watchdog: Quiet down the boot messages
[linux-2.6/btrfs-unstable.git] / kernel / events / core.c
blobf85c0154b333a02c6a611cf8eca55362ab7f7eaf
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
40 #include "internal.h"
42 #include <asm/irq_regs.h>
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
51 static void remote_function(void *data)
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
62 tfc->ret = tfc->func(tfc->info);
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91 return data.ret;
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
99 * Calls the function @func on the remote cpu.
101 * returns: @func return value or -ENXIO when the cpu is offline
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
112 smp_call_function_single(cpu, remote_function, &data, 1);
114 return data.ret;
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
122 * branch priv levels that need permission checks
124 #define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
128 enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
138 struct static_key_deferred perf_sched_events __read_mostly;
139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
142 static atomic_t nr_mmap_events __read_mostly;
143 static atomic_t nr_comm_events __read_mostly;
144 static atomic_t nr_task_events __read_mostly;
146 static LIST_HEAD(pmus);
147 static DEFINE_MUTEX(pmus_lock);
148 static struct srcu_struct pmus_srcu;
151 * perf event paranoia level:
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
154 * 1 - disallow cpu events for unpriv
155 * 2 - disallow kernel profiling for unpriv
157 int sysctl_perf_event_paranoid __read_mostly = 1;
159 /* Minimum for 512 kiB + 1 user control page */
160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
163 * max perf event sample rate
165 #define DEFAULT_MAX_SAMPLE_RATE 100000
166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167 static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
170 int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
176 if (ret || !write)
177 return ret;
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
181 return 0;
184 static atomic64_t perf_event_id;
186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
190 enum event_type_t event_type,
191 struct task_struct *task);
193 static void update_context_time(struct perf_event_context *ctx);
194 static u64 perf_event_time(struct perf_event *event);
196 static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
199 void __weak perf_event_print_debug(void) { }
201 extern __weak const char *perf_pmu_name(void)
203 return "pmu";
206 static inline u64 perf_clock(void)
208 return local_clock();
211 static inline struct perf_cpu_context *
212 __get_cpu_context(struct perf_event_context *ctx)
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
233 #ifdef CONFIG_CGROUP_PERF
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
240 static inline struct perf_cgroup *
241 perf_cgroup_from_task(struct task_struct *task)
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
247 static inline bool
248 perf_cgroup_match(struct perf_event *event)
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
256 static inline void perf_get_cgroup(struct perf_event *event)
258 css_get(&event->cgrp->css);
261 static inline void perf_put_cgroup(struct perf_event *event)
263 css_put(&event->cgrp->css);
266 static inline void perf_detach_cgroup(struct perf_event *event)
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
272 static inline int is_cgroup_event(struct perf_event *event)
274 return event->cgrp != NULL;
277 static inline u64 perf_cgroup_event_time(struct perf_event *event)
279 struct perf_cgroup_info *t;
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
287 struct perf_cgroup_info *info;
288 u64 now;
290 now = perf_clock();
292 info = this_cpu_ptr(cgrp->info);
294 info->time += now - info->timestamp;
295 info->timestamp = now;
298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
305 static inline void update_cgrp_time_from_event(struct perf_event *event)
307 struct perf_cgroup *cgrp;
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
313 if (!is_cgroup_event(event))
314 return;
316 cgrp = perf_cgroup_from_task(current);
318 * Do not update time when cgroup is not active
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
324 static inline void
325 perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
336 if (!task || !ctx->nr_cgroups)
337 return;
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
341 info->timestamp = ctx->timestamp;
344 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
348 * reschedule events based on the cgroup constraint of task.
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
353 void perf_cgroup_switch(struct task_struct *task, int mode)
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
364 local_irq_save(flags);
367 * we reschedule only in the presence of cgroup
368 * constrained events.
370 rcu_read_lock();
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
382 if (cpuctx->ctx.nr_cgroups > 0) {
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
392 cpuctx->cgrp = NULL;
395 if (mode & PERF_CGROUP_SWIN) {
396 WARN_ON_ONCE(cpuctx->cgrp);
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
409 rcu_read_unlock();
411 local_irq_restore(flags);
414 static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
421 * we come here when we know perf_cgroup_events > 0
423 cgrp1 = perf_cgroup_from_task(task);
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
441 static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
448 * we come here when we know perf_cgroup_events > 0
450 cgrp1 = perf_cgroup_from_task(task);
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
464 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
477 css = cgroup_css_from_dir(file, perf_subsys_id);
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
486 /* must be done before we fput() the file */
487 perf_get_cgroup(event);
490 * all events in a group must monitor
491 * the same cgroup because a task belongs
492 * to only one perf cgroup at a time
494 if (group_leader && group_leader->cgrp != cgrp) {
495 perf_detach_cgroup(event);
496 ret = -EINVAL;
498 out:
499 fput_light(file, fput_needed);
500 return ret;
503 static inline void
504 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
506 struct perf_cgroup_info *t;
507 t = per_cpu_ptr(event->cgrp->info, event->cpu);
508 event->shadow_ctx_time = now - t->timestamp;
511 static inline void
512 perf_cgroup_defer_enabled(struct perf_event *event)
515 * when the current task's perf cgroup does not match
516 * the event's, we need to remember to call the
517 * perf_mark_enable() function the first time a task with
518 * a matching perf cgroup is scheduled in.
520 if (is_cgroup_event(event) && !perf_cgroup_match(event))
521 event->cgrp_defer_enabled = 1;
524 static inline void
525 perf_cgroup_mark_enabled(struct perf_event *event,
526 struct perf_event_context *ctx)
528 struct perf_event *sub;
529 u64 tstamp = perf_event_time(event);
531 if (!event->cgrp_defer_enabled)
532 return;
534 event->cgrp_defer_enabled = 0;
536 event->tstamp_enabled = tstamp - event->total_time_enabled;
537 list_for_each_entry(sub, &event->sibling_list, group_entry) {
538 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
539 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
540 sub->cgrp_defer_enabled = 0;
544 #else /* !CONFIG_CGROUP_PERF */
546 static inline bool
547 perf_cgroup_match(struct perf_event *event)
549 return true;
552 static inline void perf_detach_cgroup(struct perf_event *event)
555 static inline int is_cgroup_event(struct perf_event *event)
557 return 0;
560 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
562 return 0;
565 static inline void update_cgrp_time_from_event(struct perf_event *event)
569 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
573 static inline void perf_cgroup_sched_out(struct task_struct *task,
574 struct task_struct *next)
578 static inline void perf_cgroup_sched_in(struct task_struct *prev,
579 struct task_struct *task)
583 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
587 return -EINVAL;
590 static inline void
591 perf_cgroup_set_timestamp(struct task_struct *task,
592 struct perf_event_context *ctx)
596 void
597 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
601 static inline void
602 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
606 static inline u64 perf_cgroup_event_time(struct perf_event *event)
608 return 0;
611 static inline void
612 perf_cgroup_defer_enabled(struct perf_event *event)
616 static inline void
617 perf_cgroup_mark_enabled(struct perf_event *event,
618 struct perf_event_context *ctx)
621 #endif
623 void perf_pmu_disable(struct pmu *pmu)
625 int *count = this_cpu_ptr(pmu->pmu_disable_count);
626 if (!(*count)++)
627 pmu->pmu_disable(pmu);
630 void perf_pmu_enable(struct pmu *pmu)
632 int *count = this_cpu_ptr(pmu->pmu_disable_count);
633 if (!--(*count))
634 pmu->pmu_enable(pmu);
637 static DEFINE_PER_CPU(struct list_head, rotation_list);
640 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
641 * because they're strictly cpu affine and rotate_start is called with IRQs
642 * disabled, while rotate_context is called from IRQ context.
644 static void perf_pmu_rotate_start(struct pmu *pmu)
646 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
647 struct list_head *head = &__get_cpu_var(rotation_list);
649 WARN_ON(!irqs_disabled());
651 if (list_empty(&cpuctx->rotation_list))
652 list_add(&cpuctx->rotation_list, head);
655 static void get_ctx(struct perf_event_context *ctx)
657 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
660 static void put_ctx(struct perf_event_context *ctx)
662 if (atomic_dec_and_test(&ctx->refcount)) {
663 if (ctx->parent_ctx)
664 put_ctx(ctx->parent_ctx);
665 if (ctx->task)
666 put_task_struct(ctx->task);
667 kfree_rcu(ctx, rcu_head);
671 static void unclone_ctx(struct perf_event_context *ctx)
673 if (ctx->parent_ctx) {
674 put_ctx(ctx->parent_ctx);
675 ctx->parent_ctx = NULL;
679 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
682 * only top level events have the pid namespace they were created in
684 if (event->parent)
685 event = event->parent;
687 return task_tgid_nr_ns(p, event->ns);
690 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
693 * only top level events have the pid namespace they were created in
695 if (event->parent)
696 event = event->parent;
698 return task_pid_nr_ns(p, event->ns);
702 * If we inherit events we want to return the parent event id
703 * to userspace.
705 static u64 primary_event_id(struct perf_event *event)
707 u64 id = event->id;
709 if (event->parent)
710 id = event->parent->id;
712 return id;
716 * Get the perf_event_context for a task and lock it.
717 * This has to cope with with the fact that until it is locked,
718 * the context could get moved to another task.
720 static struct perf_event_context *
721 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
723 struct perf_event_context *ctx;
725 rcu_read_lock();
726 retry:
727 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
728 if (ctx) {
730 * If this context is a clone of another, it might
731 * get swapped for another underneath us by
732 * perf_event_task_sched_out, though the
733 * rcu_read_lock() protects us from any context
734 * getting freed. Lock the context and check if it
735 * got swapped before we could get the lock, and retry
736 * if so. If we locked the right context, then it
737 * can't get swapped on us any more.
739 raw_spin_lock_irqsave(&ctx->lock, *flags);
740 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
741 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
742 goto retry;
745 if (!atomic_inc_not_zero(&ctx->refcount)) {
746 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
747 ctx = NULL;
750 rcu_read_unlock();
751 return ctx;
755 * Get the context for a task and increment its pin_count so it
756 * can't get swapped to another task. This also increments its
757 * reference count so that the context can't get freed.
759 static struct perf_event_context *
760 perf_pin_task_context(struct task_struct *task, int ctxn)
762 struct perf_event_context *ctx;
763 unsigned long flags;
765 ctx = perf_lock_task_context(task, ctxn, &flags);
766 if (ctx) {
767 ++ctx->pin_count;
768 raw_spin_unlock_irqrestore(&ctx->lock, flags);
770 return ctx;
773 static void perf_unpin_context(struct perf_event_context *ctx)
775 unsigned long flags;
777 raw_spin_lock_irqsave(&ctx->lock, flags);
778 --ctx->pin_count;
779 raw_spin_unlock_irqrestore(&ctx->lock, flags);
783 * Update the record of the current time in a context.
785 static void update_context_time(struct perf_event_context *ctx)
787 u64 now = perf_clock();
789 ctx->time += now - ctx->timestamp;
790 ctx->timestamp = now;
793 static u64 perf_event_time(struct perf_event *event)
795 struct perf_event_context *ctx = event->ctx;
797 if (is_cgroup_event(event))
798 return perf_cgroup_event_time(event);
800 return ctx ? ctx->time : 0;
804 * Update the total_time_enabled and total_time_running fields for a event.
805 * The caller of this function needs to hold the ctx->lock.
807 static void update_event_times(struct perf_event *event)
809 struct perf_event_context *ctx = event->ctx;
810 u64 run_end;
812 if (event->state < PERF_EVENT_STATE_INACTIVE ||
813 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
814 return;
816 * in cgroup mode, time_enabled represents
817 * the time the event was enabled AND active
818 * tasks were in the monitored cgroup. This is
819 * independent of the activity of the context as
820 * there may be a mix of cgroup and non-cgroup events.
822 * That is why we treat cgroup events differently
823 * here.
825 if (is_cgroup_event(event))
826 run_end = perf_cgroup_event_time(event);
827 else if (ctx->is_active)
828 run_end = ctx->time;
829 else
830 run_end = event->tstamp_stopped;
832 event->total_time_enabled = run_end - event->tstamp_enabled;
834 if (event->state == PERF_EVENT_STATE_INACTIVE)
835 run_end = event->tstamp_stopped;
836 else
837 run_end = perf_event_time(event);
839 event->total_time_running = run_end - event->tstamp_running;
844 * Update total_time_enabled and total_time_running for all events in a group.
846 static void update_group_times(struct perf_event *leader)
848 struct perf_event *event;
850 update_event_times(leader);
851 list_for_each_entry(event, &leader->sibling_list, group_entry)
852 update_event_times(event);
855 static struct list_head *
856 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
858 if (event->attr.pinned)
859 return &ctx->pinned_groups;
860 else
861 return &ctx->flexible_groups;
865 * Add a event from the lists for its context.
866 * Must be called with ctx->mutex and ctx->lock held.
868 static void
869 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
871 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
872 event->attach_state |= PERF_ATTACH_CONTEXT;
875 * If we're a stand alone event or group leader, we go to the context
876 * list, group events are kept attached to the group so that
877 * perf_group_detach can, at all times, locate all siblings.
879 if (event->group_leader == event) {
880 struct list_head *list;
882 if (is_software_event(event))
883 event->group_flags |= PERF_GROUP_SOFTWARE;
885 list = ctx_group_list(event, ctx);
886 list_add_tail(&event->group_entry, list);
889 if (is_cgroup_event(event))
890 ctx->nr_cgroups++;
892 if (has_branch_stack(event))
893 ctx->nr_branch_stack++;
895 list_add_rcu(&event->event_entry, &ctx->event_list);
896 if (!ctx->nr_events)
897 perf_pmu_rotate_start(ctx->pmu);
898 ctx->nr_events++;
899 if (event->attr.inherit_stat)
900 ctx->nr_stat++;
904 * Called at perf_event creation and when events are attached/detached from a
905 * group.
907 static void perf_event__read_size(struct perf_event *event)
909 int entry = sizeof(u64); /* value */
910 int size = 0;
911 int nr = 1;
913 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
914 size += sizeof(u64);
916 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
917 size += sizeof(u64);
919 if (event->attr.read_format & PERF_FORMAT_ID)
920 entry += sizeof(u64);
922 if (event->attr.read_format & PERF_FORMAT_GROUP) {
923 nr += event->group_leader->nr_siblings;
924 size += sizeof(u64);
927 size += entry * nr;
928 event->read_size = size;
931 static void perf_event__header_size(struct perf_event *event)
933 struct perf_sample_data *data;
934 u64 sample_type = event->attr.sample_type;
935 u16 size = 0;
937 perf_event__read_size(event);
939 if (sample_type & PERF_SAMPLE_IP)
940 size += sizeof(data->ip);
942 if (sample_type & PERF_SAMPLE_ADDR)
943 size += sizeof(data->addr);
945 if (sample_type & PERF_SAMPLE_PERIOD)
946 size += sizeof(data->period);
948 if (sample_type & PERF_SAMPLE_READ)
949 size += event->read_size;
951 event->header_size = size;
954 static void perf_event__id_header_size(struct perf_event *event)
956 struct perf_sample_data *data;
957 u64 sample_type = event->attr.sample_type;
958 u16 size = 0;
960 if (sample_type & PERF_SAMPLE_TID)
961 size += sizeof(data->tid_entry);
963 if (sample_type & PERF_SAMPLE_TIME)
964 size += sizeof(data->time);
966 if (sample_type & PERF_SAMPLE_ID)
967 size += sizeof(data->id);
969 if (sample_type & PERF_SAMPLE_STREAM_ID)
970 size += sizeof(data->stream_id);
972 if (sample_type & PERF_SAMPLE_CPU)
973 size += sizeof(data->cpu_entry);
975 event->id_header_size = size;
978 static void perf_group_attach(struct perf_event *event)
980 struct perf_event *group_leader = event->group_leader, *pos;
983 * We can have double attach due to group movement in perf_event_open.
985 if (event->attach_state & PERF_ATTACH_GROUP)
986 return;
988 event->attach_state |= PERF_ATTACH_GROUP;
990 if (group_leader == event)
991 return;
993 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
994 !is_software_event(event))
995 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
997 list_add_tail(&event->group_entry, &group_leader->sibling_list);
998 group_leader->nr_siblings++;
1000 perf_event__header_size(group_leader);
1002 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1003 perf_event__header_size(pos);
1007 * Remove a event from the lists for its context.
1008 * Must be called with ctx->mutex and ctx->lock held.
1010 static void
1011 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1013 struct perf_cpu_context *cpuctx;
1015 * We can have double detach due to exit/hot-unplug + close.
1017 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1018 return;
1020 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1022 if (is_cgroup_event(event)) {
1023 ctx->nr_cgroups--;
1024 cpuctx = __get_cpu_context(ctx);
1026 * if there are no more cgroup events
1027 * then cler cgrp to avoid stale pointer
1028 * in update_cgrp_time_from_cpuctx()
1030 if (!ctx->nr_cgroups)
1031 cpuctx->cgrp = NULL;
1034 if (has_branch_stack(event))
1035 ctx->nr_branch_stack--;
1037 ctx->nr_events--;
1038 if (event->attr.inherit_stat)
1039 ctx->nr_stat--;
1041 list_del_rcu(&event->event_entry);
1043 if (event->group_leader == event)
1044 list_del_init(&event->group_entry);
1046 update_group_times(event);
1049 * If event was in error state, then keep it
1050 * that way, otherwise bogus counts will be
1051 * returned on read(). The only way to get out
1052 * of error state is by explicit re-enabling
1053 * of the event
1055 if (event->state > PERF_EVENT_STATE_OFF)
1056 event->state = PERF_EVENT_STATE_OFF;
1059 static void perf_group_detach(struct perf_event *event)
1061 struct perf_event *sibling, *tmp;
1062 struct list_head *list = NULL;
1065 * We can have double detach due to exit/hot-unplug + close.
1067 if (!(event->attach_state & PERF_ATTACH_GROUP))
1068 return;
1070 event->attach_state &= ~PERF_ATTACH_GROUP;
1073 * If this is a sibling, remove it from its group.
1075 if (event->group_leader != event) {
1076 list_del_init(&event->group_entry);
1077 event->group_leader->nr_siblings--;
1078 goto out;
1081 if (!list_empty(&event->group_entry))
1082 list = &event->group_entry;
1085 * If this was a group event with sibling events then
1086 * upgrade the siblings to singleton events by adding them
1087 * to whatever list we are on.
1089 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1090 if (list)
1091 list_move_tail(&sibling->group_entry, list);
1092 sibling->group_leader = sibling;
1094 /* Inherit group flags from the previous leader */
1095 sibling->group_flags = event->group_flags;
1098 out:
1099 perf_event__header_size(event->group_leader);
1101 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1102 perf_event__header_size(tmp);
1105 static inline int
1106 event_filter_match(struct perf_event *event)
1108 return (event->cpu == -1 || event->cpu == smp_processor_id())
1109 && perf_cgroup_match(event);
1112 static void
1113 event_sched_out(struct perf_event *event,
1114 struct perf_cpu_context *cpuctx,
1115 struct perf_event_context *ctx)
1117 u64 tstamp = perf_event_time(event);
1118 u64 delta;
1120 * An event which could not be activated because of
1121 * filter mismatch still needs to have its timings
1122 * maintained, otherwise bogus information is return
1123 * via read() for time_enabled, time_running:
1125 if (event->state == PERF_EVENT_STATE_INACTIVE
1126 && !event_filter_match(event)) {
1127 delta = tstamp - event->tstamp_stopped;
1128 event->tstamp_running += delta;
1129 event->tstamp_stopped = tstamp;
1132 if (event->state != PERF_EVENT_STATE_ACTIVE)
1133 return;
1135 event->state = PERF_EVENT_STATE_INACTIVE;
1136 if (event->pending_disable) {
1137 event->pending_disable = 0;
1138 event->state = PERF_EVENT_STATE_OFF;
1140 event->tstamp_stopped = tstamp;
1141 event->pmu->del(event, 0);
1142 event->oncpu = -1;
1144 if (!is_software_event(event))
1145 cpuctx->active_oncpu--;
1146 ctx->nr_active--;
1147 if (event->attr.freq && event->attr.sample_freq)
1148 ctx->nr_freq--;
1149 if (event->attr.exclusive || !cpuctx->active_oncpu)
1150 cpuctx->exclusive = 0;
1153 static void
1154 group_sched_out(struct perf_event *group_event,
1155 struct perf_cpu_context *cpuctx,
1156 struct perf_event_context *ctx)
1158 struct perf_event *event;
1159 int state = group_event->state;
1161 event_sched_out(group_event, cpuctx, ctx);
1164 * Schedule out siblings (if any):
1166 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1167 event_sched_out(event, cpuctx, ctx);
1169 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1170 cpuctx->exclusive = 0;
1174 * Cross CPU call to remove a performance event
1176 * We disable the event on the hardware level first. After that we
1177 * remove it from the context list.
1179 static int __perf_remove_from_context(void *info)
1181 struct perf_event *event = info;
1182 struct perf_event_context *ctx = event->ctx;
1183 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1185 raw_spin_lock(&ctx->lock);
1186 event_sched_out(event, cpuctx, ctx);
1187 list_del_event(event, ctx);
1188 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1189 ctx->is_active = 0;
1190 cpuctx->task_ctx = NULL;
1192 raw_spin_unlock(&ctx->lock);
1194 return 0;
1199 * Remove the event from a task's (or a CPU's) list of events.
1201 * CPU events are removed with a smp call. For task events we only
1202 * call when the task is on a CPU.
1204 * If event->ctx is a cloned context, callers must make sure that
1205 * every task struct that event->ctx->task could possibly point to
1206 * remains valid. This is OK when called from perf_release since
1207 * that only calls us on the top-level context, which can't be a clone.
1208 * When called from perf_event_exit_task, it's OK because the
1209 * context has been detached from its task.
1211 static void perf_remove_from_context(struct perf_event *event)
1213 struct perf_event_context *ctx = event->ctx;
1214 struct task_struct *task = ctx->task;
1216 lockdep_assert_held(&ctx->mutex);
1218 if (!task) {
1220 * Per cpu events are removed via an smp call and
1221 * the removal is always successful.
