cfg80211: add debug print when disabling a channel on a custom regd
[linux-2.6/btrfs-unstable.git] / net / wireless / reg.c
blob6e7a9d853191bfca34084a8eb9172ef7290324fb
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
43 #include "core.h"
44 #include "reg.h"
45 #include "regdb.h"
46 #include "nl80211.h"
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
50 do { \
51 printk(KERN_DEBUG format , ## args); \
52 } while (0)
53 #else
54 #define REG_DBG_PRINT(args...)
55 #endif
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request *last_request;
60 /* To trigger userspace events */
61 static struct platform_device *reg_pdev;
64 * Central wireless core regulatory domains, we only need two,
65 * the current one and a world regulatory domain in case we have no
66 * information to give us an alpha2
68 const struct ieee80211_regdomain *cfg80211_regdomain;
71 * Protects static reg.c components:
72 * - cfg80211_world_regdom
73 * - cfg80211_regdom
74 * - last_request
76 static DEFINE_MUTEX(reg_mutex);
78 static inline void assert_reg_lock(void)
80 lockdep_assert_held(&reg_mutex);
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list);
85 static spinlock_t reg_requests_lock;
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons);
89 static spinlock_t reg_pending_beacons_lock;
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list);
94 struct reg_beacon {
95 struct list_head list;
96 struct ieee80211_channel chan;
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101 .n_reg_rules = 5,
102 .alpha2 = "00",
103 .reg_rules = {
104 /* IEEE 802.11b/g, channels 1..11 */
105 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106 /* IEEE 802.11b/g, channels 12..13. No HT40
107 * channel fits here. */
108 REG_RULE(2467-10, 2472+10, 20, 6, 20,
109 NL80211_RRF_PASSIVE_SCAN |
110 NL80211_RRF_NO_IBSS),
111 /* IEEE 802.11 channel 14 - Only JP enables
112 * this and for 802.11b only */
113 REG_RULE(2484-10, 2484+10, 20, 6, 20,
114 NL80211_RRF_PASSIVE_SCAN |
115 NL80211_RRF_NO_IBSS |
116 NL80211_RRF_NO_OFDM),
117 /* IEEE 802.11a, channel 36..48 */
118 REG_RULE(5180-10, 5240+10, 40, 6, 20,
119 NL80211_RRF_PASSIVE_SCAN |
120 NL80211_RRF_NO_IBSS),
122 /* NB: 5260 MHz - 5700 MHz requies DFS */
124 /* IEEE 802.11a, channel 149..165 */
125 REG_RULE(5745-10, 5825+10, 40, 6, 20,
126 NL80211_RRF_PASSIVE_SCAN |
127 NL80211_RRF_NO_IBSS),
131 static const struct ieee80211_regdomain *cfg80211_world_regdom =
132 &world_regdom;
134 static char *ieee80211_regdom = "00";
135 static char user_alpha2[2];
137 module_param(ieee80211_regdom, charp, 0444);
138 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
140 static void reset_regdomains(void)
142 /* avoid freeing static information or freeing something twice */
143 if (cfg80211_regdomain == cfg80211_world_regdom)
144 cfg80211_regdomain = NULL;
145 if (cfg80211_world_regdom == &world_regdom)
146 cfg80211_world_regdom = NULL;
147 if (cfg80211_regdomain == &world_regdom)
148 cfg80211_regdomain = NULL;
150 kfree(cfg80211_regdomain);
151 kfree(cfg80211_world_regdom);
153 cfg80211_world_regdom = &world_regdom;
154 cfg80211_regdomain = NULL;
158 * Dynamic world regulatory domain requested by the wireless
159 * core upon initialization
161 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
163 BUG_ON(!last_request);
165 reset_regdomains();
167 cfg80211_world_regdom = rd;
168 cfg80211_regdomain = rd;
171 bool is_world_regdom(const char *alpha2)
173 if (!alpha2)
174 return false;
175 if (alpha2[0] == '0' && alpha2[1] == '0')
176 return true;
177 return false;
180 static bool is_alpha2_set(const char *alpha2)
182 if (!alpha2)
183 return false;
184 if (alpha2[0] != 0 && alpha2[1] != 0)
185 return true;
186 return false;
189 static bool is_unknown_alpha2(const char *alpha2)
191 if (!alpha2)
192 return false;
194 * Special case where regulatory domain was built by driver
195 * but a specific alpha2 cannot be determined
197 if (alpha2[0] == '9' && alpha2[1] == '9')
198 return true;
199 return false;
202 static bool is_intersected_alpha2(const char *alpha2)
204 if (!alpha2)
205 return false;
207 * Special case where regulatory domain is the
208 * result of an intersection between two regulatory domain
209 * structures
211 if (alpha2[0] == '9' && alpha2[1] == '8')
212 return true;
213 return false;
216 static bool is_an_alpha2(const char *alpha2)
218 if (!alpha2)
219 return false;
220 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221 return true;
222 return false;
225 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
227 if (!alpha2_x || !alpha2_y)
228 return false;
229 if (alpha2_x[0] == alpha2_y[0] &&
230 alpha2_x[1] == alpha2_y[1])
231 return true;
232 return false;
235 static bool regdom_changes(const char *alpha2)
237 assert_cfg80211_lock();
239 if (!cfg80211_regdomain)
240 return true;
241 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
242 return false;
243 return true;
247 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
248 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
249 * has ever been issued.
