UBI: Export next_sqnum()
[linux-2.6/btrfs-unstable.git] / drivers / iommu / intel-iommu.c
blob2297ec193eb4b645812c85519c335361e935f296
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
62 #define MAX_AGAW_WIDTH 64
64 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
70 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
74 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
75 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77 /* page table handling */
78 #define LEVEL_STRIDE (9)
79 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
82 * This bitmap is used to advertise the page sizes our hardware support
83 * to the IOMMU core, which will then use this information to split
84 * physically contiguous memory regions it is mapping into page sizes
85 * that we support.
87 * Traditionally the IOMMU core just handed us the mappings directly,
88 * after making sure the size is an order of a 4KiB page and that the
89 * mapping has natural alignment.
91 * To retain this behavior, we currently advertise that we support
92 * all page sizes that are an order of 4KiB.
94 * If at some point we'd like to utilize the IOMMU core's new behavior,
95 * we could change this to advertise the real page sizes we support.
97 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
99 static inline int agaw_to_level(int agaw)
101 return agaw + 2;
104 static inline int agaw_to_width(int agaw)
106 return 30 + agaw * LEVEL_STRIDE;
109 static inline int width_to_agaw(int width)
111 return (width - 30) / LEVEL_STRIDE;
114 static inline unsigned int level_to_offset_bits(int level)
116 return (level - 1) * LEVEL_STRIDE;
119 static inline int pfn_level_offset(unsigned long pfn, int level)
121 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
124 static inline unsigned long level_mask(int level)
126 return -1UL << level_to_offset_bits(level);
129 static inline unsigned long level_size(int level)
131 return 1UL << level_to_offset_bits(level);
134 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 return (pfn + level_size(level) - 1) & level_mask(level);
139 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 return 1 << ((lvl - 1) * LEVEL_STRIDE);
144 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
145 are never going to work. */
146 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
151 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 return mm_to_dma_pfn(page_to_pfn(pg));
159 static inline unsigned long virt_to_dma_pfn(void *p)
161 return page_to_dma_pfn(virt_to_page(p));
164 /* global iommu list, set NULL for ignored DMAR units */
165 static struct intel_iommu **g_iommus;
167 static void __init check_tylersburg_isoch(void);
168 static int rwbf_quirk;
171 * set to 1 to panic kernel if can't successfully enable VT-d
172 * (used when kernel is launched w/ TXT)
174 static int force_on = 0;
177 * 0: Present
178 * 1-11: Reserved
179 * 12-63: Context Ptr (12 - (haw-1))
180 * 64-127: Reserved
182 struct root_entry {
183 u64 val;
184 u64 rsvd1;
186 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
187 static inline bool root_present(struct root_entry *root)
189 return (root->val & 1);
191 static inline void set_root_present(struct root_entry *root)
193 root->val |= 1;
195 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 root->val |= value & VTD_PAGE_MASK;
200 static inline struct context_entry *
201 get_context_addr_from_root(struct root_entry *root)
203 return (struct context_entry *)
204 (root_present(root)?phys_to_virt(
205 root->val & VTD_PAGE_MASK) :
206 NULL);
210 * low 64 bits:
211 * 0: present
212 * 1: fault processing disable
213 * 2-3: translation type
214 * 12-63: address space root
215 * high 64 bits:
216 * 0-2: address width
217 * 3-6: aval
218 * 8-23: domain id
220 struct context_entry {
221 u64 lo;
222 u64 hi;
225 static inline bool context_present(struct context_entry *context)
227 return (context->lo & 1);
229 static inline void context_set_present(struct context_entry *context)
231 context->lo |= 1;
234 static inline void context_set_fault_enable(struct context_entry *context)
236 context->lo &= (((u64)-1) << 2) | 1;
239 static inline void context_set_translation_type(struct context_entry *context,
240 unsigned long value)
242 context->lo &= (((u64)-1) << 4) | 3;
243 context->lo |= (value & 3) << 2;
246 static inline void context_set_address_root(struct context_entry *context,
247 unsigned long value)
249 context->lo |= value & VTD_PAGE_MASK;
252 static inline void context_set_address_width(struct context_entry *context,
253 unsigned long value)
255 context->hi |= value & 7;
258 static inline void context_set_domain_id(struct context_entry *context,
259 unsigned long value)
261 context->hi |= (value & ((1 << 16) - 1)) << 8;
264 static inline void context_clear_entry(struct context_entry *context)
266 context->lo = 0;
267 context->hi = 0;
271 * 0: readable
272 * 1: writable
273 * 2-6: reserved
274 * 7: super page
275 * 8-10: available
276 * 11: snoop behavior
277 * 12-63: Host physcial address
279 struct dma_pte {
280 u64 val;
283 static inline void dma_clear_pte(struct dma_pte *pte)
285 pte->val = 0;
288 static inline void dma_set_pte_readable(struct dma_pte *pte)
290 pte->val |= DMA_PTE_READ;
293 static inline void dma_set_pte_writable(struct dma_pte *pte)
295 pte->val |= DMA_PTE_WRITE;
298 static inline void dma_set_pte_snp(struct dma_pte *pte)
300 pte->val |= DMA_PTE_SNP;
303 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
305 pte->val = (pte->val & ~3) | (prot & 3);
308 static inline u64 dma_pte_addr(struct dma_pte *pte)
310 #ifdef CONFIG_64BIT
311 return pte->val & VTD_PAGE_MASK;
312 #else
313 /* Must have a full atomic 64-bit read */
314 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
315 #endif
318 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
320 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
323 static inline bool dma_pte_present(struct dma_pte *pte)
325 return (pte->val & 3) != 0;
328 static inline bool dma_pte_superpage(struct dma_pte *pte)
330 return (pte->val & (1 << 7));
333 static inline int first_pte_in_page(struct dma_pte *pte)
335 return !((unsigned long)pte & ~VTD_PAGE_MASK);
339 * This domain is a statically identity mapping domain.
340 * 1. This domain creats a static 1:1 mapping to all usable memory.
341 * 2. It maps to each iommu if successful.
342 * 3. Each iommu mapps to this domain if successful.
344 static struct dmar_domain *si_domain;
345 static int hw_pass_through = 1;
347 /* devices under the same p2p bridge are owned in one domain */
348 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
350 /* domain represents a virtual machine, more than one devices
351 * across iommus may be owned in one domain, e.g. kvm guest.
353 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
355 /* si_domain contains mulitple devices */
356 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
358 /* define the limit of IOMMUs supported in each domain */
359 #ifdef CONFIG_X86
360 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
361 #else
362 # define IOMMU_UNITS_SUPPORTED 64
363 #endif
365 struct dmar_domain {
366 int id; /* domain id */
367 int nid; /* node id */
368 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
369 /* bitmap of iommus this domain uses*/
371 struct list_head devices; /* all devices' list */
372 struct iova_domain iovad; /* iova's that belong to this domain */
374 struct dma_pte *pgd; /* virtual address */
375 int gaw; /* max guest address width */
377 /* adjusted guest address width, 0 is level 2 30-bit */
378 int agaw;
380 int flags; /* flags to find out type of domain */
382 int iommu_coherency;/* indicate coherency of iommu access */
383 int iommu_snooping; /* indicate snooping control feature*/
384 int iommu_count; /* reference count of iommu */
385 int iommu_superpage;/* Level of superpages supported:
386 0 == 4KiB (no superpages), 1 == 2MiB,
387 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
388 spinlock_t iommu_lock; /* protect iommu set in domain */
389 u64 max_addr; /* maximum mapped address */
392 /* PCI domain-device relationship */
393 struct device_domain_info {
394 struct list_head link; /* link to domain siblings */
395 struct list_head global; /* link to global list */
396 int segment; /* PCI domain */
397 u8 bus; /* PCI bus number */
398 u8 devfn; /* PCI devfn number */
399 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
400 struct intel_iommu *iommu; /* IOMMU used by this device */
401 struct dmar_domain *domain; /* pointer to domain */
404 static void flush_unmaps_timeout(unsigned long data);
406 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
408 #define HIGH_WATER_MARK 250
409 struct deferred_flush_tables {
410 int next;
411 struct iova *iova[HIGH_WATER_MARK];
412 struct dmar_domain *domain[HIGH_WATER_MARK];
415 static struct deferred_flush_tables *deferred_flush;
417 /* bitmap for indexing intel_iommus */
418 static int g_num_of_iommus;
420 static DEFINE_SPINLOCK(async_umap_flush_lock);
421 static LIST_HEAD(unmaps_to_do);
423 static int timer_on;
424 static long list_size;
426 static void domain_remove_dev_info(struct dmar_domain *domain);
428 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
429 int dmar_disabled = 0;
430 #else
431 int dmar_disabled = 1;
432 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
434 int intel_iommu_enabled = 0;
435 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
437 static int dmar_map_gfx = 1;
438 static int dmar_forcedac;
439 static int intel_iommu_strict;
440 static int intel_iommu_superpage = 1;
442 int intel_iommu_gfx_mapped;
443 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
445 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
446 static DEFINE_SPINLOCK(device_domain_lock);
447 static LIST_HEAD(device_domain_list);
449 static struct iommu_ops intel_iommu_ops;
451 static int __init intel_iommu_setup(char *str)
453 if (!str)
454 return -EINVAL;
455 while (*str) {
456 if (!strncmp(str, "on", 2)) {
457 dmar_disabled = 0;
458 printk(KERN_INFO "Intel-IOMMU: enabled\n");
459 } else if (!strncmp(str, "off", 3)) {
460 dmar_disabled = 1;
461 printk(KERN_INFO "Intel-IOMMU: disabled\n");
462 } else if (!strncmp(str, "igfx_off", 8)) {
463 dmar_map_gfx = 0;
464 printk(KERN_INFO
465 "Intel-IOMMU: disable GFX device mapping\n");
466 } else if (!strncmp(str, "forcedac", 8)) {
467 printk(KERN_INFO
468 "Intel-IOMMU: Forcing DAC for PCI devices\n");
469 dmar_forcedac = 1;
470 } else if (!strncmp(str, "strict", 6)) {
471 printk(KERN_INFO
472 "Intel-IOMMU: disable batched IOTLB flush\n");
473 intel_iommu_strict = 1;
474 } else if (!strncmp(str, "sp_off", 6)) {
475 printk(KERN_INFO
476 "Intel-IOMMU: disable supported super page\n");
477 intel_iommu_superpage = 0;
480 str += strcspn(str, ",");
481 while (*str == ',')
482 str++;
484 return 0;
486 __setup("intel_iommu=", intel_iommu_setup);
488 static struct kmem_cache *iommu_domain_cache;
489 static struct kmem_cache *iommu_devinfo_cache;
490 static struct kmem_cache *iommu_iova_cache;
492 static inline void *alloc_pgtable_page(int node)
494 struct page *page;
495 void *vaddr = NULL;
497 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
498 if (page)
499 vaddr = page_address(page);
500 return vaddr;
503 static inline void free_pgtable_page(void *vaddr)
505 free_page((unsigned long)vaddr);
508 static inline void *alloc_domain_mem(void)
510 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
513 static void free_domain_mem(void *vaddr)
515 kmem_cache_free(iommu_domain_cache, vaddr);
518 static inline void * alloc_devinfo_mem(void)
520 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
523 static inline void free_devinfo_mem(void *vaddr)
525 kmem_cache_free(iommu_devinfo_cache, vaddr);
528 struct iova *alloc_iova_mem(void)
530 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
533 void free_iova_mem(struct iova *iova)
535 kmem_cache_free(iommu_iova_cache, iova);
539 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
541 unsigned long sagaw;
542 int agaw = -1;
544 sagaw = cap_sagaw(iommu->cap);
545 for (agaw = width_to_agaw(max_gaw);
546 agaw >= 0; agaw--) {
547 if (test_bit(agaw, &sagaw))
548 break;
551 return agaw;
555 * Calculate max SAGAW for each iommu.
557 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
559 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
563 * calculate agaw for each iommu.
564 * "SAGAW" may be different across iommus, use a default agaw, and
565 * get a supported less agaw for iommus that don't support the default agaw.