1223 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1224 return;
1227 retry:
1228 if (!task_function_call(task, __perf_remove_from_context, event))
1229 return;
1231 raw_spin_lock_irq(&ctx->lock);
1233 * If we failed to find a running task, but find the context active now
1234 * that we've acquired the ctx->lock, retry.
1236 if (ctx->is_active) {
1237 raw_spin_unlock_irq(&ctx->lock);
1238 goto retry;
1242 * Since the task isn't running, its safe to remove the event, us
1243 * holding the ctx->lock ensures the task won't get scheduled in.
1245 list_del_event(event, ctx);
1246 raw_spin_unlock_irq(&ctx->lock);
1250 * Cross CPU call to disable a performance event
1252 static int __perf_event_disable(void *info)
1254 struct perf_event *event = info;
1255 struct perf_event_context *ctx = event->ctx;
1256 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1259 * If this is a per-task event, need to check whether this
1260 * event's task is the current task on this cpu.
1262 * Can trigger due to concurrent perf_event_context_sched_out()
1263 * flipping contexts around.
1265 if (ctx->task && cpuctx->task_ctx != ctx)
1266 return -EINVAL;
1268 raw_spin_lock(&ctx->lock);
1271 * If the event is on, turn it off.
1272 * If it is in error state, leave it in error state.
1274 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1275 update_context_time(ctx);
1276 update_cgrp_time_from_event(event);
1277 update_group_times(event);
1278 if (event == event->group_leader)
1279 group_sched_out(event, cpuctx, ctx);
1280 else
1281 event_sched_out(event, cpuctx, ctx);
1282 event->state = PERF_EVENT_STATE_OFF;
1285 raw_spin_unlock(&ctx->lock);
1287 return 0;
1291 * Disable a event.
1293 * If event->ctx is a cloned context, callers must make sure that
1294 * every task struct that event->ctx->task could possibly point to
1295 * remains valid. This condition is satisifed when called through
1296 * perf_event_for_each_child or perf_event_for_each because they
1297 * hold the top-level event's child_mutex, so any descendant that
1298 * goes to exit will block in sync_child_event.
1299 * When called from perf_pending_event it's OK because event->ctx
1300 * is the current context on this CPU and preemption is disabled,
1301 * hence we can't get into perf_event_task_sched_out for this context.
1303 void perf_event_disable(struct perf_event *event)
1305 struct perf_event_context *ctx = event->ctx;
1306 struct task_struct *task = ctx->task;
1308 if (!task) {
1310 * Disable the event on the cpu that it's on
1312 cpu_function_call(event->cpu, __perf_event_disable, event);
1313 return;
1316 retry:
1317 if (!task_function_call(task, __perf_event_disable, event))
1318 return;
1320 raw_spin_lock_irq(&ctx->lock);
1322 * If the event is still active, we need to retry the cross-call.
1324 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1325 raw_spin_unlock_irq(&ctx->lock);
1327 * Reload the task pointer, it might have been changed by
1328 * a concurrent perf_event_context_sched_out().
1330 task = ctx->task;
1331 goto retry;
1335 * Since we have the lock this context can't be scheduled
1336 * in, so we can change the state safely.
1338 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1339 update_group_times(event);
1340 event->state = PERF_EVENT_STATE_OFF;
1342 raw_spin_unlock_irq(&ctx->lock);
1344 EXPORT_SYMBOL_GPL(perf_event_disable);
1346 static void perf_set_shadow_time(struct perf_event *event,
1347 struct perf_event_context *ctx,
1348 u64 tstamp)
1351 * use the correct time source for the time snapshot
1353 * We could get by without this by leveraging the
1354 * fact that to get to this function, the caller
1355 * has most likely already called update_context_time()
1356 * and update_cgrp_time_xx() and thus both timestamp
1357 * are identical (or very close). Given that tstamp is,
1358 * already adjusted for cgroup, we could say that:
1359 * tstamp - ctx->timestamp
1360 * is equivalent to
1361 * tstamp - cgrp->timestamp.
1363 * Then, in perf_output_read(), the calculation would
1364 * work with no changes because:
1365 * - event is guaranteed scheduled in
1366 * - no scheduled out in between
1367 * - thus the timestamp would be the same
1369 * But this is a bit hairy.
1371 * So instead, we have an explicit cgroup call to remain
1372 * within the time time source all along. We believe it
1373 * is cleaner and simpler to understand.
1375 if (is_cgroup_event(event))
1376 perf_cgroup_set_shadow_time(event, tstamp);
1377 else
1378 event->shadow_ctx_time = tstamp - ctx->timestamp;
1381 #define MAX_INTERRUPTS (~0ULL)
1383 static void perf_log_throttle(struct perf_event *event, int enable);
1385 static int
1386 event_sched_in(struct perf_event *event,
1387 struct perf_cpu_context *cpuctx,
1388 struct perf_event_context *ctx)
1390 u64 tstamp = perf_event_time(event);
1392 if (event->state <= PERF_EVENT_STATE_OFF)
1393 return 0;
1395 event->state = PERF_EVENT_STATE_ACTIVE;
1396 event->oncpu = smp_processor_id();
1399 * Unthrottle events, since we scheduled we might have missed several
1400 * ticks already, also for a heavily scheduling task there is little
1401 * guarantee it'll get a tick in a timely manner.
1403 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1404 perf_log_throttle(event, 1);
1405 event->hw.interrupts = 0;
1409 * The new state must be visible before we turn it on in the hardware:
1411 smp_wmb();
1413 if (event->pmu->add(event, PERF_EF_START)) {
1414 event->state = PERF_EVENT_STATE_INACTIVE;
1415 event->oncpu = -1;
1416 return -EAGAIN;
1419 event->tstamp_running += tstamp - event->tstamp_stopped;
1421 perf_set_shadow_time(event, ctx, tstamp);
1423 if (!is_software_event(event))
1424 cpuctx->active_oncpu++;
1425 ctx->nr_active++;
1426 if (event->attr.freq && event->attr.sample_freq)
1427 ctx->nr_freq++;
1429 if (event->attr.exclusive)
1430 cpuctx->exclusive = 1;
1432 return 0;
1435 static int
1436 group_sched_in(struct perf_event *group_event,
1437 struct perf_cpu_context *cpuctx,
1438 struct perf_event_context *ctx)
1440 struct perf_event *event, *partial_group = NULL;
1441 struct pmu *pmu = group_event->pmu;
1442 u64 now = ctx->time;
1443 bool simulate = false;
1445 if (group_event->state == PERF_EVENT_STATE_OFF)
1446 return 0;
1448 pmu->start_txn(pmu);
1450 if (event_sched_in(group_event, cpuctx, ctx)) {
1451 pmu->cancel_txn(pmu);
1452 return -EAGAIN;
1456 * Schedule in siblings as one group (if any):
1458 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1459 if (event_sched_in(event, cpuctx, ctx)) {
1460 partial_group = event;
1461 goto group_error;
1465 if (!pmu->commit_txn(pmu))
1466 return 0;
1468 group_error:
1470 * Groups can be scheduled in as one unit only, so undo any
1471 * partial group before returning:
1472 * The events up to the failed event are scheduled out normally,
1473 * tstamp_stopped will be updated.
1475 * The failed events and the remaining siblings need to have
1476 * their timings updated as if they had gone thru event_sched_in()
1477 * and event_sched_out(). This is required to get consistent timings
1478 * across the group. This also takes care of the case where the group
1479 * could never be scheduled by ensuring tstamp_stopped is set to mark
1480 * the time the event was actually stopped, such that time delta
1481 * calculation in update_event_times() is correct.
1483 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1484 if (event == partial_group)
1485 simulate = true;
1487 if (simulate) {
1488 event->tstamp_running += now - event->tstamp_stopped;
1489 event->tstamp_stopped = now;
1490 } else {
1491 event_sched_out(event, cpuctx, ctx);
1494 event_sched_out(group_event, cpuctx, ctx);
1496 pmu->cancel_txn(pmu);
1498 return -EAGAIN;
1502 * Work out whether we can put this event group on the CPU now.
1504 static int group_can_go_on(struct perf_event *event,
1505 struct perf_cpu_context *cpuctx,
1506 int can_add_hw)
1509 * Groups consisting entirely of software events can always go on.
1511 if (event->group_flags & PERF_GROUP_SOFTWARE)
1512 return 1;
1514 * If an exclusive group is already on, no other hardware
1515 * events can go on.
1517 if (cpuctx->exclusive)
1518 return 0;
1520 * If this group is exclusive and there are already
1521 * events on the CPU, it can't go on.
1523 if (event->attr.exclusive && cpuctx->active_oncpu)
1524 return 0;
1526 * Otherwise, try to add it if all previous groups were able
1527 * to go on.
1529 return can_add_hw;
1532 static void add_event_to_ctx(struct perf_event *event,
1533 struct perf_event_context *ctx)
1535 u64 tstamp = perf_event_time(event);
1537 list_add_event(event, ctx);
1538 perf_group_attach(event);
1539 event->tstamp_enabled = tstamp;
1540 event->tstamp_running = tstamp;
1541 event->tstamp_stopped = tstamp;
1544 static void task_ctx_sched_out(struct perf_event_context *ctx);
1545 static void
1546 ctx_sched_in(struct perf_event_context *ctx,
1547 struct perf_cpu_context *cpuctx,
1548 enum event_type_t event_type,
1549 struct task_struct *task);
1551 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1552 struct perf_event_context *ctx,
1553 struct task_struct *task)
1555 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1556 if (ctx)
1557 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1558 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1559 if (ctx)
1560 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1564 * Cross CPU call to install and enable a performance event
1566 * Must be called with ctx->mutex held
1568 static int __perf_install_in_context(void *info)
1570 struct perf_event *event = info;
1571 struct perf_event_context *ctx = event->ctx;
1572 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1573 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1574 struct task_struct *task = current;
1576 perf_ctx_lock(cpuctx, task_ctx);
1577 perf_pmu_disable(cpuctx->ctx.pmu);
1580 * If there was an active task_ctx schedule it out.
1582 if (task_ctx)
1583 task_ctx_sched_out(task_ctx);
1586 * If the context we're installing events in is not the
1587 * active task_ctx, flip them.
1589 if (ctx->task && task_ctx != ctx) {
1590 if (task_ctx)
1591 raw_spin_unlock(&task_ctx->lock);
1592 raw_spin_lock(&ctx->lock);
1593 task_ctx = ctx;
1596 if (task_ctx) {
1597 cpuctx->task_ctx = task_ctx;
1598 task = task_ctx->task;
1601 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1603 update_context_time(ctx);
1605 * update cgrp time only if current cgrp
1606 * matches event->cgrp. Must be done before
1607 * calling add_event_to_ctx()
1609 update_cgrp_time_from_event(event);
1611 add_event_to_ctx(event, ctx);
1614 * Schedule everything back in
1616 perf_event_sched_in(cpuctx, task_ctx, task);
1618 perf_pmu_enable(cpuctx->ctx.pmu);
1619 perf_ctx_unlock(cpuctx, task_ctx);
1621 return 0;
1625 * Attach a performance event to a context
1627 * First we add the event to the list with the hardware enable bit
1628 * in event->hw_config cleared.
1630 * If the event is attached to a task which is on a CPU we use a smp
1631 * call to enable it in the task context. The task might have been
1632 * scheduled away, but we check this in the smp call again.
1634 static void
1635 perf_install_in_context(struct perf_event_context *ctx,
1636 struct perf_event *event,
1637 int cpu)
1639 struct task_struct *task = ctx->task;
1641 lockdep_assert_held(&ctx->mutex);
1643 event->ctx = ctx;
1645 if (!task) {
1647 * Per cpu events are installed via an smp call and
1648 * the install is always successful.
1650 cpu_function_call(cpu, __perf_install_in_context, event);
1651 return;
1654 retry:
1655 if (!task_function_call(task, __perf_install_in_context, event))
1656 return;
1658 raw_spin_lock_irq(&ctx->lock);
1660 * If we failed to find a running task, but find the context active now
1661 * that we've acquired the ctx->lock, retry.
1663 if (ctx->is_active) {
1664 raw_spin_unlock_irq(&ctx->lock);
1665 goto retry;
1669 * Since the task isn't running, its safe to add the event, us holding
1670 * the ctx->lock ensures the task won't get scheduled in.
1672 add_event_to_ctx(event, ctx);
1673 raw_spin_unlock_irq(&ctx->lock);
1677 * Put a event into inactive state and update time fields.
1678 * Enabling the leader of a group effectively enables all
1679 * the group members that aren't explicitly disabled, so we
1680 * have to update their ->tstamp_enabled also.
1681 * Note: this works for group members as well as group leaders
1682 * since the non-leader members' sibling_lists will be empty.
1684 static void __perf_event_mark_enabled(struct perf_event *event)
1686 struct perf_event *sub;
1687 u64 tstamp = perf_event_time(event);
1689 event->state = PERF_EVENT_STATE_INACTIVE;
1690 event->tstamp_enabled = tstamp - event->total_time_enabled;
1691 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1692 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1693 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1698 * Cross CPU call to enable a performance event
1700 static int __perf_event_enable(void *info)
1702 struct perf_event *event = info;
1703 struct perf_event_context *ctx = event->ctx;
1704 struct perf_event *leader = event->group_leader;
1705 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1706 int err;
1708 if (WARN_ON_ONCE(!ctx->is_active))
1709 return -EINVAL;
1711 raw_spin_lock(&ctx->lock);
1712 update_context_time(ctx);
1714 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1715 goto unlock;
1718 * set current task's cgroup time reference point
1720 perf_cgroup_set_timestamp(current, ctx);
1722 __perf_event_mark_enabled(event);
1724 if (!event_filter_match(event)) {
1725 if (is_cgroup_event(event))
1726 perf_cgroup_defer_enabled(event);
1727 goto unlock;
1731 * If the event is in a group and isn't the group leader,
1732 * then don't put it on unless the group is on.
1734 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1735 goto unlock;
1737 if (!group_can_go_on(event, cpuctx, 1)) {
1738 err = -EEXIST;
1739 } else {
1740 if (event == leader)
1741 err = group_sched_in(event, cpuctx, ctx);
1742 else
1743 err = event_sched_in(event, cpuctx, ctx);
1746 if (err) {
1748 * If this event can't go on and it's part of a
1749 * group, then the whole group has to come off.
1751 if (leader != event)
1752 group_sched_out(leader, cpuctx, ctx);
1753 if (leader->attr.pinned) {
1754 update_group_times(leader);
1755 leader->state = PERF_EVENT_STATE_ERROR;
1759 unlock:
1760 raw_spin_unlock(&ctx->lock);
1762 return 0;
1766 * Enable a event.
1768 * If event->ctx is a cloned context, callers must make sure that
1769 * every task struct that event->ctx->task could possibly point to
1770 * remains valid. This condition is satisfied when called through
1771 * perf_event_for_each_child or perf_event_for_each as described
1772 * for perf_event_disable.
1774 void perf_event_enable(struct perf_event *event)
1776 struct perf_event_context *ctx = event->ctx;
1777 struct task_struct *task = ctx->task;
1779 if (!task) {
1781 * Enable the event on the cpu that it's on
1783 cpu_function_call(event->cpu, __perf_event_enable, event);
1784 return;
1787 raw_spin_lock_irq(&ctx->lock);
1788 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1789 goto out;
1792 * If the event is in error state, clear that first.
1793 * That way, if we see the event in error state below, we
1794 * know that it has gone back into error state, as distinct
1795 * from the task having been scheduled away before the
1796 * cross-call arrived.
1798 if (event->state == PERF_EVENT_STATE_ERROR)
1799 event->state = PERF_EVENT_STATE_OFF;
1801 retry:
1802 if (!ctx->is_active) {
1803 __perf_event_mark_enabled(event);
1804 goto out;
1807 raw_spin_unlock_irq(&ctx->lock);
1809 if (!task_function_call(task, __perf_event_enable, event))
1810 return;
1812 raw_spin_lock_irq(&ctx->lock);
1815 * If the context is active and the event is still off,
1816 * we need to retry the cross-call.
1818 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1820 * task could have been flipped by a concurrent
1821 * perf_event_context_sched_out()
1823 task = ctx->task;
1824 goto retry;
1827 out:
1828 raw_spin_unlock_irq(&ctx->lock);
1830 EXPORT_SYMBOL_GPL(perf_event_enable);
1832 int perf_event_refresh(struct perf_event *event, int refresh)
1835 * not supported on inherited events
1837 if (event->attr.inherit || !is_sampling_event(event))
1838 return -EINVAL;
1840 atomic_add(refresh, &event->event_limit);
1841 perf_event_enable(event);
1843 return 0;
1845 EXPORT_SYMBOL_GPL(perf_event_refresh);
1847 static void ctx_sched_out(struct perf_event_context *ctx,
1848 struct perf_cpu_context *cpuctx,
1849 enum event_type_t event_type)
1851 struct perf_event *event;
1852 int is_active = ctx->is_active;
1854 ctx->is_active &= ~event_type;
1855 if (likely(!ctx->nr_events))
1856 return;
1858 update_context_time(ctx);
1859 update_cgrp_time_from_cpuctx(cpuctx);
1860 if (!ctx->nr_active)
1861 return;
1863 perf_pmu_disable(ctx->pmu);
1864 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1865 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1866 group_sched_out(event, cpuctx, ctx);
1869 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1870 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1871 group_sched_out(event, cpuctx, ctx);
1873 perf_pmu_enable(ctx->pmu);
1877 * Test whether two contexts are equivalent, i.e. whether they
1878 * have both been cloned from the same version of the same context
1879 * and they both have the same number of enabled events.
1880 * If the number of enabled events is the same, then the set
1881 * of enabled events should be the same, because these are both
1882 * inherited contexts, therefore we can't access individual events
1883 * in them directly with an fd; we can only enable/disable all
1884 * events via prctl, or enable/disable all events in a family
1885 * via ioctl, which will have the same effect on both contexts.
1887 static int context_equiv(struct perf_event_context *ctx1,
1888 struct perf_event_context *ctx2)
1890 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1891 && ctx1->parent_gen == ctx2->parent_gen
1892 && !ctx1->pin_count && !ctx2->pin_count;
1895 static void __perf_event_sync_stat(struct perf_event *event,
1896 struct perf_event *next_event)
1898 u64 value;
1900 if (!event->attr.inherit_stat)
1901 return;
1904 * Update the event value, we cannot use perf_event_read()
1905 * because we're in the middle of a context switch and have IRQs
1906 * disabled, which upsets smp_call_function_single(), however
1907 * we know the event must be on the current CPU, therefore we
1908 * don't need to use it.
1910 switch (event->state) {
1911 case PERF_EVENT_STATE_ACTIVE:
1912 event->pmu->read(event);
1913 /* fall-through */
1915 case PERF_EVENT_STATE_INACTIVE:
1916 update_event_times(event);
1917 break;
1919 default:
1920 break;
1924 * In order to keep per-task stats reliable we need to flip the event
1925 * values when we flip the contexts.
1927 value = local64_read(&next_event->count);
1928 value = local64_xchg(&event->count, value);
1929 local64_set(&next_event->count, value);
1931 swap(event->total_time_enabled, next_event->total_time_enabled);
1932 swap(event->total_time_running, next_event->total_time_running);
1935 * Since we swizzled the values, update the user visible data too.
1937 perf_event_update_userpage(event);
1938 perf_event_update_userpage(next_event);
1941 #define list_next_entry(pos, member) \
1942 list_entry(pos->member.next, typeof(*pos), member)
1944 static void perf_event_sync_stat(struct perf_event_context *ctx,
1945 struct perf_event_context *next_ctx)
1947 struct perf_event *event, *next_event;
1949 if (!ctx->nr_stat)
1950 return;
1952 update_context_time(ctx);
1954 event = list_first_entry(&ctx->event_list,
1955 struct perf_event, event_entry);
1957 next_event = list_first_entry(&next_ctx->event_list,
1958 struct perf_event, event_entry);
1960 while (&event->event_entry != &ctx->event_list &&
1961 &next_event->event_entry != &next_ctx->event_list) {
1963 __perf_event_sync_stat(event, next_event);
1965 event = list_next_entry(event, event_entry);
1966 next_event = list_next_entry(next_event, event_entry);
1970 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1971 struct task_struct *next)
1973 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1974 struct perf_event_context *next_ctx;
1975 struct perf_event_context *parent;
1976 struct perf_cpu_context *cpuctx;
1977 int do_switch = 1;
1979 if (likely(!ctx))
1980 return;
1982 cpuctx = __get_cpu_context(ctx);
1983 if (!cpuctx->task_ctx)
1984 return;
1986 rcu_read_lock();
1987 parent = rcu_dereference(ctx->parent_ctx);
1988 next_ctx = next->perf_event_ctxp[ctxn];
1989 if (parent && next_ctx &&
1990 rcu_dereference(next_ctx->parent_ctx) == parent) {
1992 * Looks like the two contexts are clones, so we might be
1993 * able to optimize the context switch. We lock both
1994 * contexts and check that they are clones under the
1995 * lock (including re-checking that neither has been
1996 * uncloned in the meantime). It doesn't matter which
1997 * order we take the locks because no other cpu could
1998 * be trying to lock both of these tasks.
2000 raw_spin_lock(&ctx->lock);
2001 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2002 if (context_equiv(ctx, next_ctx)) {
2004 * XXX do we need a memory barrier of sorts
2005 * wrt to rcu_dereference() of perf_event_ctxp
2007 task->perf_event_ctxp[ctxn] = next_ctx;
2008 next->perf_event_ctxp[ctxn] = ctx;
2009 ctx->task = next;
2010 next_ctx->task = task;
2011 do_switch = 0;
2013 perf_event_sync_stat(ctx, next_ctx);
2015 raw_spin_unlock(&next_ctx->lock);
2016 raw_spin_unlock(&ctx->lock);
2018 rcu_read_unlock();
2020 if (do_switch) {
2021 raw_spin_lock(&ctx->lock);
2022 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2023 cpuctx->task_ctx = NULL;
2024 raw_spin_unlock(&ctx->lock);
2028 #define for_each_task_context_nr(ctxn) \
2029 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2032 * Called from scheduler to remove the events of the current task,
2033 * with interrupts disabled.
