arm-cci500: Don't enable PMU driver by default
[linux-2.6/btrfs-unstable.git] / drivers / cpufreq / acpi-cpufreq.c
blob798277227de7f3a897a4ad79fcaabe787412fcfb
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
49 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51 MODULE_LICENSE("GPL");
53 #define PFX "acpi-cpufreq: "
55 enum {
56 UNDEFINED_CAPABLE = 0,
57 SYSTEM_INTEL_MSR_CAPABLE,
58 SYSTEM_AMD_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
62 #define INTEL_MSR_RANGE (0xffff)
63 #define AMD_MSR_RANGE (0x7)
65 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
67 struct acpi_cpufreq_data {
68 struct cpufreq_frequency_table *freq_table;
69 unsigned int resume;
70 unsigned int cpu_feature;
71 unsigned int acpi_perf_cpu;
72 cpumask_var_t freqdomain_cpus;
75 /* acpi_perf_data is a pointer to percpu data. */
76 static struct acpi_processor_performance __percpu *acpi_perf_data;
78 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
80 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
83 static struct cpufreq_driver acpi_cpufreq_driver;
85 static unsigned int acpi_pstate_strict;
86 static struct msr __percpu *msrs;
88 static bool boost_state(unsigned int cpu)
90 u32 lo, hi;
91 u64 msr;
93 switch (boot_cpu_data.x86_vendor) {
94 case X86_VENDOR_INTEL:
95 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
96 msr = lo | ((u64)hi << 32);
97 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
98 case X86_VENDOR_AMD:
99 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
100 msr = lo | ((u64)hi << 32);
101 return !(msr & MSR_K7_HWCR_CPB_DIS);
103 return false;
106 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
108 u32 cpu;
109 u32 msr_addr;
110 u64 msr_mask;
112 switch (boot_cpu_data.x86_vendor) {
113 case X86_VENDOR_INTEL:
114 msr_addr = MSR_IA32_MISC_ENABLE;
115 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
116 break;
117 case X86_VENDOR_AMD:
118 msr_addr = MSR_K7_HWCR;
119 msr_mask = MSR_K7_HWCR_CPB_DIS;
120 break;
121 default:
122 return;
125 rdmsr_on_cpus(cpumask, msr_addr, msrs);
127 for_each_cpu(cpu, cpumask) {
128 struct msr *reg = per_cpu_ptr(msrs, cpu);
129 if (enable)
130 reg->q &= ~msr_mask;
131 else
132 reg->q |= msr_mask;
135 wrmsr_on_cpus(cpumask, msr_addr, msrs);
138 static int _store_boost(int val)
140 get_online_cpus();
141 boost_set_msrs(val, cpu_online_mask);
142 put_online_cpus();
143 pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
145 return 0;
148 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
150 struct acpi_cpufreq_data *data = policy->driver_data;
152 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
155 cpufreq_freq_attr_ro(freqdomain_cpus);
157 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
158 static ssize_t store_boost(const char *buf, size_t count)
160 int ret;
161 unsigned long val = 0;
163 if (!acpi_cpufreq_driver.boost_supported)
164 return -EINVAL;
166 ret = kstrtoul(buf, 10, &val);
167 if (ret || (val > 1))
168 return -EINVAL;
170 _store_boost((int) val);
172 return count;
175 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
176 size_t count)
178 return store_boost(buf, count);
181 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
183 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
186 cpufreq_freq_attr_rw(cpb);
187 #endif
189 static int check_est_cpu(unsigned int cpuid)
191 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
193 return cpu_has(cpu, X86_FEATURE_EST);
196 static int check_amd_hwpstate_cpu(unsigned int cpuid)
198 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
200 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
203 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
205 struct acpi_processor_performance *perf;
206 int i;
208 perf = to_perf_data(data);
210 for (i = 0; i < perf->state_count; i++) {
211 if (value == perf->states[i].status)
212 return data->freq_table[i].frequency;
214 return 0;
217 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
219 struct cpufreq_frequency_table *pos;
