if (!strncmp(opt, "tc:", 3)) {
3223 if (kstrtoint(opt + 3, 0, &tc))
3224 goto err;
3225 } else if (!strncmp(opt, "watchdog:", 9)) {
3226 if (kstrtoint(opt + 9, 0, &watchdog))
3227 goto err;
3228 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3229 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3230 goto err;
3231 } else if (!strncmp(opt, "pause:", 6)) {
3232 if (kstrtoint(opt + 6, 0, &pause))
3233 goto err;
3234 } else if (!strncmp(opt, "eee_timer:", 10)) {
3235 if (kstrtoint(opt + 10, 0, &eee_timer))
3236 goto err;
3237 } else if (!strncmp(opt, "chain_mode:", 11)) {
3238 if (kstrtoint(opt + 11, 0, &chain_mode))
3239 goto err;
3242 return 0;
3244 err:
3245 pr_err("%s: ERROR broken module parameter conversion", __func__);
3246 return -EINVAL;
3249 __setup("stmmaceth=", stmmac_cmdline_opt);
3250 #endif /* MODULE */
3252 static int __init stmmac_init(void)
3254 #ifdef CONFIG_DEBUG_FS
3255 /* Create debugfs main directory if it doesn't exist yet */
3256 if (!stmmac_fs_dir) {
3257 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3259 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3260 pr_err("ERROR %s, debugfs create directory failed\n",
3261 STMMAC_RESOURCE_NAME);
3263 return -ENOMEM;
3266 #endif
3268 return 0;
3271 static void __exit stmmac_exit(void)
3273 #ifdef CONFIG_DEBUG_FS
3274 debugfs_remove_recursive(stmmac_fs_dir);
3275 #endif
3278 module_init(stmmac_init)
3279 module_exit(stmmac_exit)
3281 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3282 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3283 MODULE_LICENSE("GPL");