2035 * We stop each event and update the event value in event->count.
2037 * This does not protect us against NMI, but disable()
2038 * sets the disabled bit in the control field of event _before_
2039 * accessing the event control register. If a NMI hits, then it will
2040 * not restart the event.
2042 void __perf_event_task_sched_out(struct task_struct *task,
2043 struct task_struct *next)
2045 int ctxn;
2047 for_each_task_context_nr(ctxn)
2048 perf_event_context_sched_out(task, ctxn, next);
2051 * if cgroup events exist on this CPU, then we need
2052 * to check if we have to switch out PMU state.
2053 * cgroup event are system-wide mode only
2055 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2056 perf_cgroup_sched_out(task, next);
2059 static void task_ctx_sched_out(struct perf_event_context *ctx)
2061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2063 if (!cpuctx->task_ctx)
2064 return;
2066 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2067 return;
2069 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2070 cpuctx->task_ctx = NULL;
2074 * Called with IRQs disabled
2076 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2077 enum event_type_t event_type)
2079 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2082 static void
2083 ctx_pinned_sched_in(struct perf_event_context *ctx,
2084 struct perf_cpu_context *cpuctx)
2086 struct perf_event *event;
2088 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2089 if (event->state <= PERF_EVENT_STATE_OFF)
2090 continue;
2091 if (!event_filter_match(event))
2092 continue;
2094 /* may need to reset tstamp_enabled */
2095 if (is_cgroup_event(event))
2096 perf_cgroup_mark_enabled(event, ctx);
2098 if (group_can_go_on(event, cpuctx, 1))
2099 group_sched_in(event, cpuctx, ctx);
2102 * If this pinned group hasn't been scheduled,
2103 * put it in error state.
2105 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2106 update_group_times(event);
2107 event->state = PERF_EVENT_STATE_ERROR;
2112 static void
2113 ctx_flexible_sched_in(struct perf_event_context *ctx,
2114 struct perf_cpu_context *cpuctx)
2116 struct perf_event *event;
2117 int can_add_hw = 1;
2119 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2120 /* Ignore events in OFF or ERROR state */
2121 if (event->state <= PERF_EVENT_STATE_OFF)
2122 continue;
2124 * Listen to the 'cpu' scheduling filter constraint
2125 * of events:
2127 if (!event_filter_match(event))
2128 continue;
2130 /* may need to reset tstamp_enabled */
2131 if (is_cgroup_event(event))
2132 perf_cgroup_mark_enabled(event, ctx);
2134 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2135 if (group_sched_in(event, cpuctx, ctx))
2136 can_add_hw = 0;
2141 static void
2142 ctx_sched_in(struct perf_event_context *ctx,
2143 struct perf_cpu_context *cpuctx,
2144 enum event_type_t event_type,
2145 struct task_struct *task)
2147 u64 now;
2148 int is_active = ctx->is_active;
2150 ctx->is_active |= event_type;
2151 if (likely(!ctx->nr_events))
2152 return;
2154 now = perf_clock();
2155 ctx->timestamp = now;
2156 perf_cgroup_set_timestamp(task, ctx);
2158 * First go through the list and put on any pinned groups
2159 * in order to give them the best chance of going on.
2161 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2162 ctx_pinned_sched_in(ctx, cpuctx);
2164 /* Then walk through the lower prio flexible groups */
2165 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2166 ctx_flexible_sched_in(ctx, cpuctx);
2169 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2170 enum event_type_t event_type,
2171 struct task_struct *task)
2173 struct perf_event_context *ctx = &cpuctx->ctx;
2175 ctx_sched_in(ctx, cpuctx, event_type, task);
2178 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2179 struct task_struct *task)
2181 struct perf_cpu_context *cpuctx;
2183 cpuctx = __get_cpu_context(ctx);
2184 if (cpuctx->task_ctx == ctx)
2185 return;
2187 perf_ctx_lock(cpuctx, ctx);
2188 perf_pmu_disable(ctx->pmu);
2190 * We want to keep the following priority order:
2191 * cpu pinned (that don't need to move), task pinned,
2192 * cpu flexible, task flexible.
2194 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2196 if (ctx->nr_events)
2197 cpuctx->task_ctx = ctx;
2199 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2201 perf_pmu_enable(ctx->pmu);
2202 perf_ctx_unlock(cpuctx, ctx);
2205 * Since these rotations are per-cpu, we need to ensure the
2206 * cpu-context we got scheduled on is actually rotating.
2208 perf_pmu_rotate_start(ctx->pmu);
2212 * When sampling the branck stack in system-wide, it may be necessary
2213 * to flush the stack on context switch. This happens when the branch
2214 * stack does not tag its entries with the pid of the current task.
2215 * Otherwise it becomes impossible to associate a branch entry with a
2216 * task. This ambiguity is more likely to appear when the branch stack
2217 * supports priv level filtering and the user sets it to monitor only
2218 * at the user level (which could be a useful measurement in system-wide
2219 * mode). In that case, the risk is high of having a branch stack with
2220 * branch from multiple tasks. Flushing may mean dropping the existing
2221 * entries or stashing them somewhere in the PMU specific code layer.
2223 * This function provides the context switch callback to the lower code
2224 * layer. It is invoked ONLY when there is at least one system-wide context
2225 * with at least one active event using taken branch sampling.
2227 static void perf_branch_stack_sched_in(struct task_struct *prev,
2228 struct task_struct *task)
2230 struct perf_cpu_context *cpuctx;
2231 struct pmu *pmu;
2232 unsigned long flags;
2234 /* no need to flush branch stack if not changing task */
2235 if (prev == task)
2236 return;
2238 local_irq_save(flags);
2240 rcu_read_lock();
2242 list_for_each_entry_rcu(pmu, &pmus, entry) {
2243 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2246 * check if the context has at least one
2247 * event using PERF_SAMPLE_BRANCH_STACK
2249 if (cpuctx->ctx.nr_branch_stack > 0
2250 && pmu->flush_branch_stack) {
2252 pmu = cpuctx->ctx.pmu;
2254 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2256 perf_pmu_disable(pmu);
2258 pmu->flush_branch_stack();
2260 perf_pmu_enable(pmu);
2262 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2266 rcu_read_unlock();
2268 local_irq_restore(flags);
2272 * Called from scheduler to add the events of the current task
2273 * with interrupts disabled.
2275 * We restore the event value and then enable it.
2277 * This does not protect us against NMI, but enable()
2278 * sets the enabled bit in the control field of event _before_
2279 * accessing the event control register. If a NMI hits, then it will
2280 * keep the event running.
2282 void __perf_event_task_sched_in(struct task_struct *prev,
2283 struct task_struct *task)
2285 struct perf_event_context *ctx;
2286 int ctxn;
2288 for_each_task_context_nr(ctxn) {
2289 ctx = task->perf_event_ctxp[ctxn];
2290 if (likely(!ctx))
2291 continue;
2293 perf_event_context_sched_in(ctx, task);
2296 * if cgroup events exist on this CPU, then we need
2297 * to check if we have to switch in PMU state.
2298 * cgroup event are system-wide mode only
2300 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2301 perf_cgroup_sched_in(prev, task);
2303 /* check for system-wide branch_stack events */
2304 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2305 perf_branch_stack_sched_in(prev, task);
2308 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2310 u64 frequency = event->attr.sample_freq;
2311 u64 sec = NSEC_PER_SEC;
2312 u64 divisor, dividend;
2314 int count_fls, nsec_fls, frequency_fls, sec_fls;
2316 count_fls = fls64(count);
2317 nsec_fls = fls64(nsec);
2318 frequency_fls = fls64(frequency);
2319 sec_fls = 30;
2322 * We got @count in @nsec, with a target of sample_freq HZ
2323 * the target period becomes:
2325 * @count * 10^9
2326 * period = -------------------
2327 * @nsec * sample_freq
2332 * Reduce accuracy by one bit such that @a and @b converge
2333 * to a similar magnitude.
2335 #define REDUCE_FLS(a, b) \
2336 do { \
2337 if (a##_fls > b##_fls) { \
2338 a >>= 1; \
2339 a##_fls--; \
2340 } else { \
2341 b >>= 1; \
2342 b##_fls--; \
2344 } while (0)
2347 * Reduce accuracy until either term fits in a u64, then proceed with
2348 * the other, so that finally we can do a u64/u64 division.
2350 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2351 REDUCE_FLS(nsec, frequency);
2352 REDUCE_FLS(sec, count);
2355 if (count_fls + sec_fls > 64) {
2356 divisor = nsec * frequency;
2358 while (count_fls + sec_fls > 64) {
2359 REDUCE_FLS(count, sec);
2360 divisor >>= 1;
2363 dividend = count * sec;
2364 } else {
2365 dividend = count * sec;
2367 while (nsec_fls + frequency_fls > 64) {
2368 REDUCE_FLS(nsec, frequency);
2369 dividend >>= 1;
2372 divisor = nsec * frequency;
2375 if (!divisor)
2376 return dividend;
2378 return div64_u64(dividend, divisor);
2381 static DEFINE_PER_CPU(int, perf_throttled_count);
2382 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2384 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2386 struct hw_perf_event *hwc = &event->hw;
2387 s64 period, sample_period;
2388 s64 delta;
2390 period = perf_calculate_period(event, nsec, count);
2392 delta = (s64)(period - hwc->sample_period);
2393 delta = (delta + 7) / 8; /* low pass filter */
2395 sample_period = hwc->sample_period + delta;
2397 if (!sample_period)
2398 sample_period = 1;
2400 hwc->sample_period = sample_period;
2402 if (local64_read(&hwc->period_left) > 8*sample_period) {
2403 if (disable)
2404 event->pmu->stop(event, PERF_EF_UPDATE);
2406 local64_set(&hwc->period_left, 0);
2408 if (disable)
2409 event->pmu->start(event, PERF_EF_RELOAD);
2414 * combine freq adjustment with unthrottling to avoid two passes over the
2415 * events. At the same time, make sure, having freq events does not change
2416 * the rate of unthrottling as that would introduce bias.
2418 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2419 int needs_unthr)
2421 struct perf_event *event;
2422 struct hw_perf_event *hwc;
2423 u64 now, period = TICK_NSEC;
2424 s64 delta;
2427 * only need to iterate over all events iff:
2428 * - context have events in frequency mode (needs freq adjust)
2429 * - there are events to unthrottle on this cpu
2431 if (!(ctx->nr_freq || needs_unthr))
2432 return;
2434 raw_spin_lock(&ctx->lock);
2435 perf_pmu_disable(ctx->pmu);
2437 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2438 if (event->state != PERF_EVENT_STATE_ACTIVE)
2439 continue;
2441 if (!event_filter_match(event))
2442 continue;
2444 hwc = &event->hw;
2446 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2447 hwc->interrupts = 0;
2448 perf_log_throttle(event, 1);
2449 event->pmu->start(event, 0);
2452 if (!event->attr.freq || !event->attr.sample_freq)
2453 continue;
2456 * stop the event and update event->count
2458 event->pmu->stop(event, PERF_EF_UPDATE);
2460 now = local64_read(&event->count);
2461 delta = now - hwc->freq_count_stamp;
2462 hwc->freq_count_stamp = now;
2465 * restart the event
2466 * reload only if value has changed
2467 * we have stopped the event so tell that
2468 * to perf_adjust_period() to avoid stopping it
2469 * twice.
2471 if (delta > 0)
2472 perf_adjust_period(event, period, delta, false);
2474 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2477 perf_pmu_enable(ctx->pmu);
2478 raw_spin_unlock(&ctx->lock);
2482 * Round-robin a context's events:
2484 static void rotate_ctx(struct perf_event_context *ctx)
2487 * Rotate the first entry last of non-pinned groups. Rotation might be
2488 * disabled by the inheritance code.
2490 if (!ctx->rotate_disable)
2491 list_rotate_left(&ctx->flexible_groups);
2495 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2496 * because they're strictly cpu affine and rotate_start is called with IRQs
2497 * disabled, while rotate_context is called from IRQ context.
2499 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2501 struct perf_event_context *ctx = NULL;
2502 int rotate = 0, remove = 1;
2504 if (cpuctx->ctx.nr_events) {
2505 remove = 0;
2506 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2507 rotate = 1;
2510 ctx = cpuctx->task_ctx;
2511 if (ctx && ctx->nr_events) {
2512 remove = 0;
2513 if (ctx->nr_events != ctx->nr_active)
2514 rotate = 1;
2517 if (!rotate)
2518 goto done;
2520 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2521 perf_pmu_disable(cpuctx->ctx.pmu);
2523 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2524 if (ctx)
2525 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2527 rotate_ctx(&cpuctx->ctx);
2528 if (ctx)
2529 rotate_ctx(ctx);
2531 perf_event_sched_in(cpuctx, ctx, current);
2533 perf_pmu_enable(cpuctx->ctx.pmu);
2534 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2535 done:
2536 if (remove)
2537 list_del_init(&cpuctx->rotation_list);
2540 void perf_event_task_tick(void)
2542 struct list_head *head = &__get_cpu_var(rotation_list);
2543 struct perf_cpu_context *cpuctx, *tmp;
2544 struct perf_event_context *ctx;
2545 int throttled;
2547 WARN_ON(!irqs_disabled());
2549 __this_cpu_inc(perf_throttled_seq);
2550 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2552 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2553 ctx = &cpuctx->ctx;
2554 perf_adjust_freq_unthr_context(ctx, throttled);
2556 ctx = cpuctx->task_ctx;
2557 if (ctx)
2558 perf_adjust_freq_unthr_context(ctx, throttled);
2560 if (cpuctx->jiffies_interval == 1 ||
2561 !(jiffies % cpuctx->jiffies_interval))
2562 perf_rotate_context(cpuctx);
2566 static int event_enable_on_exec(struct perf_event *event,
2567 struct perf_event_context *ctx)
2569 if (!event->attr.enable_on_exec)
2570 return 0;
2572 event->attr.enable_on_exec = 0;
2573 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2574 return 0;
2576 __perf_event_mark_enabled(event);
2578 return 1;
2582 * Enable all of a task's events that have been marked enable-on-exec.
2583 * This expects task == current.
2585 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2587 struct perf_event *event;
2588 unsigned long flags;
2589 int enabled = 0;
2590 int ret;
2592 local_irq_save(flags);
2593 if (!ctx || !ctx->nr_events)
2594 goto out;
2597 * We must ctxsw out cgroup events to avoid conflict
2598 * when invoking perf_task_event_sched_in() later on
2599 * in this function. Otherwise we end up trying to
2600 * ctxswin cgroup events which are already scheduled
2601 * in.
2603 perf_cgroup_sched_out(current, NULL);
2605 raw_spin_lock(&ctx->lock);
2606 task_ctx_sched_out(ctx);
2608 list_for_each_entry(event, &ctx->event_list, event_entry) {
2609 ret = event_enable_on_exec(event, ctx);
2610 if (ret)
2611 enabled = 1;
2615 * Unclone this context if we enabled any event.
2617 if (enabled)
2618 unclone_ctx(ctx);
2620 raw_spin_unlock(&ctx->lock);
2623 * Also calls ctxswin for cgroup events, if any:
2625 perf_event_context_sched_in(ctx, ctx->task);
2626 out:
2627 local_irq_restore(flags);
2631 * Cross CPU call to read the hardware event
2633 static void __perf_event_read(void *info)
2635 struct perf_event *event = info;
2636 struct perf_event_context *ctx = event->ctx;
2637 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2640 * If this is a task context, we need to check whether it is
2641 * the current task context of this cpu. If not it has been
2642 * scheduled out before the smp call arrived. In that case
2643 * event->count would have been updated to a recent sample
2644 * when the event was scheduled out.
2646 if (ctx->task && cpuctx->task_ctx != ctx)
2647 return;
2649 raw_spin_lock(&ctx->lock);
2650 if (ctx->is_active) {
2651 update_context_time(ctx);
2652 update_cgrp_time_from_event(event);
2654 update_event_times(event);
2655 if (event->state == PERF_EVENT_STATE_ACTIVE)
2656 event->pmu->read(event);
2657 raw_spin_unlock(&ctx->lock);
2660 static inline u64 perf_event_count(struct perf_event *event)
2662 return local64_read(&event->count) + atomic64_read(&event->child_count);
2665 static u64 perf_event_read(struct perf_event *event)
2668 * If event is enabled and currently active on a CPU, update the
2669 * value in the event structure:
2671 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2672 smp_call_function_single(event->oncpu,
2673 __perf_event_read, event, 1);
2674 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2675 struct perf_event_context *ctx = event->ctx;
2676 unsigned long flags;
2678 raw_spin_lock_irqsave(&ctx->lock, flags);
2680 * may read while context is not active
2681 * (e.g., thread is blocked), in that case
2682 * we cannot update context time
2684 if (ctx->is_active) {
2685 update_context_time(ctx);
2686 update_cgrp_time_from_event(event);
2688 update_event_times(event);
2689 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2692 return perf_event_count(event);
2696 * Initialize the perf_event context in a task_struct:
2698 static void __perf_event_init_context(struct perf_event_context *ctx)
2700 raw_spin_lock_init(&ctx->lock);
2701 mutex_init(&ctx->mutex);
2702 INIT_LIST_HEAD(&ctx->pinned_groups);
2703 INIT_LIST_HEAD(&ctx->flexible_groups);
2704 INIT_LIST_HEAD(&ctx->event_list);
2705 atomic_set(&ctx->refcount, 1);
2708 static struct perf_event_context *
2709 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2711 struct perf_event_context *ctx;
2713 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2714 if (!ctx)
2715 return NULL;
2717 __perf_event_init_context(ctx);
2718 if (task) {
2719 ctx->task = task;
2720 get_task_struct(task);
2722 ctx->pmu = pmu;
2724 return ctx;
2727 static struct task_struct *
2728 find_lively_task_by_vpid(pid_t vpid)
2730 struct task_struct *task;
2731 int err;
2733 rcu_read_lock();
2734 if (!vpid)
2735 task = current;
2736 else
2737 task = find_task_by_vpid(vpid);
2738 if (task)
2739 get_task_struct(task);
2740 rcu_read_unlock();
2742 if (!task)
2743 return ERR_PTR(-ESRCH);
2745 /* Reuse ptrace permission checks for now. */
2746 err = -EACCES;
2747 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2748 goto errout;
2750 return task;
2751 errout:
2752 put_task_struct(task);
2753 return ERR_PTR(err);
2758 * Returns a matching context with refcount and pincount.
2760 static struct perf_event_context *
2761 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2763 struct perf_event_context *ctx;
2764 struct perf_cpu_context *cpuctx;
2765 unsigned long flags;
2766 int ctxn, err;
2768 if (!task) {
2769 /* Must be root to operate on a CPU event: */
2770 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2771 return ERR_PTR(-EACCES);
2774 * We could be clever and allow to attach a event to an
2775 * offline CPU and activate it when the CPU comes up, but
2776 * that's for later.
2778 if (!cpu_online(cpu))
2779 return ERR_PTR(-ENODEV);
2781 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2782 ctx = &cpuctx->ctx;
2783 get_ctx(ctx);
2784 ++ctx->pin_count;
2786 return ctx;
2789 err = -EINVAL;
2790 ctxn = pmu->task_ctx_nr;
2791 if (ctxn < 0)
2792 goto errout;
2794 retry:
2795 ctx = perf_lock_task_context(task, ctxn, &flags);
2796 if (ctx) {
2797 unclone_ctx(ctx);
2798 ++ctx->pin_count;
2799 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2800 } else {
2801 ctx = alloc_perf_context(pmu, task);
2802 err = -ENOMEM;
2803 if (!ctx)
2804 goto errout;
2806 err = 0;
2807 mutex_lock(&task->perf_event_mutex);
2809 * If it has already passed perf_event_exit_task().
2810 * we must see PF_EXITING, it takes this mutex too.
2812 if (task->flags & PF_EXITING)
2813 err = -ESRCH;
2814 else if (task->perf_event_ctxp[ctxn])
2815 err = -EAGAIN;
2816 else {
2817 get_ctx(ctx);
2818 ++ctx->pin_count;
2819 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2821 mutex_unlock(&task->perf_event_mutex);
2823 if (unlikely(err)) {
2824 put_ctx(ctx);
2826 if (err == -EAGAIN)
2827 goto retry;
2828 goto errout;
2832 return ctx;
2834 errout:
2835 return ERR_PTR(err);
2838 static void perf_event_free_filter(struct perf_event *event);
2840 static void free_event_rcu(struct rcu_head *head)
2842 struct perf_event *event;
2844 event = container_of(head, struct perf_event, rcu_head);
2845 if (event->ns)
2846 put_pid_ns(event->ns);
2847 perf_event_free_filter(event);
2848 kfree(event);
2851 static void ring_buffer_put(struct ring_buffer *rb);
2853 static void free_event(struct perf_event *event)
2855 irq_work_sync(&event->pending);
2857 if (!event->parent) {
2858 if (event->attach_state & PERF_ATTACH_TASK)
2859 static_key_slow_dec_deferred(&perf_sched_events);
2860 if (event->attr.mmap || event->attr.mmap_data)
2861 atomic_dec(&nr_mmap_events);
2862 if (event->attr.comm)
2863 atomic_dec(&nr_comm_events);
2864 if (event->attr.task)
2865 atomic_dec(&nr_task_events);
2866 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2867 put_callchain_buffers();
2868 if (is_cgroup_event(event)) {
2869 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2870 static_key_slow_dec_deferred(&perf_sched_events);
2873 if (has_branch_stack(event)) {
2874 static_key_slow_dec_deferred(&perf_sched_events);
2875 /* is system-wide event */
2876 if (!(event->attach_state & PERF_ATTACH_TASK))
2877 atomic_dec(&per_cpu(perf_branch_stack_events,
2878 event->cpu));
2882 if (event->rb) {
2883 ring_buffer_put(event->rb);
2884 event->rb = NULL;
2887 if (is_cgroup_event(event))
2888 perf_detach_cgroup(event);
2890 if (event->destroy)
2891 event->destroy(event);
2893 if (event->ctx)
2894 put_ctx(event->ctx);
2896 call_rcu(&event->rcu_head, free_event_rcu);
2899 int perf_event_release_kernel(struct perf_event *event)
2901 struct perf_event_context *ctx = event->ctx;
2903 WARN_ON_ONCE(ctx->parent_ctx);
2905 * There are two ways this annotation is useful:
2907 * 1) there is a lock recursion from perf_event_exit_task
2908 * see the comment there.