567 int iommu_calculate_agaw(struct intel_iommu *iommu)
569 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
572 /* This functionin only returns single iommu in a domain */
573 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
575 int iommu_id;
577 /* si_domain and vm domain should not get here. */
578 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
579 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
581 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
582 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
583 return NULL;
585 return g_iommus[iommu_id];
588 static void domain_update_iommu_coherency(struct dmar_domain *domain)
590 int i;
592 domain->iommu_coherency = 1;
594 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
595 if (!ecap_coherent(g_iommus[i]->ecap)) {
596 domain->iommu_coherency = 0;
597 break;
602 static void domain_update_iommu_snooping(struct dmar_domain *domain)
604 int i;
606 domain->iommu_snooping = 1;
608 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
609 if (!ecap_sc_support(g_iommus[i]->ecap)) {
610 domain->iommu_snooping = 0;
611 break;
616 static void domain_update_iommu_superpage(struct dmar_domain *domain)
618 struct dmar_drhd_unit *drhd;
619 struct intel_iommu *iommu = NULL;
620 int mask = 0xf;
622 if (!intel_iommu_superpage) {
623 domain->iommu_superpage = 0;
624 return;
627 /* set iommu_superpage to the smallest common denominator */
628 for_each_active_iommu(iommu, drhd) {
629 mask &= cap_super_page_val(iommu->cap);
630 if (!mask) {
631 break;
634 domain->iommu_superpage = fls(mask);
637 /* Some capabilities may be different across iommus */
638 static void domain_update_iommu_cap(struct dmar_domain *domain)
640 domain_update_iommu_coherency(domain);
641 domain_update_iommu_snooping(domain);
642 domain_update_iommu_superpage(domain);
645 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
647 struct dmar_drhd_unit *drhd = NULL;
648 int i;
650 for_each_drhd_unit(drhd) {
651 if (drhd->ignored)
652 continue;
653 if (segment != drhd->segment)
654 continue;
656 for (i = 0; i < drhd->devices_cnt; i++) {
657 if (drhd->devices[i] &&
658 drhd->devices[i]->bus->number == bus &&
659 drhd->devices[i]->devfn == devfn)
660 return drhd->iommu;
661 if (drhd->devices[i] &&
662 drhd->devices[i]->subordinate &&
663 drhd->devices[i]->subordinate->number <= bus &&
664 drhd->devices[i]->subordinate->busn_res.end >= bus)
665 return drhd->iommu;
668 if (drhd->include_all)
669 return drhd->iommu;
672 return NULL;
675 static void domain_flush_cache(struct dmar_domain *domain,
676 void *addr, int size)
678 if (!domain->iommu_coherency)
679 clflush_cache_range(addr, size);
682 /* Gets context entry for a given bus and devfn */
683 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
684 u8 bus, u8 devfn)
686 struct root_entry *root;
687 struct context_entry *context;
688 unsigned long phy_addr;
689 unsigned long flags;
691 spin_lock_irqsave(&iommu->lock, flags);
692 root = &iommu->root_entry[bus];
693 context = get_context_addr_from_root(root);
694 if (!context) {
695 context = (struct context_entry *)
696 alloc_pgtable_page(iommu->node);
697 if (!context) {
698 spin_unlock_irqrestore(&iommu->lock, flags);
699 return NULL;
701 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
702 phy_addr = virt_to_phys((void *)context);
703 set_root_value(root, phy_addr);
704 set_root_present(root);
705 __iommu_flush_cache(iommu, root, sizeof(*root));
707 spin_unlock_irqrestore(&iommu->lock, flags);
708 return &context[devfn];
711 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
713 struct root_entry *root;
714 struct context_entry *context;
715 int ret;
716 unsigned long flags;
718 spin_lock_irqsave(&iommu->lock, flags);
719 root = &iommu->root_entry[bus];
720 context = get_context_addr_from_root(root);
721 if (!context) {
722 ret = 0;
723 goto out;
725 ret = context_present(&context[devfn]);
726 out:
727 spin_unlock_irqrestore(&iommu->lock, flags);
728 return ret;
731 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
733 struct root_entry *root;
734 struct context_entry *context;
735 unsigned long flags;
737 spin_lock_irqsave(&iommu->lock, flags);
738 root = &iommu->root_entry[bus];
739 context = get_context_addr_from_root(root);
740 if (context) {
741 context_clear_entry(&context[devfn]);
742 __iommu_flush_cache(iommu, &context[devfn], \
743 sizeof(*context));
745 spin_unlock_irqrestore(&iommu->lock, flags);
748 static void free_context_table(struct intel_iommu *iommu)
750 struct root_entry *root;
751 int i;
752 unsigned long flags;
753 struct context_entry *context;
755 spin_lock_irqsave(&iommu->lock, flags);
756 if (!iommu->root_entry) {
757 goto out;
759 for (i = 0; i < ROOT_ENTRY_NR; i++) {
760 root = &iommu->root_entry[i];
761 context = get_context_addr_from_root(root);
762 if (context)
763 free_pgtable_page(context);
765 free_pgtable_page(iommu->root_entry);
766 iommu->root_entry = NULL;
767 out:
768 spin_unlock_irqrestore(&iommu->lock, flags);
771 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
772 unsigned long pfn, int target_level)
774 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
775 struct dma_pte *parent, *pte = NULL;
776 int level = agaw_to_level(domain->agaw);
777 int offset;
779 BUG_ON(!domain->pgd);
780 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
781 parent = domain->pgd;
783 while (level > 0) {
784 void *tmp_page;
786 offset = pfn_level_offset(pfn, level);
787 pte = &parent[offset];
788 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
789 break;
790 if (level == target_level)
791 break;
793 if (!dma_pte_present(pte)) {
794 uint64_t pteval;
796 tmp_page = alloc_pgtable_page(domain->nid);
798 if (!tmp_page)
799 return NULL;
801 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
802 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
803 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
804 /* Someone else set it while we were thinking; use theirs. */
805 free_pgtable_page(tmp_page);
806 } else {
807 dma_pte_addr(pte);
808 domain_flush_cache(domain, pte, sizeof(*pte));
811 parent = phys_to_virt(dma_pte_addr(pte));
812 level--;
815 return pte;
819 /* return address's pte at specific level */
820 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
821 unsigned long pfn,
822 int level, int *large_page)
824 struct dma_pte *parent, *pte = NULL;
825 int total = agaw_to_level(domain->agaw);
826 int offset;
828 parent = domain->pgd;
829 while (level <= total) {
830 offset = pfn_level_offset(pfn, total);
831 pte = &parent[offset];
832 if (level == total)
833 return pte;
835 if (!dma_pte_present(pte)) {
836 *large_page = total;
837 break;
840 if (pte->val & DMA_PTE_LARGE_PAGE) {
841 *large_page = total;
842 return pte;
845 parent = phys_to_virt(dma_pte_addr(pte));
846 total--;
848 return NULL;
851 /* clear last level pte, a tlb flush should be followed */
852 static int dma_pte_clear_range(struct dmar_domain *domain,
853 unsigned long start_pfn,
854 unsigned long last_pfn)
856 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
857 unsigned int large_page = 1;
858 struct dma_pte *first_pte, *pte;
859 int order;
861 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
862 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
863 BUG_ON(start_pfn > last_pfn);
865 /* we don't need lock here; nobody else touches the iova range */
866 do {
867 large_page = 1;
868 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
869 if (!pte) {
870 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
871 continue;
873 do {
874 dma_clear_pte(pte);
875 start_pfn += lvl_to_nr_pages(large_page);
876 pte++;
877 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
879 domain_flush_cache(domain, first_pte,
880 (void *)pte - (void *)first_pte);
882 } while (start_pfn && start_pfn <= last_pfn);
884 order = (large_page - 1) * 9;
885 return order;
888 /* free page table pages. last level pte should already be cleared */
889 static void dma_pte_free_pagetable(struct dmar_domain *domain,
890 unsigned long start_pfn,
891 unsigned long last_pfn)
893 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
894 struct dma_pte *first_pte, *pte;
895 int total = agaw_to_level(domain->agaw);
896 int level;
897 unsigned long tmp;
898 int large_page = 2;
900 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
901 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
902 BUG_ON(start_pfn > last_pfn);
904 /* We don't need lock here; nobody else touches the iova range */
905 level = 2;
906 while (level <= total) {
907 tmp = align_to_level(start_pfn, level);
909 /* If we can't even clear one PTE at this level, we're done */
910 if (tmp + level_size(level) - 1 > last_pfn)
911 return;
913 do {
914 large_page = level;
915 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
916 if (large_page > level)
917 level = large_page + 1;
918 if (!pte) {
919 tmp = align_to_level(tmp + 1, level + 1);
920 continue;
922 do {
923 if (dma_pte_present(pte)) {
924 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
925 dma_clear_pte(pte);
927 pte++;
928 tmp += level_size(level);
929 } while (!first_pte_in_page(pte) &&
930 tmp + level_size(level) - 1 <= last_pfn);
932 domain_flush_cache(domain, first_pte,
933 (void *)pte - (void *)first_pte);
935 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
936 level++;
938 /* free pgd */
939 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
940 free_pgtable_page(domain->pgd);
941 domain->pgd = NULL;
945 /* iommu handling */
946 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
948 struct root_entry *root;
949 unsigned long flags;
951 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
952 if (!root)
953 return -ENOMEM;
955 __iommu_flush_cache(iommu, root, ROOT_SIZE);
957 spin_lock_irqsave(&iommu->lock, flags);
958 iommu->root_entry = root;
959 spin_unlock_irqrestore(&iommu->lock, flags);
961 return 0;
964 static void iommu_set_root_entry(struct intel_iommu *iommu)
966 void *addr;
967 u32 sts;
968 unsigned long flag;
970 addr = iommu->root_entry;
972 raw_spin_lock_irqsave(&iommu->register_lock, flag);
973 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
975 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
977 /* Make sure hardware complete it */
978 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
979 readl, (sts & DMA_GSTS_RTPS), sts);
981 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
984 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
986 u32 val;
987 unsigned long flag;
989 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
990 return;
992 raw_spin_lock_irqsave(&iommu->register_lock, flag);
993 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
995 /* Make sure hardware complete it */
996 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
997 readl, (!(val & DMA_GSTS_WBFS)), val);
999 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1002 /* return value determine if we need a write buffer flush */
1003 static void __iommu_flush_context(struct intel_iommu *iommu,
1004 u16 did, u16 source_id, u8 function_mask,
1005 u64 type)
1007 u64 val = 0;
1008 unsigned long flag;
1010 switch (type) {
1011 case DMA_CCMD_GLOBAL_INVL:
1012 val = DMA_CCMD_GLOBAL_INVL;
1013 break;
1014 case DMA_CCMD_DOMAIN_INVL:
1015 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1016 break;
1017 case DMA_CCMD_DEVICE_INVL:
1018 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1019 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1020 break;
1021 default:
1022 BUG();
1024 val |= DMA_CCMD_ICC;
1026 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1027 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1029 /* Make sure hardware complete it */
1030 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1031 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1033 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1036 /* return value determine if we need a write buffer flush */
1037 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1038 u64 addr, unsigned int size_order, u64 type)
1040 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1041 u64 val = 0, val_iva = 0;
1042 unsigned long flag;
1044 switch (type) {
1045 case DMA_TLB_GLOBAL_FLUSH:
1046 /* global flush doesn't need set IVA_REG */
1047 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1048 break;
1049 case DMA_TLB_DSI_FLUSH:
1050 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1051 break;
1052 case DMA_TLB_PSI_FLUSH:
1053 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1054 /* Note: always flush non-leaf currently */
1055 val_iva = size_order | addr;
1056 break;
1057 default:
1058 BUG();
1060 /* Note: set drain read/write */
1061 #if 0
1063 * This is probably to be super secure.. Looks like we can
1064 * ignore it without any impact.
1066 if (cap_read_drain(iommu->cap))
1067 val |= DMA_TLB_READ_DRAIN;
1068 #endif
1069 if (cap_write_drain(iommu->cap))
1070 val |= DMA_TLB_WRITE_DRAIN;
1072 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1073 /* Note: Only uses first TLB reg currently */
1074 if (val_iva)
1075 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1076 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1078 /* Make sure hardware complete it */
1079 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1080 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1082 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1084 /* check IOTLB invalidation granularity */
1085 if (DMA_TLB_IAIG(val) == 0)
1086 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1087 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1088 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1089 (unsigned long long)DMA_TLB_IIRG(type),
1090 (unsigned long long)DMA_TLB_IAIG(val));
1093 static struct device_domain_info *iommu_support_dev_iotlb(
1094 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1096 int found = 0;
1097 unsigned long flags;
1098 struct device_domain_info *info;
1099 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1101 if (!ecap_dev_iotlb_support(iommu->ecap))
1102 return NULL;
1104 if (!iommu->qi)
1105 return NULL;
1107 spin_lock_irqsave(&device_domain_lock, flags);
1108 list_for_each_entry(info, &domain->devices, link)
1109 if (info->bus == bus && info->devfn == devfn) {
1110 found = 1;
1111 break;
1113 spin_unlock_irqrestore(&device_domain_lock, flags);
1115 if (!found || !info->dev)
1116 return NULL;
1118 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1119 return NULL;
1121 if (!dmar_find_matched_atsr_unit(info->dev))
1122 return NULL;
1124 info->iommu = iommu;
1126 return info;
1129 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1131 if (!info)
1132 return;
1134 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1137 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1139 if (!info->dev || !pci_ats_enabled(info->dev))
1140 return;
1142 pci_disable_ats(info->dev);
1145 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1146 u64 addr, unsigned mask)
1148 u16 sid, qdep;
1149 unsigned long flags;
1150 struct device_domain_info *info;
1152 spin_lock_irqsave(&device_domain_lock, flags);
1153 list_for_each_entry(info, &domain->devices, link) {
1154 if (!info->dev || !pci_ats_enabled(info->dev))
1155 continue;
1157 sid = info->bus << 8 | info->devfn;
1158 qdep = pci_ats_queue_depth(info->dev);
1159 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1161 spin_unlock_irqrestore(&device_domain_lock, flags);
1164 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1165 unsigned long pfn, unsigned int pages, int map)
1167 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1168 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1170 BUG_ON(pages == 0);
1173 * Fallback to domain selective flush if no PSI support or the size is
1174 * too big.
1175 * PSI requires page size to be 2 ^ x, and the base address is naturally
1176 * aligned to the size
1178 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1179 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1180 DMA_TLB_DSI_FLUSH);
1181 else
1182 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1183 DMA_TLB_PSI_FLUSH);
1186 * In caching mode, changes of pages from non-present to present require
1187 * flush. However, device IOTLB doesn't need to be flushed in this case.