220 struct acpi_processor_performance *perf;
222 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223 msr &= AMD_MSR_RANGE;
224 else
225 msr &= INTEL_MSR_RANGE;
227 perf = to_perf_data(data);
229 cpufreq_for_each_entry(pos, data->freq_table)
230 if (msr == perf->states[pos->driver_data].status)
231 return pos->frequency;
232 return data->freq_table[0].frequency;
235 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
237 switch (data->cpu_feature) {
238 case SYSTEM_INTEL_MSR_CAPABLE:
239 case SYSTEM_AMD_MSR_CAPABLE:
240 return extract_msr(val, data);
241 case SYSTEM_IO_CAPABLE:
242 return extract_io(val, data);
243 default:
244 return 0;
248 struct msr_addr {
249 u32 reg;
252 struct io_addr {
253 u16 port;
254 u8 bit_width;
257 struct drv_cmd {
258 unsigned int type;
259 const struct cpumask *mask;
260 union {
261 struct msr_addr msr;
262 struct io_addr io;
263 } addr;
264 u32 val;
267 /* Called via smp_call_function_single(), on the target CPU */
268 static void do_drv_read(void *_cmd)
270 struct drv_cmd *cmd = _cmd;
271 u32 h;
273 switch (cmd->type) {
274 case SYSTEM_INTEL_MSR_CAPABLE:
275 case SYSTEM_AMD_MSR_CAPABLE:
276 rdmsr(cmd->addr.msr.reg, cmd->val, h);
277 break;
278 case SYSTEM_IO_CAPABLE:
279 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
280 &cmd->val,
281 (u32)cmd->addr.io.bit_width);
282 break;
283 default:
284 break;
288 /* Called via smp_call_function_many(), on the target CPUs */
289 static void do_drv_write(void *_cmd)
291 struct drv_cmd *cmd = _cmd;
292 u32 lo, hi;
294 switch (cmd->type) {
295 case SYSTEM_INTEL_MSR_CAPABLE:
296 rdmsr(cmd->addr.msr.reg, lo, hi);
297 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
298 wrmsr(cmd->addr.msr.reg, lo, hi);
299 break;
300 case SYSTEM_AMD_MSR_CAPABLE:
301 wrmsr(cmd->addr.msr.reg, cmd->val, 0);
302 break;
303 case SYSTEM_IO_CAPABLE:
304 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
305 cmd->val,
306 (u32)cmd->addr.io.bit_width);
307 break;
308 default:
309 break;
313 static void drv_read(struct drv_cmd *cmd)
315 int err;
316 cmd->val = 0;
318 err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
319 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
322 static void drv_write(struct drv_cmd *cmd)
324 int this_cpu;
326 this_cpu = get_cpu();
327 if (cpumask_test_cpu(this_cpu, cmd->mask))
328 do_drv_write(cmd);
329 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
330 put_cpu();
333 static u32
334 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
336 struct acpi_processor_performance *perf;
337 struct drv_cmd cmd;
339 if (unlikely(cpumask_empty(mask)))
340 return 0;
342 switch (data->cpu_feature) {
343 case SYSTEM_INTEL_MSR_CAPABLE:
344 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
345 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
346 break;
347 case SYSTEM_AMD_MSR_CAPABLE:
348 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
349 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
350 break;
351 case SYSTEM_IO_CAPABLE:
352 cmd.type = SYSTEM_IO_CAPABLE;
353 perf = to_perf_data(data);
354 cmd.addr.io.port = perf->control_register.address;
355 cmd.addr.io.bit_width = perf->control_register.bit_width;
356 break;
357 default:
358 return 0;
361 cmd.mask = mask;
362 drv_read(&cmd);
364 pr_debug("get_cur_val = %u\n", cmd.val);
366 return cmd.val;
369 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
371 struct acpi_cpufreq_data *data;
372 struct cpufreq_policy *policy;
373 unsigned int freq;
374 unsigned int cached_freq;
376 pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
378 policy = cpufreq_cpu_get_raw(cpu);
379 if (unlikely(!policy))
380 return 0;
382 data = policy->driver_data;
383 if (unlikely(!data || !data->freq_table))
384 return 0;
386 cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
387 freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
388 if (freq != cached_freq) {
390 * The dreaded BIOS frequency change behind our back.
391 * Force set the frequency on next target call.