2910 * 2) there is a lock-inversion with mmap_sem through
2911 * perf_event_read_group(), which takes faults while
2912 * holding ctx->mutex, however this is called after
2913 * the last filedesc died, so there is no possibility
2914 * to trigger the AB-BA case.
2916 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2917 raw_spin_lock_irq(&ctx->lock);
2918 perf_group_detach(event);
2919 raw_spin_unlock_irq(&ctx->lock);
2920 perf_remove_from_context(event);
2921 mutex_unlock(&ctx->mutex);
2923 free_event(event);
2925 return 0;
2927 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2930 * Called when the last reference to the file is gone.
2932 static int perf_release(struct inode *inode, struct file *file)
2934 struct perf_event *event = file->private_data;
2935 struct task_struct *owner;
2937 file->private_data = NULL;
2939 rcu_read_lock();
2940 owner = ACCESS_ONCE(event->owner);
2942 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2943 * !owner it means the list deletion is complete and we can indeed
2944 * free this event, otherwise we need to serialize on
2945 * owner->perf_event_mutex.
2947 smp_read_barrier_depends();
2948 if (owner) {
2950 * Since delayed_put_task_struct() also drops the last
2951 * task reference we can safely take a new reference
2952 * while holding the rcu_read_lock().
2954 get_task_struct(owner);
2956 rcu_read_unlock();
2958 if (owner) {
2959 mutex_lock(&owner->perf_event_mutex);
2961 * We have to re-check the event->owner field, if it is cleared
2962 * we raced with perf_event_exit_task(), acquiring the mutex
2963 * ensured they're done, and we can proceed with freeing the
2964 * event.
2966 if (event->owner)
2967 list_del_init(&event->owner_entry);
2968 mutex_unlock(&owner->perf_event_mutex);
2969 put_task_struct(owner);
2972 return perf_event_release_kernel(event);
2975 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2977 struct perf_event *child;
2978 u64 total = 0;
2980 *enabled = 0;
2981 *running = 0;
2983 mutex_lock(&event->child_mutex);
2984 total += perf_event_read(event);
2985 *enabled += event->total_time_enabled +
2986 atomic64_read(&event->child_total_time_enabled);
2987 *running += event->total_time_running +
2988 atomic64_read(&event->child_total_time_running);
2990 list_for_each_entry(child, &event->child_list, child_list) {
2991 total += perf_event_read(child);
2992 *enabled += child->total_time_enabled;
2993 *running += child->total_time_running;
2995 mutex_unlock(&event->child_mutex);
2997 return total;
2999 EXPORT_SYMBOL_GPL(perf_event_read_value);
3001 static int perf_event_read_group(struct perf_event *event,
3002 u64 read_format, char __user *buf)
3004 struct perf_event *leader = event->group_leader, *sub;
3005 int n = 0, size = 0, ret = -EFAULT;
3006 struct perf_event_context *ctx = leader->ctx;
3007 u64 values[5];
3008 u64 count, enabled, running;
3010 mutex_lock(&ctx->mutex);
3011 count = perf_event_read_value(leader, &enabled, &running);
3013 values[n++] = 1 + leader->nr_siblings;
3014 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3015 values[n++] = enabled;
3016 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3017 values[n++] = running;
3018 values[n++] = count;
3019 if (read_format & PERF_FORMAT_ID)
3020 values[n++] = primary_event_id(leader);
3022 size = n * sizeof(u64);
3024 if (copy_to_user(buf, values, size))
3025 goto unlock;
3027 ret = size;
3029 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3030 n = 0;
3032 values[n++] = perf_event_read_value(sub, &enabled, &running);
3033 if (read_format & PERF_FORMAT_ID)
3034 values[n++] = primary_event_id(sub);
3036 size = n * sizeof(u64);
3038 if (copy_to_user(buf + ret, values, size)) {
3039 ret = -EFAULT;
3040 goto unlock;
3043 ret += size;
3045 unlock:
3046 mutex_unlock(&ctx->mutex);
3048 return ret;
3051 static int perf_event_read_one(struct perf_event *event,
3052 u64 read_format, char __user *buf)
3054 u64 enabled, running;
3055 u64 values[4];
3056 int n = 0;
3058 values[n++] = perf_event_read_value(event, &enabled, &running);
3059 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3060 values[n++] = enabled;
3061 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3062 values[n++] = running;
3063 if (read_format & PERF_FORMAT_ID)
3064 values[n++] = primary_event_id(event);
3066 if (copy_to_user(buf, values, n * sizeof(u64)))
3067 return -EFAULT;
3069 return n * sizeof(u64);
3073 * Read the performance event - simple non blocking version for now
3075 static ssize_t
3076 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3078 u64 read_format = event->attr.read_format;
3079 int ret;
3082 * Return end-of-file for a read on a event that is in
3083 * error state (i.e. because it was pinned but it couldn't be
3084 * scheduled on to the CPU at some point).
3086 if (event->state == PERF_EVENT_STATE_ERROR)
3087 return 0;
3089 if (count < event->read_size)
3090 return -ENOSPC;
3092 WARN_ON_ONCE(event->ctx->parent_ctx);
3093 if (read_format & PERF_FORMAT_GROUP)
3094 ret = perf_event_read_group(event, read_format, buf);
3095 else
3096 ret = perf_event_read_one(event, read_format, buf);
3098 return ret;
3101 static ssize_t
3102 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3104 struct perf_event *event = file->private_data;
3106 return perf_read_hw(event, buf, count);
3109 static unsigned int perf_poll(struct file *file, poll_table *wait)
3111 struct perf_event *event = file->private_data;
3112 struct ring_buffer *rb;
3113 unsigned int events = POLL_HUP;
3116 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3117 * grabs the rb reference but perf_event_set_output() overrides it.
3118 * Here is the timeline for two threads T1, T2:
3119 * t0: T1, rb = rcu_dereference(event->rb)
3120 * t1: T2, old_rb = event->rb
3121 * t2: T2, event->rb = new rb
3122 * t3: T2, ring_buffer_detach(old_rb)
3123 * t4: T1, ring_buffer_attach(rb1)
3124 * t5: T1, poll_wait(event->waitq)
3126 * To avoid this problem, we grab mmap_mutex in perf_poll()
3127 * thereby ensuring that the assignment of the new ring buffer
3128 * and the detachment of the old buffer appear atomic to perf_poll()
3130 mutex_lock(&event->mmap_mutex);
3132 rcu_read_lock();
3133 rb = rcu_dereference(event->rb);
3134 if (rb) {
3135 ring_buffer_attach(event, rb);
3136 events = atomic_xchg(&rb->poll, 0);
3138 rcu_read_unlock();
3140 mutex_unlock(&event->mmap_mutex);
3142 poll_wait(file, &event->waitq, wait);
3144 return events;
3147 static void perf_event_reset(struct perf_event *event)
3149 (void)perf_event_read(event);
3150 local64_set(&event->count, 0);
3151 perf_event_update_userpage(event);
3155 * Holding the top-level event's child_mutex means that any
3156 * descendant process that has inherited this event will block
3157 * in sync_child_event if it goes to exit, thus satisfying the
3158 * task existence requirements of perf_event_enable/disable.
3160 static void perf_event_for_each_child(struct perf_event *event,
3161 void (*func)(struct perf_event *))
3163 struct perf_event *child;
3165 WARN_ON_ONCE(event->ctx->parent_ctx);
3166 mutex_lock(&event->child_mutex);
3167 func(event);
3168 list_for_each_entry(child, &event->child_list, child_list)
3169 func(child);
3170 mutex_unlock(&event->child_mutex);
3173 static void perf_event_for_each(struct perf_event *event,
3174 void (*func)(struct perf_event *))
3176 struct perf_event_context *ctx = event->ctx;
3177 struct perf_event *sibling;
3179 WARN_ON_ONCE(ctx->parent_ctx);
3180 mutex_lock(&ctx->mutex);
3181 event = event->group_leader;
3183 perf_event_for_each_child(event, func);
3184 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3185 perf_event_for_each_child(sibling, func);
3186 mutex_unlock(&ctx->mutex);
3189 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3191 struct perf_event_context *ctx = event->ctx;
3192 int ret = 0;
3193 u64 value;
3195 if (!is_sampling_event(event))
3196 return -EINVAL;
3198 if (copy_from_user(&value, arg, sizeof(value)))
3199 return -EFAULT;
3201 if (!value)
3202 return -EINVAL;
3204 raw_spin_lock_irq(&ctx->lock);
3205 if (event->attr.freq) {
3206 if (value > sysctl_perf_event_sample_rate) {
3207 ret = -EINVAL;
3208 goto unlock;
3211 event->attr.sample_freq = value;
3212 } else {
3213 event->attr.sample_period = value;
3214 event->hw.sample_period = value;
3216 unlock:
3217 raw_spin_unlock_irq(&ctx->lock);
3219 return ret;
3222 static const struct file_operations perf_fops;
3224 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3226 struct file *file;
3228 file = fget_light(fd, fput_needed);
3229 if (!file)
3230 return ERR_PTR(-EBADF);
3232 if (file->f_op != &perf_fops) {
3233 fput_light(file, *fput_needed);
3234 *fput_needed = 0;
3235 return ERR_PTR(-EBADF);
3238 return file->private_data;
3241 static int perf_event_set_output(struct perf_event *event,
3242 struct perf_event *output_event);
3243 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3245 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3247 struct perf_event *event = file->private_data;
3248 void (*func)(struct perf_event *);
3249 u32 flags = arg;
3251 switch (cmd) {
3252 case PERF_EVENT_IOC_ENABLE:
3253 func = perf_event_enable;
3254 break;
3255 case PERF_EVENT_IOC_DISABLE:
3256 func = perf_event_disable;
3257 break;
3258 case PERF_EVENT_IOC_RESET:
3259 func = perf_event_reset;
3260 break;
3262 case PERF_EVENT_IOC_REFRESH:
3263 return perf_event_refresh(event, arg);
3265 case PERF_EVENT_IOC_PERIOD:
3266 return perf_event_period(event, (u64 __user *)arg);
3268 case PERF_EVENT_IOC_SET_OUTPUT:
3270 struct perf_event *output_event = NULL;
3271 int fput_needed = 0;
3272 int ret;
3274 if (arg != -1) {
3275 output_event = perf_fget_light(arg, &fput_needed);
3276 if (IS_ERR(output_event))
3277 return PTR_ERR(output_event);
3280 ret = perf_event_set_output(event, output_event);
3281 if (output_event)
3282 fput_light(output_event->filp, fput_needed);
3284 return ret;
3287 case PERF_EVENT_IOC_SET_FILTER:
3288 return perf_event_set_filter(event, (void __user *)arg);
3290 default:
3291 return -ENOTTY;
3294 if (flags & PERF_IOC_FLAG_GROUP)
3295 perf_event_for_each(event, func);
3296 else
3297 perf_event_for_each_child(event, func);
3299 return 0;
3302 int perf_event_task_enable(void)
3304 struct perf_event *event;
3306 mutex_lock(&current->perf_event_mutex);
3307 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3308 perf_event_for_each_child(event, perf_event_enable);
3309 mutex_unlock(&current->perf_event_mutex);
3311 return 0;
3314 int perf_event_task_disable(void)
3316 struct perf_event *event;
3318 mutex_lock(&current->perf_event_mutex);
3319 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3320 perf_event_for_each_child(event, perf_event_disable);
3321 mutex_unlock(&current->perf_event_mutex);
3323 return 0;
3326 static int perf_event_index(struct perf_event *event)
3328 if (event->hw.state & PERF_HES_STOPPED)
3329 return 0;
3331 if (event->state != PERF_EVENT_STATE_ACTIVE)
3332 return 0;
3334 return event->pmu->event_idx(event);
3337 static void calc_timer_values(struct perf_event *event,
3338 u64 *now,
3339 u64 *enabled,
3340 u64 *running)
3342 u64 ctx_time;
3344 *now = perf_clock();
3345 ctx_time = event->shadow_ctx_time + *now;
3346 *enabled = ctx_time - event->tstamp_enabled;
3347 *running = ctx_time - event->tstamp_running;
3350 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3355 * Callers need to ensure there can be no nesting of this function, otherwise
3356 * the seqlock logic goes bad. We can not serialize this because the arch
3357 * code calls this from NMI context.
3359 void perf_event_update_userpage(struct perf_event *event)
3361 struct perf_event_mmap_page *userpg;
3362 struct ring_buffer *rb;
3363 u64 enabled, running, now;
3365 rcu_read_lock();
3367 * compute total_time_enabled, total_time_running
3368 * based on snapshot values taken when the event
3369 * was last scheduled in.
3371 * we cannot simply called update_context_time()
3372 * because of locking issue as we can be called in
3373 * NMI context
3375 calc_timer_values(event, &now, &enabled, &running);
3376 rb = rcu_dereference(event->rb);
3377 if (!rb)
3378 goto unlock;
3380 userpg = rb->user_page;
3383 * Disable preemption so as to not let the corresponding user-space
3384 * spin too long if we get preempted.
3386 preempt_disable();
3387 ++userpg->lock;
3388 barrier();
3389 userpg->index = perf_event_index(event);
3390 userpg->offset = perf_event_count(event);
3391 if (userpg->index)
3392 userpg->offset -= local64_read(&event->hw.prev_count);
3394 userpg->time_enabled = enabled +
3395 atomic64_read(&event->child_total_time_enabled);
3397 userpg->time_running = running +
3398 atomic64_read(&event->child_total_time_running);
3400 arch_perf_update_userpage(userpg, now);
3402 barrier();
3403 ++userpg->lock;
3404 preempt_enable();
3405 unlock:
3406 rcu_read_unlock();
3409 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3411 struct perf_event *event = vma->vm_file->private_data;
3412 struct ring_buffer *rb;
3413 int ret = VM_FAULT_SIGBUS;
3415 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3416 if (vmf->pgoff == 0)
3417 ret = 0;
3418 return ret;
3421 rcu_read_lock();
3422 rb = rcu_dereference(event->rb);
3423 if (!rb)
3424 goto unlock;
3426 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3427 goto unlock;
3429 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3430 if (!vmf->page)
3431 goto unlock;
3433 get_page(vmf->page);
3434 vmf->page->mapping = vma->vm_file->f_mapping;
3435 vmf->page->index = vmf->pgoff;
3437 ret = 0;
3438 unlock:
3439 rcu_read_unlock();
3441 return ret;
3444 static void ring_buffer_attach(struct perf_event *event,
3445 struct ring_buffer *rb)
3447 unsigned long flags;
3449 if (!list_empty(&event->rb_entry))
3450 return;
3452 spin_lock_irqsave(&rb->event_lock, flags);
3453 if (!list_empty(&event->rb_entry))
3454 goto unlock;
3456 list_add(&event->rb_entry, &rb->event_list);
3457 unlock:
3458 spin_unlock_irqrestore(&rb->event_lock, flags);
3461 static void ring_buffer_detach(struct perf_event *event,
3462 struct ring_buffer *rb)
3464 unsigned long flags;
3466 if (list_empty(&event->rb_entry))
3467 return;
3469 spin_lock_irqsave(&rb->event_lock, flags);
3470 list_del_init(&event->rb_entry);
3471 wake_up_all(&event->waitq);
3472 spin_unlock_irqrestore(&rb->event_lock, flags);
3475 static void ring_buffer_wakeup(struct perf_event *event)
3477 struct ring_buffer *rb;
3479 rcu_read_lock();
3480 rb = rcu_dereference(event->rb);
3481 if (!rb)
3482 goto unlock;
3484 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3485 wake_up_all(&event->waitq);
3487 unlock:
3488 rcu_read_unlock();
3491 static void rb_free_rcu(struct rcu_head *rcu_head)
3493 struct ring_buffer *rb;
3495 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3496 rb_free(rb);
3499 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3501 struct ring_buffer *rb;
3503 rcu_read_lock();
3504 rb = rcu_dereference(event->rb);
3505 if (rb) {
3506 if (!atomic_inc_not_zero(&rb->refcount))
3507 rb = NULL;
3509 rcu_read_unlock();
3511 return rb;
3514 static void ring_buffer_put(struct ring_buffer *rb)
3516 struct perf_event *event, *n;
3517 unsigned long flags;
3519 if (!atomic_dec_and_test(&rb->refcount))
3520 return;
3522 spin_lock_irqsave(&rb->event_lock, flags);
3523 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3524 list_del_init(&event->rb_entry);
3525 wake_up_all(&event->waitq);
3527 spin_unlock_irqrestore(&rb->event_lock, flags);
3529 call_rcu(&rb->rcu_head, rb_free_rcu);
3532 static void perf_mmap_open(struct vm_area_struct *vma)
3534 struct perf_event *event = vma->vm_file->private_data;
3536 atomic_inc(&event->mmap_count);
3539 static void perf_mmap_close(struct vm_area_struct *vma)
3541 struct perf_event *event = vma->vm_file->private_data;
3543 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3544 unsigned long size = perf_data_size(event->rb);
3545 struct user_struct *user = event->mmap_user;
3546 struct ring_buffer *rb = event->rb;
3548 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3549 vma->vm_mm->pinned_vm -= event->mmap_locked;
3550 rcu_assign_pointer(event->rb, NULL);
3551 ring_buffer_detach(event, rb);
3552 mutex_unlock(&event->mmap_mutex);
3554 ring_buffer_put(rb);
3555 free_uid(user);
3559 static const struct vm_operations_struct perf_mmap_vmops = {
3560 .open = perf_mmap_open,
3561 .close = perf_mmap_close,
3562 .fault = perf_mmap_fault,
3563 .page_mkwrite = perf_mmap_fault,
3566 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3568 struct perf_event *event = file->private_data;
3569 unsigned long user_locked, user_lock_limit;
3570 struct user_struct *user = current_user();
3571 unsigned long locked, lock_limit;
3572 struct ring_buffer *rb;
3573 unsigned long vma_size;
3574 unsigned long nr_pages;
3575 long user_extra, extra;
3576 int ret = 0, flags = 0;
3579 * Don't allow mmap() of inherited per-task counters. This would
3580 * create a performance issue due to all children writing to the
3581 * same rb.
3583 if (event->cpu == -1 && event->attr.inherit)
3584 return -EINVAL;
3586 if (!(vma->vm_flags & VM_SHARED))
3587 return -EINVAL;
3589 vma_size = vma->vm_end - vma->vm_start;
3590 nr_pages = (vma_size / PAGE_SIZE) - 1;
3593 * If we have rb pages ensure they're a power-of-two number, so we
3594 * can do bitmasks instead of modulo.
3596 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3597 return -EINVAL;
3599 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3600 return -EINVAL;
3602 if (vma->vm_pgoff != 0)
3603 return -EINVAL;
3605 WARN_ON_ONCE(event->ctx->parent_ctx);
3606 mutex_lock(&event->mmap_mutex);
3607 if (event->rb) {
3608 if (event->rb->nr_pages == nr_pages)
3609 atomic_inc(&event->rb->refcount);
3610 else
3611 ret = -EINVAL;
3612 goto unlock;
3615 user_extra = nr_pages + 1;
3616 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3619 * Increase the limit linearly with more CPUs:
3621 user_lock_limit *= num_online_cpus();
3623 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3625 extra = 0;
3626 if (user_locked > user_lock_limit)
3627 extra = user_locked - user_lock_limit;
3629 lock_limit = rlimit(RLIMIT_MEMLOCK);
3630 lock_limit >>= PAGE_SHIFT;
3631 locked = vma->vm_mm->pinned_vm + extra;
3633 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3634 !capable(CAP_IPC_LOCK)) {
3635 ret = -EPERM;
3636 goto unlock;
3639 WARN_ON(event->rb);
3641 if (vma->vm_flags & VM_WRITE)
3642 flags |= RING_BUFFER_WRITABLE;
3644 rb = rb_alloc(nr_pages,
3645 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3646 event->cpu, flags);
3648 if (!rb) {
3649 ret = -ENOMEM;
3650 goto unlock;
3652 rcu_assign_pointer(event->rb, rb);
3654 atomic_long_add(user_extra, &user->locked_vm);
3655 event->mmap_locked = extra;
3656 event->mmap_user = get_current_user();
3657 vma->vm_mm->pinned_vm += event->mmap_locked;
3659 perf_event_update_userpage(event);
3661 unlock:
3662 if (!ret)
3663 atomic_inc(&event->mmap_count);
3664 mutex_unlock(&event->mmap_mutex);
3666 vma->vm_flags |= VM_RESERVED;
3667 vma->vm_ops = &perf_mmap_vmops;
3669 return ret;
3672 static int perf_fasync(int fd, struct file *filp, int on)
3674 struct inode *inode = filp->f_path.dentry->d_inode;
3675 struct perf_event *event = filp->private_data;
3676 int retval;
3678 mutex_lock(&inode->i_mutex);
3679 retval = fasync_helper(fd, filp, on, &event->fasync);
3680 mutex_unlock(&inode->i_mutex);
3682 if (retval < 0)
3683 return retval;
3685 return 0;
3688 static const struct file_operations perf_fops = {
3689 .llseek = no_llseek,
3690 .release = perf_release,
3691 .read = perf_read,
3692 .poll = perf_poll,
3693 .unlocked_ioctl = perf_ioctl,
3694 .compat_ioctl = perf_ioctl,
3695 .mmap = perf_mmap,
3696 .fasync = perf_fasync,
3700 * Perf event wakeup
3702 * If there's data, ensure we set the poll() state and publish everything
3703 * to user-space before waking everybody up.