1189 if (!cap_caching_mode(iommu->cap) || !map)
1190 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1193 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1195 u32 pmen;
1196 unsigned long flags;
1198 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1199 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1200 pmen &= ~DMA_PMEN_EPM;
1201 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1203 /* wait for the protected region status bit to clear */
1204 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1205 readl, !(pmen & DMA_PMEN_PRS), pmen);
1207 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1210 static int iommu_enable_translation(struct intel_iommu *iommu)
1212 u32 sts;
1213 unsigned long flags;
1215 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1216 iommu->gcmd |= DMA_GCMD_TE;
1217 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1219 /* Make sure hardware complete it */
1220 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1221 readl, (sts & DMA_GSTS_TES), sts);
1223 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1224 return 0;
1227 static int iommu_disable_translation(struct intel_iommu *iommu)
1229 u32 sts;
1230 unsigned long flag;
1232 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1233 iommu->gcmd &= ~DMA_GCMD_TE;
1234 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1236 /* Make sure hardware complete it */
1237 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1238 readl, (!(sts & DMA_GSTS_TES)), sts);
1240 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1241 return 0;
1245 static int iommu_init_domains(struct intel_iommu *iommu)
1247 unsigned long ndomains;
1248 unsigned long nlongs;
1250 ndomains = cap_ndoms(iommu->cap);
1251 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
1252 ndomains);
1253 nlongs = BITS_TO_LONGS(ndomains);
1255 spin_lock_init(&iommu->lock);
1257 /* TBD: there might be 64K domains,
1258 * consider other allocation for future chip
1260 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1261 if (!iommu->domain_ids) {
1262 printk(KERN_ERR "Allocating domain id array failed\n");
1263 return -ENOMEM;
1265 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1266 GFP_KERNEL);
1267 if (!iommu->domains) {
1268 printk(KERN_ERR "Allocating domain array failed\n");
1269 return -ENOMEM;
1273 * if Caching mode is set, then invalid translations are tagged
1274 * with domainid 0. Hence we need to pre-allocate it.
1276 if (cap_caching_mode(iommu->cap))
1277 set_bit(0, iommu->domain_ids);
1278 return 0;
1282 static void domain_exit(struct dmar_domain *domain);
1283 static void vm_domain_exit(struct dmar_domain *domain);
1285 void free_dmar_iommu(struct intel_iommu *iommu)
1287 struct dmar_domain *domain;
1288 int i;
1289 unsigned long flags;
1291 if ((iommu->domains) && (iommu->domain_ids)) {
1292 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1293 domain = iommu->domains[i];
1294 clear_bit(i, iommu->domain_ids);
1296 spin_lock_irqsave(&domain->iommu_lock, flags);
1297 if (--domain->iommu_count == 0) {
1298 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1299 vm_domain_exit(domain);
1300 else
1301 domain_exit(domain);
1303 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1307 if (iommu->gcmd & DMA_GCMD_TE)
1308 iommu_disable_translation(iommu);
1310 if (iommu->irq) {
1311 irq_set_handler_data(iommu->irq, NULL);
1312 /* This will mask the irq */
1313 free_irq(iommu->irq, iommu);
1314 destroy_irq(iommu->irq);
1317 kfree(iommu->domains);
1318 kfree(iommu->domain_ids);
1320 g_iommus[iommu->seq_id] = NULL;
1322 /* if all iommus are freed, free g_iommus */
1323 for (i = 0; i < g_num_of_iommus; i++) {
1324 if (g_iommus[i])
1325 break;
1328 if (i == g_num_of_iommus)
1329 kfree(g_iommus);
1331 /* free context mapping */
1332 free_context_table(iommu);
1335 static struct dmar_domain *alloc_domain(void)
1337 struct dmar_domain *domain;
1339 domain = alloc_domain_mem();
1340 if (!domain)
1341 return NULL;
1343 domain->nid = -1;
1344 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1345 domain->flags = 0;
1347 return domain;
1350 static int iommu_attach_domain(struct dmar_domain *domain,
1351 struct intel_iommu *iommu)
1353 int num;
1354 unsigned long ndomains;
1355 unsigned long flags;
1357 ndomains = cap_ndoms(iommu->cap);
1359 spin_lock_irqsave(&iommu->lock, flags);
1361 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1362 if (num >= ndomains) {
1363 spin_unlock_irqrestore(&iommu->lock, flags);
1364 printk(KERN_ERR "IOMMU: no free domain ids\n");
1365 return -ENOMEM;
1368 domain->id = num;
1369 set_bit(num, iommu->domain_ids);
1370 set_bit(iommu->seq_id, domain->iommu_bmp);
1371 iommu->domains[num] = domain;
1372 spin_unlock_irqrestore(&iommu->lock, flags);
1374 return 0;
1377 static void iommu_detach_domain(struct dmar_domain *domain,
1378 struct intel_iommu *iommu)
1380 unsigned long flags;
1381 int num, ndomains;
1382 int found = 0;
1384 spin_lock_irqsave(&iommu->lock, flags);
1385 ndomains = cap_ndoms(iommu->cap);
1386 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1387 if (iommu->domains[num] == domain) {
1388 found = 1;
1389 break;
1393 if (found) {
1394 clear_bit(num, iommu->domain_ids);
1395 clear_bit(iommu->seq_id, domain->iommu_bmp);
1396 iommu->domains[num] = NULL;
1398 spin_unlock_irqrestore(&iommu->lock, flags);
1401 static struct iova_domain reserved_iova_list;
1402 static struct lock_class_key reserved_rbtree_key;
1404 static int dmar_init_reserved_ranges(void)
1406 struct pci_dev *pdev = NULL;
1407 struct iova *iova;
1408 int i;
1410 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1412 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1413 &reserved_rbtree_key);
1415 /* IOAPIC ranges shouldn't be accessed by DMA */
1416 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1417 IOVA_PFN(IOAPIC_RANGE_END));
1418 if (!iova) {
1419 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1420 return -ENODEV;
1423 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1424 for_each_pci_dev(pdev) {
1425 struct resource *r;
1427 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1428 r = &pdev->resource[i];
1429 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1430 continue;
1431 iova = reserve_iova(&reserved_iova_list,
1432 IOVA_PFN(r->start),
1433 IOVA_PFN(r->end));
1434 if (!iova) {
1435 printk(KERN_ERR "Reserve iova failed\n");
1436 return -ENODEV;
1440 return 0;
1443 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1445 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1448 static inline int guestwidth_to_adjustwidth(int gaw)
1450 int agaw;
1451 int r = (gaw - 12) % 9;
1453 if (r == 0)
1454 agaw = gaw;
1455 else
1456 agaw = gaw + 9 - r;
1457 if (agaw > 64)
1458 agaw = 64;
1459 return agaw;
1462 static int domain_init(struct dmar_domain *domain, int guest_width)
1464 struct intel_iommu *iommu;
1465 int adjust_width, agaw;
1466 unsigned long sagaw;
1468 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1469 spin_lock_init(&domain->iommu_lock);
1471 domain_reserve_special_ranges(domain);
1473 /* calculate AGAW */
1474 iommu = domain_get_iommu(domain);
1475 if (guest_width > cap_mgaw(iommu->cap))
1476 guest_width = cap_mgaw(iommu->cap);
1477 domain->gaw = guest_width;
1478 adjust_width = guestwidth_to_adjustwidth(guest_width);
1479 agaw = width_to_agaw(adjust_width);
1480 sagaw = cap_sagaw(iommu->cap);
1481 if (!test_bit(agaw, &sagaw)) {
1482 /* hardware doesn't support it, choose a bigger one */
1483 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1484 agaw = find_next_bit(&sagaw, 5, agaw);
1485 if (agaw >= 5)
1486 return -ENODEV;
1488 domain->agaw = agaw;
1489 INIT_LIST_HEAD(&domain->devices);
1491 if (ecap_coherent(iommu->ecap))
1492 domain->iommu_coherency = 1;
1493 else
1494 domain->iommu_coherency = 0;
1496 if (ecap_sc_support(iommu->ecap))
1497 domain->iommu_snooping = 1;
1498 else
1499 domain->iommu_snooping = 0;
1501 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1502 domain->iommu_count = 1;
1503 domain->nid = iommu->node;
1505 /* always allocate the top pgd */
1506 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1507 if (!domain->pgd)
1508 return -ENOMEM;
1509 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1510 return 0;
1513 static void domain_exit(struct dmar_domain *domain)
1515 struct dmar_drhd_unit *drhd;
1516 struct intel_iommu *iommu;
1518 /* Domain 0 is reserved, so dont process it */
1519 if (!domain)
1520 return;
1522 /* Flush any lazy unmaps that may reference this domain */
1523 if (!intel_iommu_strict)
1524 flush_unmaps_timeout(0);
1526 domain_remove_dev_info(domain);
1527 /* destroy iovas */
1528 put_iova_domain(&domain->iovad);
1530 /* clear ptes */
1531 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1533 /* free page tables */
1534 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1536 for_each_active_iommu(iommu, drhd)
1537 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1538 iommu_detach_domain(domain, iommu);
1540 free_domain_mem(domain);
1543 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1544 u8 bus, u8 devfn, int translation)
1546 struct context_entry *context;
1547 unsigned long flags;
1548 struct intel_iommu *iommu;
1549 struct dma_pte *pgd;
1550 unsigned long num;
1551 unsigned long ndomains;
1552 int id;
1553 int agaw;
1554 struct device_domain_info *info = NULL;
1556 pr_debug("Set context mapping for %02x:%02x.%d\n",
1557 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1559 BUG_ON(!domain->pgd);
1560 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1561 translation != CONTEXT_TT_MULTI_LEVEL);
1563 iommu = device_to_iommu(segment, bus, devfn);
1564 if (!iommu)
1565 return -ENODEV;
1567 context = device_to_context_entry(iommu, bus, devfn);
1568 if (!context)
1569 return -ENOMEM;
1570 spin_lock_irqsave(&iommu->lock, flags);
1571 if (context_present(context)) {
1572 spin_unlock_irqrestore(&iommu->lock, flags);
1573 return 0;
1576 id = domain->id;
1577 pgd = domain->pgd;
1579 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1580 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1581 int found = 0;
1583 /* find an available domain id for this device in iommu */
1584 ndomains = cap_ndoms(iommu->cap);
1585 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1586 if (iommu->domains[num] == domain) {
1587 id = num;
1588 found = 1;
1589 break;
1593 if (found == 0) {
1594 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1595 if (num >= ndomains) {
1596 spin_unlock_irqrestore(&iommu->lock, flags);
1597 printk(KERN_ERR "IOMMU: no free domain ids\n");
1598 return -EFAULT;
1601 set_bit(num, iommu->domain_ids);
1602 iommu->domains[num] = domain;
1603 id = num;
1606 /* Skip top levels of page tables for
1607 * iommu which has less agaw than default.
1608 * Unnecessary for PT mode.
1610 if (translation != CONTEXT_TT_PASS_THROUGH) {
1611 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1612 pgd = phys_to_virt(dma_pte_addr(pgd));
1613 if (!dma_pte_present(pgd)) {
1614 spin_unlock_irqrestore(&iommu->lock, flags);
1615 return -ENOMEM;
1621 context_set_domain_id(context, id);
1623 if (translation != CONTEXT_TT_PASS_THROUGH) {
1624 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1625 translation = info ? CONTEXT_TT_DEV_IOTLB :
1626 CONTEXT_TT_MULTI_LEVEL;
1629 * In pass through mode, AW must be programmed to indicate the largest
1630 * AGAW value supported by hardware. And ASR is ignored by hardware.