393 data->resume = 1;
396 pr_debug("cur freq = %u\n", freq);
398 return freq;
401 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
402 struct acpi_cpufreq_data *data)
404 unsigned int cur_freq;
405 unsigned int i;
407 for (i = 0; i < 100; i++) {
408 cur_freq = extract_freq(get_cur_val(mask, data), data);
409 if (cur_freq == freq)
410 return 1;
411 udelay(10);
413 return 0;
416 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
417 unsigned int index)
419 struct acpi_cpufreq_data *data = policy->driver_data;
420 struct acpi_processor_performance *perf;
421 struct drv_cmd cmd;
422 unsigned int next_perf_state = 0; /* Index into perf table */
423 int result = 0;
425 if (unlikely(data == NULL || data->freq_table == NULL)) {
426 return -ENODEV;
429 perf = to_perf_data(data);
430 next_perf_state = data->freq_table[index].driver_data;
431 if (perf->state == next_perf_state) {
432 if (unlikely(data->resume)) {
433 pr_debug("Called after resume, resetting to P%d\n",
434 next_perf_state);
435 data->resume = 0;
436 } else {
437 pr_debug("Already at target state (P%d)\n",
438 next_perf_state);
439 goto out;
443 switch (data->cpu_feature) {
444 case SYSTEM_INTEL_MSR_CAPABLE:
445 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
446 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
447 cmd.val = (u32) perf->states[next_perf_state].control;
448 break;
449 case SYSTEM_AMD_MSR_CAPABLE:
450 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
451 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
452 cmd.val = (u32) perf->states[next_perf_state].control;
453 break;
454 case SYSTEM_IO_CAPABLE:
455 cmd.type = SYSTEM_IO_CAPABLE;
456 cmd.addr.io.port = perf->control_register.address;
457 cmd.addr.io.bit_width = perf->control_register.bit_width;
458 cmd.val = (u32) perf->states[next_perf_state].control;
459 break;
460 default:
461 result = -ENODEV;
462 goto out;
465 /* cpufreq holds the hotplug lock, so we are safe from here on */
466 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
467 cmd.mask = policy->cpus;
468 else
469 cmd.mask = cpumask_of(policy->cpu);
471 drv_write(&cmd);
473 if (acpi_pstate_strict) {
474 if (!check_freqs(cmd.mask, data->freq_table[index].frequency,
475 data)) {
476 pr_debug("acpi_cpufreq_target failed (%d)\n",
477 policy->cpu);
478 result = -EAGAIN;
482 if (!result)
483 perf->state = next_perf_state;
485 out:
486 return result;
489 static unsigned long
490 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
492 struct acpi_processor_performance *perf;
494 perf = to_perf_data(data);
495 if (cpu_khz) {
496 /* search the closest match to cpu_khz */
497 unsigned int i;
498 unsigned long freq;
499 unsigned long freqn = perf->states[0].core_frequency * 1000;
501 for (i = 0; i < (perf->state_count-1); i++) {
502 freq = freqn;
503 freqn = perf->states[i+1].core_frequency * 1000;
504 if ((2 * cpu_khz) > (freqn + freq)) {
505 perf->state = i;
506 return freq;
509 perf->state = perf->state_count-1;
510 return freqn;
511 } else {
512 /* assume CPU is at P0... */
513 perf->state = 0;
514 return perf->states[0].core_frequency * 1000;
518 static void free_acpi_perf_data(void)
520 unsigned int i;
522 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
523 for_each_possible_cpu(i)
524 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
525 ->shared_cpu_map);
526 free_percpu(acpi_perf_data);
529 static int boost_notify(struct notifier_block *nb, unsigned long action,
530 void *hcpu)
532 unsigned cpu = (long)hcpu;
533 const struct cpumask *cpumask;
535 cpumask = get_cpu_mask(cpu);
538 * Clear the boost-disable bit on the CPU_DOWN path so that
539 * this cpu cannot block the remaining ones from boosting. On
540 * the CPU_UP path we simply keep the boost-disable flag in
541 * sync with the current global state.