3706 void perf_event_wakeup(struct perf_event *event)
3708 ring_buffer_wakeup(event);
3710 if (event->pending_kill) {
3711 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3712 event->pending_kill = 0;
3716 static void perf_pending_event(struct irq_work *entry)
3718 struct perf_event *event = container_of(entry,
3719 struct perf_event, pending);
3721 if (event->pending_disable) {
3722 event->pending_disable = 0;
3723 __perf_event_disable(event);
3726 if (event->pending_wakeup) {
3727 event->pending_wakeup = 0;
3728 perf_event_wakeup(event);
3733 * We assume there is only KVM supporting the callbacks.
3734 * Later on, we might change it to a list if there is
3735 * another virtualization implementation supporting the callbacks.
3737 struct perf_guest_info_callbacks *perf_guest_cbs;
3739 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3741 perf_guest_cbs = cbs;
3742 return 0;
3744 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3746 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3748 perf_guest_cbs = NULL;
3749 return 0;
3751 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3753 static void __perf_event_header__init_id(struct perf_event_header *header,
3754 struct perf_sample_data *data,
3755 struct perf_event *event)
3757 u64 sample_type = event->attr.sample_type;
3759 data->type = sample_type;
3760 header->size += event->id_header_size;
3762 if (sample_type & PERF_SAMPLE_TID) {
3763 /* namespace issues */
3764 data->tid_entry.pid = perf_event_pid(event, current);
3765 data->tid_entry.tid = perf_event_tid(event, current);
3768 if (sample_type & PERF_SAMPLE_TIME)
3769 data->time = perf_clock();
3771 if (sample_type & PERF_SAMPLE_ID)
3772 data->id = primary_event_id(event);
3774 if (sample_type & PERF_SAMPLE_STREAM_ID)
3775 data->stream_id = event->id;
3777 if (sample_type & PERF_SAMPLE_CPU) {
3778 data->cpu_entry.cpu = raw_smp_processor_id();
3779 data->cpu_entry.reserved = 0;
3783 void perf_event_header__init_id(struct perf_event_header *header,
3784 struct perf_sample_data *data,
3785 struct perf_event *event)
3787 if (event->attr.sample_id_all)
3788 __perf_event_header__init_id(header, data, event);
3791 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3792 struct perf_sample_data *data)
3794 u64 sample_type = data->type;
3796 if (sample_type & PERF_SAMPLE_TID)
3797 perf_output_put(handle, data->tid_entry);
3799 if (sample_type & PERF_SAMPLE_TIME)
3800 perf_output_put(handle, data->time);
3802 if (sample_type & PERF_SAMPLE_ID)
3803 perf_output_put(handle, data->id);
3805 if (sample_type & PERF_SAMPLE_STREAM_ID)
3806 perf_output_put(handle, data->stream_id);
3808 if (sample_type & PERF_SAMPLE_CPU)
3809 perf_output_put(handle, data->cpu_entry);
3812 void perf_event__output_id_sample(struct perf_event *event,
3813 struct perf_output_handle *handle,
3814 struct perf_sample_data *sample)
3816 if (event->attr.sample_id_all)
3817 __perf_event__output_id_sample(handle, sample);
3820 static void perf_output_read_one(struct perf_output_handle *handle,
3821 struct perf_event *event,
3822 u64 enabled, u64 running)
3824 u64 read_format = event->attr.read_format;
3825 u64 values[4];
3826 int n = 0;
3828 values[n++] = perf_event_count(event);
3829 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3830 values[n++] = enabled +
3831 atomic64_read(&event->child_total_time_enabled);
3833 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3834 values[n++] = running +
3835 atomic64_read(&event->child_total_time_running);
3837 if (read_format & PERF_FORMAT_ID)
3838 values[n++] = primary_event_id(event);
3840 __output_copy(handle, values, n * sizeof(u64));
3844 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3846 static void perf_output_read_group(struct perf_output_handle *handle,
3847 struct perf_event *event,
3848 u64 enabled, u64 running)
3850 struct perf_event *leader = event->group_leader, *sub;
3851 u64 read_format = event->attr.read_format;
3852 u64 values[5];
3853 int n = 0;
3855 values[n++] = 1 + leader->nr_siblings;
3857 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3858 values[n++] = enabled;
3860 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3861 values[n++] = running;
3863 if (leader != event)
3864 leader->pmu->read(leader);
3866 values[n++] = perf_event_count(leader);
3867 if (read_format & PERF_FORMAT_ID)
3868 values[n++] = primary_event_id(leader);
3870 __output_copy(handle, values, n * sizeof(u64));
3872 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3873 n = 0;
3875 if (sub != event)
3876 sub->pmu->read(sub);
3878 values[n++] = perf_event_count(sub);
3879 if (read_format & PERF_FORMAT_ID)
3880 values[n++] = primary_event_id(sub);
3882 __output_copy(handle, values, n * sizeof(u64));
3886 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3887 PERF_FORMAT_TOTAL_TIME_RUNNING)
3889 static void perf_output_read(struct perf_output_handle *handle,
3890 struct perf_event *event)
3892 u64 enabled = 0, running = 0, now;
3893 u64 read_format = event->attr.read_format;
3896 * compute total_time_enabled, total_time_running
3897 * based on snapshot values taken when the event
3898 * was last scheduled in.
3900 * we cannot simply called update_context_time()
3901 * because of locking issue as we are called in
3902 * NMI context
3904 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3905 calc_timer_values(event, &now, &enabled, &running);
3907 if (event->attr.read_format & PERF_FORMAT_GROUP)
3908 perf_output_read_group(handle, event, enabled, running);
3909 else
3910 perf_output_read_one(handle, event, enabled, running);
3913 void perf_output_sample(struct perf_output_handle *handle,
3914 struct perf_event_header *header,
3915 struct perf_sample_data *data,
3916 struct perf_event *event)
3918 u64 sample_type = data->type;
3920 perf_output_put(handle, *header);
3922 if (sample_type & PERF_SAMPLE_IP)
3923 perf_output_put(handle, data->ip);
3925 if (sample_type & PERF_SAMPLE_TID)
3926 perf_output_put(handle, data->tid_entry);
3928 if (sample_type & PERF_SAMPLE_TIME)
3929 perf_output_put(handle, data->time);
3931 if (sample_type & PERF_SAMPLE_ADDR)
3932 perf_output_put(handle, data->addr);
3934 if (sample_type & PERF_SAMPLE_ID)
3935 perf_output_put(handle, data->id);
3937 if (sample_type & PERF_SAMPLE_STREAM_ID)
3938 perf_output_put(handle, data->stream_id);
3940 if (sample_type & PERF_SAMPLE_CPU)
3941 perf_output_put(handle, data->cpu_entry);
3943 if (sample_type & PERF_SAMPLE_PERIOD)
3944 perf_output_put(handle, data->period);
3946 if (sample_type & PERF_SAMPLE_READ)
3947 perf_output_read(handle, event);
3949 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3950 if (data->callchain) {
3951 int size = 1;
3953 if (data->callchain)
3954 size += data->callchain->nr;
3956 size *= sizeof(u64);
3958 __output_copy(handle, data->callchain, size);
3959 } else {
3960 u64 nr = 0;
3961 perf_output_put(handle, nr);
3965 if (sample_type & PERF_SAMPLE_RAW) {
3966 if (data->raw) {
3967 perf_output_put(handle, data->raw->size);
3968 __output_copy(handle, data->raw->data,
3969 data->raw->size);
3970 } else {
3971 struct {
3972 u32 size;
3973 u32 data;
3974 } raw = {
3975 .size = sizeof(u32),
3976 .data = 0,
3978 perf_output_put(handle, raw);
3982 if (!event->attr.watermark) {
3983 int wakeup_events = event->attr.wakeup_events;
3985 if (wakeup_events) {
3986 struct ring_buffer *rb = handle->rb;
3987 int events = local_inc_return(&rb->events);
3989 if (events >= wakeup_events) {
3990 local_sub(wakeup_events, &rb->events);
3991 local_inc(&rb->wakeup);
3996 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
3997 if (data->br_stack) {
3998 size_t size;
4000 size = data->br_stack->nr
4001 * sizeof(struct perf_branch_entry);
4003 perf_output_put(handle, data->br_stack->nr);
4004 perf_output_copy(handle, data->br_stack->entries, size);
4005 } else {
4007 * we always store at least the value of nr
4009 u64 nr = 0;
4010 perf_output_put(handle, nr);
4015 void perf_prepare_sample(struct perf_event_header *header,
4016 struct perf_sample_data *data,
4017 struct perf_event *event,
4018 struct pt_regs *regs)
4020 u64 sample_type = event->attr.sample_type;
4022 header->type = PERF_RECORD_SAMPLE;
4023 header->size = sizeof(*header) + event->header_size;
4025 header->misc = 0;
4026 header->misc |= perf_misc_flags(regs);
4028 __perf_event_header__init_id(header, data, event);
4030 if (sample_type & PERF_SAMPLE_IP)
4031 data->ip = perf_instruction_pointer(regs);
4033 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4034 int size = 1;
4036 data->callchain = perf_callchain(regs);
4038 if (data->callchain)
4039 size += data->callchain->nr;
4041 header->size += size * sizeof(u64);
4044 if (sample_type & PERF_SAMPLE_RAW) {
4045 int size = sizeof(u32);
4047 if (data->raw)
4048 size += data->raw->size;
4049 else
4050 size += sizeof(u32);
4052 WARN_ON_ONCE(size & (sizeof(u64)-1));
4053 header->size += size;
4056 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4057 int size = sizeof(u64); /* nr */
4058 if (data->br_stack) {
4059 size += data->br_stack->nr
4060 * sizeof(struct perf_branch_entry);
4062 header->size += size;
4066 static void perf_event_output(struct perf_event *event,
4067 struct perf_sample_data *data,
4068 struct pt_regs *regs)
4070 struct perf_output_handle handle;
4071 struct perf_event_header header;
4073 /* protect the callchain buffers */
4074 rcu_read_lock();
4076 perf_prepare_sample(&header, data, event, regs);
4078 if (perf_output_begin(&handle, event, header.size))
4079 goto exit;
4081 perf_output_sample(&handle, &header, data, event);
4083 perf_output_end(&handle);
4085 exit:
4086 rcu_read_unlock();
4090 * read event_id
4093 struct perf_read_event {
4094 struct perf_event_header header;
4096 u32 pid;
4097 u32 tid;
4100 static void
4101 perf_event_read_event(struct perf_event *event,
4102 struct task_struct *task)
4104 struct perf_output_handle handle;
4105 struct perf_sample_data sample;
4106 struct perf_read_event read_event = {
4107 .header = {
4108 .type = PERF_RECORD_READ,
4109 .misc = 0,
4110 .size = sizeof(read_event) + event->read_size,
4112 .pid = perf_event_pid(event, task),
4113 .tid = perf_event_tid(event, task),
4115 int ret;
4117 perf_event_header__init_id(&read_event.header, &sample, event);
4118 ret = perf_output_begin(&handle, event, read_event.header.size);
4119 if (ret)
4120 return;
4122 perf_output_put(&handle, read_event);
4123 perf_output_read(&handle, event);
4124 perf_event__output_id_sample(event, &handle, &sample);
4126 perf_output_end(&handle);
4130 * task tracking -- fork/exit
4132 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4135 struct perf_task_event {
4136 struct task_struct *task;
4137 struct perf_event_context *task_ctx;
4139 struct {
4140 struct perf_event_header header;
4142 u32 pid;
4143 u32 ppid;
4144 u32 tid;
4145 u32 ptid;
4146 u64 time;
4147 } event_id;
4150 static void perf_event_task_output(struct perf_event *event,
4151 struct perf_task_event *task_event)
4153 struct perf_output_handle handle;
4154 struct perf_sample_data sample;
4155 struct task_struct *task = task_event->task;
4156 int ret, size = task_event->event_id.header.size;
4158 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4160 ret = perf_output_begin(&handle, event,
4161 task_event->event_id.header.size);
4162 if (ret)
4163 goto out;
4165 task_event->event_id.pid = perf_event_pid(event, task);
4166 task_event->event_id.ppid = perf_event_pid(event, current);
4168 task_event->event_id.tid = perf_event_tid(event, task);
4169 task_event->event_id.ptid = perf_event_tid(event, current);
4171 perf_output_put(&handle, task_event->event_id);
4173 perf_event__output_id_sample(event, &handle, &sample);
4175 perf_output_end(&handle);
4176 out:
4177 task_event->event_id.header.size = size;
4180 static int perf_event_task_match(struct perf_event *event)
4182 if (event->state < PERF_EVENT_STATE_INACTIVE)
4183 return 0;
4185 if (!event_filter_match(event))
4186 return 0;
4188 if (event->attr.comm || event->attr.mmap ||
4189 event->attr.mmap_data || event->attr.task)
4190 return 1;
4192 return 0;
4195 static void perf_event_task_ctx(struct perf_event_context *ctx,
4196 struct perf_task_event *task_event)
4198 struct perf_event *event;
4200 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4201 if (perf_event_task_match(event))
4202 perf_event_task_output(event, task_event);
4206 static void perf_event_task_event(struct perf_task_event *task_event)
4208 struct perf_cpu_context *cpuctx;
4209 struct perf_event_context *ctx;
4210 struct pmu *pmu;
4211 int ctxn;
4213 rcu_read_lock();
4214 list_for_each_entry_rcu(pmu, &pmus, entry) {
4215 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4216 if (cpuctx->active_pmu != pmu)
4217 goto next;
4218 perf_event_task_ctx(&cpuctx->ctx, task_event);
4220 ctx = task_event->task_ctx;
4221 if (!ctx) {
4222 ctxn = pmu->task_ctx_nr;
4223 if (ctxn < 0)
4224 goto next;
4225 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4227 if (ctx)
4228 perf_event_task_ctx(ctx, task_event);
4229 next:
4230 put_cpu_ptr(pmu->pmu_cpu_context);
4232 rcu_read_unlock();
4235 static void perf_event_task(struct task_struct *task,
4236 struct perf_event_context *task_ctx,
4237 int new)
4239 struct perf_task_event task_event;
4241 if (!atomic_read(&nr_comm_events) &&
4242 !atomic_read(&nr_mmap_events) &&
4243 !atomic_read(&nr_task_events))
4244 return;
4246 task_event = (struct perf_task_event){
4247 .task = task,
4248 .task_ctx = task_ctx,
4249 .event_id = {
4250 .header = {
4251 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4252 .misc = 0,
4253 .size = sizeof(task_event.event_id),
4255 /* .pid */
4256 /* .ppid */
4257 /* .tid */
4258 /* .ptid */
4259 .time = perf_clock(),
4263 perf_event_task_event(&task_event);
4266 void perf_event_fork(struct task_struct *task)
4268 perf_event_task(task, NULL, 1);
4272 * comm tracking
4275 struct perf_comm_event {
4276 struct task_struct *task;
4277 char *comm;
4278 int comm_size;
4280 struct {
4281 struct perf_event_header header;
4283 u32 pid;
4284 u32 tid;
4285 } event_id;
4288 static void perf_event_comm_output(struct perf_event *event,
4289 struct perf_comm_event *comm_event)
4291 struct perf_output_handle handle;
4292 struct perf_sample_data sample;
4293 int size = comm_event->event_id.header.size;
4294 int ret;
4296 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4297 ret = perf_output_begin(&handle, event,
4298 comm_event->event_id.header.size);
4300 if (ret)
4301 goto out;
4303 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4304 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4306 perf_output_put(&handle, comm_event->event_id);
4307 __output_copy(&handle, comm_event->comm,
4308 comm_event->comm_size);
4310 perf_event__output_id_sample(event, &handle, &sample);
4312 perf_output_end(&handle);
4313 out:
4314 comm_event->event_id.header.size = size;
4317 static int perf_event_comm_match(struct perf_event *event)
4319 if (event->state < PERF_EVENT_STATE_INACTIVE)
4320 return 0;
4322 if (!event_filter_match(event))
4323 return 0;
4325 if (event->attr.comm)
4326 return 1;
4328 return 0;
4331 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4332 struct perf_comm_event *comm_event)
4334 struct perf_event *event;
4336 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4337 if (perf_event_comm_match(event))
4338 perf_event_comm_output(event, comm_event);
4342 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4344 struct perf_cpu_context *cpuctx;
4345 struct perf_event_context *ctx;
4346 char comm[TASK_COMM_LEN];
4347 unsigned int size;
4348 struct pmu *pmu;
4349 int ctxn;
4351 memset(comm, 0, sizeof(comm));
4352 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4353 size = ALIGN(strlen(comm)+1, sizeof(u64));
4355 comm_event->comm = comm;
4356 comm_event->comm_size = size;
4358 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4359 rcu_read_lock();
4360 list_for_each_entry_rcu(pmu, &pmus, entry) {
4361 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4362 if (cpuctx->active_pmu != pmu)
4363 goto next;
4364 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4366 ctxn = pmu->task_ctx_nr;
4367 if (ctxn < 0)
4368 goto next;
4370 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4371 if (ctx)
4372 perf_event_comm_ctx(ctx, comm_event);
4373 next:
4374 put_cpu_ptr(pmu->pmu_cpu_context);
4376 rcu_read_unlock();
4379 void perf_event_comm(struct task_struct *task)
4381 struct perf_comm_event comm_event;
4382 struct perf_event_context *ctx;
4383 int ctxn;
4385 for_each_task_context_nr(ctxn) {
4386 ctx = task->perf_event_ctxp[ctxn];
4387 if (!ctx)
4388 continue;
4390 perf_event_enable_on_exec(ctx);
4393 if (!atomic_read(&nr_comm_events))
4394 return;
4396 comm_event = (struct perf_comm_event){
4397 .task = task,
4398 /* .comm */
4399 /* .comm_size */
4400 .event_id = {
4401 .header = {
4402 .type = PERF_RECORD_COMM,
4403 .misc = 0,
4404 /* .size */
4406 /* .pid */
4407 /* .tid */
4411 perf_event_comm_event(&comm_event);
4415 * mmap tracking
4418 struct perf_mmap_event {
4419 struct vm_area_struct *vma;
4421 const char *file_name;
4422 int file_size;
4424 struct {
4425 struct perf_event_header header;
4427 u32 pid;
4428 u32 tid;
4429 u64 start;
4430 u64 len;
4431 u64 pgoff;
4432 } event_id;
4435 static void perf_event_mmap_output(struct perf_event *event,
4436 struct perf_mmap_event *mmap_event)
4438 struct perf_output_handle handle;
4439 struct perf_sample_data sample;
4440 int size = mmap_event->event_id.header.size;
4441 int ret;
4443 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4444 ret = perf_output_begin(&handle, event,
4445 mmap_event->event_id.header.size);
4446 if (ret)
4447 goto out;
4449 mmap_event->event_id.pid = perf_event_pid(event, current);
4450 mmap_event->event_id.tid = perf_event_tid(event, current);
4452 perf_output_put(&handle, mmap_event->event_id);
4453 __output_copy(&handle, mmap_event->file_name,
4454 mmap_event->file_size);
4456 perf_event__output_id_sample(event, &handle, &sample);
4458 perf_output_end(&handle);
4459 out:
4460 mmap_event->event_id.header.size = size;
4463 static int perf_event_mmap_match(struct perf_event *event,
4464 struct perf_mmap_event *mmap_event,
4465 int executable)
4467 if (event->state < PERF_EVENT_STATE_INACTIVE)
4468 return 0;
4470 if (!event_filter_match(event))
4471 return 0;
4473 if ((!executable && event->attr.mmap_data) ||
4474 (executable && event->attr.mmap))
4475 return 1;
4477 return 0;
4480 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4481 struct perf_mmap_event *mmap_event,
4482 int executable)
4484 struct perf_event *event;
4486 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4487 if (perf_event_mmap_match(event, mmap_event, executable))
4488 perf_event_mmap_output(event, mmap_event);
4492 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4494 struct perf_cpu_context *cpuctx;
4495 struct perf_event_context *ctx;
4496 struct vm_area_struct *vma = mmap_event->vma;
4497 struct file *file = vma->vm_file;
4498 unsigned int size;
4499 char tmp[16];
4500 char *buf = NULL;
4501 const char *name;
4502 struct pmu *pmu;
4503 int ctxn;
4505 memset(tmp, 0, sizeof(tmp));
4507 if (file) {
4509 * d_path works from the end of the rb backwards, so we
4510 * need to add enough zero bytes after the string to handle
4511 * the 64bit alignment we do later.