1632 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1633 context_set_address_width(context, iommu->msagaw);
1634 else {
1635 context_set_address_root(context, virt_to_phys(pgd));
1636 context_set_address_width(context, iommu->agaw);
1639 context_set_translation_type(context, translation);
1640 context_set_fault_enable(context);
1641 context_set_present(context);
1642 domain_flush_cache(domain, context, sizeof(*context));
1645 * It's a non-present to present mapping. If hardware doesn't cache
1646 * non-present entry we only need to flush the write-buffer. If the
1647 * _does_ cache non-present entries, then it does so in the special
1648 * domain #0, which we have to flush:
1650 if (cap_caching_mode(iommu->cap)) {
1651 iommu->flush.flush_context(iommu, 0,
1652 (((u16)bus) << 8) | devfn,
1653 DMA_CCMD_MASK_NOBIT,
1654 DMA_CCMD_DEVICE_INVL);
1655 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1656 } else {
1657 iommu_flush_write_buffer(iommu);
1659 iommu_enable_dev_iotlb(info);
1660 spin_unlock_irqrestore(&iommu->lock, flags);
1662 spin_lock_irqsave(&domain->iommu_lock, flags);
1663 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1664 domain->iommu_count++;
1665 if (domain->iommu_count == 1)
1666 domain->nid = iommu->node;
1667 domain_update_iommu_cap(domain);
1669 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1670 return 0;
1673 static int
1674 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1675 int translation)
1677 int ret;
1678 struct pci_dev *tmp, *parent;
1680 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1681 pdev->bus->number, pdev->devfn,
1682 translation);
1683 if (ret)
1684 return ret;
1686 /* dependent device mapping */
1687 tmp = pci_find_upstream_pcie_bridge(pdev);
1688 if (!tmp)
1689 return 0;
1690 /* Secondary interface's bus number and devfn 0 */
1691 parent = pdev->bus->self;
1692 while (parent != tmp) {
1693 ret = domain_context_mapping_one(domain,
1694 pci_domain_nr(parent->bus),
1695 parent->bus->number,
1696 parent->devfn, translation);
1697 if (ret)
1698 return ret;
1699 parent = parent->bus->self;
1701 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1702 return domain_context_mapping_one(domain,
1703 pci_domain_nr(tmp->subordinate),
1704 tmp->subordinate->number, 0,
1705 translation);
1706 else /* this is a legacy PCI bridge */
1707 return domain_context_mapping_one(domain,
1708 pci_domain_nr(tmp->bus),
1709 tmp->bus->number,
1710 tmp->devfn,
1711 translation);
1714 static int domain_context_mapped(struct pci_dev *pdev)
1716 int ret;
1717 struct pci_dev *tmp, *parent;
1718 struct intel_iommu *iommu;
1720 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1721 pdev->devfn);
1722 if (!iommu)
1723 return -ENODEV;
1725 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1726 if (!ret)
1727 return ret;
1728 /* dependent device mapping */
1729 tmp = pci_find_upstream_pcie_bridge(pdev);
1730 if (!tmp)
1731 return ret;
1732 /* Secondary interface's bus number and devfn 0 */
1733 parent = pdev->bus->self;
1734 while (parent != tmp) {
1735 ret = device_context_mapped(iommu, parent->bus->number,
1736 parent->devfn);
1737 if (!ret)
1738 return ret;
1739 parent = parent->bus->self;
1741 if (pci_is_pcie(tmp))
1742 return device_context_mapped(iommu, tmp->subordinate->number,
1744 else
1745 return device_context_mapped(iommu, tmp->bus->number,
1746 tmp->devfn);
1749 /* Returns a number of VTD pages, but aligned to MM page size */
1750 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1751 size_t size)
1753 host_addr &= ~PAGE_MASK;
1754 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1757 /* Return largest possible superpage level for a given mapping */
1758 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1759 unsigned long iov_pfn,
1760 unsigned long phy_pfn,
1761 unsigned long pages)
1763 int support, level = 1;
1764 unsigned long pfnmerge;
1766 support = domain->iommu_superpage;
1768 /* To use a large page, the virtual *and* physical addresses
1769 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1770 of them will mean we have to use smaller pages. So just
1771 merge them and check both at once. */
1772 pfnmerge = iov_pfn | phy_pfn;
1774 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1775 pages >>= VTD_STRIDE_SHIFT;
1776 if (!pages)
1777 break;
1778 pfnmerge >>= VTD_STRIDE_SHIFT;
1779 level++;
1780 support--;
1782 return level;
1785 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1786 struct scatterlist *sg, unsigned long phys_pfn,
1787 unsigned long nr_pages, int prot)
1789 struct dma_pte *first_pte = NULL, *pte = NULL;
1790 phys_addr_t uninitialized_var(pteval);
1791 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1792 unsigned long sg_res;
1793 unsigned int largepage_lvl = 0;
1794 unsigned long lvl_pages = 0;
1796 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1798 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1799 return -EINVAL;
1801 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1803 if (sg)
1804 sg_res = 0;
1805 else {
1806 sg_res = nr_pages + 1;
1807 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1810 while (nr_pages > 0) {
1811 uint64_t tmp;
1813 if (!sg_res) {
1814 sg_res = aligned_nrpages(sg->offset, sg->length);
1815 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1816 sg->dma_length = sg->length;
1817 pteval = page_to_phys(sg_page(sg)) | prot;
1818 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1821 if (!pte) {
1822 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1824 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1825 if (!pte)
1826 return -ENOMEM;
1827 /* It is large page*/
1828 if (largepage_lvl > 1)
1829 pteval |= DMA_PTE_LARGE_PAGE;
1830 else
1831 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1834 /* We don't need lock here, nobody else
1835 * touches the iova range
1837 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1838 if (tmp) {
1839 static int dumps = 5;
1840 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1841 iov_pfn, tmp, (unsigned long long)pteval);
1842 if (dumps) {
1843 dumps--;
1844 debug_dma_dump_mappings(NULL);
1846 WARN_ON(1);
1849 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1851 BUG_ON(nr_pages < lvl_pages);
1852 BUG_ON(sg_res < lvl_pages);
1854 nr_pages -= lvl_pages;
1855 iov_pfn += lvl_pages;
1856 phys_pfn += lvl_pages;
1857 pteval += lvl_pages * VTD_PAGE_SIZE;
1858 sg_res -= lvl_pages;
1860 /* If the next PTE would be the first in a new page, then we
1861 need to flush the cache on the entries we've just written.
1862 And then we'll need to recalculate 'pte', so clear it and
1863 let it get set again in the if (!pte) block above.
1865 If we're done (!nr_pages) we need to flush the cache too.
1867 Also if we've been setting superpages, we may need to
1868 recalculate 'pte' and switch back to smaller pages for the
1869 end of the mapping, if the trailing size is not enough to
1870 use another superpage (i.e. sg_res < lvl_pages). */
1871 pte++;
1872 if (!nr_pages || first_pte_in_page(pte) ||
1873 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1874 domain_flush_cache(domain, first_pte,
1875 (void *)pte - (void *)first_pte);
1876 pte = NULL;
1879 if (!sg_res && nr_pages)
1880 sg = sg_next(sg);
1882 return 0;
1885 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1886 struct scatterlist *sg, unsigned long nr_pages,
1887 int prot)
1889 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1892 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1893 unsigned long phys_pfn, unsigned long nr_pages,
1894 int prot)
1896 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1899 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1901 if (!iommu)
1902 return;
1904 clear_context_table(iommu, bus, devfn);
1905 iommu->flush.flush_context(iommu, 0, 0, 0,
1906 DMA_CCMD_GLOBAL_INVL);
1907 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1910 static inline void unlink_domain_info(struct device_domain_info *info)
1912 assert_spin_locked(&device_domain_lock);
1913 list_del(&info->link);
1914 list_del(&info->global);
1915 if (info->dev)
1916 info->dev->dev.archdata.iommu = NULL;
1919 static void domain_remove_dev_info(struct dmar_domain *domain)
1921 struct device_domain_info *info;
1922 unsigned long flags;
1923 struct intel_iommu *iommu;
1925 spin_lock_irqsave(&device_domain_lock, flags);
1926 while (!list_empty(&domain->devices)) {
1927 info = list_entry(domain->devices.next,
1928 struct device_domain_info, link);
1929 unlink_domain_info(info);
1930 spin_unlock_irqrestore(&device_domain_lock, flags);
1932 iommu_disable_dev_iotlb(info);
1933 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1934 iommu_detach_dev(iommu, info->bus, info->devfn);
1935 free_devinfo_mem(info);
1937 spin_lock_irqsave(&device_domain_lock, flags);
1939 spin_unlock_irqrestore(&device_domain_lock, flags);
1943 * find_domain
1944 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1946 static struct dmar_domain *
1947 find_domain(struct pci_dev *pdev)
1949 struct device_domain_info *info;
1951 /* No lock here, assumes no domain exit in normal case */
1952 info = pdev->dev.archdata.iommu;
1953 if (info)
1954 return info->domain;
1955 return NULL;
1958 /* domain is initialized */
1959 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1961 struct dmar_domain *domain, *found = NULL;
1962 struct intel_iommu *iommu;
1963 struct dmar_drhd_unit *drhd;
1964 struct device_domain_info *info, *tmp;
1965 struct pci_dev *dev_tmp;
1966 unsigned long flags;
1967 int bus = 0, devfn = 0;
1968 int segment;
1969 int ret;
1971 domain = find_domain(pdev);
1972 if (domain)
1973 return domain;
1975 segment = pci_domain_nr(pdev->bus);
1977 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1978 if (dev_tmp) {
1979 if (pci_is_pcie(dev_tmp)) {
1980 bus = dev_tmp->subordinate->number;
1981 devfn = 0;
1982 } else {
1983 bus = dev_tmp->bus->number;
1984 devfn = dev_tmp->devfn;
1986 spin_lock_irqsave(&device_domain_lock, flags);
1987 list_for_each_entry(info, &device_domain_list, global) {
1988 if (info->segment == segment &&
1989 info->bus == bus && info->devfn == devfn) {
1990 found = info->domain;
1991 break;
1994 spin_unlock_irqrestore(&device_domain_lock, flags);
1995 /* pcie-pci bridge already has a domain, uses it */
1996 if (found) {
1997 domain = found;
1998 goto found_domain;
2002 domain = alloc_domain();
2003 if (!domain)
2004 goto error;
2006 /* Allocate new domain for the device */
2007 drhd = dmar_find_matched_drhd_unit(pdev);
2008 if (!drhd) {
2009 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2010 pci_name(pdev));
2011 free_domain_mem(domain);
2012 return NULL;
2014 iommu = drhd->iommu;
2016 ret = iommu_attach_domain(domain, iommu);
2017 if (ret) {
2018 free_domain_mem(domain);
2019 goto error;
2022 if (domain_init(domain, gaw)) {
2023 domain_exit(domain);
2024 goto error;
2027 /* register pcie-to-pci device */
2028 if (dev_tmp) {
2029 info = alloc_devinfo_mem();
2030 if (!info) {
2031 domain_exit(domain);
2032 goto error;
2034 info->segment = segment;
2035 info->bus = bus;
2036 info->devfn = devfn;
2037 info->dev = NULL;
2038 info->domain = domain;
2039 /* This domain is shared by devices under p2p bridge */
2040 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2042 /* pcie-to-pci bridge already has a domain, uses it */
2043 found = NULL;
2044 spin_lock_irqsave(&device_domain_lock, flags);
2045 list_for_each_entry(tmp, &device_domain_list, global) {
2046 if (tmp->segment == segment &&
2047 tmp->bus == bus && tmp->devfn == devfn) {
2048 found = tmp->domain;
2049 break;
2052 if (found) {
2053 spin_unlock_irqrestore(&device_domain_lock, flags);
2054 free_devinfo_mem(info);
2055 domain_exit(domain);
2056 domain = found;
2057 } else {
2058 list_add(&info->link, &domain->devices);
2059 list_add(&info->global, &device_domain_list);
2060 spin_unlock_irqrestore(&device_domain_lock, flags);
2064 found_domain:
2065 info = alloc_devinfo_mem();
2066 if (!info)
2067 goto error;
2068 info->segment = segment;
2069 info->bus = pdev->bus->number;
2070 info->devfn = pdev->devfn;
2071 info->dev = pdev;
2072 info->domain = domain;
2073 spin_lock_irqsave(&device_domain_lock, flags);
2074 /* somebody is fast */
2075 found = find_domain(pdev);
2076 if (found != NULL) {
2077 spin_unlock_irqrestore(&device_domain_lock, flags);
2078 if (found != domain) {
2079 domain_exit(domain);
2080 domain = found;
2082 free_devinfo_mem(info);
2083 return domain;
2085 list_add(&info->link, &domain->devices);
2086 list_add(&info->global, &device_domain_list);
2087 pdev->dev.archdata.iommu = info;
2088 spin_unlock_irqrestore(&device_domain_lock, flags);
2089 return domain;
2090 error:
2091 /* recheck it here, maybe others set it */
2092 return find_domain(pdev);
2095 static int iommu_identity_mapping;
2096 #define IDENTMAP_ALL 1
2097 #define IDENTMAP_GFX 2
2098 #define IDENTMAP_AZALIA 4
2100 static int iommu_domain_identity_map(struct dmar_domain *domain,
2101 unsigned long long start,
2102 unsigned long long end)
2104 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2105 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2107 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2108 dma_to_mm_pfn(last_vpfn))) {
2109 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2110 return -ENOMEM;
2113 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2114 start, end, domain->id);
2116 * RMRR range might have overlap with physical memory range,
2117 * clear it first
2119 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2121 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2122 last_vpfn - first_vpfn + 1,
2123 DMA_PTE_READ|DMA_PTE_WRITE);
2126 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2127 unsigned long long start,
2128 unsigned long long end)
2130 struct dmar_domain *domain;
2131 int ret;
2133 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2134 if (!domain)
2135 return -ENOMEM;
2137 /* For _hardware_ passthrough, don't bother. But for software
2138 passthrough, we do it anyway -- it may indicate a memory
2139 range which is reserved in E820, so which didn't get set
2140 up to start with in si_domain */
2141 if (domain == si_domain && hw_pass_through) {
2142 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2143 pci_name(pdev), start, end);
2144 return 0;
2147 printk(KERN_INFO
2148 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2149 pci_name(pdev), start, end);
2151 if (end < start) {
2152 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2153 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2154 dmi_get_system_info(DMI_BIOS_VENDOR),
2155 dmi_get_system_info(DMI_BIOS_VERSION),
2156 dmi_get_system_info(DMI_PRODUCT_VERSION));
2157 ret = -EIO;
2158 goto error;
2161 if (end >> agaw_to_width(domain->agaw)) {
2162 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2163 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2164 agaw_to_width(domain->agaw),
2165 dmi_get_system_info(DMI_BIOS_VENDOR),
2166 dmi_get_system_info(DMI_BIOS_VERSION),
2167 dmi_get_system_info(DMI_PRODUCT_VERSION));
2168 ret = -EIO;
2169 goto error;
2172 ret = iommu_domain_identity_map(domain, start, end);
2173 if (ret)
2174 goto error;
2176 /* context entry init */
2177 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2178 if (ret)
2179 goto error;
2181 return 0;
2183 error:
2184 domain_exit(domain);
2185 return ret;
2188 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2189 struct pci_dev *pdev)
2191 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2192 return 0;
2193 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2194 rmrr->end_address);
2197 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2198 static inline void iommu_prepare_isa(void)
2200 struct pci_dev *pdev;
2201 int ret;
2203 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2204 if (!pdev)
2205 return;
2207 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2208 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2210 if (ret)
2211 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2212 "floppy might not work\n");
2215 #else
2216 static inline void iommu_prepare_isa(void)
2218 return;
2220 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2222 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2224 static int __init si_domain_init(int hw)
2226 struct dmar_drhd_unit *drhd;
2227 struct intel_iommu *iommu;
2228 int nid, ret = 0;
2230 si_domain = alloc_domain();
2231 if (!si_domain)
2232 return -EFAULT;
2234 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2236 for_each_active_iommu(iommu, drhd) {
2237 ret = iommu_attach_domain(si_domain, iommu);
2238 if (ret) {
2239 domain_exit(si_domain);
2240 return -EFAULT;
2244 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2245 domain_exit(si_domain);
2246 return -EFAULT;
2249 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2251 if (hw)
2252 return 0;
2254 for_each_online_node(nid) {
2255 unsigned long start_pfn, end_pfn;
2256 int i;
2258 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2259 ret = iommu_domain_identity_map(si_domain,
2260 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2261 if (ret)
2262 return ret;
2266 return 0;
2269 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2270 struct pci_dev *pdev);
2271 static int identity_mapping(struct pci_dev *pdev)
2273 struct device_domain_info *info;
2275 if (likely(!iommu_identity_mapping))
2276 return 0;
2278 info = pdev->dev.archdata.iommu;
2279 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2280 return (info->domain == si_domain);
2282 return 0;
2285 static int domain_add_dev_info(struct dmar_domain *domain,
2286 struct pci_dev *pdev,
2287 int translation)
2289 struct device_domain_info *info;
2290 unsigned long flags;
2291 int ret;
2293 info = alloc_devinfo_mem();
2294 if (!info)
2295 return -ENOMEM;
2297 info->segment = pci_domain_nr(pdev->bus);
2298 info->bus = pdev->bus->number;
2299 info->devfn = pdev->devfn;
2300 info->dev = pdev;
2301 info->domain = domain;
2303 spin_lock_irqsave(&device_domain_lock, flags);
2304 list_add(&info->link, &domain->devices);
2305 list_add(&info->global, &device_domain_list);
2306 pdev->dev.archdata.iommu = info;
2307 spin_unlock_irqrestore(&device_domain_lock, flags);
2309 ret = domain_context_mapping(domain, pdev, translation);
2310 if (ret) {
2311 spin_lock_irqsave(&device_domain_lock, flags);
2312 unlink_domain_info(info);
2313 spin_unlock_irqrestore(&device_domain_lock, flags);
2314 free_devinfo_mem(info);
2315 return ret;
2318 return 0;
2321 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2323 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2324 return 1;
2326 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2327 return 1;
2329 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2330 return 0;
2333 * We want to start off with all devices in the 1:1 domain, and
2334 * take them out later if we find they can't access all of memory.
