net: phy: core: remove now uneeded disabling of interrupts
[linux-2.6/btrfs-unstable.git] / block / blk-mq.c
blob11097477eeab6591088ca817d4690535e114e699
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 int ddir, bytes, bucket;
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
51 bucket = ddir + 2*(ilog2(bytes) - 9);
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 return bucket;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
96 struct mq_inflight *mi = priv;
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
122 void blk_freeze_queue_start(struct request_queue *q)
124 int freeze_depth;
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
133 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
135 void blk_mq_freeze_queue_wait(struct request_queue *q)
137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
141 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
154 void blk_freeze_queue(struct request_queue *q)
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
163 blk_freeze_queue_start(q);
164 blk_mq_freeze_queue_wait(q);
167 void blk_mq_freeze_queue(struct request_queue *q)
170 * ...just an alias to keep freeze and unfreeze actions balanced
171 * in the blk_mq_* namespace
173 blk_freeze_queue(q);
175 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177 void blk_mq_unfreeze_queue(struct request_queue *q)
179 int freeze_depth;
181 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
182 WARN_ON_ONCE(freeze_depth < 0);
183 if (!freeze_depth) {
184 percpu_ref_reinit(&q->q_usage_counter);
185 wake_up_all(&q->mq_freeze_wq);
188 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
191 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
192 * mpt3sas driver such that this function can be removed.
194 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196 unsigned long flags;
198 spin_lock_irqsave(q->queue_lock, flags);
199 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
200 spin_unlock_irqrestore(q->queue_lock, flags);
202 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
205 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206 * @q: request queue.
208 * Note: this function does not prevent that the struct request end_io()
209 * callback function is invoked. Once this function is returned, we make
210 * sure no dispatch can happen until the queue is unquiesced via
211 * blk_mq_unquiesce_queue().
213 void blk_mq_quiesce_queue(struct request_queue *q)
215 struct blk_mq_hw_ctx *hctx;
216 unsigned int i;
217 bool rcu = false;
219 blk_mq_quiesce_queue_nowait(q);
221 queue_for_each_hw_ctx(q, hctx, i) {
222 if (hctx->flags & BLK_MQ_F_BLOCKING)
223 synchronize_srcu(hctx->queue_rq_srcu);
224 else
225 rcu = true;
227 if (rcu)
228 synchronize_rcu();
230 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
233 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
234 * @q: request queue.
236 * This function recovers queue into the state before quiescing
237 * which is done by blk_mq_quiesce_queue.
239 void blk_mq_unquiesce_queue(struct request_queue *q)
241 unsigned long flags;
243 spin_lock_irqsave(q->queue_lock, flags);
244 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
245 spin_unlock_irqrestore(q->queue_lock, flags);
247 /* dispatch requests which are inserted during quiescing */
248 blk_mq_run_hw_queues(q, true);
250 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252 void blk_mq_wake_waiters(struct request_queue *q)
254 struct blk_mq_hw_ctx *hctx;
255 unsigned int i;
257 queue_for_each_hw_ctx(q, hctx, i)
258 if (blk_mq_hw_queue_mapped(hctx))
259 blk_mq_tag_wakeup_all(hctx->tags, true);
262 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
264 return blk_mq_has_free_tags(hctx->tags);
266 EXPORT_SYMBOL(blk_mq_can_queue);
268 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
269 unsigned int tag, unsigned int op)
271 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
272 struct request *rq = tags->static_rqs[tag];
274 rq->rq_flags = 0;
276 if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 rq->tag = -1;
278 rq->internal_tag = tag;
279 } else {
280 if (blk_mq_tag_busy(data->hctx)) {
281 rq->rq_flags = RQF_MQ_INFLIGHT;
282 atomic_inc(&data->hctx->nr_active);
284 rq->tag = tag;
285 rq->internal_tag = -1;
286 data->hctx->tags->rqs[rq->tag] = rq;
289 INIT_LIST_HEAD(&rq->queuelist);
290 /* csd/requeue_work/fifo_time is initialized before use */
291 rq->q = data->q;
292 rq->mq_ctx = data->ctx;
293 rq->cmd_flags = op;
294 if (data->flags & BLK_MQ_REQ_PREEMPT)
295 rq->rq_flags |= RQF_PREEMPT;
296 if (blk_queue_io_stat(data->q))
297 rq->rq_flags |= RQF_IO_STAT;
298 /* do not touch atomic flags, it needs atomic ops against the timer */
299 rq->cpu = -1;
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
302 rq->rq_disk = NULL;
303 rq->part = NULL;
304 rq->start_time = jiffies;
305 #ifdef CONFIG_BLK_CGROUP
306 rq->rl = NULL;
307 set_start_time_ns(rq);
308 rq->io_start_time_ns = 0;
309 #endif
310 rq->nr_phys_segments = 0;
311 #if defined(CONFIG_BLK_DEV_INTEGRITY)
312 rq->nr_integrity_segments = 0;
313 #endif
314 rq->special = NULL;
315 /* tag was already set */
316 rq->extra_len = 0;
318 INIT_LIST_HEAD(&rq->timeout_list);
319 rq->timeout = 0;
321 rq->end_io = NULL;
322 rq->end_io_data = NULL;
323 rq->next_rq = NULL;
325 data->ctx->rq_dispatched[op_is_sync(op)]++;
326 return rq;
329 static struct request *blk_mq_get_request(struct request_queue *q,
330 struct bio *bio, unsigned int op,
331 struct blk_mq_alloc_data *data)
333 struct elevator_queue *e = q->elevator;
334 struct request *rq;
335 unsigned int tag;
336 bool put_ctx_on_error = false;
338 blk_queue_enter_live(q);
339 data->q = q;
340 if (likely(!data->ctx)) {
341 data->ctx = blk_mq_get_ctx(q);
342 put_ctx_on_error = true;
344 if (likely(!data->hctx))
345 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
346 if (op & REQ_NOWAIT)
347 data->flags |= BLK_MQ_REQ_NOWAIT;
349 if (e) {
350 data->flags |= BLK_MQ_REQ_INTERNAL;
353 * Flush requests are special and go directly to the
354 * dispatch list.
356 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
357 e->type->ops.mq.limit_depth(op, data);
360 tag = blk_mq_get_tag(data);
361 if (tag == BLK_MQ_TAG_FAIL) {
362 if (put_ctx_on_error) {
363 blk_mq_put_ctx(data->ctx);
364 data->ctx = NULL;
366 blk_queue_exit(q);
367 return NULL;
370 rq = blk_mq_rq_ctx_init(data, tag, op);
371 if (!op_is_flush(op)) {
372 rq->elv.icq = NULL;
373 if (e && e->type->ops.mq.prepare_request) {
374 if (e->type->icq_cache && rq_ioc(bio))
375 blk_mq_sched_assign_ioc(rq, bio);
377 e->type->ops.mq.prepare_request(rq, bio);
378 rq->rq_flags |= RQF_ELVPRIV;
381 data->hctx->queued++;
382 return rq;
385 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
386 blk_mq_req_flags_t flags)
388 struct blk_mq_alloc_data alloc_data = { .flags = flags };
389 struct request *rq;
390 int ret;
392 ret = blk_queue_enter(q, flags);
393 if (ret)
394 return ERR_PTR(ret);
396 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
397 blk_queue_exit(q);
399 if (!rq)
400 return ERR_PTR(-EWOULDBLOCK);
402 blk_mq_put_ctx(alloc_data.ctx);
404 rq->__data_len = 0;
405 rq->__sector = (sector_t) -1;
406 rq->bio = rq->biotail = NULL;
407 return rq;
409 EXPORT_SYMBOL(blk_mq_alloc_request);
411 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
412 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
414 struct blk_mq_alloc_data alloc_data = { .flags = flags };
415 struct request *rq;
416 unsigned int cpu;
417 int ret;
420 * If the tag allocator sleeps we could get an allocation for a
421 * different hardware context. No need to complicate the low level
422 * allocator for this for the rare use case of a command tied to
423 * a specific queue.
425 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
426 return ERR_PTR(-EINVAL);
428 if (hctx_idx >= q->nr_hw_queues)
429 return ERR_PTR(-EIO);
431 ret = blk_queue_enter(q, flags);
432 if (ret)
433 return ERR_PTR(ret);
436 * Check if the hardware context is actually mapped to anything.
437 * If not tell the caller that it should skip this queue.