251 static bool is_user_regdom_saved(void)
253 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
254 return false;
256 /* This would indicate a mistake on the design */
257 if (WARN((!is_world_regdom(user_alpha2) &&
258 !is_an_alpha2(user_alpha2)),
259 "Unexpected user alpha2: %c%c\n",
260 user_alpha2[0],
261 user_alpha2[1]))
262 return false;
264 return true;
267 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
268 const struct ieee80211_regdomain *src_regd)
270 struct ieee80211_regdomain *regd;
271 int size_of_regd = 0;
272 unsigned int i;
274 size_of_regd = sizeof(struct ieee80211_regdomain) +
275 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
277 regd = kzalloc(size_of_regd, GFP_KERNEL);
278 if (!regd)
279 return -ENOMEM;
281 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
283 for (i = 0; i < src_regd->n_reg_rules; i++)
284 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
285 sizeof(struct ieee80211_reg_rule));
287 *dst_regd = regd;
288 return 0;
291 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
292 struct reg_regdb_search_request {
293 char alpha2[2];
294 struct list_head list;
297 static LIST_HEAD(reg_regdb_search_list);
298 static DEFINE_MUTEX(reg_regdb_search_mutex);
300 static void reg_regdb_search(struct work_struct *work)
302 struct reg_regdb_search_request *request;
303 const struct ieee80211_regdomain *curdom, *regdom;
304 int i, r;
306 mutex_lock(&reg_regdb_search_mutex);
307 while (!list_empty(&reg_regdb_search_list)) {
308 request = list_first_entry(&reg_regdb_search_list,
309 struct reg_regdb_search_request,
310 list);
311 list_del(&request->list);
313 for (i=0; i<reg_regdb_size; i++) {
314 curdom = reg_regdb[i];
316 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
317 r = reg_copy_regd(&regdom, curdom);
318 if (r)
319 break;
320 mutex_lock(&cfg80211_mutex);
321 set_regdom(regdom);
322 mutex_unlock(&cfg80211_mutex);
323 break;
327 kfree(request);
329 mutex_unlock(&reg_regdb_search_mutex);
332 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
334 static void reg_regdb_query(const char *alpha2)
336 struct reg_regdb_search_request *request;
338 if (!alpha2)
339 return;
341 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
342 if (!request)
343 return;
345 memcpy(request->alpha2, alpha2, 2);
347 mutex_lock(&reg_regdb_search_mutex);
348 list_add_tail(&request->list, &reg_regdb_search_list);
349 mutex_unlock(&reg_regdb_search_mutex);
351 schedule_work(&reg_regdb_work);
353 #else
354 static inline void reg_regdb_query(const char *alpha2) {}
355 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
358 * This lets us keep regulatory code which is updated on a regulatory
359 * basis in userspace.
361 static int call_crda(const char *alpha2)
363 char country_env[9 + 2] = "COUNTRY=";
364 char *envp[] = {
365 country_env,
366 NULL
369 if (!is_world_regdom((char *) alpha2))
370 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371 alpha2[0], alpha2[1]);
372 else
373 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374 "regulatory domain\n");
376 /* query internal regulatory database (if it exists) */
377 reg_regdb_query(alpha2);
379 country_env[8] = alpha2[0];
380 country_env[9] = alpha2[1];
382 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
385 /* Used by nl80211 before kmalloc'ing our regulatory domain */
386 bool reg_is_valid_request(const char *alpha2)
388 assert_cfg80211_lock();
390 if (!last_request)
391 return false;
393 return alpha2_equal(last_request->alpha2, alpha2);
396 /* Sanity check on a regulatory rule */
397 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
399 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400 u32 freq_diff;
402 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403 return false;
405 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
406 return false;
408 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
410 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
411 freq_range->max_bandwidth_khz > freq_diff)
412 return false;
414 return true;
417 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
419 const struct ieee80211_reg_rule *reg_rule = NULL;
420 unsigned int i;
422 if (!rd->n_reg_rules)
423 return false;
425 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
426 return false;
428 for (i = 0; i < rd->n_reg_rules; i++) {
429 reg_rule = &rd->reg_rules[i];
430 if (!is_valid_reg_rule(reg_rule))
431 return false;
434 return true;
437 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
438 u32 center_freq_khz,
439 u32 bw_khz)
441 u32 start_freq_khz, end_freq_khz;
443 start_freq_khz = center_freq_khz - (bw_khz/2);
444 end_freq_khz = center_freq_khz + (bw_khz/2);
446 if (start_freq_khz >= freq_range->start_freq_khz &&
447 end_freq_khz <= freq_range->end_freq_khz)
448 return true;
450 return false;
454 * freq_in_rule_band - tells us if a frequency is in a frequency band
455 * @freq_range: frequency rule we want to query
456 * @freq_khz: frequency we are inquiring about
458 * This lets us know if a specific frequency rule is or is not relevant to
459 * a specific frequency's band. Bands are device specific and artificial
460 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461 * safe for now to assume that a frequency rule should not be part of a
462 * frequency's band if the start freq or end freq are off by more than 2 GHz.