2336 * However, we can't do this for PCI devices behind bridges,
2337 * because all PCI devices behind the same bridge will end up
2338 * with the same source-id on their transactions.
2340 * Practically speaking, we can't change things around for these
2341 * devices at run-time, because we can't be sure there'll be no
2342 * DMA transactions in flight for any of their siblings.
2344 * So PCI devices (unless they're on the root bus) as well as
2345 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2346 * the 1:1 domain, just in _case_ one of their siblings turns out
2347 * not to be able to map all of memory.
2349 if (!pci_is_pcie(pdev)) {
2350 if (!pci_is_root_bus(pdev->bus))
2351 return 0;
2352 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2353 return 0;
2354 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2355 return 0;
2358 * At boot time, we don't yet know if devices will be 64-bit capable.
2359 * Assume that they will -- if they turn out not to be, then we can
2360 * take them out of the 1:1 domain later.
2362 if (!startup) {
2364 * If the device's dma_mask is less than the system's memory
2365 * size then this is not a candidate for identity mapping.
2367 u64 dma_mask = pdev->dma_mask;
2369 if (pdev->dev.coherent_dma_mask &&
2370 pdev->dev.coherent_dma_mask < dma_mask)
2371 dma_mask = pdev->dev.coherent_dma_mask;
2373 return dma_mask >= dma_get_required_mask(&pdev->dev);
2376 return 1;
2379 static int __init iommu_prepare_static_identity_mapping(int hw)
2381 struct pci_dev *pdev = NULL;
2382 int ret;
2384 ret = si_domain_init(hw);
2385 if (ret)
2386 return -EFAULT;
2388 for_each_pci_dev(pdev) {
2389 if (iommu_should_identity_map(pdev, 1)) {
2390 ret = domain_add_dev_info(si_domain, pdev,
2391 hw ? CONTEXT_TT_PASS_THROUGH :
2392 CONTEXT_TT_MULTI_LEVEL);
2393 if (ret) {
2394 /* device not associated with an iommu */
2395 if (ret == -ENODEV)
2396 continue;
2397 return ret;
2399 pr_info("IOMMU: %s identity mapping for device %s\n",
2400 hw ? "hardware" : "software", pci_name(pdev));
2404 return 0;
2407 static int __init init_dmars(void)
2409 struct dmar_drhd_unit *drhd;
2410 struct dmar_rmrr_unit *rmrr;
2411 struct pci_dev *pdev;
2412 struct intel_iommu *iommu;
2413 int i, ret;
2416 * for each drhd
2417 * allocate root
2418 * initialize and program root entry to not present
2419 * endfor
2421 for_each_drhd_unit(drhd) {
2423 * lock not needed as this is only incremented in the single
2424 * threaded kernel __init code path all other access are read
2425 * only
2427 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2428 g_num_of_iommus++;
2429 continue;
2431 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2432 IOMMU_UNITS_SUPPORTED);
2435 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2436 GFP_KERNEL);
2437 if (!g_iommus) {
2438 printk(KERN_ERR "Allocating global iommu array failed\n");
2439 ret = -ENOMEM;
2440 goto error;
2443 deferred_flush = kzalloc(g_num_of_iommus *
2444 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2445 if (!deferred_flush) {
2446 ret = -ENOMEM;
2447 goto error;
2450 for_each_drhd_unit(drhd) {
2451 if (drhd->ignored)
2452 continue;
2454 iommu = drhd->iommu;
2455 g_iommus[iommu->seq_id] = iommu;
2457 ret = iommu_init_domains(iommu);
2458 if (ret)
2459 goto error;
2462 * TBD:
2463 * we could share the same root & context tables
2464 * among all IOMMU's. Need to Split it later.
2466 ret = iommu_alloc_root_entry(iommu);
2467 if (ret) {
2468 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2469 goto error;
2471 if (!ecap_pass_through(iommu->ecap))
2472 hw_pass_through = 0;
2476 * Start from the sane iommu hardware state.
2478 for_each_drhd_unit(drhd) {
2479 if (drhd->ignored)
2480 continue;
2482 iommu = drhd->iommu;
2485 * If the queued invalidation is already initialized by us
2486 * (for example, while enabling interrupt-remapping) then
2487 * we got the things already rolling from a sane state.
2489 if (iommu->qi)
2490 continue;
2493 * Clear any previous faults.
2495 dmar_fault(-1, iommu);
2497 * Disable queued invalidation if supported and already enabled
2498 * before OS handover.
2500 dmar_disable_qi(iommu);
2503 for_each_drhd_unit(drhd) {
2504 if (drhd->ignored)
2505 continue;
2507 iommu = drhd->iommu;
2509 if (dmar_enable_qi(iommu)) {
2511 * Queued Invalidate not enabled, use Register Based
2512 * Invalidate
2514 iommu->flush.flush_context = __iommu_flush_context;
2515 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2516 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2517 "invalidation\n",
2518 iommu->seq_id,
2519 (unsigned long long)drhd->reg_base_addr);
2520 } else {
2521 iommu->flush.flush_context = qi_flush_context;
2522 iommu->flush.flush_iotlb = qi_flush_iotlb;
2523 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2524 "invalidation\n",
2525 iommu->seq_id,
2526 (unsigned long long)drhd->reg_base_addr);
2530 if (iommu_pass_through)
2531 iommu_identity_mapping |= IDENTMAP_ALL;
2533 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2534 iommu_identity_mapping |= IDENTMAP_GFX;
2535 #endif
2537 check_tylersburg_isoch();
2540 * If pass through is not set or not enabled, setup context entries for
2541 * identity mappings for rmrr, gfx, and isa and may fall back to static
2542 * identity mapping if iommu_identity_mapping is set.
2544 if (iommu_identity_mapping) {
2545 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2546 if (ret) {
2547 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2548 goto error;
2552 * For each rmrr
2553 * for each dev attached to rmrr
2554 * do
2555 * locate drhd for dev, alloc domain for dev
2556 * allocate free domain
2557 * allocate page table entries for rmrr
2558 * if context not allocated for bus
2559 * allocate and init context
2560 * set present in root table for this bus
2561 * init context with domain, translation etc
2562 * endfor
2563 * endfor
2565 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2566 for_each_rmrr_units(rmrr) {
2567 for (i = 0; i < rmrr->devices_cnt; i++) {
2568 pdev = rmrr->devices[i];
2570 * some BIOS lists non-exist devices in DMAR
2571 * table.
2573 if (!pdev)
2574 continue;
2575 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2576 if (ret)
2577 printk(KERN_ERR
2578 "IOMMU: mapping reserved region failed\n");
2582 iommu_prepare_isa();
2585 * for each drhd
2586 * enable fault log
2587 * global invalidate context cache
2588 * global invalidate iotlb
2589 * enable translation
2591 for_each_drhd_unit(drhd) {
2592 if (drhd->ignored) {
2594 * we always have to disable PMRs or DMA may fail on
2595 * this device
2597 if (force_on)
2598 iommu_disable_protect_mem_regions(drhd->iommu);
2599 continue;
2601 iommu = drhd->iommu;
2603 iommu_flush_write_buffer(iommu);
2605 ret = dmar_set_interrupt(iommu);
2606 if (ret)
2607 goto error;
2609 iommu_set_root_entry(iommu);
2611 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2612 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2614 ret = iommu_enable_translation(iommu);
2615 if (ret)
2616 goto error;
2618 iommu_disable_protect_mem_regions(iommu);
2621 return 0;
2622 error:
2623 for_each_drhd_unit(drhd) {
2624 if (drhd->ignored)
2625 continue;
2626 iommu = drhd->iommu;
2627 free_iommu(iommu);
2629 kfree(g_iommus);
2630 return ret;
2633 /* This takes a number of _MM_ pages, not VTD pages */
2634 static struct iova *intel_alloc_iova(struct device *dev,
2635 struct dmar_domain *domain,
2636 unsigned long nrpages, uint64_t dma_mask)
2638 struct pci_dev *pdev = to_pci_dev(dev);
2639 struct iova *iova = NULL;
2641 /* Restrict dma_mask to the width that the iommu can handle */
2642 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2644 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2646 * First try to allocate an io virtual address in
2647 * DMA_BIT_MASK(32) and if that fails then try allocating
2648 * from higher range
2650 iova = alloc_iova(&domain->iovad, nrpages,
2651 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2652 if (iova)
2653 return iova;
2655 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2656 if (unlikely(!iova)) {
2657 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2658 nrpages, pci_name(pdev));
2659 return NULL;
2662 return iova;
2665 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2667 struct dmar_domain *domain;
2668 int ret;
2670 domain = get_domain_for_dev(pdev,
2671 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2672 if (!domain) {
2673 printk(KERN_ERR
2674 "Allocating domain for %s failed", pci_name(pdev));
2675 return NULL;
2678 /* make sure context mapping is ok */
2679 if (unlikely(!domain_context_mapped(pdev))) {
2680 ret = domain_context_mapping(domain, pdev,
2681 CONTEXT_TT_MULTI_LEVEL);
2682 if (ret) {
2683 printk(KERN_ERR
2684 "Domain context map for %s failed",
2685 pci_name(pdev));
2686 return NULL;
2690 return domain;
2693 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2695 struct device_domain_info *info;
2697 /* No lock here, assumes no domain exit in normal case */
2698 info = dev->dev.archdata.iommu;
2699 if (likely(info))
2700 return info->domain;
2702 return __get_valid_domain_for_dev(dev);
2705 static int iommu_dummy(struct pci_dev *pdev)
2707 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2710 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2711 static int iommu_no_mapping(struct device *dev)
2713 struct pci_dev *pdev;
2714 int found;
2716 if (unlikely(dev->bus != &pci_bus_type))
2717 return 1;
2719 pdev = to_pci_dev(dev);
2720 if (iommu_dummy(pdev))
2721 return 1;
2723 if (!iommu_identity_mapping)
2724 return 0;
2726 found = identity_mapping(pdev);
2727 if (found) {
2728 if (iommu_should_identity_map(pdev, 0))
2729 return 1;
2730 else {
2732 * 32 bit DMA is removed from si_domain and fall back
2733 * to non-identity mapping.
2735 domain_remove_one_dev_info(si_domain, pdev);
2736 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2737 pci_name(pdev));
2738 return 0;
2740 } else {
2742 * In case of a detached 64 bit DMA device from vm, the device
2743 * is put into si_domain for identity mapping.
2745 if (iommu_should_identity_map(pdev, 0)) {
2746 int ret;
2747 ret = domain_add_dev_info(si_domain, pdev,
2748 hw_pass_through ?