439 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
440 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
441 blk_queue_exit(q);
442 return ERR_PTR(-EXDEV);
444 cpu = cpumask_first(alloc_data.hctx->cpumask);
445 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
447 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
448 blk_queue_exit(q);
450 if (!rq)
451 return ERR_PTR(-EWOULDBLOCK);
453 return rq;
455 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
457 void blk_mq_free_request(struct request *rq)
459 struct request_queue *q = rq->q;
460 struct elevator_queue *e = q->elevator;
461 struct blk_mq_ctx *ctx = rq->mq_ctx;
462 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
463 const int sched_tag = rq->internal_tag;
465 if (rq->rq_flags & RQF_ELVPRIV) {
466 if (e && e->type->ops.mq.finish_request)
467 e->type->ops.mq.finish_request(rq);
468 if (rq->elv.icq) {
469 put_io_context(rq->elv.icq->ioc);
470 rq->elv.icq = NULL;
474 ctx->rq_completed[rq_is_sync(rq)]++;
475 if (rq->rq_flags & RQF_MQ_INFLIGHT)
476 atomic_dec(&hctx->nr_active);
478 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
479 laptop_io_completion(q->backing_dev_info);
481 wbt_done(q->rq_wb, &rq->issue_stat);
483 if (blk_rq_rl(rq))
484 blk_put_rl(blk_rq_rl(rq));
486 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
487 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
488 if (rq->tag != -1)
489 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
490 if (sched_tag != -1)
491 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
492 blk_mq_sched_restart(hctx);
493 blk_queue_exit(q);
495 EXPORT_SYMBOL_GPL(blk_mq_free_request);
497 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499 blk_account_io_done(rq);
501 if (rq->end_io) {
502 wbt_done(rq->q->rq_wb, &rq->issue_stat);
503 rq->end_io(rq, error);
504 } else {
505 if (unlikely(blk_bidi_rq(rq)))
506 blk_mq_free_request(rq->next_rq);
507 blk_mq_free_request(rq);
510 EXPORT_SYMBOL(__blk_mq_end_request);
512 void blk_mq_end_request(struct request *rq, blk_status_t error)
514 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
515 BUG();
516 __blk_mq_end_request(rq, error);
518 EXPORT_SYMBOL(blk_mq_end_request);
520 static void __blk_mq_complete_request_remote(void *data)
522 struct request *rq = data;
524 rq->q->softirq_done_fn(rq);
527 static void __blk_mq_complete_request(struct request *rq)
529 struct blk_mq_ctx *ctx = rq->mq_ctx;
530 bool shared = false;
531 int cpu;
533 if (rq->internal_tag != -1)
534 blk_mq_sched_completed_request(rq);
535 if (rq->rq_flags & RQF_STATS) {
536 blk_mq_poll_stats_start(rq->q);
537 blk_stat_add(rq);
540 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
541 rq->q->softirq_done_fn(rq);
542 return;
545 cpu = get_cpu();
546 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
547 shared = cpus_share_cache(cpu, ctx->cpu);
549 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
550 rq->csd.func = __blk_mq_complete_request_remote;
551 rq->csd.info = rq;
552 rq->csd.flags = 0;
553 smp_call_function_single_async(ctx->cpu, &rq->csd);
554 } else {
555 rq->q->softirq_done_fn(rq);
557 put_cpu();
561 * blk_mq_complete_request - end I/O on a request
562 * @rq: the request being processed
564 * Description:
565 * Ends all I/O on a request. It does not handle partial completions.
566 * The actual completion happens out-of-order, through a IPI handler.
568 void blk_mq_complete_request(struct request *rq)
570 struct request_queue *q = rq->q;
572 if (unlikely(blk_should_fake_timeout(q)))
573 return;
574 if (!blk_mark_rq_complete(rq))
575 __blk_mq_complete_request(rq);
577 EXPORT_SYMBOL(blk_mq_complete_request);
579 int blk_mq_request_started(struct request *rq)
581 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
583 EXPORT_SYMBOL_GPL(blk_mq_request_started);
585 void blk_mq_start_request(struct request *rq)
587 struct request_queue *q = rq->q;
589 blk_mq_sched_started_request(rq);
591 trace_block_rq_issue(q, rq);
593 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
594 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
595 rq->rq_flags |= RQF_STATS;
596 wbt_issue(q->rq_wb, &rq->issue_stat);
599 blk_add_timer(rq);
601 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
604 * Mark us as started and clear complete. Complete might have been
605 * set if requeue raced with timeout, which then marked it as
606 * complete. So be sure to clear complete again when we start
607 * the request, otherwise we'll ignore the completion event.
609 * Ensure that ->deadline is visible before we set STARTED, such that
610 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
611 * it observes STARTED.
613 smp_wmb();
614 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
615 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
617 * Coherence order guarantees these consecutive stores to a
618 * single variable propagate in the specified order. Thus the
619 * clear_bit() is ordered _after_ the set bit. See
620 * blk_mq_check_expired().
622 * (the bits must be part of the same byte for this to be
623 * true).
625 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
628 if (q->dma_drain_size && blk_rq_bytes(rq)) {
630 * Make sure space for the drain appears. We know we can do
631 * this because max_hw_segments has been adjusted to be one
632 * fewer than the device can handle.
634 rq->nr_phys_segments++;
637 EXPORT_SYMBOL(blk_mq_start_request);
640 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
641 * flag isn't set yet, so there may be race with timeout handler,
642 * but given rq->deadline is just set in .queue_rq() under
643 * this situation, the race won't be possible in reality because
644 * rq->timeout should be set as big enough to cover the window
645 * between blk_mq_start_request() called from .queue_rq() and
646 * clearing REQ_ATOM_STARTED here.
648 static void __blk_mq_requeue_request(struct request *rq)
650 struct request_queue *q = rq->q;
652 blk_mq_put_driver_tag(rq);
654 trace_block_rq_requeue(q, rq);
655 wbt_requeue(q->rq_wb, &rq->issue_stat);
656 blk_mq_sched_requeue_request(rq);
658 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
659 if (q->dma_drain_size && blk_rq_bytes(rq))
660 rq->nr_phys_segments--;
664 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
666 __blk_mq_requeue_request(rq);
668 BUG_ON(blk_queued_rq(rq));
669 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
671 EXPORT_SYMBOL(blk_mq_requeue_request);
673 static void blk_mq_requeue_work(struct work_struct *work)
675 struct request_queue *q =
676 container_of(work, struct request_queue, requeue_work.work);
677 LIST_HEAD(rq_list);
678 struct request *rq, *next;
680 spin_lock_irq(&q->requeue_lock);
681 list_splice_init(&q->requeue_list, &rq_list);
682 spin_unlock_irq(&q->requeue_lock);
684 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
685 if (!(rq->rq_flags & RQF_SOFTBARRIER))
686 continue;
688 rq->rq_flags &= ~RQF_SOFTBARRIER;
689 list_del_init(&rq->queuelist);
690 blk_mq_sched_insert_request(rq, true, false, false, true);
693 while (!list_empty(&rq_list)) {
694 rq = list_entry(rq_list.next, struct request, queuelist);
695 list_del_init(&rq->queuelist);
696 blk_mq_sched_insert_request(rq, false, false, false, true);
699 blk_mq_run_hw_queues(q, false);
702 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
703 bool kick_requeue_list)
705 struct request_queue *q = rq->q;
706 unsigned long flags;
709 * We abuse this flag that is otherwise used by the I/O scheduler to
710 * request head insertion from the workqueue.
712 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
714 spin_lock_irqsave(&q->requeue_lock, flags);
715 if (at_head) {
716 rq->rq_flags |= RQF_SOFTBARRIER;
717 list_add(&rq->queuelist, &q->requeue_list);
718 } else {
719 list_add_tail(&rq->queuelist, &q->requeue_list);
721 spin_unlock_irqrestore(&q->requeue_lock, flags);
723 if (kick_requeue_list)
724 blk_mq_kick_requeue_list(q);
726 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
728 void blk_mq_kick_requeue_list(struct request_queue *q)
730 kblockd_schedule_delayed_work(&q->requeue_work, 0);
732 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
734 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
735 unsigned long msecs)
737 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
738 msecs_to_jiffies(msecs));
740 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
742 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
744 if (tag < tags->nr_tags) {
745 prefetch(tags->rqs[tag]);
746 return tags->rqs[tag];
749 return NULL;
751 EXPORT_SYMBOL(blk_mq_tag_to_rq);
753 struct blk_mq_timeout_data {
754 unsigned long next;
755 unsigned int next_set;
758 void blk_mq_rq_timed_out(struct request *req, bool reserved)
760 const struct blk_mq_ops *ops = req->q->mq_ops;
761 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
764 * We know that complete is set at this point. If STARTED isn't set
765 * anymore, then the request isn't active and the "timeout" should
766 * just be ignored. This can happen due to the bitflag ordering.
767 * Timeout first checks if STARTED is set, and if it is, assumes
768 * the request is active. But if we race with completion, then
769 * both flags will get cleared. So check here again, and ignore
770 * a timeout event with a request that isn't active.
772 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
773 return;
775 if (ops->timeout)
776 ret = ops->timeout(req, reserved);
778 switch (ret) {
779 case BLK_EH_HANDLED:
780 __blk_mq_complete_request(req);
781 break;
782 case BLK_EH_RESET_TIMER:
783 blk_add_timer(req);
784 blk_clear_rq_complete(req);
785 break;
786 case BLK_EH_NOT_HANDLED:
787 break;
788 default:
789 printk(KERN_ERR "block: bad eh return: %d\n", ret);
790 break;
794 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
795 struct request *rq, void *priv, bool reserved)
797 struct blk_mq_timeout_data *data = priv;
798 unsigned long deadline;
800 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
801 return;
804 * Ensures that if we see STARTED we must also see our
805 * up-to-date deadline, see blk_mq_start_request().