4513 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4514 if (!buf) {
4515 name = strncpy(tmp, "//enomem", sizeof(tmp));
4516 goto got_name;
4518 name = d_path(&file->f_path, buf, PATH_MAX);
4519 if (IS_ERR(name)) {
4520 name = strncpy(tmp, "//toolong", sizeof(tmp));
4521 goto got_name;
4523 } else {
4524 if (arch_vma_name(mmap_event->vma)) {
4525 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4526 sizeof(tmp));
4527 goto got_name;
4530 if (!vma->vm_mm) {
4531 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4532 goto got_name;
4533 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4534 vma->vm_end >= vma->vm_mm->brk) {
4535 name = strncpy(tmp, "[heap]", sizeof(tmp));
4536 goto got_name;
4537 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4538 vma->vm_end >= vma->vm_mm->start_stack) {
4539 name = strncpy(tmp, "[stack]", sizeof(tmp));
4540 goto got_name;
4543 name = strncpy(tmp, "//anon", sizeof(tmp));
4544 goto got_name;
4547 got_name:
4548 size = ALIGN(strlen(name)+1, sizeof(u64));
4550 mmap_event->file_name = name;
4551 mmap_event->file_size = size;
4553 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4555 rcu_read_lock();
4556 list_for_each_entry_rcu(pmu, &pmus, entry) {
4557 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4558 if (cpuctx->active_pmu != pmu)
4559 goto next;
4560 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4561 vma->vm_flags & VM_EXEC);
4563 ctxn = pmu->task_ctx_nr;
4564 if (ctxn < 0)
4565 goto next;
4567 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4568 if (ctx) {
4569 perf_event_mmap_ctx(ctx, mmap_event,
4570 vma->vm_flags & VM_EXEC);
4572 next:
4573 put_cpu_ptr(pmu->pmu_cpu_context);
4575 rcu_read_unlock();
4577 kfree(buf);
4580 void perf_event_mmap(struct vm_area_struct *vma)
4582 struct perf_mmap_event mmap_event;
4584 if (!atomic_read(&nr_mmap_events))
4585 return;
4587 mmap_event = (struct perf_mmap_event){
4588 .vma = vma,
4589 /* .file_name */
4590 /* .file_size */
4591 .event_id = {
4592 .header = {
4593 .type = PERF_RECORD_MMAP,
4594 .misc = PERF_RECORD_MISC_USER,
4595 /* .size */
4597 /* .pid */
4598 /* .tid */
4599 .start = vma->vm_start,
4600 .len = vma->vm_end - vma->vm_start,
4601 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4605 perf_event_mmap_event(&mmap_event);
4609 * IRQ throttle logging
4612 static void perf_log_throttle(struct perf_event *event, int enable)
4614 struct perf_output_handle handle;
4615 struct perf_sample_data sample;
4616 int ret;
4618 struct {
4619 struct perf_event_header header;
4620 u64 time;
4621 u64 id;
4622 u64 stream_id;
4623 } throttle_event = {
4624 .header = {
4625 .type = PERF_RECORD_THROTTLE,
4626 .misc = 0,
4627 .size = sizeof(throttle_event),
4629 .time = perf_clock(),
4630 .id = primary_event_id(event),
4631 .stream_id = event->id,
4634 if (enable)
4635 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4637 perf_event_header__init_id(&throttle_event.header, &sample, event);
4639 ret = perf_output_begin(&handle, event,
4640 throttle_event.header.size);
4641 if (ret)
4642 return;
4644 perf_output_put(&handle, throttle_event);
4645 perf_event__output_id_sample(event, &handle, &sample);
4646 perf_output_end(&handle);
4650 * Generic event overflow handling, sampling.
4653 static int __perf_event_overflow(struct perf_event *event,
4654 int throttle, struct perf_sample_data *data,
4655 struct pt_regs *regs)
4657 int events = atomic_read(&event->event_limit);
4658 struct hw_perf_event *hwc = &event->hw;
4659 u64 seq;
4660 int ret = 0;
4663 * Non-sampling counters might still use the PMI to fold short
4664 * hardware counters, ignore those.
4666 if (unlikely(!is_sampling_event(event)))
4667 return 0;
4669 seq = __this_cpu_read(perf_throttled_seq);
4670 if (seq != hwc->interrupts_seq) {
4671 hwc->interrupts_seq = seq;
4672 hwc->interrupts = 1;
4673 } else {
4674 hwc->interrupts++;
4675 if (unlikely(throttle
4676 && hwc->interrupts >= max_samples_per_tick)) {
4677 __this_cpu_inc(perf_throttled_count);
4678 hwc->interrupts = MAX_INTERRUPTS;
4679 perf_log_throttle(event, 0);
4680 ret = 1;
4684 if (event->attr.freq) {
4685 u64 now = perf_clock();
4686 s64 delta = now - hwc->freq_time_stamp;
4688 hwc->freq_time_stamp = now;
4690 if (delta > 0 && delta < 2*TICK_NSEC)
4691 perf_adjust_period(event, delta, hwc->last_period, true);
4695 * XXX event_limit might not quite work as expected on inherited
4696 * events
4699 event->pending_kill = POLL_IN;
4700 if (events && atomic_dec_and_test(&event->event_limit)) {
4701 ret = 1;
4702 event->pending_kill = POLL_HUP;
4703 event->pending_disable = 1;
4704 irq_work_queue(&event->pending);
4707 if (event->overflow_handler)
4708 event->overflow_handler(event, data, regs);
4709 else
4710 perf_event_output(event, data, regs);
4712 if (event->fasync && event->pending_kill) {
4713 event->pending_wakeup = 1;
4714 irq_work_queue(&event->pending);
4717 return ret;
4720 int perf_event_overflow(struct perf_event *event,
4721 struct perf_sample_data *data,
4722 struct pt_regs *regs)
4724 return __perf_event_overflow(event, 1, data, regs);
4728 * Generic software event infrastructure
4731 struct swevent_htable {
4732 struct swevent_hlist *swevent_hlist;
4733 struct mutex hlist_mutex;
4734 int hlist_refcount;
4736 /* Recursion avoidance in each contexts */
4737 int recursion[PERF_NR_CONTEXTS];
4740 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4743 * We directly increment event->count and keep a second value in
4744 * event->hw.period_left to count intervals. This period event
4745 * is kept in the range [-sample_period, 0] so that we can use the
4746 * sign as trigger.
4749 static u64 perf_swevent_set_period(struct perf_event *event)
4751 struct hw_perf_event *hwc = &event->hw;
4752 u64 period = hwc->last_period;
4753 u64 nr, offset;
4754 s64 old, val;
4756 hwc->last_period = hwc->sample_period;
4758 again:
4759 old = val = local64_read(&hwc->period_left);
4760 if (val < 0)
4761 return 0;
4763 nr = div64_u64(period + val, period);
4764 offset = nr * period;
4765 val -= offset;
4766 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4767 goto again;
4769 return nr;
4772 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4773 struct perf_sample_data *data,
4774 struct pt_regs *regs)
4776 struct hw_perf_event *hwc = &event->hw;
4777 int throttle = 0;
4779 if (!overflow)
4780 overflow = perf_swevent_set_period(event);
4782 if (hwc->interrupts == MAX_INTERRUPTS)
4783 return;
4785 for (; overflow; overflow--) {
4786 if (__perf_event_overflow(event, throttle,
4787 data, regs)) {
4789 * We inhibit the overflow from happening when
4790 * hwc->interrupts == MAX_INTERRUPTS.
4792 break;
4794 throttle = 1;
4798 static void perf_swevent_event(struct perf_event *event, u64 nr,
4799 struct perf_sample_data *data,
4800 struct pt_regs *regs)
4802 struct hw_perf_event *hwc = &event->hw;
4804 local64_add(nr, &event->count);
4806 if (!regs)
4807 return;
4809 if (!is_sampling_event(event))
4810 return;
4812 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4813 data->period = nr;
4814 return perf_swevent_overflow(event, 1, data, regs);
4815 } else
4816 data->period = event->hw.last_period;
4818 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4819 return perf_swevent_overflow(event, 1, data, regs);
4821 if (local64_add_negative(nr, &hwc->period_left))
4822 return;
4824 perf_swevent_overflow(event, 0, data, regs);
4827 static int perf_exclude_event(struct perf_event *event,
4828 struct pt_regs *regs)
4830 if (event->hw.state & PERF_HES_STOPPED)
4831 return 1;
4833 if (regs) {
4834 if (event->attr.exclude_user && user_mode(regs))
4835 return 1;
4837 if (event->attr.exclude_kernel && !user_mode(regs))
4838 return 1;
4841 return 0;
4844 static int perf_swevent_match(struct perf_event *event,
4845 enum perf_type_id type,
4846 u32 event_id,
4847 struct perf_sample_data *data,
4848 struct pt_regs *regs)
4850 if (event->attr.type != type)
4851 return 0;
4853 if (event->attr.config != event_id)
4854 return 0;
4856 if (perf_exclude_event(event, regs))
4857 return 0;
4859 return 1;
4862 static inline u64 swevent_hash(u64 type, u32 event_id)
4864 u64 val = event_id | (type << 32);
4866 return hash_64(val, SWEVENT_HLIST_BITS);
4869 static inline struct hlist_head *
4870 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4872 u64 hash = swevent_hash(type, event_id);
4874 return &hlist->heads[hash];
4877 /* For the read side: events when they trigger */
4878 static inline struct hlist_head *
4879 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4881 struct swevent_hlist *hlist;
4883 hlist = rcu_dereference(swhash->swevent_hlist);
4884 if (!hlist)
4885 return NULL;
4887 return __find_swevent_head(hlist, type, event_id);
4890 /* For the event head insertion and removal in the hlist */
4891 static inline struct hlist_head *
4892 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4894 struct swevent_hlist *hlist;
4895 u32 event_id = event->attr.config;
4896 u64 type = event->attr.type;
4899 * Event scheduling is always serialized against hlist allocation
4900 * and release. Which makes the protected version suitable here.
4901 * The context lock guarantees that.
4903 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4904 lockdep_is_held(&event->ctx->lock));
4905 if (!hlist)
4906 return NULL;
4908 return __find_swevent_head(hlist, type, event_id);
4911 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4912 u64 nr,
4913 struct perf_sample_data *data,
4914 struct pt_regs *regs)
4916 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4917 struct perf_event *event;
4918 struct hlist_node *node;
4919 struct hlist_head *head;
4921 rcu_read_lock();
4922 head = find_swevent_head_rcu(swhash, type, event_id);
4923 if (!head)
4924 goto end;
4926 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4927 if (perf_swevent_match(event, type, event_id, data, regs))
4928 perf_swevent_event(event, nr, data, regs);
4930 end:
4931 rcu_read_unlock();
4934 int perf_swevent_get_recursion_context(void)
4936 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4938 return get_recursion_context(swhash->recursion);
4940 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4942 inline void perf_swevent_put_recursion_context(int rctx)
4944 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4946 put_recursion_context(swhash->recursion, rctx);
4949 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4951 struct perf_sample_data data;
4952 int rctx;
4954 preempt_disable_notrace();
4955 rctx = perf_swevent_get_recursion_context();
4956 if (rctx < 0)
4957 return;
4959 perf_sample_data_init(&data, addr, 0);
4961 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4963 perf_swevent_put_recursion_context(rctx);
4964 preempt_enable_notrace();
4967 static void perf_swevent_read(struct perf_event *event)
4971 static int perf_swevent_add(struct perf_event *event, int flags)
4973 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4974 struct hw_perf_event *hwc = &event->hw;
4975 struct hlist_head *head;
4977 if (is_sampling_event(event)) {
4978 hwc->last_period = hwc->sample_period;
4979 perf_swevent_set_period(event);
4982 hwc->state = !(flags & PERF_EF_START);
4984 head = find_swevent_head(swhash, event);
4985 if (WARN_ON_ONCE(!head))
4986 return -EINVAL;
4988 hlist_add_head_rcu(&event->hlist_entry, head);
4990 return 0;
4993 static void perf_swevent_del(struct perf_event *event, int flags)
4995 hlist_del_rcu(&event->hlist_entry);
4998 static void perf_swevent_start(struct perf_event *event, int flags)
5000 event->hw.state = 0;
5003 static void perf_swevent_stop(struct perf_event *event, int flags)
5005 event->hw.state = PERF_HES_STOPPED;
5008 /* Deref the hlist from the update side */
5009 static inline struct swevent_hlist *
5010 swevent_hlist_deref(struct swevent_htable *swhash)
5012 return rcu_dereference_protected(swhash->swevent_hlist,
5013 lockdep_is_held(&swhash->hlist_mutex));
5016 static void swevent_hlist_release(struct swevent_htable *swhash)
5018 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5020 if (!hlist)
5021 return;
5023 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5024 kfree_rcu(hlist, rcu_head);
5027 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5029 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5031 mutex_lock(&swhash->hlist_mutex);
5033 if (!--swhash->hlist_refcount)
5034 swevent_hlist_release(swhash);
5036 mutex_unlock(&swhash->hlist_mutex);
5039 static void swevent_hlist_put(struct perf_event *event)
5041 int cpu;
5043 if (event->cpu != -1) {
5044 swevent_hlist_put_cpu(event, event->cpu);
5045 return;
5048 for_each_possible_cpu(cpu)
5049 swevent_hlist_put_cpu(event, cpu);
5052 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5054 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5055 int err = 0;
5057 mutex_lock(&swhash->hlist_mutex);
5059 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5060 struct swevent_hlist *hlist;
5062 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5063 if (!hlist) {
5064 err = -ENOMEM;
5065 goto exit;
5067 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5069 swhash->hlist_refcount++;
5070 exit:
5071 mutex_unlock(&swhash->hlist_mutex);
5073 return err;
5076 static int swevent_hlist_get(struct perf_event *event)
5078 int err;
5079 int cpu, failed_cpu;
5081 if (event->cpu != -1)
5082 return swevent_hlist_get_cpu(event, event->cpu);
5084 get_online_cpus();
5085 for_each_possible_cpu(cpu) {
5086 err = swevent_hlist_get_cpu(event, cpu);
5087 if (err) {
5088 failed_cpu = cpu;
5089 goto fail;
5092 put_online_cpus();
5094 return 0;
5095 fail:
5096 for_each_possible_cpu(cpu) {
5097 if (cpu == failed_cpu)
5098 break;
5099 swevent_hlist_put_cpu(event, cpu);
5102 put_online_cpus();
5103 return err;
5106 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5108 static void sw_perf_event_destroy(struct perf_event *event)
5110 u64 event_id = event->attr.config;
5112 WARN_ON(event->parent);
5114 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5115 swevent_hlist_put(event);
5118 static int perf_swevent_init(struct perf_event *event)
5120 int event_id = event->attr.config;
5122 if (event->attr.type != PERF_TYPE_SOFTWARE)
5123 return -ENOENT;
5126 * no branch sampling for software events
5128 if (has_branch_stack(event))
5129 return -EOPNOTSUPP;
5131 switch (event_id) {
5132 case PERF_COUNT_SW_CPU_CLOCK:
5133 case PERF_COUNT_SW_TASK_CLOCK:
5134 return -ENOENT;
5136 default:
5137 break;
5140 if (event_id >= PERF_COUNT_SW_MAX)
5141 return -ENOENT;
5143 if (!event->parent) {
5144 int err;
5146 err = swevent_hlist_get(event);
5147 if (err)
5148 return err;
5150 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5151 event->destroy = sw_perf_event_destroy;
5154 return 0;
5157 static int perf_swevent_event_idx(struct perf_event *event)
5159 return 0;
5162 static struct pmu perf_swevent = {
5163 .task_ctx_nr = perf_sw_context,
5165 .event_init = perf_swevent_init,
5166 .add = perf_swevent_add,
5167 .del = perf_swevent_del,
5168 .start = perf_swevent_start,
5169 .stop = perf_swevent_stop,
5170 .read = perf_swevent_read,
5172 .event_idx = perf_swevent_event_idx,
5175 #ifdef CONFIG_EVENT_TRACING
5177 static int perf_tp_filter_match(struct perf_event *event,
5178 struct perf_sample_data *data)
5180 void *record = data->raw->data;
5182 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5183 return 1;
5184 return 0;
5187 static int perf_tp_event_match(struct perf_event *event,
5188 struct perf_sample_data *data,
5189 struct pt_regs *regs)
5191 if (event->hw.state & PERF_HES_STOPPED)
5192 return 0;
5194 * All tracepoints are from kernel-space.
5196 if (event->attr.exclude_kernel)
5197 return 0;
5199 if (!perf_tp_filter_match(event, data))
5200 return 0;
5202 return 1;
5205 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5206 struct pt_regs *regs, struct hlist_head *head, int rctx)
5208 struct perf_sample_data data;
5209 struct perf_event *event;
5210 struct hlist_node *node;
5212 struct perf_raw_record raw = {
5213 .size = entry_size,
5214 .data = record,
5217 perf_sample_data_init(&data, addr, 0);
5218 data.raw = &raw;
5220 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5221 if (perf_tp_event_match(event, &data, regs))
5222 perf_swevent_event(event, count, &data, regs);
5225 perf_swevent_put_recursion_context(rctx);
5227 EXPORT_SYMBOL_GPL(perf_tp_event);
5229 static void tp_perf_event_destroy(struct perf_event *event)
5231 perf_trace_destroy(event);
5234 static int perf_tp_event_init(struct perf_event *event)
5236 int err;
5238 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5239 return -ENOENT;
5242 * no branch sampling for tracepoint events
5244 if (has_branch_stack(event))
5245 return -EOPNOTSUPP;
5247 err = perf_trace_init(event);
5248 if (err)
5249 return err;
5251 event->destroy = tp_perf_event_destroy;
5253 return 0;
5256 static struct pmu perf_tracepoint = {
5257 .task_ctx_nr = perf_sw_context,
5259 .event_init = perf_tp_event_init,
5260 .add = perf_trace_add,
5261 .del = perf_trace_del,
5262 .start = perf_swevent_start,
5263 .stop = perf_swevent_stop,
5264 .read = perf_swevent_read,
5266 .event_idx = perf_swevent_event_idx,
5269 static inline void perf_tp_register(void)
5271 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5274 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5276 char *filter_str;
5277 int ret;
5279 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5280 return -EINVAL;
5282 filter_str = strndup_user(arg, PAGE_SIZE);
5283 if (IS_ERR(filter_str))
5284 return PTR_ERR(filter_str);
5286 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5288 kfree(filter_str);
5289 return ret;
5292 static void perf_event_free_filter(struct perf_event *event)
5294 ftrace_profile_free_filter(event);
5297 #else
5299 static inline void perf_tp_register(void)
5303 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5305 return -ENOENT;
5308 static void perf_event_free_filter(struct perf_event *event)
5312 #endif /* CONFIG_EVENT_TRACING */
5314 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5315 void perf_bp_event(struct perf_event *bp, void *data)
5317 struct perf_sample_data sample;
5318 struct pt_regs *regs = data;
5320 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5322 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5323 perf_swevent_event(bp, 1, &sample, regs);
5325 #endif
5328 * hrtimer based swevent callback
5331 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5333 enum hrtimer_restart ret = HRTIMER_RESTART;
5334 struct perf_sample_data data;
5335 struct pt_regs *regs;
5336 struct perf_event *event;
5337 u64 period;
5339 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5341 if (event->state != PERF_EVENT_STATE_ACTIVE)
5342 return HRTIMER_NORESTART;
5344 event->pmu->read(event);
5346 perf_sample_data_init(&data, 0, event->hw.last_period);
5347 regs = get_irq_regs();
5349 if (regs && !perf_exclude_event(event, regs)) {
5350 if (!(event->attr.exclude_idle && is_idle_task(current)))
5351 if (__perf_event_overflow(event, 1, &data, regs))
5352 ret = HRTIMER_NORESTART;
5355 period = max_t(u64, 10000, event->hw.sample_period);
5356 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5358 return ret;
5361 static void perf_swevent_start_hrtimer(struct perf_event *event)
5363 struct hw_perf_event *hwc = &event->hw;
5364 s64 period;
5366 if (!is_sampling_event(event))
5367 return;
5369 period = local64_read(&hwc->period_left);
5370 if (period) {
5371 if (period < 0)
5372 period = 10000;
5374 local64_set(&hwc->period_left, 0);
5375 } else {
5376 period = max_t(u64, 10000, hwc->sample_period);
5378 __hrtimer_start_range_ns(&hwc->hrtimer,
5379 ns_to_ktime(period), 0,
5380 HRTIMER_MODE_REL_PINNED, 0);
5383 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5385 struct hw_perf_event *hwc = &event->hw;
5387 if (is_sampling_event(event)) {
5388 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5389 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5391 hrtimer_cancel(&hwc->hrtimer);
5395 static void perf_swevent_init_hrtimer(struct perf_event *event)
5397 struct hw_perf_event *hwc = &event->hw;
5399 if (!is_sampling_event(event))
5400 return;
5402 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5403 hwc->hrtimer.function = perf_swevent_hrtimer;
5406 * Since hrtimers have a fixed rate, we can do a static freq->period
5407 * mapping and avoid the whole period adjust feedback stuff.
5409 if (event->attr.freq) {
5410 long freq = event->attr.sample_freq;
5412 event->attr.sample_period = NSEC_PER_SEC / freq;
5413 hwc->sample_period = event->attr.sample_period;
5414 local64_set(&hwc->period_left, hwc->sample_period);
5415 event->attr.freq = 0;
5420 * Software event: cpu wall time clock
5423 static void cpu_clock_event_update(struct perf_event *event)
5425 s64 prev;
5426 u64 now;
5428 now = local_clock();
5429 prev = local64_xchg(&event->hw.prev_count, now);
5430 local64_add(now - prev, &event->count);
5433 static void cpu_clock_event_start(struct perf_event *event, int flags)
5435 local64_set(&event->hw.prev_count, local_clock());
5436 perf_swevent_start_hrtimer(event);
5439 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5441 perf_swevent_cancel_hrtimer(event);
5442 cpu_clock_event_update(event);
5445 static int cpu_clock_event_add(struct perf_event *event, int flags)
5447 if (flags & PERF_EF_START)
5448 cpu_clock_event_start(event, flags);
5450 return 0;
5453 static void cpu_clock_event_del(struct perf_event *event, int flags)
5455 cpu_clock_event_stop(event, flags);
5458 static void cpu_clock_event_read(struct perf_event *event)
5460 cpu_clock_event_update(event);
5463 static int cpu_clock_event_init(struct perf_event *event)
5465 if (event->attr.type != PERF_TYPE_SOFTWARE)
5466 return -ENOENT;
5468 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5469 return -ENOENT;
5472 * no branch sampling for software events
5474 if (has_branch_stack(event))
5475 return -EOPNOTSUPP;
5477 perf_swevent_init_hrtimer(event);
5479 return 0;
5482 static struct pmu perf_cpu_clock = {
5483 .task_ctx_nr = perf_sw_context,
5485 .event_init = cpu_clock_event_init,
5486 .add = cpu_clock_event_add,
5487 .del = cpu_clock_event_del,
5488 .start = cpu_clock_event_start,
5489 .stop = cpu_clock_event_stop,
5490 .read = cpu_clock_event_read,
5492 .event_idx = perf_swevent_event_idx,
5496 * Software event: task time clock
5499 static void task_clock_event_update(struct perf_event *event, u64 now)
5501 u64 prev;
5502 s64 delta;
5504 prev = local64_xchg(&event->hw.prev_count, now);
5505 delta = now - prev;
5506 local64_add(delta, &event->count);
5509 static void task_clock_event_start(struct perf_event *event, int flags)
5511 local64_set(&event->hw.prev_count, event->ctx->time);
5512 perf_swevent_start_hrtimer(event);
5515 static void task_clock_event_stop(struct perf_event *event, int flags)
5517 perf_swevent_cancel_hrtimer(event);
5518 task_clock_event_update(event, event->ctx->time);
5521 static int task_clock_event_add(struct perf_event *event, int flags)
5523 if (flags & PERF_EF_START)
5524 task_clock_event_start(event, flags);
5526 return 0;
5529 static void task_clock_event_del(struct perf_event *event, int flags)
5531 task_clock_event_stop(event, PERF_EF_UPDATE);
5534 static void task_clock_event_read(struct perf_event *event)
5536 u64 now = perf_clock();
5537 u64 delta = now - event->ctx->timestamp;
5538 u64 time = event->ctx->time + delta;
5540 task_clock_event_update(event, time);
5543 static int task_clock_event_init(struct perf_event *event)
5545 if (event->attr.type != PERF_TYPE_SOFTWARE)
5546 return -ENOENT;
5548 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5549 return -ENOENT;
5552 * no branch sampling for software events
5554 if (has_branch_stack(event))
5555 return -EOPNOTSUPP;
5557 perf_swevent_init_hrtimer(event);
5559 return 0;
5562 static struct pmu perf_task_clock = {
5563 .task_ctx_nr = perf_sw_context,
5565 .event_init = task_clock_event_init,
5566 .add = task_clock_event_add,
5567 .del = task_clock_event_del,
5568 .start = task_clock_event_start,
5569 .stop = task_clock_event_stop,
5570 .read = task_clock_event_read,
5572 .event_idx = perf_swevent_event_idx,
5575 static void perf_pmu_nop_void(struct pmu *pmu)
5579 static int perf_pmu_nop_int(struct pmu *pmu)
5581 return 0;
5584 static void perf_pmu_start_txn(struct pmu *pmu)
5586 perf_pmu_disable(pmu);
5589 static int perf_pmu_commit_txn(struct pmu *pmu)
5591 perf_pmu_enable(pmu);
5592 return 0;
5595 static void perf_pmu_cancel_txn(struct pmu *pmu)
5597 perf_pmu_enable(pmu);
5600 static int perf_event_idx_default(struct perf_event *event)
5602 return event->hw.idx + 1;
5606 * Ensures all contexts with the same task_ctx_nr have the same
5607 * pmu_cpu_context too.