2749 CONTEXT_TT_PASS_THROUGH :
2750 CONTEXT_TT_MULTI_LEVEL);
2751 if (!ret) {
2752 printk(KERN_INFO "64bit %s uses identity mapping\n",
2753 pci_name(pdev));
2754 return 1;
2759 return 0;
2762 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2763 size_t size, int dir, u64 dma_mask)
2765 struct pci_dev *pdev = to_pci_dev(hwdev);
2766 struct dmar_domain *domain;
2767 phys_addr_t start_paddr;
2768 struct iova *iova;
2769 int prot = 0;
2770 int ret;
2771 struct intel_iommu *iommu;
2772 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2774 BUG_ON(dir == DMA_NONE);
2776 if (iommu_no_mapping(hwdev))
2777 return paddr;
2779 domain = get_valid_domain_for_dev(pdev);
2780 if (!domain)
2781 return 0;
2783 iommu = domain_get_iommu(domain);
2784 size = aligned_nrpages(paddr, size);
2786 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2787 if (!iova)
2788 goto error;
2791 * Check if DMAR supports zero-length reads on write only
2792 * mappings..
2794 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2795 !cap_zlr(iommu->cap))
2796 prot |= DMA_PTE_READ;
2797 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2798 prot |= DMA_PTE_WRITE;
2800 * paddr - (paddr + size) might be partial page, we should map the whole
2801 * page. Note: if two part of one page are separately mapped, we
2802 * might have two guest_addr mapping to the same host paddr, but this
2803 * is not a big problem
2805 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2806 mm_to_dma_pfn(paddr_pfn), size, prot);
2807 if (ret)
2808 goto error;
2810 /* it's a non-present to present mapping. Only flush if caching mode */
2811 if (cap_caching_mode(iommu->cap))
2812 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2813 else
2814 iommu_flush_write_buffer(iommu);
2816 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2817 start_paddr += paddr & ~PAGE_MASK;
2818 return start_paddr;
2820 error:
2821 if (iova)
2822 __free_iova(&domain->iovad, iova);
2823 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2824 pci_name(pdev), size, (unsigned long long)paddr, dir);
2825 return 0;
2828 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2829 unsigned long offset, size_t size,
2830 enum dma_data_direction dir,
2831 struct dma_attrs *attrs)
2833 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2834 dir, to_pci_dev(dev)->dma_mask);
2837 static void flush_unmaps(void)
2839 int i, j;
2841 timer_on = 0;
2843 /* just flush them all */
2844 for (i = 0; i < g_num_of_iommus; i++) {
2845 struct intel_iommu *iommu = g_iommus[i];
2846 if (!iommu)
2847 continue;
2849 if (!deferred_flush[i].next)
2850 continue;
2852 /* In caching mode, global flushes turn emulation expensive */
2853 if (!cap_caching_mode(iommu->cap))
2854 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2855 DMA_TLB_GLOBAL_FLUSH);
2856 for (j = 0; j < deferred_flush[i].next; j++) {
2857 unsigned long mask;
2858 struct iova *iova = deferred_flush[i].iova[j];
2859 struct dmar_domain *domain = deferred_flush[i].domain[j];
2861 /* On real hardware multiple invalidations are expensive */
2862 if (cap_caching_mode(iommu->cap))
2863 iommu_flush_iotlb_psi(iommu, domain->id,
2864 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2865 else {
2866 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2867 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2868 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2870 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2872 deferred_flush[i].next = 0;
2875 list_size = 0;
2878 static void flush_unmaps_timeout(unsigned long data)
2880 unsigned long flags;
2882 spin_lock_irqsave(&async_umap_flush_lock, flags);
2883 flush_unmaps();
2884 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2887 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2889 unsigned long flags;
2890 int next, iommu_id;
2891 struct intel_iommu *iommu;
2893 spin_lock_irqsave(&async_umap_flush_lock, flags);
2894 if (list_size == HIGH_WATER_MARK)
2895 flush_unmaps();
2897 iommu = domain_get_iommu(dom);
2898 iommu_id = iommu->seq_id;
2900 next = deferred_flush[iommu_id].next;
2901 deferred_flush[iommu_id].domain[next] = dom;
2902 deferred_flush[iommu_id].iova[next] = iova;
2903 deferred_flush[iommu_id].next++;
2905 if (!timer_on) {
2906 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2907 timer_on = 1;
2909 list_size++;
2910 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2913 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2914 size_t size, enum dma_data_direction dir,
2915 struct dma_attrs *attrs)
2917 struct pci_dev *pdev = to_pci_dev(dev);
2918 struct dmar_domain *domain;
2919 unsigned long start_pfn, last_pfn;
2920 struct iova *iova;
2921 struct intel_iommu *iommu;
2923 if (iommu_no_mapping(dev))
2924 return;
2926 domain = find_domain(pdev);
2927 BUG_ON(!domain);
2929 iommu = domain_get_iommu(domain);
2931 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2932 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2933 (unsigned long long)dev_addr))
2934 return;
2936 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2937 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2939 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2940 pci_name(pdev), start_pfn, last_pfn);
2942 /* clear the whole page */
2943 dma_pte_clear_range(domain, start_pfn, last_pfn);
2945 /* free page tables */
2946 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2948 if (intel_iommu_strict) {
2949 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2950 last_pfn - start_pfn + 1, 0);
2951 /* free iova */
2952 __free_iova(&domain->iovad, iova);
2953 } else {
2954 add_unmap(domain, iova);
2956 * queue up the release of the unmap to save the 1/6th of the
2957 * cpu used up by the iotlb flush operation...
2962 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2963 dma_addr_t *dma_handle, gfp_t flags,
2964 struct dma_attrs *attrs)
2966 void *vaddr;
2967 int order;
2969 size = PAGE_ALIGN(size);
2970 order = get_order(size);
2972 if (!iommu_no_mapping(hwdev))
2973 flags &= ~(GFP_DMA | GFP_DMA32);
2974 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2975 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2976 flags |= GFP_DMA;
2977 else
2978 flags |= GFP_DMA32;
2981 vaddr = (void *)__get_free_pages(flags, order);
2982 if (!vaddr)
2983 return NULL;
2984 memset(vaddr, 0, size);
2986 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2987 DMA_BIDIRECTIONAL,
2988 hwdev->coherent_dma_mask);
2989 if (*dma_handle)
2990 return vaddr;
2991 free_pages((unsigned long)vaddr, order);
2992 return NULL;
2995 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2996 dma_addr_t dma_handle, struct dma_attrs *attrs)
2998 int order;
3000 size = PAGE_ALIGN(size);
3001 order = get_order(size);
3003 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3004 free_pages((unsigned long)vaddr, order);
3007 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3008 int nelems, enum dma_data_direction dir,
3009 struct dma_attrs *attrs)
3011 struct pci_dev *pdev = to_pci_dev(hwdev);
3012 struct dmar_domain *domain;
3013 unsigned long start_pfn, last_pfn;
3014 struct iova *iova;
3015 struct intel_iommu *iommu;
3017 if (iommu_no_mapping(hwdev))
3018 return;
3020 domain = find_domain(pdev);
3021 BUG_ON(!domain);
3023 iommu = domain_get_iommu(domain);
3025 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3026 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3027 (unsigned long long)sglist[0].dma_address))
3028 return;
3030 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3031 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3033 /* clear the whole page */
3034 dma_pte_clear_range(domain, start_pfn, last_pfn);
3036 /* free page tables */
3037 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3039 if (intel_iommu_strict) {
3040 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3041 last_pfn - start_pfn + 1, 0);
3042 /* free iova */
3043 __free_iova(&domain->iovad, iova);
3044 } else {
3045 add_unmap(domain, iova);
3047 * queue up the release of the unmap to save the 1/6th of the
3048 * cpu used up by the iotlb flush operation...
3053 static int intel_nontranslate_map_sg(struct device *hddev,
3054 struct scatterlist *sglist, int nelems, int dir)
3056 int i;
3057 struct scatterlist *sg;
3059 for_each_sg(sglist, sg, nelems, i) {
3060 BUG_ON(!sg_page(sg));
3061 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3062 sg->dma_length = sg->length;
3064 return nelems;
3067 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3068 enum dma_data_direction dir, struct dma_attrs *attrs)
3070 int i;
3071 struct pci_dev *pdev = to_pci_dev(hwdev);
3072 struct dmar_domain *domain;
3073 size_t size = 0;
3074 int prot = 0;
3075 struct iova *iova = NULL;
3076 int ret;
3077 struct scatterlist *sg;
3078 unsigned long start_vpfn;
3079 struct intel_iommu *iommu;
3081 BUG_ON(dir == DMA_NONE);
3082 if (iommu_no_mapping(hwdev))
3083 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3085 domain = get_valid_domain_for_dev(pdev);
3086 if (!domain)
3087 return 0;
3089 iommu = domain_get_iommu(domain);
3091 for_each_sg(sglist, sg, nelems, i)
3092 size += aligned_nrpages(sg->offset, sg->length);
3094 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3095 pdev->dma_mask);
3096 if (!iova) {
3097 sglist->dma_length = 0;
3098 return 0;
3102 * Check if DMAR supports zero-length reads on write only
3103 * mappings..
3105 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3106 !cap_zlr(iommu->cap))
3107 prot |= DMA_PTE_READ;
3108 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3109 prot |= DMA_PTE_WRITE;
3111 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3113 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3114 if (unlikely(ret)) {
3115 /* clear the page */
3116 dma_pte_clear_range(domain, start_vpfn,
3117 start_vpfn + size - 1);
3118 /* free page tables */
3119 dma_pte_free_pagetable(domain, start_vpfn,
3120 start_vpfn + size - 1);
3121 /* free iova */
3122 __free_iova(&domain->iovad, iova);
3123 return 0;
3126 /* it's a non-present to present mapping. Only flush if caching mode */
3127 if (cap_caching_mode(iommu->cap))
3128 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3129 else
3130 iommu_flush_write_buffer(iommu);
3132 return nelems;
3135 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3137 return !dma_addr;
3140 struct dma_map_ops intel_dma_ops = {
3141 .alloc = intel_alloc_coherent,
3142 .free = intel_free_coherent,
3143 .map_sg = intel_map_sg,
3144 .unmap_sg = intel_unmap_sg,
3145 .map_page = intel_map_page,
3146 .unmap_page = intel_unmap_page,
3147 .mapping_error = intel_mapping_error,
3150 static inline int iommu_domain_cache_init(void)
3152 int ret = 0;
3154 iommu_domain_cache = kmem_cache_create("iommu_domain",
3155 sizeof(struct dmar_domain),
3157 SLAB_HWCACHE_ALIGN,
3159 NULL);
3160 if (!iommu_domain_cache) {
3161 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3162 ret = -ENOMEM;
3165 return ret;
3168 static inline int iommu_devinfo_cache_init(void)
3170 int ret = 0;
3172 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3173 sizeof(struct device_domain_info),
3175 SLAB_HWCACHE_ALIGN,
3176 NULL);
3177 if (!iommu_devinfo_cache) {
3178 printk(KERN_ERR "Couldn't create devinfo cache\n");
3179 ret = -ENOMEM;
3182 return ret;
3185 static inline int iommu_iova_cache_init(void)
3187 int ret = 0;
3189 iommu_iova_cache = kmem_cache_create("iommu_iova",
3190 sizeof(struct iova),
3192 SLAB_HWCACHE_ALIGN,
3193 NULL);
3194 if (!iommu_iova_cache) {
3195 printk(KERN_ERR "Couldn't create iova cache\n");
3196 ret = -ENOMEM;
3199 return ret;
3202 static int __init iommu_init_mempool(void)
3204 int ret;
3205 ret = iommu_iova_cache_init();
3206 if (ret)
3207 return ret;
3209 ret = iommu_domain_cache_init();
3210 if (ret)
3211 goto domain_error;
3213 ret = iommu_devinfo_cache_init();
3214 if (!ret)
3215 return ret;
3217 kmem_cache_destroy(iommu_domain_cache);
3218 domain_error:
3219 kmem_cache_destroy(iommu_iova_cache);
3221 return -ENOMEM;
3224 static void __init iommu_exit_mempool(void)
3226 kmem_cache_destroy(iommu_devinfo_cache);
3227 kmem_cache_destroy(iommu_domain_cache);
3228 kmem_cache_destroy(iommu_iova_cache);
3232 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3234 struct dmar_drhd_unit *drhd;
3235 u32 vtbar;
3236 int rc;
3238 /* We know that this device on this chipset has its own IOMMU.
3239 * If we find it under a different IOMMU, then the BIOS is lying
3240 * to us. Hope that the IOMMU for this device is actually
3241 * disabled, and it needs no translation...