807 smp_rmb();
809 deadline = READ_ONCE(rq->deadline);
812 * The rq being checked may have been freed and reallocated
813 * out already here, we avoid this race by checking rq->deadline
814 * and REQ_ATOM_COMPLETE flag together:
816 * - if rq->deadline is observed as new value because of
817 * reusing, the rq won't be timed out because of timing.
818 * - if rq->deadline is observed as previous value,
819 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
820 * because we put a barrier between setting rq->deadline
821 * and clearing the flag in blk_mq_start_request(), so
822 * this rq won't be timed out too.
824 if (time_after_eq(jiffies, deadline)) {
825 if (!blk_mark_rq_complete(rq)) {
827 * Again coherence order ensures that consecutive reads
828 * from the same variable must be in that order. This
829 * ensures that if we see COMPLETE clear, we must then
830 * see STARTED set and we'll ignore this timeout.
832 * (There's also the MB implied by the test_and_clear())
834 blk_mq_rq_timed_out(rq, reserved);
836 } else if (!data->next_set || time_after(data->next, deadline)) {
837 data->next = deadline;
838 data->next_set = 1;
842 static void blk_mq_timeout_work(struct work_struct *work)
844 struct request_queue *q =
845 container_of(work, struct request_queue, timeout_work);
846 struct blk_mq_timeout_data data = {
847 .next = 0,
848 .next_set = 0,
850 int i;
852 /* A deadlock might occur if a request is stuck requiring a
853 * timeout at the same time a queue freeze is waiting
854 * completion, since the timeout code would not be able to
855 * acquire the queue reference here.
857 * That's why we don't use blk_queue_enter here; instead, we use
858 * percpu_ref_tryget directly, because we need to be able to
859 * obtain a reference even in the short window between the queue
860 * starting to freeze, by dropping the first reference in
861 * blk_freeze_queue_start, and the moment the last request is
862 * consumed, marked by the instant q_usage_counter reaches
863 * zero.
865 if (!percpu_ref_tryget(&q->q_usage_counter))
866 return;
868 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
870 if (data.next_set) {
871 data.next = blk_rq_timeout(round_jiffies_up(data.next));
872 mod_timer(&q->timeout, data.next);
873 } else {
874 struct blk_mq_hw_ctx *hctx;
876 queue_for_each_hw_ctx(q, hctx, i) {
877 /* the hctx may be unmapped, so check it here */
878 if (blk_mq_hw_queue_mapped(hctx))
879 blk_mq_tag_idle(hctx);
882 blk_queue_exit(q);
885 struct flush_busy_ctx_data {
886 struct blk_mq_hw_ctx *hctx;
887 struct list_head *list;
890 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
892 struct flush_busy_ctx_data *flush_data = data;
893 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
894 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
896 sbitmap_clear_bit(sb, bitnr);
897 spin_lock(&ctx->lock);
898 list_splice_tail_init(&ctx->rq_list, flush_data->list);
899 spin_unlock(&ctx->lock);
900 return true;
904 * Process software queues that have been marked busy, splicing them
905 * to the for-dispatch
907 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
909 struct flush_busy_ctx_data data = {
910 .hctx = hctx,
911 .list = list,
914 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
916 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
918 struct dispatch_rq_data {
919 struct blk_mq_hw_ctx *hctx;
920 struct request *rq;
923 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
924 void *data)
926 struct dispatch_rq_data *dispatch_data = data;
927 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
928 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
930 spin_lock(&ctx->lock);
931 if (unlikely(!list_empty(&ctx->rq_list))) {
932 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
933 list_del_init(&dispatch_data->rq->queuelist);
934 if (list_empty(&ctx->rq_list))
935 sbitmap_clear_bit(sb, bitnr);
937 spin_unlock(&ctx->lock);
939 return !dispatch_data->rq;
942 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
943 struct blk_mq_ctx *start)
945 unsigned off = start ? start->index_hw : 0;
946 struct dispatch_rq_data data = {
947 .hctx = hctx,
948 .rq = NULL,
951 __sbitmap_for_each_set(&hctx->ctx_map, off,
952 dispatch_rq_from_ctx, &data);
954 return data.rq;
957 static inline unsigned int queued_to_index(unsigned int queued)
959 if (!queued)
960 return 0;
962 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
966 bool wait)
968 struct blk_mq_alloc_data data = {
969 .q = rq->q,
970 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
971 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
974 might_sleep_if(wait);
976 if (rq->tag != -1)
977 goto done;
979 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980 data.flags |= BLK_MQ_REQ_RESERVED;
982 rq->tag = blk_mq_get_tag(&data);
983 if (rq->tag >= 0) {
984 if (blk_mq_tag_busy(data.hctx)) {
985 rq->rq_flags |= RQF_MQ_INFLIGHT;
986 atomic_inc(&data.hctx->nr_active);
988 data.hctx->tags->rqs[rq->tag] = rq;
991 done:
992 if (hctx)
993 *hctx = data.hctx;
994 return rq->tag != -1;
997 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
998 int flags, void *key)
1000 struct blk_mq_hw_ctx *hctx;
1002 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1004 list_del_init(&wait->entry);
1005 blk_mq_run_hw_queue(hctx, true);
1006 return 1;
1010 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1011 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1012 * restart. For both caes, take care to check the condition again after
1013 * marking us as waiting.
1015 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1016 struct request *rq)
1018 struct blk_mq_hw_ctx *this_hctx = *hctx;
1019 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1020 struct sbq_wait_state *ws;
1021 wait_queue_entry_t *wait;
1022 bool ret;
1024 if (!shared_tags) {
1025 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1026 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1027 } else {
1028 wait = &this_hctx->dispatch_wait;
1029 if (!list_empty_careful(&wait->entry))
1030 return false;
1032 spin_lock(&this_hctx->lock);
1033 if (!list_empty(&wait->entry)) {
1034 spin_unlock(&this_hctx->lock);
1035 return false;
1038 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1039 add_wait_queue(&ws->wait, wait);
1043 * It's possible that a tag was freed in the window between the
1044 * allocation failure and adding the hardware queue to the wait
1045 * queue.
1047 ret = blk_mq_get_driver_tag(rq, hctx, false);
1049 if (!shared_tags) {
1051 * Don't clear RESTART here, someone else could have set it.
1052 * At most this will cost an extra queue run.
1054 return ret;
1055 } else {
1056 if (!ret) {
1057 spin_unlock(&this_hctx->lock);
1058 return false;
1062 * We got a tag, remove ourselves from the wait queue to ensure
1063 * someone else gets the wakeup.
1065 spin_lock_irq(&ws->wait.lock);
1066 list_del_init(&wait->entry);
1067 spin_unlock_irq(&ws->wait.lock);
1068 spin_unlock(&this_hctx->lock);
1069 return true;
1073 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1074 bool got_budget)
1076 struct blk_mq_hw_ctx *hctx;
1077 struct request *rq, *nxt;
1078 bool no_tag = false;
1079 int errors, queued;
1081 if (list_empty(list))
1082 return false;
1084 WARN_ON(!list_is_singular(list) && got_budget);
1087 * Now process all the entries, sending them to the driver.
1089 errors = queued = 0;
1090 do {
1091 struct blk_mq_queue_data bd;
1092 blk_status_t ret;
1094 rq = list_first_entry(list, struct request, queuelist);
1095 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1097 * The initial allocation attempt failed, so we need to
1098 * rerun the hardware queue when a tag is freed. The
1099 * waitqueue takes care of that. If the queue is run
1100 * before we add this entry back on the dispatch list,
1101 * we'll re-run it below.
1103 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1104 if (got_budget)
1105 blk_mq_put_dispatch_budget(hctx);
1107 * For non-shared tags, the RESTART check
1108 * will suffice.
1110 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1111 no_tag = true;
1112 break;
1116 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1117 blk_mq_put_driver_tag(rq);
1118 break;
1121 list_del_init(&rq->queuelist);
1123 bd.rq = rq;
1126 * Flag last if we have no more requests, or if we have more
1127 * but can't assign a driver tag to it.
1129 if (list_empty(list))
1130 bd.last = true;
1131 else {
1132 nxt = list_first_entry(list, struct request, queuelist);
1133 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1136 ret = q->mq_ops->queue_rq(hctx, &bd);
1137 if (ret == BLK_STS_RESOURCE) {
1139 * If an I/O scheduler has been configured and we got a
1140 * driver tag for the next request already, free it
1141 * again.
1143 if (!list_empty(list)) {
1144 nxt = list_first_entry(list, struct request, queuelist);
1145 blk_mq_put_driver_tag(nxt);
1147 list_add(&rq->queuelist, list);
1148 __blk_mq_requeue_request(rq);
1149 break;
1152 if (unlikely(ret != BLK_STS_OK)) {
1153 errors++;
1154 blk_mq_end_request(rq, BLK_STS_IOERR);
1155 continue;
1158 queued++;
1159 } while (!list_empty(list));
1161 hctx->dispatched[queued_to_index(queued)]++;
1164 * Any items that need requeuing? Stuff them into hctx->dispatch,
1165 * that is where we will continue on next queue run.