5609 static void *find_pmu_context(int ctxn)
5611 struct pmu *pmu;
5613 if (ctxn < 0)
5614 return NULL;
5616 list_for_each_entry(pmu, &pmus, entry) {
5617 if (pmu->task_ctx_nr == ctxn)
5618 return pmu->pmu_cpu_context;
5621 return NULL;
5624 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5626 int cpu;
5628 for_each_possible_cpu(cpu) {
5629 struct perf_cpu_context *cpuctx;
5631 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5633 if (cpuctx->active_pmu == old_pmu)
5634 cpuctx->active_pmu = pmu;
5638 static void free_pmu_context(struct pmu *pmu)
5640 struct pmu *i;
5642 mutex_lock(&pmus_lock);
5644 * Like a real lame refcount.
5646 list_for_each_entry(i, &pmus, entry) {
5647 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5648 update_pmu_context(i, pmu);
5649 goto out;
5653 free_percpu(pmu->pmu_cpu_context);
5654 out:
5655 mutex_unlock(&pmus_lock);
5657 static struct idr pmu_idr;
5659 static ssize_t
5660 type_show(struct device *dev, struct device_attribute *attr, char *page)
5662 struct pmu *pmu = dev_get_drvdata(dev);
5664 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5667 static struct device_attribute pmu_dev_attrs[] = {
5668 __ATTR_RO(type),
5669 __ATTR_NULL,
5672 static int pmu_bus_running;
5673 static struct bus_type pmu_bus = {
5674 .name = "event_source",
5675 .dev_attrs = pmu_dev_attrs,
5678 static void pmu_dev_release(struct device *dev)
5680 kfree(dev);
5683 static int pmu_dev_alloc(struct pmu *pmu)
5685 int ret = -ENOMEM;
5687 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5688 if (!pmu->dev)
5689 goto out;
5691 pmu->dev->groups = pmu->attr_groups;
5692 device_initialize(pmu->dev);
5693 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5694 if (ret)
5695 goto free_dev;
5697 dev_set_drvdata(pmu->dev, pmu);
5698 pmu->dev->bus = &pmu_bus;
5699 pmu->dev->release = pmu_dev_release;
5700 ret = device_add(pmu->dev);
5701 if (ret)
5702 goto free_dev;
5704 out:
5705 return ret;
5707 free_dev:
5708 put_device(pmu->dev);
5709 goto out;
5712 static struct lock_class_key cpuctx_mutex;
5713 static struct lock_class_key cpuctx_lock;
5715 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5717 int cpu, ret;
5719 mutex_lock(&pmus_lock);
5720 ret = -ENOMEM;
5721 pmu->pmu_disable_count = alloc_percpu(int);
5722 if (!pmu->pmu_disable_count)
5723 goto unlock;
5725 pmu->type = -1;
5726 if (!name)
5727 goto skip_type;
5728 pmu->name = name;
5730 if (type < 0) {
5731 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5732 if (!err)
5733 goto free_pdc;
5735 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5736 if (err) {
5737 ret = err;
5738 goto free_pdc;
5741 pmu->type = type;
5743 if (pmu_bus_running) {
5744 ret = pmu_dev_alloc(pmu);
5745 if (ret)
5746 goto free_idr;
5749 skip_type:
5750 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5751 if (pmu->pmu_cpu_context)
5752 goto got_cpu_context;
5754 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5755 if (!pmu->pmu_cpu_context)
5756 goto free_dev;
5758 for_each_possible_cpu(cpu) {
5759 struct perf_cpu_context *cpuctx;
5761 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5762 __perf_event_init_context(&cpuctx->ctx);
5763 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5764 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5765 cpuctx->ctx.type = cpu_context;
5766 cpuctx->ctx.pmu = pmu;
5767 cpuctx->jiffies_interval = 1;
5768 INIT_LIST_HEAD(&cpuctx->rotation_list);
5769 cpuctx->active_pmu = pmu;
5772 got_cpu_context:
5773 if (!pmu->start_txn) {
5774 if (pmu->pmu_enable) {
5776 * If we have pmu_enable/pmu_disable calls, install
5777 * transaction stubs that use that to try and batch
5778 * hardware accesses.
5780 pmu->start_txn = perf_pmu_start_txn;
5781 pmu->commit_txn = perf_pmu_commit_txn;
5782 pmu->cancel_txn = perf_pmu_cancel_txn;
5783 } else {
5784 pmu->start_txn = perf_pmu_nop_void;
5785 pmu->commit_txn = perf_pmu_nop_int;
5786 pmu->cancel_txn = perf_pmu_nop_void;
5790 if (!pmu->pmu_enable) {
5791 pmu->pmu_enable = perf_pmu_nop_void;
5792 pmu->pmu_disable = perf_pmu_nop_void;
5795 if (!pmu->event_idx)
5796 pmu->event_idx = perf_event_idx_default;
5798 list_add_rcu(&pmu->entry, &pmus);
5799 ret = 0;
5800 unlock:
5801 mutex_unlock(&pmus_lock);
5803 return ret;
5805 free_dev:
5806 device_del(pmu->dev);
5807 put_device(pmu->dev);
5809 free_idr:
5810 if (pmu->type >= PERF_TYPE_MAX)
5811 idr_remove(&pmu_idr, pmu->type);
5813 free_pdc:
5814 free_percpu(pmu->pmu_disable_count);
5815 goto unlock;
5818 void perf_pmu_unregister(struct pmu *pmu)
5820 mutex_lock(&pmus_lock);
5821 list_del_rcu(&pmu->entry);
5822 mutex_unlock(&pmus_lock);
5825 * We dereference the pmu list under both SRCU and regular RCU, so
5826 * synchronize against both of those.
5828 synchronize_srcu(&pmus_srcu);
5829 synchronize_rcu();
5831 free_percpu(pmu->pmu_disable_count);
5832 if (pmu->type >= PERF_TYPE_MAX)
5833 idr_remove(&pmu_idr, pmu->type);
5834 device_del(pmu->dev);
5835 put_device(pmu->dev);
5836 free_pmu_context(pmu);
5839 struct pmu *perf_init_event(struct perf_event *event)
5841 struct pmu *pmu = NULL;
5842 int idx;
5843 int ret;
5845 idx = srcu_read_lock(&pmus_srcu);
5847 rcu_read_lock();
5848 pmu = idr_find(&pmu_idr, event->attr.type);
5849 rcu_read_unlock();
5850 if (pmu) {
5851 event->pmu = pmu;
5852 ret = pmu->event_init(event);
5853 if (ret)
5854 pmu = ERR_PTR(ret);
5855 goto unlock;
5858 list_for_each_entry_rcu(pmu, &pmus, entry) {
5859 event->pmu = pmu;
5860 ret = pmu->event_init(event);
5861 if (!ret)
5862 goto unlock;
5864 if (ret != -ENOENT) {
5865 pmu = ERR_PTR(ret);
5866 goto unlock;
5869 pmu = ERR_PTR(-ENOENT);
5870 unlock:
5871 srcu_read_unlock(&pmus_srcu, idx);
5873 return pmu;
5877 * Allocate and initialize a event structure
5879 static struct perf_event *
5880 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5881 struct task_struct *task,
5882 struct perf_event *group_leader,
5883 struct perf_event *parent_event,
5884 perf_overflow_handler_t overflow_handler,
5885 void *context)
5887 struct pmu *pmu;
5888 struct perf_event *event;
5889 struct hw_perf_event *hwc;
5890 long err;
5892 if ((unsigned)cpu >= nr_cpu_ids) {
5893 if (!task || cpu != -1)
5894 return ERR_PTR(-EINVAL);
5897 event = kzalloc(sizeof(*event), GFP_KERNEL);
5898 if (!event)
5899 return ERR_PTR(-ENOMEM);
5902 * Single events are their own group leaders, with an
5903 * empty sibling list:
5905 if (!group_leader)
5906 group_leader = event;
5908 mutex_init(&event->child_mutex);
5909 INIT_LIST_HEAD(&event->child_list);
5911 INIT_LIST_HEAD(&event->group_entry);
5912 INIT_LIST_HEAD(&event->event_entry);
5913 INIT_LIST_HEAD(&event->sibling_list);
5914 INIT_LIST_HEAD(&event->rb_entry);
5916 init_waitqueue_head(&event->waitq);
5917 init_irq_work(&event->pending, perf_pending_event);
5919 mutex_init(&event->mmap_mutex);
5921 event->cpu = cpu;
5922 event->attr = *attr;
5923 event->group_leader = group_leader;
5924 event->pmu = NULL;
5925 event->oncpu = -1;
5927 event->parent = parent_event;
5929 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5930 event->id = atomic64_inc_return(&perf_event_id);
5932 event->state = PERF_EVENT_STATE_INACTIVE;
5934 if (task) {
5935 event->attach_state = PERF_ATTACH_TASK;
5936 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5938 * hw_breakpoint is a bit difficult here..
5940 if (attr->type == PERF_TYPE_BREAKPOINT)
5941 event->hw.bp_target = task;
5942 #endif
5945 if (!overflow_handler && parent_event) {
5946 overflow_handler = parent_event->overflow_handler;
5947 context = parent_event->overflow_handler_context;
5950 event->overflow_handler = overflow_handler;
5951 event->overflow_handler_context = context;
5953 if (attr->disabled)
5954 event->state = PERF_EVENT_STATE_OFF;
5956 pmu = NULL;
5958 hwc = &event->hw;
5959 hwc->sample_period = attr->sample_period;
5960 if (attr->freq && attr->sample_freq)
5961 hwc->sample_period = 1;
5962 hwc->last_period = hwc->sample_period;
5964 local64_set(&hwc->period_left, hwc->sample_period);
5967 * we currently do not support PERF_FORMAT_GROUP on inherited events
5969 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5970 goto done;
5972 pmu = perf_init_event(event);
5974 done:
5975 err = 0;
5976 if (!pmu)
5977 err = -EINVAL;
5978 else if (IS_ERR(pmu))
5979 err = PTR_ERR(pmu);
5981 if (err) {
5982 if (event->ns)
5983 put_pid_ns(event->ns);
5984 kfree(event);
5985 return ERR_PTR(err);
5988 if (!event->parent) {
5989 if (event->attach_state & PERF_ATTACH_TASK)
5990 static_key_slow_inc(&perf_sched_events.key);
5991 if (event->attr.mmap || event->attr.mmap_data)
5992 atomic_inc(&nr_mmap_events);
5993 if (event->attr.comm)
5994 atomic_inc(&nr_comm_events);
5995 if (event->attr.task)
5996 atomic_inc(&nr_task_events);
5997 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5998 err = get_callchain_buffers();
5999 if (err) {
6000 free_event(event);
6001 return ERR_PTR(err);
6004 if (has_branch_stack(event)) {
6005 static_key_slow_inc(&perf_sched_events.key);
6006 if (!(event->attach_state & PERF_ATTACH_TASK))
6007 atomic_inc(&per_cpu(perf_branch_stack_events,
6008 event->cpu));
6012 return event;
6015 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6016 struct perf_event_attr *attr)
6018 u32 size;
6019 int ret;
6021 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6022 return -EFAULT;
6025 * zero the full structure, so that a short copy will be nice.
6027 memset(attr, 0, sizeof(*attr));
6029 ret = get_user(size, &uattr->size);
6030 if (ret)
6031 return ret;
6033 if (size > PAGE_SIZE) /* silly large */
6034 goto err_size;
6036 if (!size) /* abi compat */
6037 size = PERF_ATTR_SIZE_VER0;
6039 if (size < PERF_ATTR_SIZE_VER0)
6040 goto err_size;
6043 * If we're handed a bigger struct than we know of,
6044 * ensure all the unknown bits are 0 - i.e. new
6045 * user-space does not rely on any kernel feature
6046 * extensions we dont know about yet.
6048 if (size > sizeof(*attr)) {
6049 unsigned char __user *addr;
6050 unsigned char __user *end;
6051 unsigned char val;
6053 addr = (void __user *)uattr + sizeof(*attr);
6054 end = (void __user *)uattr + size;
6056 for (; addr < end; addr++) {
6057 ret = get_user(val, addr);
6058 if (ret)
6059 return ret;
6060 if (val)
6061 goto err_size;
6063 size = sizeof(*attr);
6066 ret = copy_from_user(attr, uattr, size);
6067 if (ret)
6068 return -EFAULT;
6070 if (attr->__reserved_1)
6071 return -EINVAL;
6073 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6074 return -EINVAL;
6076 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6077 return -EINVAL;
6079 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6080 u64 mask = attr->branch_sample_type;
6082 /* only using defined bits */
6083 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6084 return -EINVAL;
6086 /* at least one branch bit must be set */
6087 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6088 return -EINVAL;
6090 /* kernel level capture: check permissions */
6091 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6092 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6093 return -EACCES;
6095 /* propagate priv level, when not set for branch */
6096 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6098 /* exclude_kernel checked on syscall entry */
6099 if (!attr->exclude_kernel)
6100 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6102 if (!attr->exclude_user)
6103 mask |= PERF_SAMPLE_BRANCH_USER;
6105 if (!attr->exclude_hv)
6106 mask |= PERF_SAMPLE_BRANCH_HV;
6108 * adjust user setting (for HW filter setup)
6110 attr->branch_sample_type = mask;
6113 out:
6114 return ret;
6116 err_size:
6117 put_user(sizeof(*attr), &uattr->size);
6118 ret = -E2BIG;
6119 goto out;
6122 static int
6123 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6125 struct ring_buffer *rb = NULL, *old_rb = NULL;
6126 int ret = -EINVAL;
6128 if (!output_event)
6129 goto set;
6131 /* don't allow circular references */
6132 if (event == output_event)
6133 goto out;
6136 * Don't allow cross-cpu buffers
6138 if (output_event->cpu != event->cpu)
6139 goto out;
6142 * If its not a per-cpu rb, it must be the same task.
6144 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6145 goto out;
6147 set:
6148 mutex_lock(&event->mmap_mutex);
6149 /* Can't redirect output if we've got an active mmap() */
6150 if (atomic_read(&event->mmap_count))
6151 goto unlock;
6153 if (output_event) {
6154 /* get the rb we want to redirect to */
6155 rb = ring_buffer_get(output_event);
6156 if (!rb)
6157 goto unlock;
6160 old_rb = event->rb;
6161 rcu_assign_pointer(event->rb, rb);
6162 if (old_rb)
6163 ring_buffer_detach(event, old_rb);
6164 ret = 0;
6165 unlock:
6166 mutex_unlock(&event->mmap_mutex);
6168 if (old_rb)
6169 ring_buffer_put(old_rb);
6170 out:
6171 return ret;
6175 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6177 * @attr_uptr: event_id type attributes for monitoring/sampling
6178 * @pid: target pid
6179 * @cpu: target cpu
6180 * @group_fd: group leader event fd
6182 SYSCALL_DEFINE5(perf_event_open,
6183 struct perf_event_attr __user *, attr_uptr,
6184 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6186 struct perf_event *group_leader = NULL, *output_event = NULL;
6187 struct perf_event *event, *sibling;
6188 struct perf_event_attr attr;
6189 struct perf_event_context *ctx;
6190 struct file *event_file = NULL;
6191 struct file *group_file = NULL;
6192 struct task_struct *task = NULL;
6193 struct pmu *pmu;
6194 int event_fd;
6195 int move_group = 0;
6196 int fput_needed = 0;
6197 int err;
6199 /* for future expandability... */
6200 if (flags & ~PERF_FLAG_ALL)
6201 return -EINVAL;
6203 err = perf_copy_attr(attr_uptr, &attr);
6204 if (err)
6205 return err;
6207 if (!attr.exclude_kernel) {
6208 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6209 return -EACCES;
6212 if (attr.freq) {
6213 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6214 return -EINVAL;
6218 * In cgroup mode, the pid argument is used to pass the fd
6219 * opened to the cgroup directory in cgroupfs. The cpu argument
6220 * designates the cpu on which to monitor threads from that
6221 * cgroup.
6223 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6224 return -EINVAL;
6226 event_fd = get_unused_fd_flags(O_RDWR);
6227 if (event_fd < 0)
6228 return event_fd;
6230 if (group_fd != -1) {
6231 group_leader = perf_fget_light(group_fd, &fput_needed);
6232 if (IS_ERR(group_leader)) {
6233 err = PTR_ERR(group_leader);
6234 goto err_fd;
6236 group_file = group_leader->filp;
6237 if (flags & PERF_FLAG_FD_OUTPUT)
6238 output_event = group_leader;
6239 if (flags & PERF_FLAG_FD_NO_GROUP)
6240 group_leader = NULL;
6243 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6244 task = find_lively_task_by_vpid(pid);
6245 if (IS_ERR(task)) {
6246 err = PTR_ERR(task);
6247 goto err_group_fd;
6251 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6252 NULL, NULL);
6253 if (IS_ERR(event)) {
6254 err = PTR_ERR(event);
6255 goto err_task;
6258 if (flags & PERF_FLAG_PID_CGROUP) {
6259 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6260 if (err)
6261 goto err_alloc;
6263 * one more event:
6264 * - that has cgroup constraint on event->cpu
6265 * - that may need work on context switch
6267 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6268 static_key_slow_inc(&perf_sched_events.key);
6272 * Special case software events and allow them to be part of
6273 * any hardware group.
6275 pmu = event->pmu;
6277 if (group_leader &&
6278 (is_software_event(event) != is_software_event(group_leader))) {
6279 if (is_software_event(event)) {
6281 * If event and group_leader are not both a software
6282 * event, and event is, then group leader is not.
6284 * Allow the addition of software events to !software
6285 * groups, this is safe because software events never
6286 * fail to schedule.
6288 pmu = group_leader->pmu;
6289 } else if (is_software_event(group_leader) &&
6290 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6292 * In case the group is a pure software group, and we
6293 * try to add a hardware event, move the whole group to
6294 * the hardware context.
6296 move_group = 1;
6301 * Get the target context (task or percpu):
6303 ctx = find_get_context(pmu, task, cpu);
6304 if (IS_ERR(ctx)) {
6305 err = PTR_ERR(ctx);
6306 goto err_alloc;
6309 if (task) {
6310 put_task_struct(task);
6311 task = NULL;
6315 * Look up the group leader (we will attach this event to it):
6317 if (group_leader) {
6318 err = -EINVAL;
6321 * Do not allow a recursive hierarchy (this new sibling
6322 * becoming part of another group-sibling):
6324 if (group_leader->group_leader != group_leader)
6325 goto err_context;
6327 * Do not allow to attach to a group in a different
6328 * task or CPU context:
6330 if (move_group) {
6331 if (group_leader->ctx->type != ctx->type)
6332 goto err_context;
6333 } else {
6334 if (group_leader->ctx != ctx)
6335 goto err_context;
6339 * Only a group leader can be exclusive or pinned
6341 if (attr.exclusive || attr.pinned)
6342 goto err_context;
6345 if (output_event) {
6346 err = perf_event_set_output(event, output_event);
6347 if (err)
6348 goto err_context;
6351 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6352 if (IS_ERR(event_file)) {
6353 err = PTR_ERR(event_file);
6354 goto err_context;
6357 if (move_group) {
6358 struct perf_event_context *gctx = group_leader->ctx;
6360 mutex_lock(&gctx->mutex);
6361 perf_remove_from_context(group_leader);
6362 list_for_each_entry(sibling, &group_leader->sibling_list,
6363 group_entry) {
6364 perf_remove_from_context(sibling);
6365 put_ctx(gctx);
6367 mutex_unlock(&gctx->mutex);
6368 put_ctx(gctx);
6371 event->filp = event_file;
6372 WARN_ON_ONCE(ctx->parent_ctx);
6373 mutex_lock(&ctx->mutex);
6375 if (move_group) {
6376 perf_install_in_context(ctx, group_leader, cpu);
6377 get_ctx(ctx);
6378 list_for_each_entry(sibling, &group_leader->sibling_list,
6379 group_entry) {
6380 perf_install_in_context(ctx, sibling, cpu);
6381 get_ctx(ctx);
6385 perf_install_in_context(ctx, event, cpu);
6386 ++ctx->generation;
6387 perf_unpin_context(ctx);
6388 mutex_unlock(&ctx->mutex);
6390 event->owner = current;
6392 mutex_lock(&current->perf_event_mutex);
6393 list_add_tail(&event->owner_entry, &current->perf_event_list);
6394 mutex_unlock(&current->perf_event_mutex);
6397 * Precalculate sample_data sizes
6399 perf_event__header_size(event);
6400 perf_event__id_header_size(event);
6403 * Drop the reference on the group_event after placing the
6404 * new event on the sibling_list. This ensures destruction
6405 * of the group leader will find the pointer to itself in
6406 * perf_group_detach().