3243 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3244 if (rc) {
3245 /* "can't" happen */
3246 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3247 return;
3249 vtbar &= 0xffff0000;
3251 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3252 drhd = dmar_find_matched_drhd_unit(pdev);
3253 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3254 TAINT_FIRMWARE_WORKAROUND,
3255 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3256 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3258 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3260 static void __init init_no_remapping_devices(void)
3262 struct dmar_drhd_unit *drhd;
3264 for_each_drhd_unit(drhd) {
3265 if (!drhd->include_all) {
3266 int i;
3267 for (i = 0; i < drhd->devices_cnt; i++)
3268 if (drhd->devices[i] != NULL)
3269 break;
3270 /* ignore DMAR unit if no pci devices exist */
3271 if (i == drhd->devices_cnt)
3272 drhd->ignored = 1;
3276 for_each_drhd_unit(drhd) {
3277 int i;
3278 if (drhd->ignored || drhd->include_all)
3279 continue;
3281 for (i = 0; i < drhd->devices_cnt; i++)
3282 if (drhd->devices[i] &&
3283 !IS_GFX_DEVICE(drhd->devices[i]))
3284 break;
3286 if (i < drhd->devices_cnt)
3287 continue;
3289 /* This IOMMU has *only* gfx devices. Either bypass it or
3290 set the gfx_mapped flag, as appropriate */
3291 if (dmar_map_gfx) {
3292 intel_iommu_gfx_mapped = 1;
3293 } else {
3294 drhd->ignored = 1;
3295 for (i = 0; i < drhd->devices_cnt; i++) {
3296 if (!drhd->devices[i])
3297 continue;
3298 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3304 #ifdef CONFIG_SUSPEND
3305 static int init_iommu_hw(void)
3307 struct dmar_drhd_unit *drhd;
3308 struct intel_iommu *iommu = NULL;
3310 for_each_active_iommu(iommu, drhd)
3311 if (iommu->qi)
3312 dmar_reenable_qi(iommu);
3314 for_each_iommu(iommu, drhd) {
3315 if (drhd->ignored) {
3317 * we always have to disable PMRs or DMA may fail on
3318 * this device
3320 if (force_on)
3321 iommu_disable_protect_mem_regions(iommu);
3322 continue;
3325 iommu_flush_write_buffer(iommu);
3327 iommu_set_root_entry(iommu);
3329 iommu->flush.flush_context(iommu, 0, 0, 0,
3330 DMA_CCMD_GLOBAL_INVL);
3331 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3332 DMA_TLB_GLOBAL_FLUSH);
3333 if (iommu_enable_translation(iommu))
3334 return 1;
3335 iommu_disable_protect_mem_regions(iommu);
3338 return 0;
3341 static void iommu_flush_all(void)
3343 struct dmar_drhd_unit *drhd;
3344 struct intel_iommu *iommu;
3346 for_each_active_iommu(iommu, drhd) {
3347 iommu->flush.flush_context(iommu, 0, 0, 0,
3348 DMA_CCMD_GLOBAL_INVL);
3349 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3350 DMA_TLB_GLOBAL_FLUSH);
3354 static int iommu_suspend(void)
3356 struct dmar_drhd_unit *drhd;
3357 struct intel_iommu *iommu = NULL;
3358 unsigned long flag;
3360 for_each_active_iommu(iommu, drhd) {
3361 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3362 GFP_ATOMIC);
3363 if (!iommu->iommu_state)
3364 goto nomem;
3367 iommu_flush_all();
3369 for_each_active_iommu(iommu, drhd) {
3370 iommu_disable_translation(iommu);
3372 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3374 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3375 readl(iommu->reg + DMAR_FECTL_REG);
3376 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3377 readl(iommu->reg + DMAR_FEDATA_REG);
3378 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3379 readl(iommu->reg + DMAR_FEADDR_REG);
3380 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3381 readl(iommu->reg + DMAR_FEUADDR_REG);
3383 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3385 return 0;
3387 nomem:
3388 for_each_active_iommu(iommu, drhd)
3389 kfree(iommu->iommu_state);
3391 return -ENOMEM;
3394 static void iommu_resume(void)
3396 struct dmar_drhd_unit *drhd;
3397 struct intel_iommu *iommu = NULL;
3398 unsigned long flag;
3400 if (init_iommu_hw()) {
3401 if (force_on)
3402 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3403 else
3404 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3405 return;
3408 for_each_active_iommu(iommu, drhd) {
3410 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3412 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3413 iommu->reg + DMAR_FECTL_REG);
3414 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3415 iommu->reg + DMAR_FEDATA_REG);
3416 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3417 iommu->reg + DMAR_FEADDR_REG);
3418 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3419 iommu->reg + DMAR_FEUADDR_REG);
3421 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3424 for_each_active_iommu(iommu, drhd)
3425 kfree(iommu->iommu_state);
3428 static struct syscore_ops iommu_syscore_ops = {
3429 .resume = iommu_resume,
3430 .suspend = iommu_suspend,
3433 static void __init init_iommu_pm_ops(void)
3435 register_syscore_ops(&iommu_syscore_ops);
3438 #else
3439 static inline void init_iommu_pm_ops(void) {}
3440 #endif /* CONFIG_PM */
3442 LIST_HEAD(dmar_rmrr_units);
3444 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3446 list_add(&rmrr->list, &dmar_rmrr_units);
3450 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3452 struct acpi_dmar_reserved_memory *rmrr;
3453 struct dmar_rmrr_unit *rmrru;
3455 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3456 if (!rmrru)
3457 return -ENOMEM;
3459 rmrru->hdr = header;
3460 rmrr = (struct acpi_dmar_reserved_memory *)header;
3461 rmrru->base_address = rmrr->base_address;
3462 rmrru->end_address = rmrr->end_address;
3464 dmar_register_rmrr_unit(rmrru);
3465 return 0;
3468 static int __init
3469 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3471 struct acpi_dmar_reserved_memory *rmrr;
3472 int ret;
3474 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3475 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3476 ((void *)rmrr) + rmrr->header.length,
3477 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3479 if (ret || (rmrru->devices_cnt == 0)) {
3480 list_del(&rmrru->list);
3481 kfree(rmrru);
3483 return ret;
3486 static LIST_HEAD(dmar_atsr_units);
3488 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3490 struct acpi_dmar_atsr *atsr;
3491 struct dmar_atsr_unit *atsru;
3493 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3494 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3495 if (!atsru)
3496 return -ENOMEM;
3498 atsru->hdr = hdr;
3499 atsru->include_all = atsr->flags & 0x1;
3501 list_add(&atsru->list, &dmar_atsr_units);
3503 return 0;
3506 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3508 int rc;
3509 struct acpi_dmar_atsr *atsr;
3511 if (atsru->include_all)
3512 return 0;
3514 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3515 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3516 (void *)atsr + atsr->header.length,
3517 &atsru->devices_cnt, &atsru->devices,
3518 atsr->segment);
3519 if (rc || !atsru->devices_cnt) {
3520 list_del(&atsru->list);
3521 kfree(atsru);
3524 return rc;
3527 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3529 int i;
3530 struct pci_bus *bus;
3531 struct acpi_dmar_atsr *atsr;
3532 struct dmar_atsr_unit *atsru;
3534 dev = pci_physfn(dev);
3536 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3537 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3538 if (atsr->segment == pci_domain_nr(dev->bus))
3539 goto found;
3542 return 0;
3544 found:
3545 for (bus = dev->bus; bus; bus = bus->parent) {
3546 struct pci_dev *bridge = bus->self;
3548 if (!bridge || !pci_is_pcie(bridge) ||
3549 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
3550 return 0;
3552 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
3553 for (i = 0; i < atsru->devices_cnt; i++)
3554 if (atsru->devices[i] == bridge)
3555 return 1;
3556 break;
3560 if (atsru->include_all)
3561 return 1;
3563 return 0;
3566 int __init dmar_parse_rmrr_atsr_dev(void)
3568 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3569 struct dmar_atsr_unit *atsr, *atsr_n;
3570 int ret = 0;
3572 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3573 ret = rmrr_parse_dev(rmrr);
3574 if (ret)
3575 return ret;
3578 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3579 ret = atsr_parse_dev(atsr);
3580 if (ret)
3581 return ret;
3584 return ret;
3588 * Here we only respond to action of unbound device from driver.
3590 * Added device is not attached to its DMAR domain here yet. That will happen
3591 * when mapping the device to iova.
3593 static int device_notifier(struct notifier_block *nb,
3594 unsigned long action, void *data)
3596 struct device *dev = data;
3597 struct pci_dev *pdev = to_pci_dev(dev);
3598 struct dmar_domain *domain;
3600 if (iommu_no_mapping(dev))
3601 return 0;
3603 domain = find_domain(pdev);
3604 if (!domain)
3605 return 0;
3607 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3608 domain_remove_one_dev_info(domain, pdev);
3610 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3611 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3612 list_empty(&domain->devices))
3613 domain_exit(domain);
3616 return 0;
3619 static struct notifier_block device_nb = {
3620 .notifier_call = device_notifier,
3623 int __init intel_iommu_init(void)
3625 int ret = 0;
3627 /* VT-d is required for a TXT/tboot launch, so enforce that */
3628 force_on = tboot_force_iommu();
3630 if (dmar_table_init()) {
3631 if (force_on)
3632 panic("tboot: Failed to initialize DMAR table\n");
3633 return -ENODEV;
3636 if (dmar_dev_scope_init() < 0) {
3637 if (force_on)
3638 panic("tboot: Failed to initialize DMAR device scope\n");
3639 return -ENODEV;
3642 if (no_iommu || dmar_disabled)
3643 return -ENODEV;
3645 if (iommu_init_mempool()) {
3646 if (force_on)
3647 panic("tboot: Failed to initialize iommu memory\n");
3648 return -ENODEV;
3651 if (list_empty(&dmar_rmrr_units))
3652 printk(KERN_INFO "DMAR: No RMRR found\n");
3654 if (list_empty(&dmar_atsr_units))
3655 printk(KERN_INFO "DMAR: No ATSR found\n");
3657 if (dmar_init_reserved_ranges()) {
3658 if (force_on)
3659 panic("tboot: Failed to reserve iommu ranges\n");
3660 return -ENODEV;
3663 init_no_remapping_devices();
3665 ret = init_dmars();
3666 if (ret) {
3667 if (force_on)
3668 panic("tboot: Failed to initialize DMARs\n");
3669 printk(KERN_ERR "IOMMU: dmar init failed\n");
3670 put_iova_domain(&reserved_iova_list);
3671 iommu_exit_mempool();
3672 return ret;
3674 printk(KERN_INFO
3675 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3677 init_timer(&unmap_timer);
3678 #ifdef CONFIG_SWIOTLB
3679 swiotlb = 0;
3680 #endif
3681 dma_ops = &intel_dma_ops;
3683 init_iommu_pm_ops();
3685 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3687 bus_register_notifier(&pci_bus_type, &device_nb);
3689 intel_iommu_enabled = 1;
3691 return 0;
3694 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3695 struct pci_dev *pdev)
3697 struct pci_dev *tmp, *parent;
3699 if (!iommu || !pdev)
3700 return;
3702 /* dependent device detach */
3703 tmp = pci_find_upstream_pcie_bridge(pdev);
3704 /* Secondary interface's bus number and devfn 0 */
3705 if (tmp) {
3706 parent = pdev->bus->self;
3707 while (parent != tmp) {
3708 iommu_detach_dev(iommu, parent->bus->number,
3709 parent->devfn);
3710 parent = parent->bus->self;
3712 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3713 iommu_detach_dev(iommu,
3714 tmp->subordinate->number, 0);
3715 else /* this is a legacy PCI bridge */
3716 iommu_detach_dev(iommu, tmp->bus->number,
3717 tmp->devfn);
3721 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3722 struct pci_dev *pdev)
3724 struct device_domain_info *info;
3725 struct intel_iommu *iommu;
3726 unsigned long flags;
3727 int found = 0;
3728 struct list_head *entry, *tmp;
3730 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3731 pdev->devfn);
3732 if (!iommu)
3733 return;
3735 spin_lock_irqsave(&device_domain_lock, flags);
3736 list_for_each_safe(entry, tmp, &domain->devices) {
3737 info = list_entry(entry, struct device_domain_info, link);
3738 if (info->segment == pci_domain_nr(pdev->bus) &&
3739 info->bus == pdev->bus->number &&
3740 info->devfn == pdev->devfn) {
3741 unlink_domain_info(info);
3742 spin_unlock_irqrestore(&device_domain_lock, flags);
3744 iommu_disable_dev_iotlb(info);
3745 iommu_detach_dev(iommu, info->bus, info->devfn);
3746 iommu_detach_dependent_devices(iommu, pdev);
3747 free_devinfo_mem(info);
3749 spin_lock_irqsave(&device_domain_lock, flags);
3751 if (found)
3752 break;
3753 else
3754 continue;
3757 /* if there is no other devices under the same iommu
3758 * owned by this domain, clear this iommu in iommu_bmp
3759 * update iommu count and coherency
3761 if (iommu == device_to_iommu(info->segment, info->bus,
3762 info->devfn))
3763 found = 1;
3766 spin_unlock_irqrestore(&device_domain_lock, flags);
3768 if (found == 0) {
3769 unsigned long tmp_flags;
3770 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3771 clear_bit(iommu->seq_id, domain->iommu_bmp);
3772 domain->iommu_count--;
3773 domain_update_iommu_cap(domain);
3774 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3776 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3777 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3778 spin_lock_irqsave(&iommu->lock, tmp_flags);
3779 clear_bit(domain->id, iommu->domain_ids);
3780 iommu->domains[domain->id] = NULL;
3781 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3786 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3788 struct device_domain_info *info;
3789 struct intel_iommu *iommu;
3790 unsigned long flags1, flags2;
3792 spin_lock_irqsave(&device_domain_lock, flags1);
3793 while (!list_empty(&domain->devices)) {
3794 info = list_entry(domain->devices.next,
3795 struct device_domain_info, link);
3796 unlink_domain_info(info);
3797 spin_unlock_irqrestore(&device_domain_lock, flags1);
3799 iommu_disable_dev_iotlb(info);
3800 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3801 iommu_detach_dev(iommu, info->bus, info->devfn);
3802 iommu_detach_dependent_devices(iommu, info->dev);