1167 if (!list_empty(list)) {
1168 spin_lock(&hctx->lock);
1169 list_splice_init(list, &hctx->dispatch);
1170 spin_unlock(&hctx->lock);
1173 * If SCHED_RESTART was set by the caller of this function and
1174 * it is no longer set that means that it was cleared by another
1175 * thread and hence that a queue rerun is needed.
1177 * If 'no_tag' is set, that means that we failed getting
1178 * a driver tag with an I/O scheduler attached. If our dispatch
1179 * waitqueue is no longer active, ensure that we run the queue
1180 * AFTER adding our entries back to the list.
1182 * If no I/O scheduler has been configured it is possible that
1183 * the hardware queue got stopped and restarted before requests
1184 * were pushed back onto the dispatch list. Rerun the queue to
1185 * avoid starvation. Notes:
1186 * - blk_mq_run_hw_queue() checks whether or not a queue has
1187 * been stopped before rerunning a queue.
1188 * - Some but not all block drivers stop a queue before
1189 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1190 * and dm-rq.
1192 if (!blk_mq_sched_needs_restart(hctx) ||
1193 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1194 blk_mq_run_hw_queue(hctx, true);
1197 return (queued + errors) != 0;
1200 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1202 int srcu_idx;
1205 * We should be running this queue from one of the CPUs that
1206 * are mapped to it.
1208 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1209 cpu_online(hctx->next_cpu));
1212 * We can't run the queue inline with ints disabled. Ensure that
1213 * we catch bad users of this early.
1215 WARN_ON_ONCE(in_interrupt());
1217 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1218 rcu_read_lock();
1219 blk_mq_sched_dispatch_requests(hctx);
1220 rcu_read_unlock();
1221 } else {
1222 might_sleep();
1224 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1225 blk_mq_sched_dispatch_requests(hctx);
1226 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1231 * It'd be great if the workqueue API had a way to pass
1232 * in a mask and had some smarts for more clever placement.
1233 * For now we just round-robin here, switching for every
1234 * BLK_MQ_CPU_WORK_BATCH queued items.
1236 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1238 if (hctx->queue->nr_hw_queues == 1)
1239 return WORK_CPU_UNBOUND;
1241 if (--hctx->next_cpu_batch <= 0) {
1242 int next_cpu;
1244 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1245 if (next_cpu >= nr_cpu_ids)
1246 next_cpu = cpumask_first(hctx->cpumask);
1248 hctx->next_cpu = next_cpu;
1249 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1252 return hctx->next_cpu;
1255 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1256 unsigned long msecs)
1258 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1259 return;
1261 if (unlikely(blk_mq_hctx_stopped(hctx)))
1262 return;
1264 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1265 int cpu = get_cpu();
1266 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1267 __blk_mq_run_hw_queue(hctx);
1268 put_cpu();
1269 return;
1272 put_cpu();
1275 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1276 &hctx->run_work,
1277 msecs_to_jiffies(msecs));
1280 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1282 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1284 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1286 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1288 if (blk_mq_hctx_has_pending(hctx)) {
1289 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1290 return true;
1293 return false;
1295 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1297 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1299 struct blk_mq_hw_ctx *hctx;
1300 int i;
1302 queue_for_each_hw_ctx(q, hctx, i) {
1303 if (blk_mq_hctx_stopped(hctx))
1304 continue;
1306 blk_mq_run_hw_queue(hctx, async);
1309 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1312 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1313 * @q: request queue.
1315 * The caller is responsible for serializing this function against
1316 * blk_mq_{start,stop}_hw_queue().
1318 bool blk_mq_queue_stopped(struct request_queue *q)
1320 struct blk_mq_hw_ctx *hctx;
1321 int i;
1323 queue_for_each_hw_ctx(q, hctx, i)
1324 if (blk_mq_hctx_stopped(hctx))
1325 return true;
1327 return false;
1329 EXPORT_SYMBOL(blk_mq_queue_stopped);
1332 * This function is often used for pausing .queue_rq() by driver when
1333 * there isn't enough resource or some conditions aren't satisfied, and
1334 * BLK_STS_RESOURCE is usually returned.
1336 * We do not guarantee that dispatch can be drained or blocked
1337 * after blk_mq_stop_hw_queue() returns. Please use
1338 * blk_mq_quiesce_queue() for that requirement.
1340 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1342 cancel_delayed_work(&hctx->run_work);
1344 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1346 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1349 * This function is often used for pausing .queue_rq() by driver when
1350 * there isn't enough resource or some conditions aren't satisfied, and
1351 * BLK_STS_RESOURCE is usually returned.
1353 * We do not guarantee that dispatch can be drained or blocked
1354 * after blk_mq_stop_hw_queues() returns. Please use
1355 * blk_mq_quiesce_queue() for that requirement.
1357 void blk_mq_stop_hw_queues(struct request_queue *q)
1359 struct blk_mq_hw_ctx *hctx;
1360 int i;
1362 queue_for_each_hw_ctx(q, hctx, i)
1363 blk_mq_stop_hw_queue(hctx);
1365 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1367 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1369 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1371 blk_mq_run_hw_queue(hctx, false);
1373 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1375 void blk_mq_start_hw_queues(struct request_queue *q)
1377 struct blk_mq_hw_ctx *hctx;
1378 int i;
1380 queue_for_each_hw_ctx(q, hctx, i)
1381 blk_mq_start_hw_queue(hctx);
1383 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1385 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1387 if (!blk_mq_hctx_stopped(hctx))
1388 return;
1390 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1391 blk_mq_run_hw_queue(hctx, async);
1393 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1395 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1397 struct blk_mq_hw_ctx *hctx;
1398 int i;
1400 queue_for_each_hw_ctx(q, hctx, i)
1401 blk_mq_start_stopped_hw_queue(hctx, async);
1403 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1405 static void blk_mq_run_work_fn(struct work_struct *work)
1407 struct blk_mq_hw_ctx *hctx;
1409 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1412 * If we are stopped, don't run the queue. The exception is if
1413 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1414 * the STOPPED bit and run it.
1416 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1417 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1418 return;
1420 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1421 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1424 __blk_mq_run_hw_queue(hctx);
1428 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1430 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1431 return;
1434 * Stop the hw queue, then modify currently delayed work.
1435 * This should prevent us from running the queue prematurely.
1436 * Mark the queue as auto-clearing STOPPED when it runs.
1438 blk_mq_stop_hw_queue(hctx);
1439 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1440 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1441 &hctx->run_work,
1442 msecs_to_jiffies(msecs));
1444 EXPORT_SYMBOL(blk_mq_delay_queue);
1446 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1447 struct request *rq,
1448 bool at_head)
1450 struct blk_mq_ctx *ctx = rq->mq_ctx;
1452 lockdep_assert_held(&ctx->lock);
1454 trace_block_rq_insert(hctx->queue, rq);
1456 if (at_head)
1457 list_add(&rq->queuelist, &ctx->rq_list);
1458 else
1459 list_add_tail(&rq->queuelist, &ctx->rq_list);
1462 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1463 bool at_head)
1465 struct blk_mq_ctx *ctx = rq->mq_ctx;
1467 lockdep_assert_held(&ctx->lock);
1469 __blk_mq_insert_req_list(hctx, rq, at_head);
1470 blk_mq_hctx_mark_pending(hctx, ctx);
1474 * Should only be used carefully, when the caller knows we want to
1475 * bypass a potential IO scheduler on the target device.
1477 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1479 struct blk_mq_ctx *ctx = rq->mq_ctx;
1480 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1482 spin_lock(&hctx->lock);
1483 list_add_tail(&rq->queuelist, &hctx->dispatch);
1484 spin_unlock(&hctx->lock);
1486 if (run_queue)
1487 blk_mq_run_hw_queue(hctx, false);
1490 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1491 struct list_head *list)
1495 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1496 * offline now
1498 spin_lock(&ctx->lock);
1499 while (!list_empty(list)) {
1500 struct request *rq;
1502 rq = list_first_entry(list, struct request, queuelist);
1503 BUG_ON(rq->mq_ctx != ctx);
1504 list_del_init(&rq->queuelist);
1505 __blk_mq_insert_req_list(hctx, rq, false);
1507 blk_mq_hctx_mark_pending(hctx, ctx);
1508 spin_unlock(&ctx->lock);
1511 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1513 struct request *rqa = container_of(a, struct request, queuelist);
1514 struct request *rqb = container_of(b, struct request, queuelist);
1516 return !(rqa->mq_ctx < rqb->mq_ctx ||
1517 (rqa->mq_ctx == rqb->mq_ctx &&
1518 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1521 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1523 struct blk_mq_ctx *this_ctx;
1524 struct request_queue *this_q;
1525 struct request *rq;
1526 LIST_HEAD(list);
1527 LIST_HEAD(ctx_list);
1528 unsigned int depth;
1530 list_splice_init(&plug->mq_list, &list);
1532 list_sort(NULL, &list, plug_ctx_cmp);
1534 this_q = NULL;
1535 this_ctx = NULL;
1536 depth = 0;
1538 while (!list_empty(&list)) {
1539 rq = list_entry_rq(list.next);
1540 list_del_init(&rq->queuelist);
1541 BUG_ON(!rq->q);
1542 if (rq->mq_ctx != this_ctx) {
1543 if (this_ctx) {
1544 trace_block_unplug(this_q, depth, from_schedule);
1545 blk_mq_sched_insert_requests(this_q, this_ctx,
1546 &ctx_list,
1547 from_schedule);
1550 this_ctx = rq->mq_ctx;
1551 this_q = rq->q;
1552 depth = 0;
1555 depth++;
1556 list_add_tail(&rq->queuelist, &ctx_list);
1560 * If 'this_ctx' is set, we know we have entries to complete
1561 * on 'ctx_list'. Do those.