544 switch (action) {
545 case CPU_UP_PREPARE:
546 case CPU_UP_PREPARE_FROZEN:
547 boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
548 break;
550 case CPU_DOWN_PREPARE:
551 case CPU_DOWN_PREPARE_FROZEN:
552 boost_set_msrs(1, cpumask);
553 break;
555 default:
556 break;
559 return NOTIFY_OK;
563 static struct notifier_block boost_nb = {
564 .notifier_call = boost_notify,
568 * acpi_cpufreq_early_init - initialize ACPI P-States library
570 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
571 * in order to determine correct frequency and voltage pairings. We can
572 * do _PDC and _PSD and find out the processor dependency for the
573 * actual init that will happen later...
575 static int __init acpi_cpufreq_early_init(void)
577 unsigned int i;
578 pr_debug("acpi_cpufreq_early_init\n");
580 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
581 if (!acpi_perf_data) {
582 pr_debug("Memory allocation error for acpi_perf_data.\n");
583 return -ENOMEM;
585 for_each_possible_cpu(i) {
586 if (!zalloc_cpumask_var_node(
587 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
588 GFP_KERNEL, cpu_to_node(i))) {
590 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
591 free_acpi_perf_data();
592 return -ENOMEM;
596 /* Do initialization in ACPI core */
597 acpi_processor_preregister_performance(acpi_perf_data);
598 return 0;
601 #ifdef CONFIG_SMP
603 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
604 * or do it in BIOS firmware and won't inform about it to OS. If not
605 * detected, this has a side effect of making CPU run at a different speed
606 * than OS intended it to run at. Detect it and handle it cleanly.
608 static int bios_with_sw_any_bug;
610 static int sw_any_bug_found(const struct dmi_system_id *d)
612 bios_with_sw_any_bug = 1;
613 return 0;
616 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
618 .callback = sw_any_bug_found,
619 .ident = "Supermicro Server X6DLP",
620 .matches = {
621 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
622 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
623 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
629 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
631 /* Intel Xeon Processor 7100 Series Specification Update
632 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
633 * AL30: A Machine Check Exception (MCE) Occurring during an
634 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
635 * Both Processor Cores to Lock Up. */
636 if (c->x86_vendor == X86_VENDOR_INTEL) {
637 if ((c->x86 == 15) &&
638 (c->x86_model == 6) &&
639 (c->x86_mask == 8)) {
640 printk(KERN_INFO "acpi-cpufreq: Intel(R) "
641 "Xeon(R) 7100 Errata AL30, processors may "
642 "lock up on frequency changes: disabling "
643 "acpi-cpufreq.\n");
644 return -ENODEV;
647 return 0;
649 #endif
651 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
653 unsigned int i;
654 unsigned int valid_states = 0;
655 unsigned int cpu = policy->cpu;
656 struct acpi_cpufreq_data *data;
657 unsigned int result = 0;
658 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
659 struct acpi_processor_performance *perf;
660 #ifdef CONFIG_SMP
661 static int blacklisted;
662 #endif
664 pr_debug("acpi_cpufreq_cpu_init\n");
666 #ifdef CONFIG_SMP
667 if (blacklisted)
668 return blacklisted;
669 blacklisted = acpi_cpufreq_blacklist(c);
670 if (blacklisted)
671 return blacklisted;
672 #endif
674 data = kzalloc(sizeof(*data), GFP_KERNEL);
675 if (!data)
676 return -ENOMEM;
678 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
679 result = -ENOMEM;
680 goto err_free;
683 perf = per_cpu_ptr(acpi_perf_data, cpu);
684 data->acpi_perf_cpu = cpu;
685 policy->driver_data = data;
687 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
688 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
690 result = acpi_processor_register_performance(perf, cpu);
691 if (result)
692 goto err_free_mask;
694 policy->shared_type = perf->shared_type;
697 * Will let policy->cpus know about dependency only when software
698 * coordination is required.