3804 /* clear this iommu in iommu_bmp, update iommu count
3805 * and capabilities
3807 spin_lock_irqsave(&domain->iommu_lock, flags2);
3808 if (test_and_clear_bit(iommu->seq_id,
3809 domain->iommu_bmp)) {
3810 domain->iommu_count--;
3811 domain_update_iommu_cap(domain);
3813 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3815 free_devinfo_mem(info);
3816 spin_lock_irqsave(&device_domain_lock, flags1);
3818 spin_unlock_irqrestore(&device_domain_lock, flags1);
3821 /* domain id for virtual machine, it won't be set in context */
3822 static unsigned long vm_domid;
3824 static struct dmar_domain *iommu_alloc_vm_domain(void)
3826 struct dmar_domain *domain;
3828 domain = alloc_domain_mem();
3829 if (!domain)
3830 return NULL;
3832 domain->id = vm_domid++;
3833 domain->nid = -1;
3834 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3835 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3837 return domain;
3840 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3842 int adjust_width;
3844 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3845 spin_lock_init(&domain->iommu_lock);
3847 domain_reserve_special_ranges(domain);
3849 /* calculate AGAW */
3850 domain->gaw = guest_width;
3851 adjust_width = guestwidth_to_adjustwidth(guest_width);
3852 domain->agaw = width_to_agaw(adjust_width);
3854 INIT_LIST_HEAD(&domain->devices);
3856 domain->iommu_count = 0;
3857 domain->iommu_coherency = 0;
3858 domain->iommu_snooping = 0;
3859 domain->iommu_superpage = 0;
3860 domain->max_addr = 0;
3861 domain->nid = -1;
3863 /* always allocate the top pgd */
3864 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3865 if (!domain->pgd)
3866 return -ENOMEM;
3867 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3868 return 0;
3871 static void iommu_free_vm_domain(struct dmar_domain *domain)
3873 unsigned long flags;
3874 struct dmar_drhd_unit *drhd;
3875 struct intel_iommu *iommu;
3876 unsigned long i;
3877 unsigned long ndomains;
3879 for_each_drhd_unit(drhd) {
3880 if (drhd->ignored)
3881 continue;
3882 iommu = drhd->iommu;
3884 ndomains = cap_ndoms(iommu->cap);
3885 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3886 if (iommu->domains[i] == domain) {
3887 spin_lock_irqsave(&iommu->lock, flags);
3888 clear_bit(i, iommu->domain_ids);
3889 iommu->domains[i] = NULL;
3890 spin_unlock_irqrestore(&iommu->lock, flags);
3891 break;
3897 static void vm_domain_exit(struct dmar_domain *domain)
3899 /* Domain 0 is reserved, so dont process it */
3900 if (!domain)
3901 return;
3903 vm_domain_remove_all_dev_info(domain);
3904 /* destroy iovas */
3905 put_iova_domain(&domain->iovad);
3907 /* clear ptes */
3908 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3910 /* free page tables */
3911 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3913 iommu_free_vm_domain(domain);
3914 free_domain_mem(domain);
3917 static int intel_iommu_domain_init(struct iommu_domain *domain)
3919 struct dmar_domain *dmar_domain;
3921 dmar_domain = iommu_alloc_vm_domain();
3922 if (!dmar_domain) {
3923 printk(KERN_ERR
3924 "intel_iommu_domain_init: dmar_domain == NULL\n");
3925 return -ENOMEM;
3927 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3928 printk(KERN_ERR
3929 "intel_iommu_domain_init() failed\n");
3930 vm_domain_exit(dmar_domain);
3931 return -ENOMEM;
3933 domain_update_iommu_cap(dmar_domain);
3934 domain->priv = dmar_domain;
3936 domain->geometry.aperture_start = 0;
3937 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3938 domain->geometry.force_aperture = true;
3940 return 0;
3943 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3945 struct dmar_domain *dmar_domain = domain->priv;
3947 domain->priv = NULL;
3948 vm_domain_exit(dmar_domain);
3951 static int intel_iommu_attach_device(struct iommu_domain *domain,
3952 struct device *dev)
3954 struct dmar_domain *dmar_domain = domain->priv;
3955 struct pci_dev *pdev = to_pci_dev(dev);
3956 struct intel_iommu *iommu;
3957 int addr_width;
3959 /* normally pdev is not mapped */
3960 if (unlikely(domain_context_mapped(pdev))) {
3961 struct dmar_domain *old_domain;
3963 old_domain = find_domain(pdev);
3964 if (old_domain) {
3965 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3966 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3967 domain_remove_one_dev_info(old_domain, pdev);
3968 else
3969 domain_remove_dev_info(old_domain);
3973 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3974 pdev->devfn);
3975 if (!iommu)
3976 return -ENODEV;
3978 /* check if this iommu agaw is sufficient for max mapped address */
3979 addr_width = agaw_to_width(iommu->agaw);
3980 if (addr_width > cap_mgaw(iommu->cap))
3981 addr_width = cap_mgaw(iommu->cap);
3983 if (dmar_domain->max_addr > (1LL << addr_width)) {
3984 printk(KERN_ERR "%s: iommu width (%d) is not "
3985 "sufficient for the mapped address (%llx)\n",
3986 __func__, addr_width, dmar_domain->max_addr);
3987 return -EFAULT;
3989 dmar_domain->gaw = addr_width;
3992 * Knock out extra levels of page tables if necessary
3994 while (iommu->agaw < dmar_domain->agaw) {
3995 struct dma_pte *pte;
3997 pte = dmar_domain->pgd;
3998 if (dma_pte_present(pte)) {
3999 dmar_domain->pgd = (struct dma_pte *)
4000 phys_to_virt(dma_pte_addr(pte));
4001 free_pgtable_page(pte);
4003 dmar_domain->agaw--;
4006 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4009 static void intel_iommu_detach_device(struct iommu_domain *domain,
4010 struct device *dev)
4012 struct dmar_domain *dmar_domain = domain->priv;
4013 struct pci_dev *pdev = to_pci_dev(dev);
4015 domain_remove_one_dev_info(dmar_domain, pdev);
4018 static int intel_iommu_map(struct iommu_domain *domain,
4019 unsigned long iova, phys_addr_t hpa,
4020 size_t size, int iommu_prot)
4022 struct dmar_domain *dmar_domain = domain->priv;
4023 u64 max_addr;
4024 int prot = 0;
4025 int ret;
4027 if (iommu_prot & IOMMU_READ)
4028 prot |= DMA_PTE_READ;
4029 if (iommu_prot & IOMMU_WRITE)
4030 prot |= DMA_PTE_WRITE;
4031 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4032 prot |= DMA_PTE_SNP;
4034 max_addr = iova + size;
4035 if (dmar_domain->max_addr < max_addr) {
4036 u64 end;
4038 /* check if minimum agaw is sufficient for mapped address */
4039 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4040 if (end < max_addr) {
4041 printk(KERN_ERR "%s: iommu width (%d) is not "
4042 "sufficient for the mapped address (%llx)\n",
4043 __func__, dmar_domain->gaw, max_addr);
4044 return -EFAULT;
4046 dmar_domain->max_addr = max_addr;
4048 /* Round up size to next multiple of PAGE_SIZE, if it and
4049 the low bits of hpa would take us onto the next page */
4050 size = aligned_nrpages(hpa, size);
4051 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4052 hpa >> VTD_PAGE_SHIFT, size, prot);
4053 return ret;
4056 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4057 unsigned long iova, size_t size)
4059 struct dmar_domain *dmar_domain = domain->priv;
4060 int order;
4062 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4063 (iova + size - 1) >> VTD_PAGE_SHIFT);
4065 if (dmar_domain->max_addr == iova + size)
4066 dmar_domain->max_addr = iova;
4068 return PAGE_SIZE << order;
4071 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4072 unsigned long iova)
4074 struct dmar_domain *dmar_domain = domain->priv;
4075 struct dma_pte *pte;
4076 u64 phys = 0;
4078 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4079 if (pte)
4080 phys = dma_pte_addr(pte);
4082 return phys;
4085 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4086 unsigned long cap)
4088 struct dmar_domain *dmar_domain = domain->priv;
4090 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4091 return dmar_domain->iommu_snooping;
4092 if (cap == IOMMU_CAP_INTR_REMAP)
4093 return irq_remapping_enabled;
4095 return 0;
4098 static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
4100 pci_dev_put(*from);
4101 *from = to;
4104 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4106 static int intel_iommu_add_device(struct device *dev)
4108 struct pci_dev *pdev = to_pci_dev(dev);
4109 struct pci_dev *bridge, *dma_pdev;
4110 struct iommu_group *group;
4111 int ret;
4113 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4114 pdev->bus->number, pdev->devfn))
4115 return -ENODEV;
4117 bridge = pci_find_upstream_pcie_bridge(pdev);
4118 if (bridge) {
4119 if (pci_is_pcie(bridge))
4120 dma_pdev = pci_get_domain_bus_and_slot(
4121 pci_domain_nr(pdev->bus),
4122 bridge->subordinate->number, 0);
4123 else
4124 dma_pdev = pci_dev_get(bridge);
4125 } else
4126 dma_pdev = pci_dev_get(pdev);
4128 /* Account for quirked devices */
4129 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4132 * If it's a multifunction device that does not support our
4133 * required ACS flags, add to the same group as function 0.
4135 if (dma_pdev->multifunction &&
4136 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
4137 swap_pci_ref(&dma_pdev,
4138 pci_get_slot(dma_pdev->bus,
4139 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
4140 0)));
4143 * Devices on the root bus go through the iommu. If that's not us,
4144 * find the next upstream device and test ACS up to the root bus.
4145 * Finding the next device may require skipping virtual buses.
4147 while (!pci_is_root_bus(dma_pdev->bus)) {
4148 struct pci_bus *bus = dma_pdev->bus;
4150 while (!bus->self) {
4151 if (!pci_is_root_bus(bus))
4152 bus = bus->parent;
4153 else
4154 goto root_bus;
4157 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4158 break;
4160 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4163 root_bus:
4164 group = iommu_group_get(&dma_pdev->dev);
4165 pci_dev_put(dma_pdev);
4166 if (!group) {
4167 group = iommu_group_alloc();
4168 if (IS_ERR(group))
4169 return PTR_ERR(group);
4172 ret = iommu_group_add_device(group, dev);
4174 iommu_group_put(group);
4175 return ret;
4178 static void intel_iommu_remove_device(struct device *dev)
4180 iommu_group_remove_device(dev);
4183 static struct iommu_ops intel_iommu_ops = {
4184 .domain_init = intel_iommu_domain_init,
4185 .domain_destroy = intel_iommu_domain_destroy,
4186 .attach_dev = intel_iommu_attach_device,
4187 .detach_dev = intel_iommu_detach_device,
4188 .map = intel_iommu_map,
4189 .unmap = intel_iommu_unmap,
4190 .iova_to_phys = intel_iommu_iova_to_phys,
4191 .domain_has_cap = intel_iommu_domain_has_cap,
4192 .add_device = intel_iommu_add_device,
4193 .remove_device = intel_iommu_remove_device,
4194 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4197 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4200 * Mobile 4 Series Chipset neglects to set RWBF capability,
4201 * but needs it:
4203 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4204 rwbf_quirk = 1;
4206 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4207 if (dev->revision == 0x07) {
4208 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4209 dmar_map_gfx = 0;
4213 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4215 #define GGC 0x52
4216 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4217 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4218 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4219 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4220 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4221 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4222 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4223 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4225 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4227 unsigned short ggc;
4229 if (pci_read_config_word(dev, GGC, &ggc))
4230 return;
4232 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4233 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4234 dmar_map_gfx = 0;
4235 } else if (dmar_map_gfx) {
4236 /* we have to ensure the gfx device is idle before we flush */
4237 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4238 intel_iommu_strict = 1;
4241 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4242 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4243 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4244 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4246 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4247 ISOCH DMAR unit for the Azalia sound device, but not give it any
4248 TLB entries, which causes it to deadlock. Check for that. We do
4249 this in a function called from init_dmars(), instead of in a PCI
4250 quirk, because we don't want to print the obnoxious "BIOS broken"
4251 message if VT-d is actually disabled.
4253 static void __init check_tylersburg_isoch(void)
4255 struct pci_dev *pdev;
4256 uint32_t vtisochctrl;
4258 /* If there's no Azalia in the system anyway, forget it. */
4259 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4260 if (!pdev)
4261 return;
4262 pci_dev_put(pdev);
4264 /* System Management Registers. Might be hidden, in which case
4265 we can't do the sanity check. But that's OK, because the
4266 known-broken BIOSes _don't_ actually hide it, so far. */
4267 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4268 if (!pdev)
4269 return;
4271 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4272 pci_dev_put(pdev);
4273 return;
4276 pci_dev_put(pdev);
4278 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4279 if (vtisochctrl & 1)
4280 return;
4282 /* Drop all bits other than the number of TLB entries */
4283 vtisochctrl &= 0x1c;
4285 /* If we have the recommended number of TLB entries (16), fine. */
4286 if (vtisochctrl == 0x10)
4287 return;
4289 /* Zero TLB entries? You get to ride the short bus to school. */
4290 if (!vtisochctrl) {
4291 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4292 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4293 dmi_get_system_info(DMI_BIOS_VENDOR),
4294 dmi_get_system_info(DMI_BIOS_VERSION),
4295 dmi_get_system_info(DMI_PRODUCT_VERSION));
4296 iommu_identity_mapping |= IDENTMAP_AZALIA;
4297 return;
4300 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4301 vtisochctrl);