1563 if (this_ctx) {
1564 trace_block_unplug(this_q, depth, from_schedule);
1565 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1566 from_schedule);
1570 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1572 blk_init_request_from_bio(rq, bio);
1574 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1576 blk_account_io_start(rq, true);
1579 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1580 struct blk_mq_ctx *ctx,
1581 struct request *rq)
1583 spin_lock(&ctx->lock);
1584 __blk_mq_insert_request(hctx, rq, false);
1585 spin_unlock(&ctx->lock);
1588 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1590 if (rq->tag != -1)
1591 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1593 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1596 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1597 struct request *rq,
1598 blk_qc_t *cookie, bool may_sleep)
1600 struct request_queue *q = rq->q;
1601 struct blk_mq_queue_data bd = {
1602 .rq = rq,
1603 .last = true,
1605 blk_qc_t new_cookie;
1606 blk_status_t ret;
1607 bool run_queue = true;
1609 /* RCU or SRCU read lock is needed before checking quiesced flag */
1610 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1611 run_queue = false;
1612 goto insert;
1615 if (q->elevator)
1616 goto insert;
1618 if (!blk_mq_get_driver_tag(rq, NULL, false))
1619 goto insert;
1621 if (!blk_mq_get_dispatch_budget(hctx)) {
1622 blk_mq_put_driver_tag(rq);
1623 goto insert;
1626 new_cookie = request_to_qc_t(hctx, rq);
1629 * For OK queue, we are done. For error, kill it. Any other
1630 * error (busy), just add it to our list as we previously
1631 * would have done
1633 ret = q->mq_ops->queue_rq(hctx, &bd);
1634 switch (ret) {
1635 case BLK_STS_OK:
1636 *cookie = new_cookie;
1637 return;
1638 case BLK_STS_RESOURCE:
1639 __blk_mq_requeue_request(rq);
1640 goto insert;
1641 default:
1642 *cookie = BLK_QC_T_NONE;
1643 blk_mq_end_request(rq, ret);
1644 return;
1647 insert:
1648 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1651 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1652 struct request *rq, blk_qc_t *cookie)
1654 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1655 rcu_read_lock();
1656 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1657 rcu_read_unlock();
1658 } else {
1659 unsigned int srcu_idx;
1661 might_sleep();
1663 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1664 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1665 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1669 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1671 const int is_sync = op_is_sync(bio->bi_opf);
1672 const int is_flush_fua = op_is_flush(bio->bi_opf);
1673 struct blk_mq_alloc_data data = { .flags = 0 };
1674 struct request *rq;
1675 unsigned int request_count = 0;
1676 struct blk_plug *plug;
1677 struct request *same_queue_rq = NULL;
1678 blk_qc_t cookie;
1679 unsigned int wb_acct;
1681 blk_queue_bounce(q, &bio);
1683 blk_queue_split(q, &bio);
1685 if (!bio_integrity_prep(bio))
1686 return BLK_QC_T_NONE;
1688 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1689 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1690 return BLK_QC_T_NONE;
1692 if (blk_mq_sched_bio_merge(q, bio))
1693 return BLK_QC_T_NONE;
1695 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1697 trace_block_getrq(q, bio, bio->bi_opf);
1699 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1700 if (unlikely(!rq)) {
1701 __wbt_done(q->rq_wb, wb_acct);
1702 if (bio->bi_opf & REQ_NOWAIT)
1703 bio_wouldblock_error(bio);
1704 return BLK_QC_T_NONE;
1707 wbt_track(&rq->issue_stat, wb_acct);
1709 cookie = request_to_qc_t(data.hctx, rq);
1711 plug = current->plug;
1712 if (unlikely(is_flush_fua)) {
1713 blk_mq_put_ctx(data.ctx);
1714 blk_mq_bio_to_request(rq, bio);
1716 /* bypass scheduler for flush rq */
1717 blk_insert_flush(rq);
1718 blk_mq_run_hw_queue(data.hctx, true);
1719 } else if (plug && q->nr_hw_queues == 1) {
1720 struct request *last = NULL;
1722 blk_mq_put_ctx(data.ctx);
1723 blk_mq_bio_to_request(rq, bio);
1726 * @request_count may become stale because of schedule
1727 * out, so check the list again.
1729 if (list_empty(&plug->mq_list))
1730 request_count = 0;
1731 else if (blk_queue_nomerges(q))
1732 request_count = blk_plug_queued_count(q);
1734 if (!request_count)
1735 trace_block_plug(q);
1736 else
1737 last = list_entry_rq(plug->mq_list.prev);
1739 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1740 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1741 blk_flush_plug_list(plug, false);
1742 trace_block_plug(q);
1745 list_add_tail(&rq->queuelist, &plug->mq_list);
1746 } else if (plug && !blk_queue_nomerges(q)) {
1747 blk_mq_bio_to_request(rq, bio);
1750 * We do limited plugging. If the bio can be merged, do that.
1751 * Otherwise the existing request in the plug list will be
1752 * issued. So the plug list will have one request at most
1753 * The plug list might get flushed before this. If that happens,
1754 * the plug list is empty, and same_queue_rq is invalid.
1756 if (list_empty(&plug->mq_list))
1757 same_queue_rq = NULL;
1758 if (same_queue_rq)
1759 list_del_init(&same_queue_rq->queuelist);
1760 list_add_tail(&rq->queuelist, &plug->mq_list);
1762 blk_mq_put_ctx(data.ctx);
1764 if (same_queue_rq) {
1765 data.hctx = blk_mq_map_queue(q,
1766 same_queue_rq->mq_ctx->cpu);
1767 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1768 &cookie);
1770 } else if (q->nr_hw_queues > 1 && is_sync) {
1771 blk_mq_put_ctx(data.ctx);
1772 blk_mq_bio_to_request(rq, bio);
1773 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1774 } else if (q->elevator) {
1775 blk_mq_put_ctx(data.ctx);
1776 blk_mq_bio_to_request(rq, bio);
1777 blk_mq_sched_insert_request(rq, false, true, true, true);
1778 } else {
1779 blk_mq_put_ctx(data.ctx);
1780 blk_mq_bio_to_request(rq, bio);
1781 blk_mq_queue_io(data.hctx, data.ctx, rq);
1782 blk_mq_run_hw_queue(data.hctx, true);
1785 return cookie;
1788 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1789 unsigned int hctx_idx)
1791 struct page *page;
1793 if (tags->rqs && set->ops->exit_request) {
1794 int i;
1796 for (i = 0; i < tags->nr_tags; i++) {
1797 struct request *rq = tags->static_rqs[i];
1799 if (!rq)
1800 continue;
1801 set->ops->exit_request(set, rq, hctx_idx);
1802 tags->static_rqs[i] = NULL;
1806 while (!list_empty(&tags->page_list)) {
1807 page = list_first_entry(&tags->page_list, struct page, lru);
1808 list_del_init(&page->lru);
1810 * Remove kmemleak object previously allocated in
1811 * blk_mq_init_rq_map().
1813 kmemleak_free(page_address(page));
1814 __free_pages(page, page->private);
1818 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1820 kfree(tags->rqs);
1821 tags->rqs = NULL;
1822 kfree(tags->static_rqs);
1823 tags->static_rqs = NULL;
1825 blk_mq_free_tags(tags);
1828 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1829 unsigned int hctx_idx,
1830 unsigned int nr_tags,
1831 unsigned int reserved_tags)
1833 struct blk_mq_tags *tags;
1834 int node;
1836 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1837 if (node == NUMA_NO_NODE)
1838 node = set->numa_node;
1840 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1841 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1842 if (!tags)
1843 return NULL;
1845 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1846 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1847 node);
1848 if (!tags->rqs) {
1849 blk_mq_free_tags(tags);
1850 return NULL;
1853 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1854 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1855 node);
1856 if (!tags->static_rqs) {
1857 kfree(tags->rqs);
1858 blk_mq_free_tags(tags);
1859 return NULL;
1862 return tags;
1865 static size_t order_to_size(unsigned int order)
1867 return (size_t)PAGE_SIZE << order;
1870 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1871 unsigned int hctx_idx, unsigned int depth)
1873 unsigned int i, j, entries_per_page, max_order = 4;
1874 size_t rq_size, left;
1875 int node;
1877 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1878 if (node == NUMA_NO_NODE)
1879 node = set->numa_node;
1881 INIT_LIST_HEAD(&tags->page_list);
1884 * rq_size is the size of the request plus driver payload, rounded
1885 * to the cacheline size
1887 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1888 cache_line_size());
1889 left = rq_size * depth;
1891 for (i = 0; i < depth; ) {
1892 int this_order = max_order;
1893 struct page *page;
1894 int to_do;
1895 void *p;
1897 while (this_order && left < order_to_size(this_order - 1))
1898 this_order--;
1900 do {
1901 page = alloc_pages_node(node,
1902 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1903 this_order);
1904 if (page)
1905 break;
1906 if (!this_order--)
1907 break;
1908 if (order_to_size(this_order) < rq_size)
1909 break;
1910 } while (1);
1912 if (!page)
1913 goto fail;
1915 page->private = this_order;
1916 list_add_tail(&page->lru, &tags->page_list);
1918 p = page_address(page);
1920 * Allow kmemleak to scan these pages as they contain pointers
1921 * to additional allocations like via ops->init_request().