700 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
701 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
702 cpumask_copy(policy->cpus, perf->shared_cpu_map);
704 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
706 #ifdef CONFIG_SMP
707 dmi_check_system(sw_any_bug_dmi_table);
708 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
709 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
710 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
713 if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
714 cpumask_clear(policy->cpus);
715 cpumask_set_cpu(cpu, policy->cpus);
716 cpumask_copy(data->freqdomain_cpus,
717 topology_sibling_cpumask(cpu));
718 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
719 pr_info_once(PFX "overriding BIOS provided _PSD data\n");
721 #endif
723 /* capability check */
724 if (perf->state_count <= 1) {
725 pr_debug("No P-States\n");
726 result = -ENODEV;
727 goto err_unreg;
730 if (perf->control_register.space_id != perf->status_register.space_id) {
731 result = -ENODEV;
732 goto err_unreg;
735 switch (perf->control_register.space_id) {
736 case ACPI_ADR_SPACE_SYSTEM_IO:
737 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
738 boot_cpu_data.x86 == 0xf) {
739 pr_debug("AMD K8 systems must use native drivers.\n");
740 result = -ENODEV;
741 goto err_unreg;
743 pr_debug("SYSTEM IO addr space\n");
744 data->cpu_feature = SYSTEM_IO_CAPABLE;
745 break;
746 case ACPI_ADR_SPACE_FIXED_HARDWARE:
747 pr_debug("HARDWARE addr space\n");
748 if (check_est_cpu(cpu)) {
749 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
750 break;
752 if (check_amd_hwpstate_cpu(cpu)) {
753 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
754 break;
756 result = -ENODEV;
757 goto err_unreg;
758 default:
759 pr_debug("Unknown addr space %d\n",
760 (u32) (perf->control_register.space_id));
761 result = -ENODEV;
762 goto err_unreg;
765 data->freq_table = kzalloc(sizeof(*data->freq_table) *
766 (perf->state_count+1), GFP_KERNEL);
767 if (!data->freq_table) {
768 result = -ENOMEM;
769 goto err_unreg;
772 /* detect transition latency */
773 policy->cpuinfo.transition_latency = 0;
774 for (i = 0; i < perf->state_count; i++) {
775 if ((perf->states[i].transition_latency * 1000) >
776 policy->cpuinfo.transition_latency)
777 policy->cpuinfo.transition_latency =
778 perf->states[i].transition_latency * 1000;
781 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
782 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
783 policy->cpuinfo.transition_latency > 20 * 1000) {
784 policy->cpuinfo.transition_latency = 20 * 1000;
785 printk_once(KERN_INFO
786 "P-state transition latency capped at 20 uS\n");
789 /* table init */
790 for (i = 0; i < perf->state_count; i++) {
791 if (i > 0 && perf->states[i].core_frequency >=
792 data->freq_table[valid_states-1].frequency / 1000)
793 continue;
795 data->freq_table[valid_states].driver_data = i;
796 data->freq_table[valid_states].frequency =
797 perf->states[i].core_frequency * 1000;
798 valid_states++;
800 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
801 perf->state = 0;
803 result = cpufreq_table_validate_and_show(policy, data->freq_table);
804 if (result)
805 goto err_freqfree;
807 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
808 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
810 switch (perf->control_register.space_id) {
811 case ACPI_ADR_SPACE_SYSTEM_IO:
813 * The core will not set policy->cur, because
814 * cpufreq_driver->get is NULL, so we need to set it here.
815 * However, we have to guess it, because the current speed is
816 * unknown and not detectable via IO ports.
818 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
819 break;
820 case ACPI_ADR_SPACE_FIXED_HARDWARE:
821 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
822 break;
823 default:
824 break;
827 /* notify BIOS that we exist */
828 acpi_processor_notify_smm(THIS_MODULE);
830 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
831 for (i = 0; i < perf->state_count; i++)
832 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
833 (i == perf->state ? '*' : ' '), i,
834 (u32) perf->states[i].core_frequency,
835 (u32) perf->states[i].power,
836 (u32) perf->states[i].transition_latency);
839 * the first call to ->target() should result in us actually
840 * writing something to the appropriate registers.