6408 fput_light(group_file, fput_needed);
6409 fd_install(event_fd, event_file);
6410 return event_fd;
6412 err_context:
6413 perf_unpin_context(ctx);
6414 put_ctx(ctx);
6415 err_alloc:
6416 free_event(event);
6417 err_task:
6418 if (task)
6419 put_task_struct(task);
6420 err_group_fd:
6421 fput_light(group_file, fput_needed);
6422 err_fd:
6423 put_unused_fd(event_fd);
6424 return err;
6428 * perf_event_create_kernel_counter
6430 * @attr: attributes of the counter to create
6431 * @cpu: cpu in which the counter is bound
6432 * @task: task to profile (NULL for percpu)
6434 struct perf_event *
6435 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6436 struct task_struct *task,
6437 perf_overflow_handler_t overflow_handler,
6438 void *context)
6440 struct perf_event_context *ctx;
6441 struct perf_event *event;
6442 int err;
6445 * Get the target context (task or percpu):
6448 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6449 overflow_handler, context);
6450 if (IS_ERR(event)) {
6451 err = PTR_ERR(event);
6452 goto err;
6455 ctx = find_get_context(event->pmu, task, cpu);
6456 if (IS_ERR(ctx)) {
6457 err = PTR_ERR(ctx);
6458 goto err_free;
6461 event->filp = NULL;
6462 WARN_ON_ONCE(ctx->parent_ctx);
6463 mutex_lock(&ctx->mutex);
6464 perf_install_in_context(ctx, event, cpu);
6465 ++ctx->generation;
6466 perf_unpin_context(ctx);
6467 mutex_unlock(&ctx->mutex);
6469 return event;
6471 err_free:
6472 free_event(event);
6473 err:
6474 return ERR_PTR(err);
6476 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6478 static void sync_child_event(struct perf_event *child_event,
6479 struct task_struct *child)
6481 struct perf_event *parent_event = child_event->parent;
6482 u64 child_val;
6484 if (child_event->attr.inherit_stat)
6485 perf_event_read_event(child_event, child);
6487 child_val = perf_event_count(child_event);
6490 * Add back the child's count to the parent's count:
6492 atomic64_add(child_val, &parent_event->child_count);
6493 atomic64_add(child_event->total_time_enabled,
6494 &parent_event->child_total_time_enabled);
6495 atomic64_add(child_event->total_time_running,
6496 &parent_event->child_total_time_running);
6499 * Remove this event from the parent's list
6501 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6502 mutex_lock(&parent_event->child_mutex);
6503 list_del_init(&child_event->child_list);
6504 mutex_unlock(&parent_event->child_mutex);
6507 * Release the parent event, if this was the last
6508 * reference to it.
6510 fput(parent_event->filp);
6513 static void
6514 __perf_event_exit_task(struct perf_event *child_event,
6515 struct perf_event_context *child_ctx,
6516 struct task_struct *child)
6518 if (child_event->parent) {
6519 raw_spin_lock_irq(&child_ctx->lock);
6520 perf_group_detach(child_event);
6521 raw_spin_unlock_irq(&child_ctx->lock);
6524 perf_remove_from_context(child_event);
6527 * It can happen that the parent exits first, and has events
6528 * that are still around due to the child reference. These
6529 * events need to be zapped.
6531 if (child_event->parent) {
6532 sync_child_event(child_event, child);
6533 free_event(child_event);
6537 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6539 struct perf_event *child_event, *tmp;
6540 struct perf_event_context *child_ctx;
6541 unsigned long flags;
6543 if (likely(!child->perf_event_ctxp[ctxn])) {
6544 perf_event_task(child, NULL, 0);
6545 return;
6548 local_irq_save(flags);
6550 * We can't reschedule here because interrupts are disabled,
6551 * and either child is current or it is a task that can't be
6552 * scheduled, so we are now safe from rescheduling changing
6553 * our context.
6555 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6558 * Take the context lock here so that if find_get_context is
6559 * reading child->perf_event_ctxp, we wait until it has
6560 * incremented the context's refcount before we do put_ctx below.
6562 raw_spin_lock(&child_ctx->lock);
6563 task_ctx_sched_out(child_ctx);
6564 child->perf_event_ctxp[ctxn] = NULL;
6566 * If this context is a clone; unclone it so it can't get
6567 * swapped to another process while we're removing all
6568 * the events from it.
6570 unclone_ctx(child_ctx);
6571 update_context_time(child_ctx);
6572 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6575 * Report the task dead after unscheduling the events so that we
6576 * won't get any samples after PERF_RECORD_EXIT. We can however still
6577 * get a few PERF_RECORD_READ events.
6579 perf_event_task(child, child_ctx, 0);
6582 * We can recurse on the same lock type through:
6584 * __perf_event_exit_task()
6585 * sync_child_event()
6586 * fput(parent_event->filp)
6587 * perf_release()
6588 * mutex_lock(&ctx->mutex)
6590 * But since its the parent context it won't be the same instance.
6592 mutex_lock(&child_ctx->mutex);
6594 again:
6595 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6596 group_entry)
6597 __perf_event_exit_task(child_event, child_ctx, child);
6599 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6600 group_entry)
6601 __perf_event_exit_task(child_event, child_ctx, child);
6604 * If the last event was a group event, it will have appended all
6605 * its siblings to the list, but we obtained 'tmp' before that which
6606 * will still point to the list head terminating the iteration.
6608 if (!list_empty(&child_ctx->pinned_groups) ||
6609 !list_empty(&child_ctx->flexible_groups))
6610 goto again;
6612 mutex_unlock(&child_ctx->mutex);
6614 put_ctx(child_ctx);
6618 * When a child task exits, feed back event values to parent events.
6620 void perf_event_exit_task(struct task_struct *child)
6622 struct perf_event *event, *tmp;
6623 int ctxn;
6625 mutex_lock(&child->perf_event_mutex);
6626 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6627 owner_entry) {
6628 list_del_init(&event->owner_entry);
6631 * Ensure the list deletion is visible before we clear
6632 * the owner, closes a race against perf_release() where
6633 * we need to serialize on the owner->perf_event_mutex.
6635 smp_wmb();
6636 event->owner = NULL;
6638 mutex_unlock(&child->perf_event_mutex);
6640 for_each_task_context_nr(ctxn)
6641 perf_event_exit_task_context(child, ctxn);
6644 static void perf_free_event(struct perf_event *event,
6645 struct perf_event_context *ctx)
6647 struct perf_event *parent = event->parent;
6649 if (WARN_ON_ONCE(!parent))
6650 return;
6652 mutex_lock(&parent->child_mutex);
6653 list_del_init(&event->child_list);
6654 mutex_unlock(&parent->child_mutex);
6656 fput(parent->filp);
6658 perf_group_detach(event);
6659 list_del_event(event, ctx);
6660 free_event(event);
6664 * free an unexposed, unused context as created by inheritance by
6665 * perf_event_init_task below, used by fork() in case of fail.
6667 void perf_event_free_task(struct task_struct *task)
6669 struct perf_event_context *ctx;
6670 struct perf_event *event, *tmp;
6671 int ctxn;
6673 for_each_task_context_nr(ctxn) {
6674 ctx = task->perf_event_ctxp[ctxn];
6675 if (!ctx)
6676 continue;
6678 mutex_lock(&ctx->mutex);
6679 again:
6680 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6681 group_entry)
6682 perf_free_event(event, ctx);
6684 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6685 group_entry)
6686 perf_free_event(event, ctx);
6688 if (!list_empty(&ctx->pinned_groups) ||
6689 !list_empty(&ctx->flexible_groups))
6690 goto again;
6692 mutex_unlock(&ctx->mutex);
6694 put_ctx(ctx);
6698 void perf_event_delayed_put(struct task_struct *task)
6700 int ctxn;
6702 for_each_task_context_nr(ctxn)
6703 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6707 * inherit a event from parent task to child task:
6709 static struct perf_event *
6710 inherit_event(struct perf_event *parent_event,
6711 struct task_struct *parent,
6712 struct perf_event_context *parent_ctx,
6713 struct task_struct *child,
6714 struct perf_event *group_leader,
6715 struct perf_event_context *child_ctx)
6717 struct perf_event *child_event;
6718 unsigned long flags;
6721 * Instead of creating recursive hierarchies of events,
6722 * we link inherited events back to the original parent,
6723 * which has a filp for sure, which we use as the reference
6724 * count:
6726 if (parent_event->parent)
6727 parent_event = parent_event->parent;
6729 child_event = perf_event_alloc(&parent_event->attr,
6730 parent_event->cpu,
6731 child,
6732 group_leader, parent_event,
6733 NULL, NULL);
6734 if (IS_ERR(child_event))
6735 return child_event;
6736 get_ctx(child_ctx);
6739 * Make the child state follow the state of the parent event,
6740 * not its attr.disabled bit. We hold the parent's mutex,
6741 * so we won't race with perf_event_{en, dis}able_family.
6743 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6744 child_event->state = PERF_EVENT_STATE_INACTIVE;
6745 else
6746 child_event->state = PERF_EVENT_STATE_OFF;
6748 if (parent_event->attr.freq) {
6749 u64 sample_period = parent_event->hw.sample_period;
6750 struct hw_perf_event *hwc = &child_event->hw;
6752 hwc->sample_period = sample_period;
6753 hwc->last_period = sample_period;
6755 local64_set(&hwc->period_left, sample_period);
6758 child_event->ctx = child_ctx;
6759 child_event->overflow_handler = parent_event->overflow_handler;
6760 child_event->overflow_handler_context
6761 = parent_event->overflow_handler_context;
6764 * Precalculate sample_data sizes
6766 perf_event__header_size(child_event);
6767 perf_event__id_header_size(child_event);
6770 * Link it up in the child's context:
6772 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6773 add_event_to_ctx(child_event, child_ctx);
6774 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6777 * Get a reference to the parent filp - we will fput it
6778 * when the child event exits. This is safe to do because
6779 * we are in the parent and we know that the filp still
6780 * exists and has a nonzero count:
6782 atomic_long_inc(&parent_event->filp->f_count);
6785 * Link this into the parent event's child list
6787 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6788 mutex_lock(&parent_event->child_mutex);
6789 list_add_tail(&child_event->child_list, &parent_event->child_list);
6790 mutex_unlock(&parent_event->child_mutex);
6792 return child_event;
6795 static int inherit_group(struct perf_event *parent_event,
6796 struct task_struct *parent,
6797 struct perf_event_context *parent_ctx,
6798 struct task_struct *child,
6799 struct perf_event_context *child_ctx)
6801 struct perf_event *leader;
6802 struct perf_event *sub;
6803 struct perf_event *child_ctr;
6805 leader = inherit_event(parent_event, parent, parent_ctx,
6806 child, NULL, child_ctx);
6807 if (IS_ERR(leader))
6808 return PTR_ERR(leader);
6809 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6810 child_ctr = inherit_event(sub, parent, parent_ctx,
6811 child, leader, child_ctx);
6812 if (IS_ERR(child_ctr))
6813 return PTR_ERR(child_ctr);
6815 return 0;
6818 static int
6819 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6820 struct perf_event_context *parent_ctx,
6821 struct task_struct *child, int ctxn,
6822 int *inherited_all)
6824 int ret;
6825 struct perf_event_context *child_ctx;
6827 if (!event->attr.inherit) {
6828 *inherited_all = 0;
6829 return 0;
6832 child_ctx = child->perf_event_ctxp[ctxn];
6833 if (!child_ctx) {
6835 * This is executed from the parent task context, so
6836 * inherit events that have been marked for cloning.
6837 * First allocate and initialize a context for the
6838 * child.
6841 child_ctx = alloc_perf_context(event->pmu, child);
6842 if (!child_ctx)
6843 return -ENOMEM;
6845 child->perf_event_ctxp[ctxn] = child_ctx;
6848 ret = inherit_group(event, parent, parent_ctx,
6849 child, child_ctx);
6851 if (ret)
6852 *inherited_all = 0;
6854 return ret;
6858 * Initialize the perf_event context in task_struct
6860 int perf_event_init_context(struct task_struct *child, int ctxn)
6862 struct perf_event_context *child_ctx, *parent_ctx;
6863 struct perf_event_context *cloned_ctx;
6864 struct perf_event *event;
6865 struct task_struct *parent = current;
6866 int inherited_all = 1;
6867 unsigned long flags;
6868 int ret = 0;
6870 if (likely(!parent->perf_event_ctxp[ctxn]))
6871 return 0;
6874 * If the parent's context is a clone, pin it so it won't get
6875 * swapped under us.
6877 parent_ctx = perf_pin_task_context(parent, ctxn);
6880 * No need to check if parent_ctx != NULL here; since we saw
6881 * it non-NULL earlier, the only reason for it to become NULL
6882 * is if we exit, and since we're currently in the middle of
6883 * a fork we can't be exiting at the same time.
6887 * Lock the parent list. No need to lock the child - not PID
6888 * hashed yet and not running, so nobody can access it.
6890 mutex_lock(&parent_ctx->mutex);
6893 * We dont have to disable NMIs - we are only looking at
6894 * the list, not manipulating it:
6896 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6897 ret = inherit_task_group(event, parent, parent_ctx,
6898 child, ctxn, &inherited_all);
6899 if (ret)
6900 break;
6904 * We can't hold ctx->lock when iterating the ->flexible_group list due
6905 * to allocations, but we need to prevent rotation because
6906 * rotate_ctx() will change the list from interrupt context.
6908 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6909 parent_ctx->rotate_disable = 1;
6910 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6912 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6913 ret = inherit_task_group(event, parent, parent_ctx,
6914 child, ctxn, &inherited_all);
6915 if (ret)
6916 break;
6919 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6920 parent_ctx->rotate_disable = 0;
6922 child_ctx = child->perf_event_ctxp[ctxn];
6924 if (child_ctx && inherited_all) {
6926 * Mark the child context as a clone of the parent
6927 * context, or of whatever the parent is a clone of.
6929 * Note that if the parent is a clone, the holding of
6930 * parent_ctx->lock avoids it from being uncloned.
6932 cloned_ctx = parent_ctx->parent_ctx;
6933 if (cloned_ctx) {
6934 child_ctx->parent_ctx = cloned_ctx;
6935 child_ctx->parent_gen = parent_ctx->parent_gen;
6936 } else {
6937 child_ctx->parent_ctx = parent_ctx;
6938 child_ctx->parent_gen = parent_ctx->generation;
6940 get_ctx(child_ctx->parent_ctx);
6943 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6944 mutex_unlock(&parent_ctx->mutex);
6946 perf_unpin_context(parent_ctx);
6947 put_ctx(parent_ctx);
6949 return ret;
6953 * Initialize the perf_event context in task_struct
6955 int perf_event_init_task(struct task_struct *child)
6957 int ctxn, ret;
6959 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6960 mutex_init(&child->perf_event_mutex);
6961 INIT_LIST_HEAD(&child->perf_event_list);
6963 for_each_task_context_nr(ctxn) {
6964 ret = perf_event_init_context(child, ctxn);
6965 if (ret)
6966 return ret;
6969 return 0;
6972 static void __init perf_event_init_all_cpus(void)
6974 struct swevent_htable *swhash;
6975 int cpu;
6977 for_each_possible_cpu(cpu) {
6978 swhash = &per_cpu(swevent_htable, cpu);
6979 mutex_init(&swhash->hlist_mutex);
6980 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6984 static void __cpuinit perf_event_init_cpu(int cpu)
6986 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6988 mutex_lock(&swhash->hlist_mutex);
6989 if (swhash->hlist_refcount > 0) {
6990 struct swevent_hlist *hlist;
6992 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6993 WARN_ON(!hlist);
6994 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6996 mutex_unlock(&swhash->hlist_mutex);
6999 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7000 static void perf_pmu_rotate_stop(struct pmu *pmu)
7002 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7004 WARN_ON(!irqs_disabled());
7006 list_del_init(&cpuctx->rotation_list);
7009 static void __perf_event_exit_context(void *__info)
7011 struct perf_event_context *ctx = __info;
7012 struct perf_event *event, *tmp;
7014 perf_pmu_rotate_stop(ctx->pmu);
7016 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7017 __perf_remove_from_context(event);
7018 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7019 __perf_remove_from_context(event);
7022 static void perf_event_exit_cpu_context(int cpu)
7024 struct perf_event_context *ctx;
7025 struct pmu *pmu;
7026 int idx;
7028 idx = srcu_read_lock(&pmus_srcu);
7029 list_for_each_entry_rcu(pmu, &pmus, entry) {
7030 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7032 mutex_lock(&ctx->mutex);
7033 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7034 mutex_unlock(&ctx->mutex);
7036 srcu_read_unlock(&pmus_srcu, idx);
7039 static void perf_event_exit_cpu(int cpu)
7041 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7043 mutex_lock(&swhash->hlist_mutex);
7044 swevent_hlist_release(swhash);
7045 mutex_unlock(&swhash->hlist_mutex);
7047 perf_event_exit_cpu_context(cpu);
7049 #else
7050 static inline void perf_event_exit_cpu(int cpu) { }
7051 #endif
7053 static int
7054 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7056 int cpu;
7058 for_each_online_cpu(cpu)
7059 perf_event_exit_cpu(cpu);
7061 return NOTIFY_OK;
7065 * Run the perf reboot notifier at the very last possible moment so that
7066 * the generic watchdog code runs as long as possible.
7068 static struct notifier_block perf_reboot_notifier = {
7069 .notifier_call = perf_reboot,
7070 .priority = INT_MIN,
7073 static int __cpuinit
7074 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7076 unsigned int cpu = (long)hcpu;
7078 switch (action & ~CPU_TASKS_FROZEN) {
7080 case CPU_UP_PREPARE:
7081 case CPU_DOWN_FAILED:
7082 perf_event_init_cpu(cpu);
7083 break;
7085 case CPU_UP_CANCELED:
7086 case CPU_DOWN_PREPARE:
7087 perf_event_exit_cpu(cpu);
7088 break;
7090 default:
7091 break;
7094 return NOTIFY_OK;
7097 void __init perf_event_init(void)
7099 int ret;
7101 idr_init(&pmu_idr);
7103 perf_event_init_all_cpus();
7104 init_srcu_struct(&pmus_srcu);
7105 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7106 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7107 perf_pmu_register(&perf_task_clock, NULL, -1);
7108 perf_tp_register();
7109 perf_cpu_notifier(perf_cpu_notify);
7110 register_reboot_notifier(&perf_reboot_notifier);
7112 ret = init_hw_breakpoint();
7113 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7115 /* do not patch jump label more than once per second */
7116 jump_label_rate_limit(&perf_sched_events, HZ);
7119 * Build time assertion that we keep the data_head at the intended
7120 * location. IOW, validation we got the __reserved[] size right.
7122 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7123 != 1024);
7126 static int __init perf_event_sysfs_init(void)
7128 struct pmu *pmu;
7129 int ret;
7131 mutex_lock(&pmus_lock);
7133 ret = bus_register(&pmu_bus);
7134 if (ret)
7135 goto unlock;
7137 list_for_each_entry(pmu, &pmus, entry) {
7138 if (!pmu->name || pmu->type < 0)
7139 continue;
7141 ret = pmu_dev_alloc(pmu);
7142 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7144 pmu_bus_running = 1;
7145 ret = 0;
7147 unlock:
7148 mutex_unlock(&pmus_lock);
7150 return ret;
7152 device_initcall(perf_event_sysfs_init);
7154 #ifdef CONFIG_CGROUP_PERF
7155 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7157 struct perf_cgroup *jc;
7159 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7160 if (!jc)
7161 return ERR_PTR(-ENOMEM);
7163 jc->info = alloc_percpu(struct perf_cgroup_info);
7164 if (!jc->info) {
7165 kfree(jc);
7166 return ERR_PTR(-ENOMEM);
7169 return &jc->css;
7172 static void perf_cgroup_destroy(struct cgroup *cont)
7174 struct perf_cgroup *jc;
7175 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7176 struct perf_cgroup, css);
7177 free_percpu(jc->info);
7178 kfree(jc);
7181 static int __perf_cgroup_move(void *info)
7183 struct task_struct *task = info;
7184 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7185 return 0;
7188 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7190 struct task_struct *task;
7192 cgroup_taskset_for_each(task, cgrp, tset)
7193 task_function_call(task, __perf_cgroup_move, task);
7196 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7197 struct task_struct *task)
7200 * cgroup_exit() is called in the copy_process() failure path.
7201 * Ignore this case since the task hasn't ran yet, this avoids
7202 * trying to poke a half freed task state from generic code.
7204 if (!(task->flags & PF_EXITING))
7205 return;
7207 task_function_call(task, __perf_cgroup_move, task);
7210 struct cgroup_subsys perf_subsys = {
7211 .name = "perf_event",
7212 .subsys_id = perf_subsys_id,
7213 .create = perf_cgroup_create,
7214 .destroy = perf_cgroup_destroy,
7215 .exit = perf_cgroup_exit,
7216 .attach = perf_cgroup_attach,
7218 #endif /* CONFIG_CGROUP_PERF */