1923 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1924 entries_per_page = order_to_size(this_order) / rq_size;
1925 to_do = min(entries_per_page, depth - i);
1926 left -= to_do * rq_size;
1927 for (j = 0; j < to_do; j++) {
1928 struct request *rq = p;
1930 tags->static_rqs[i] = rq;
1931 if (set->ops->init_request) {
1932 if (set->ops->init_request(set, rq, hctx_idx,
1933 node)) {
1934 tags->static_rqs[i] = NULL;
1935 goto fail;
1939 p += rq_size;
1940 i++;
1943 return 0;
1945 fail:
1946 blk_mq_free_rqs(set, tags, hctx_idx);
1947 return -ENOMEM;
1951 * 'cpu' is going away. splice any existing rq_list entries from this
1952 * software queue to the hw queue dispatch list, and ensure that it
1953 * gets run.
1955 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1957 struct blk_mq_hw_ctx *hctx;
1958 struct blk_mq_ctx *ctx;
1959 LIST_HEAD(tmp);
1961 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1962 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1964 spin_lock(&ctx->lock);
1965 if (!list_empty(&ctx->rq_list)) {
1966 list_splice_init(&ctx->rq_list, &tmp);
1967 blk_mq_hctx_clear_pending(hctx, ctx);
1969 spin_unlock(&ctx->lock);
1971 if (list_empty(&tmp))
1972 return 0;
1974 spin_lock(&hctx->lock);
1975 list_splice_tail_init(&tmp, &hctx->dispatch);
1976 spin_unlock(&hctx->lock);
1978 blk_mq_run_hw_queue(hctx, true);
1979 return 0;
1982 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1984 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1985 &hctx->cpuhp_dead);
1988 /* hctx->ctxs will be freed in queue's release handler */
1989 static void blk_mq_exit_hctx(struct request_queue *q,
1990 struct blk_mq_tag_set *set,
1991 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1993 blk_mq_debugfs_unregister_hctx(hctx);
1995 blk_mq_tag_idle(hctx);
1997 if (set->ops->exit_request)
1998 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2000 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2002 if (set->ops->exit_hctx)
2003 set->ops->exit_hctx(hctx, hctx_idx);
2005 if (hctx->flags & BLK_MQ_F_BLOCKING)
2006 cleanup_srcu_struct(hctx->queue_rq_srcu);
2008 blk_mq_remove_cpuhp(hctx);
2009 blk_free_flush_queue(hctx->fq);
2010 sbitmap_free(&hctx->ctx_map);
2013 static void blk_mq_exit_hw_queues(struct request_queue *q,
2014 struct blk_mq_tag_set *set, int nr_queue)
2016 struct blk_mq_hw_ctx *hctx;
2017 unsigned int i;
2019 queue_for_each_hw_ctx(q, hctx, i) {
2020 if (i == nr_queue)
2021 break;
2022 blk_mq_exit_hctx(q, set, hctx, i);
2026 static int blk_mq_init_hctx(struct request_queue *q,
2027 struct blk_mq_tag_set *set,
2028 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2030 int node;
2032 node = hctx->numa_node;
2033 if (node == NUMA_NO_NODE)
2034 node = hctx->numa_node = set->numa_node;
2036 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2037 spin_lock_init(&hctx->lock);
2038 INIT_LIST_HEAD(&hctx->dispatch);
2039 hctx->queue = q;
2040 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2042 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2044 hctx->tags = set->tags[hctx_idx];
2047 * Allocate space for all possible cpus to avoid allocation at
2048 * runtime
2050 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2051 GFP_KERNEL, node);
2052 if (!hctx->ctxs)
2053 goto unregister_cpu_notifier;
2055 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2056 node))
2057 goto free_ctxs;
2059 hctx->nr_ctx = 0;
2061 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2062 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2064 if (set->ops->init_hctx &&
2065 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2066 goto free_bitmap;
2068 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2069 goto exit_hctx;
2071 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2072 if (!hctx->fq)
2073 goto sched_exit_hctx;
2075 if (set->ops->init_request &&
2076 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2077 node))
2078 goto free_fq;
2080 if (hctx->flags & BLK_MQ_F_BLOCKING)
2081 init_srcu_struct(hctx->queue_rq_srcu);
2083 blk_mq_debugfs_register_hctx(q, hctx);
2085 return 0;
2087 free_fq:
2088 kfree(hctx->fq);
2089 sched_exit_hctx:
2090 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2091 exit_hctx:
2092 if (set->ops->exit_hctx)
2093 set->ops->exit_hctx(hctx, hctx_idx);
2094 free_bitmap:
2095 sbitmap_free(&hctx->ctx_map);
2096 free_ctxs:
2097 kfree(hctx->ctxs);
2098 unregister_cpu_notifier:
2099 blk_mq_remove_cpuhp(hctx);
2100 return -1;
2103 static void blk_mq_init_cpu_queues(struct request_queue *q,
2104 unsigned int nr_hw_queues)
2106 unsigned int i;
2108 for_each_possible_cpu(i) {
2109 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2110 struct blk_mq_hw_ctx *hctx;
2112 __ctx->cpu = i;
2113 spin_lock_init(&__ctx->lock);
2114 INIT_LIST_HEAD(&__ctx->rq_list);
2115 __ctx->queue = q;
2117 /* If the cpu isn't present, the cpu is mapped to first hctx */
2118 if (!cpu_present(i))
2119 continue;
2121 hctx = blk_mq_map_queue(q, i);
2124 * Set local node, IFF we have more than one hw queue. If
2125 * not, we remain on the home node of the device
2127 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2128 hctx->numa_node = local_memory_node(cpu_to_node(i));
2132 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2134 int ret = 0;
2136 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2137 set->queue_depth, set->reserved_tags);
2138 if (!set->tags[hctx_idx])
2139 return false;
2141 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2142 set->queue_depth);
2143 if (!ret)
2144 return true;
2146 blk_mq_free_rq_map(set->tags[hctx_idx]);
2147 set->tags[hctx_idx] = NULL;
2148 return false;
2151 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2152 unsigned int hctx_idx)
2154 if (set->tags[hctx_idx]) {
2155 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2156 blk_mq_free_rq_map(set->tags[hctx_idx]);
2157 set->tags[hctx_idx] = NULL;
2161 static void blk_mq_map_swqueue(struct request_queue *q)
2163 unsigned int i, hctx_idx;
2164 struct blk_mq_hw_ctx *hctx;
2165 struct blk_mq_ctx *ctx;
2166 struct blk_mq_tag_set *set = q->tag_set;
2169 * Avoid others reading imcomplete hctx->cpumask through sysfs
2171 mutex_lock(&q->sysfs_lock);
2173 queue_for_each_hw_ctx(q, hctx, i) {
2174 cpumask_clear(hctx->cpumask);
2175 hctx->nr_ctx = 0;
2179 * Map software to hardware queues.
2181 * If the cpu isn't present, the cpu is mapped to first hctx.
2183 for_each_present_cpu(i) {
2184 hctx_idx = q->mq_map[i];
2185 /* unmapped hw queue can be remapped after CPU topo changed */
2186 if (!set->tags[hctx_idx] &&
2187 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2189 * If tags initialization fail for some hctx,
2190 * that hctx won't be brought online. In this
2191 * case, remap the current ctx to hctx[0] which
2192 * is guaranteed to always have tags allocated
2194 q->mq_map[i] = 0;
2197 ctx = per_cpu_ptr(q->queue_ctx, i);
2198 hctx = blk_mq_map_queue(q, i);
2200 cpumask_set_cpu(i, hctx->cpumask);
2201 ctx->index_hw = hctx->nr_ctx;
2202 hctx->ctxs[hctx->nr_ctx++] = ctx;
2205 mutex_unlock(&q->sysfs_lock);
2207 queue_for_each_hw_ctx(q, hctx, i) {
2209 * If no software queues are mapped to this hardware queue,
2210 * disable it and free the request entries.
2212 if (!hctx->nr_ctx) {
2213 /* Never unmap queue 0. We need it as a
2214 * fallback in case of a new remap fails
2215 * allocation
2217 if (i && set->tags[i])
2218 blk_mq_free_map_and_requests(set, i);
2220 hctx->tags = NULL;
2221 continue;
2224 hctx->tags = set->tags[i];
2225 WARN_ON(!hctx->tags);
2228 * Set the map size to the number of mapped software queues.
2229 * This is more accurate and more efficient than looping
2230 * over all possibly mapped software queues.