842 data->resume = 1;
844 return result;
846 err_freqfree:
847 kfree(data->freq_table);
848 err_unreg:
849 acpi_processor_unregister_performance(cpu);
850 err_free_mask:
851 free_cpumask_var(data->freqdomain_cpus);
852 err_free:
853 kfree(data);
854 policy->driver_data = NULL;
856 return result;
859 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
861 struct acpi_cpufreq_data *data = policy->driver_data;
863 pr_debug("acpi_cpufreq_cpu_exit\n");
865 if (data) {
866 policy->driver_data = NULL;
867 acpi_processor_unregister_performance(data->acpi_perf_cpu);
868 free_cpumask_var(data->freqdomain_cpus);
869 kfree(data->freq_table);
870 kfree(data);
873 return 0;
876 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
878 struct acpi_cpufreq_data *data = policy->driver_data;
880 pr_debug("acpi_cpufreq_resume\n");
882 data->resume = 1;
884 return 0;
887 static struct freq_attr *acpi_cpufreq_attr[] = {
888 &cpufreq_freq_attr_scaling_available_freqs,
889 &freqdomain_cpus,
890 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
891 &cpb,
892 #endif
893 NULL,
896 static struct cpufreq_driver acpi_cpufreq_driver = {
897 .verify = cpufreq_generic_frequency_table_verify,
898 .target_index = acpi_cpufreq_target,
899 .bios_limit = acpi_processor_get_bios_limit,
900 .init = acpi_cpufreq_cpu_init,
901 .exit = acpi_cpufreq_cpu_exit,
902 .resume = acpi_cpufreq_resume,
903 .name = "acpi-cpufreq",
904 .attr = acpi_cpufreq_attr,
905 .set_boost = _store_boost,
908 static void __init acpi_cpufreq_boost_init(void)
910 if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
911 msrs = msrs_alloc();
913 if (!msrs)
914 return;
916 acpi_cpufreq_driver.boost_supported = true;
917 acpi_cpufreq_driver.boost_enabled = boost_state(0);
919 cpu_notifier_register_begin();
921 /* Force all MSRs to the same value */
922 boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
923 cpu_online_mask);
925 __register_cpu_notifier(&boost_nb);
927 cpu_notifier_register_done();
931 static void acpi_cpufreq_boost_exit(void)
933 if (msrs) {
934 unregister_cpu_notifier(&boost_nb);
936 msrs_free(msrs);
937 msrs = NULL;
941 static int __init acpi_cpufreq_init(void)
943 int ret;
945 if (acpi_disabled)
946 return -ENODEV;
948 /* don't keep reloading if cpufreq_driver exists */
949 if (cpufreq_get_current_driver())
950 return -EEXIST;
952 pr_debug("acpi_cpufreq_init\n");
954 ret = acpi_cpufreq_early_init();
955 if (ret)
956 return ret;
958 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
959 /* this is a sysfs file with a strange name and an even stranger
960 * semantic - per CPU instantiation, but system global effect.
961 * Lets enable it only on AMD CPUs for compatibility reasons and
962 * only if configured. This is considered legacy code, which
963 * will probably be removed at some point in the future.
965 if (!check_amd_hwpstate_cpu(0)) {
966 struct freq_attr **attr;
968 pr_debug("CPB unsupported, do not expose it\n");
970 for (attr = acpi_cpufreq_attr; *attr; attr++)
971 if (*attr == &cpb) {
972 *attr = NULL;
973 break;
976 #endif
977 acpi_cpufreq_boost_init();
979 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
980 if (ret) {
981 free_acpi_perf_data();
982 acpi_cpufreq_boost_exit();
984 return ret;
987 static void __exit acpi_cpufreq_exit(void)
989 pr_debug("acpi_cpufreq_exit\n");
991 acpi_cpufreq_boost_exit();
993 cpufreq_unregister_driver(&acpi_cpufreq_driver);
995 free_acpi_perf_data();
998 module_param(acpi_pstate_strict, uint, 0644);
999 MODULE_PARM_DESC(acpi_pstate_strict,
1000 "value 0 or non-zero. non-zero -> strict ACPI checks are "
1001 "performed during frequency changes.");
1003 late_initcall(acpi_cpufreq_init);
1004 module_exit(acpi_cpufreq_exit);
1006 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1007 X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1008 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1011 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1013 static const struct acpi_device_id processor_device_ids[] = {
1014 {ACPI_PROCESSOR_OBJECT_HID, },
1015 {ACPI_PROCESSOR_DEVICE_HID, },
1018 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1020 MODULE_ALIAS("acpi");