2232 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2235 * Initialize batch roundrobin counts
2237 hctx->next_cpu = cpumask_first(hctx->cpumask);
2238 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2243 * Caller needs to ensure that we're either frozen/quiesced, or that
2244 * the queue isn't live yet.
2246 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2248 struct blk_mq_hw_ctx *hctx;
2249 int i;
2251 queue_for_each_hw_ctx(q, hctx, i) {
2252 if (shared) {
2253 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2254 atomic_inc(&q->shared_hctx_restart);
2255 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2256 } else {
2257 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2258 atomic_dec(&q->shared_hctx_restart);
2259 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2264 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2265 bool shared)
2267 struct request_queue *q;
2269 lockdep_assert_held(&set->tag_list_lock);
2271 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2272 blk_mq_freeze_queue(q);
2273 queue_set_hctx_shared(q, shared);
2274 blk_mq_unfreeze_queue(q);
2278 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2280 struct blk_mq_tag_set *set = q->tag_set;
2282 mutex_lock(&set->tag_list_lock);
2283 list_del_rcu(&q->tag_set_list);
2284 INIT_LIST_HEAD(&q->tag_set_list);
2285 if (list_is_singular(&set->tag_list)) {
2286 /* just transitioned to unshared */
2287 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2288 /* update existing queue */
2289 blk_mq_update_tag_set_depth(set, false);
2291 mutex_unlock(&set->tag_list_lock);
2293 synchronize_rcu();
2296 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2297 struct request_queue *q)
2299 q->tag_set = set;
2301 mutex_lock(&set->tag_list_lock);
2304 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2306 if (!list_empty(&set->tag_list) &&
2307 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2308 set->flags |= BLK_MQ_F_TAG_SHARED;
2309 /* update existing queue */
2310 blk_mq_update_tag_set_depth(set, true);
2312 if (set->flags & BLK_MQ_F_TAG_SHARED)
2313 queue_set_hctx_shared(q, true);
2314 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2316 mutex_unlock(&set->tag_list_lock);
2320 * It is the actual release handler for mq, but we do it from
2321 * request queue's release handler for avoiding use-after-free
2322 * and headache because q->mq_kobj shouldn't have been introduced,
2323 * but we can't group ctx/kctx kobj without it.
2325 void blk_mq_release(struct request_queue *q)
2327 struct blk_mq_hw_ctx *hctx;
2328 unsigned int i;
2330 /* hctx kobj stays in hctx */
2331 queue_for_each_hw_ctx(q, hctx, i) {
2332 if (!hctx)
2333 continue;
2334 kobject_put(&hctx->kobj);
2337 q->mq_map = NULL;
2339 kfree(q->queue_hw_ctx);
2342 * release .mq_kobj and sw queue's kobject now because
2343 * both share lifetime with request queue.
2345 blk_mq_sysfs_deinit(q);
2347 free_percpu(q->queue_ctx);
2350 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2352 struct request_queue *uninit_q, *q;
2354 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2355 if (!uninit_q)
2356 return ERR_PTR(-ENOMEM);
2358 q = blk_mq_init_allocated_queue(set, uninit_q);
2359 if (IS_ERR(q))
2360 blk_cleanup_queue(uninit_q);
2362 return q;
2364 EXPORT_SYMBOL(blk_mq_init_queue);
2366 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2368 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2370 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2371 __alignof__(struct blk_mq_hw_ctx)) !=
2372 sizeof(struct blk_mq_hw_ctx));
2374 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2375 hw_ctx_size += sizeof(struct srcu_struct);
2377 return hw_ctx_size;
2380 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2381 struct request_queue *q)
2383 int i, j;
2384 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2386 blk_mq_sysfs_unregister(q);
2387 for (i = 0; i < set->nr_hw_queues; i++) {
2388 int node;
2390 if (hctxs[i])
2391 continue;
2393 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2394 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2395 GFP_KERNEL, node);
2396 if (!hctxs[i])
2397 break;
2399 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2400 node)) {
2401 kfree(hctxs[i]);
2402 hctxs[i] = NULL;
2403 break;
2406 atomic_set(&hctxs[i]->nr_active, 0);
2407 hctxs[i]->numa_node = node;
2408 hctxs[i]->queue_num = i;
2410 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2411 free_cpumask_var(hctxs[i]->cpumask);
2412 kfree(hctxs[i]);
2413 hctxs[i] = NULL;
2414 break;
2416 blk_mq_hctx_kobj_init(hctxs[i]);
2418 for (j = i; j < q->nr_hw_queues; j++) {
2419 struct blk_mq_hw_ctx *hctx = hctxs[j];
2421 if (hctx) {
2422 if (hctx->tags)
2423 blk_mq_free_map_and_requests(set, j);
2424 blk_mq_exit_hctx(q, set, hctx, j);
2425 kobject_put(&hctx->kobj);
2426 hctxs[j] = NULL;
2430 q->nr_hw_queues = i;
2431 blk_mq_sysfs_register(q);
2434 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2435 struct request_queue *q)
2437 /* mark the queue as mq asap */
2438 q->mq_ops = set->ops;
2440 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2441 blk_mq_poll_stats_bkt,
2442 BLK_MQ_POLL_STATS_BKTS, q);
2443 if (!q->poll_cb)
2444 goto err_exit;
2446 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2447 if (!q->queue_ctx)
2448 goto err_exit;
2450 /* init q->mq_kobj and sw queues' kobjects */
2451 blk_mq_sysfs_init(q);
2453 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2454 GFP_KERNEL, set->numa_node);
2455 if (!q->queue_hw_ctx)
2456 goto err_percpu;
2458 q->mq_map = set->mq_map;
2460 blk_mq_realloc_hw_ctxs(set, q);
2461 if (!q->nr_hw_queues)
2462 goto err_hctxs;
2464 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2465 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2467 q->nr_queues = nr_cpu_ids;
2469 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2471 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2472 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2474 q->sg_reserved_size = INT_MAX;
2476 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2477 INIT_LIST_HEAD(&q->requeue_list);
2478 spin_lock_init(&q->requeue_lock);
2480 blk_queue_make_request(q, blk_mq_make_request);
2481 if (q->mq_ops->poll)
2482 q->poll_fn = blk_mq_poll;
2485 * Do this after blk_queue_make_request() overrides it...
2487 q->nr_requests = set->queue_depth;
2490 * Default to classic polling
2492 q->poll_nsec = -1;
2494 if (set->ops->complete)
2495 blk_queue_softirq_done(q, set->ops->complete);
2497 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2498 blk_mq_add_queue_tag_set(set, q);
2499 blk_mq_map_swqueue(q);
2501 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2502 int ret;
2504 ret = blk_mq_sched_init(q);
2505 if (ret)
2506 return ERR_PTR(ret);
2509 return q;
2511 err_hctxs:
2512 kfree(q->queue_hw_ctx);
2513 err_percpu:
2514 free_percpu(q->queue_ctx);
2515 err_exit:
2516 q->mq_ops = NULL;
2517 return ERR_PTR(-ENOMEM);
2519 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2521 void blk_mq_free_queue(struct request_queue *q)
2523 struct blk_mq_tag_set *set = q->tag_set;
2525 blk_mq_del_queue_tag_set(q);
2526 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2529 /* Basically redo blk_mq_init_queue with queue frozen */
2530 static void blk_mq_queue_reinit(struct request_queue *q)
2532 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2534 blk_mq_debugfs_unregister_hctxs(q);
2535 blk_mq_sysfs_unregister(q);
2538 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2539 * we should change hctx numa_node according to the new topology (this
2540 * involves freeing and re-allocating memory, worth doing?)
2542 blk_mq_map_swqueue(q);
2544 blk_mq_sysfs_register(q);
2545 blk_mq_debugfs_register_hctxs(q);
2548 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2550 int i;
2552 for (i = 0; i < set->nr_hw_queues; i++)
2553 if (!__blk_mq_alloc_rq_map(set, i))
2554 goto out_unwind;
2556 return 0;
2558 out_unwind:
2559 while (--i >= 0)
2560 blk_mq_free_rq_map(set->tags[i]);
2562 return -ENOMEM;
2566 * Allocate the request maps associated with this tag_set. Note that this
2567 * may reduce the depth asked for, if memory is tight. set->queue_depth
2568 * will be updated to reflect the allocated depth.
2570 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2572 unsigned int depth;
2573 int err;
2575 depth = set->queue_depth;
2576 do {
2577 err = __blk_mq_alloc_rq_maps(set);
2578 if (!err)
2579 break;
2581 set->queue_depth >>= 1;
2582 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2583 err = -ENOMEM;
2584 break;
2586 } while (set->queue_depth);
2588 if (!set->queue_depth || err) {
2589 pr_err("blk-mq: failed to allocate request map\n");
2590 return -ENOMEM;
2593 if (depth != set->queue_depth)
2594 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2595 depth, set->queue_depth);
2597 return 0;
2600 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2602 if (set->ops->map_queues)
2603 return set->ops->map_queues(set);
2604 else
2605 return blk_mq_map_queues(set);
2609 * Alloc a tag set to be associated with one or more request queues.
2610 * May fail with EINVAL for various error conditions. May adjust the
2611 * requested depth down, if if it too large. In that case, the set
2612 * value will be stored in set->queue_depth.
2614 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2616 int ret;
2618 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2620 if (!set->nr_hw_queues)
2621 return -EINVAL;
2622 if (!set->queue_depth)
2623 return -EINVAL;
2624 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2625 return -EINVAL;
2627 if (!set->ops->queue_rq)
2628 return -EINVAL;
2630 if (!set->ops->get_budget ^ !set->ops->put_budget)
2631 return -EINVAL;
2633 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2634 pr_info("blk-mq: reduced tag depth to %u\n",
2635 BLK_MQ_MAX_DEPTH);
2636 set->queue_depth = BLK_MQ_MAX_DEPTH;
2640 * If a crashdump is active, then we are potentially in a very
2641 * memory constrained environment. Limit us to 1 queue and
2642 * 64 tags to prevent using too much memory.
2644 if (is_kdump_kernel()) {
2645 set->nr_hw_queues = 1;
2646 set->queue_depth = min(64U, set->queue_depth);
2649 * There is no use for more h/w queues than cpus.
2651 if (set->nr_hw_queues > nr_cpu_ids)
2652 set->nr_hw_queues = nr_cpu_ids;
2654 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2655 GFP_KERNEL, set->numa_node);
2656 if (!set->tags)
2657 return -ENOMEM;
2659 ret = -ENOMEM;
2660 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2661 GFP_KERNEL, set->numa_node);
2662 if (!set->mq_map)
2663 goto out_free_tags;
2665 ret = blk_mq_update_queue_map(set);
2666 if (ret)
2667 goto out_free_mq_map;
2669 ret = blk_mq_alloc_rq_maps(set);
2670 if (ret)
2671 goto out_free_mq_map;
2673 mutex_init(&set->tag_list_lock);
2674 INIT_LIST_HEAD(&set->tag_list);
2676 return 0;
2678 out_free_mq_map:
2679 kfree(set->mq_map);
2680 set->mq_map = NULL;
2681 out_free_tags:
2682 kfree(set->tags);
2683 set->tags = NULL;
2684 return ret;
2686 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2688 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2690 int i;
2692 for (i = 0; i < nr_cpu_ids; i++)
2693 blk_mq_free_map_and_requests(set, i);
2695 kfree(set->mq_map);
2696 set->mq_map = NULL;
2698 kfree(set->tags);
2699 set->tags = NULL;
2701 EXPORT_SYMBOL(blk_mq_free_tag_set);
2703 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2705 struct blk_mq_tag_set *set = q->tag_set;
2706 struct blk_mq_hw_ctx *hctx;
2707 int i, ret;
2709 if (!set)
2710 return -EINVAL;
2712 blk_mq_freeze_queue(q);
2714 ret = 0;
2715 queue_for_each_hw_ctx(q, hctx, i) {
2716 if (!hctx->tags)
2717 continue;
2719 * If we're using an MQ scheduler, just update the scheduler
2720 * queue depth. This is similar to what the old code would do.
2722 if (!hctx->sched_tags) {
2723 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2724 false);
2725 } else {
2726 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2727 nr, true);
2729 if (ret)
2730 break;
2733 if (!ret)
2734 q->nr_requests = nr;
2736 blk_mq_unfreeze_queue(q);
2738 return ret;
2741 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2742 int nr_hw_queues)
2744 struct request_queue *q;
2746 lockdep_assert_held(&set->tag_list_lock);
2748 if (nr_hw_queues > nr_cpu_ids)
2749 nr_hw_queues = nr_cpu_ids;
2750 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2751 return;
2753 list_for_each_entry(q, &set->tag_list, tag_set_list)
2754 blk_mq_freeze_queue(q);
2756 set->nr_hw_queues = nr_hw_queues;
2757 blk_mq_update_queue_map(set);
2758 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2759 blk_mq_realloc_hw_ctxs(set, q);
2760 blk_mq_queue_reinit(q);
2763 list_for_each_entry(q, &set->tag_list, tag_set_list)
2764 blk_mq_unfreeze_queue(q);
2767 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2769 mutex_lock(&set->tag_list_lock);
2770 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2771 mutex_unlock(&set->tag_list_lock);
2773 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2775 /* Enable polling stats and return whether they were already enabled. */
2776 static bool blk_poll_stats_enable(struct request_queue *q)
2778 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2779 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2780 return true;
2781 blk_stat_add_callback(q, q->poll_cb);
2782 return false;
2785 static void blk_mq_poll_stats_start(struct request_queue *q)
2788 * We don't arm the callback if polling stats are not enabled or the
2789 * callback is already active.
2791 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2792 blk_stat_is_active(q->poll_cb))
2793 return;
2795 blk_stat_activate_msecs(q->poll_cb, 100);
2798 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2800 struct request_queue *q = cb->data;
2801 int bucket;
2803 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2804 if (cb->stat[bucket].nr_samples)
2805 q->poll_stat[bucket] = cb->stat[bucket];
2809 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2810 struct blk_mq_hw_ctx *hctx,
2811 struct request *rq)
2813 unsigned long ret = 0;
2814 int bucket;
2817 * If stats collection isn't on, don't sleep but turn it on for
2818 * future users
2820 if (!blk_poll_stats_enable(q))
2821 return 0;
2824 * As an optimistic guess, use half of the mean service time
2825 * for this type of request. We can (and should) make this smarter.
2826 * For instance, if the completion latencies are tight, we can
2827 * get closer than just half the mean. This is especially
2828 * important on devices where the completion latencies are longer
2829 * than ~10 usec. We do use the stats for the relevant IO size
2830 * if available which does lead to better estimates.
2832 bucket = blk_mq_poll_stats_bkt(rq);
2833 if (bucket < 0)
2834 return ret;
2836 if (q->poll_stat[bucket].nr_samples)
2837 ret = (q->poll_stat[bucket].mean + 1) / 2;
2839 return ret;
2842 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2843 struct blk_mq_hw_ctx *hctx,
2844 struct request *rq)
2846 struct hrtimer_sleeper hs;
2847 enum hrtimer_mode mode;
2848 unsigned int nsecs;
2849 ktime_t kt;
2851 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2852 return false;
2855 * poll_nsec can be:
2857 * -1: don't ever hybrid sleep
2858 * 0: use half of prev avg
2859 * >0: use this specific value
2861 if (q->poll_nsec == -1)
2862 return false;
2863 else if (q->poll_nsec > 0)
2864 nsecs = q->poll_nsec;
2865 else
2866 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2868 if (!nsecs)
2869 return false;
2871 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2874 * This will be replaced with the stats tracking code, using
2875 * 'avg_completion_time / 2' as the pre-sleep target.
2877 kt = nsecs;
2879 mode = HRTIMER_MODE_REL;
2880 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2881 hrtimer_set_expires(&hs.timer, kt);
2883 hrtimer_init_sleeper(&hs, current);
2884 do {
2885 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2886 break;
2887 set_current_state(TASK_UNINTERRUPTIBLE);
2888 hrtimer_start_expires(&hs.timer, mode);
2889 if (hs.task)
2890 io_schedule();
2891 hrtimer_cancel(&hs.timer);
2892 mode = HRTIMER_MODE_ABS;
2893 } while (hs.task && !signal_pending(current));
2895 __set_current_state(TASK_RUNNING);
2896 destroy_hrtimer_on_stack(&hs.timer);
2897 return true;
2900 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2902 struct request_queue *q = hctx->queue;
2903 long state;
2906 * If we sleep, have the caller restart the poll loop to reset
2907 * the state. Like for the other success return cases, the
2908 * caller is responsible for checking if the IO completed. If
2909 * the IO isn't complete, we'll get called again and will go
2910 * straight to the busy poll loop.
2912 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2913 return true;
2915 hctx->poll_considered++;
2917 state = current->state;
2918 while (!need_resched()) {
2919 int ret;
2921 hctx->poll_invoked++;
2923 ret = q->mq_ops->poll(hctx, rq->tag);
2924 if (ret > 0) {
2925 hctx->poll_success++;
2926 set_current_state(TASK_RUNNING);
2927 return true;
2930 if (signal_pending_state(state, current))
2931 set_current_state(TASK_RUNNING);
2933 if (current->state == TASK_RUNNING)
2934 return true;
2935 if (ret < 0)
2936 break;
2937 cpu_relax();
2940 return false;
2943 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2945 struct blk_mq_hw_ctx *hctx;
2946 struct request *rq;
2948 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2949 return false;
2951 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2952 if (!blk_qc_t_is_internal(cookie))
2953 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2954 else {
2955 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2957 * With scheduling, if the request has completed, we'll
2958 * get a NULL return here, as we clear the sched tag when
2959 * that happens. The request still remains valid, like always,
2960 * so we should be safe with just the NULL check.
2962 if (!rq)
2963 return false;
2966 return __blk_mq_poll(hctx, rq);
2969 static int __init blk_mq_init(void)
2972 * See comment in block/blk.h rq_atomic_flags enum
2974 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2975 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2977 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2978 blk_mq_hctx_notify_dead);
2979 return 0;
2981 subsys_initcall(blk_mq_init);