463 * This resolution can be lowered and should be considered as we add
464 * regulatory rule support for other "bands".
466 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
467 u32 freq_khz)
469 #define ONE_GHZ_IN_KHZ 1000000
470 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
471 return true;
472 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473 return true;
474 return false;
475 #undef ONE_GHZ_IN_KHZ
479 * Helper for regdom_intersect(), this does the real
480 * mathematical intersection fun
482 static int reg_rules_intersect(
483 const struct ieee80211_reg_rule *rule1,
484 const struct ieee80211_reg_rule *rule2,
485 struct ieee80211_reg_rule *intersected_rule)
487 const struct ieee80211_freq_range *freq_range1, *freq_range2;
488 struct ieee80211_freq_range *freq_range;
489 const struct ieee80211_power_rule *power_rule1, *power_rule2;
490 struct ieee80211_power_rule *power_rule;
491 u32 freq_diff;
493 freq_range1 = &rule1->freq_range;
494 freq_range2 = &rule2->freq_range;
495 freq_range = &intersected_rule->freq_range;
497 power_rule1 = &rule1->power_rule;
498 power_rule2 = &rule2->power_rule;
499 power_rule = &intersected_rule->power_rule;
501 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
502 freq_range2->start_freq_khz);
503 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
504 freq_range2->end_freq_khz);
505 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
506 freq_range2->max_bandwidth_khz);
508 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
509 if (freq_range->max_bandwidth_khz > freq_diff)
510 freq_range->max_bandwidth_khz = freq_diff;
512 power_rule->max_eirp = min(power_rule1->max_eirp,
513 power_rule2->max_eirp);
514 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
515 power_rule2->max_antenna_gain);
517 intersected_rule->flags = (rule1->flags | rule2->flags);
519 if (!is_valid_reg_rule(intersected_rule))
520 return -EINVAL;
522 return 0;
526 * regdom_intersect - do the intersection between two regulatory domains
527 * @rd1: first regulatory domain
528 * @rd2: second regulatory domain
530 * Use this function to get the intersection between two regulatory domains.
531 * Once completed we will mark the alpha2 for the rd as intersected, "98",
532 * as no one single alpha2 can represent this regulatory domain.
534 * Returns a pointer to the regulatory domain structure which will hold the
535 * resulting intersection of rules between rd1 and rd2. We will
536 * kzalloc() this structure for you.
538 static struct ieee80211_regdomain *regdom_intersect(
539 const struct ieee80211_regdomain *rd1,
540 const struct ieee80211_regdomain *rd2)
542 int r, size_of_regd;
543 unsigned int x, y;
544 unsigned int num_rules = 0, rule_idx = 0;
545 const struct ieee80211_reg_rule *rule1, *rule2;
546 struct ieee80211_reg_rule *intersected_rule;
547 struct ieee80211_regdomain *rd;
548 /* This is just a dummy holder to help us count */
549 struct ieee80211_reg_rule irule;
551 /* Uses the stack temporarily for counter arithmetic */
552 intersected_rule = &irule;
554 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
556 if (!rd1 || !rd2)
557 return NULL;
560 * First we get a count of the rules we'll need, then we actually
561 * build them. This is to so we can malloc() and free() a
562 * regdomain once. The reason we use reg_rules_intersect() here
563 * is it will return -EINVAL if the rule computed makes no sense.
564 * All rules that do check out OK are valid.
567 for (x = 0; x < rd1->n_reg_rules; x++) {
568 rule1 = &rd1->reg_rules[x];
569 for (y = 0; y < rd2->n_reg_rules; y++) {
570 rule2 = &rd2->reg_rules[y];
571 if (!reg_rules_intersect(rule1, rule2,
572 intersected_rule))
573 num_rules++;
574 memset(intersected_rule, 0,
575 sizeof(struct ieee80211_reg_rule));
579 if (!num_rules)
580 return NULL;
582 size_of_regd = sizeof(struct ieee80211_regdomain) +
583 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
585 rd = kzalloc(size_of_regd, GFP_KERNEL);
586 if (!rd)
587 return NULL;
589 for (x = 0; x < rd1->n_reg_rules; x++) {
590 rule1 = &rd1->reg_rules[x];
591 for (y = 0; y < rd2->n_reg_rules; y++) {
592 rule2 = &rd2->reg_rules[y];
594 * This time around instead of using the stack lets
595 * write to the target rule directly saving ourselves
596 * a memcpy()
598 intersected_rule = &rd->reg_rules[rule_idx];
599 r = reg_rules_intersect(rule1, rule2,
600 intersected_rule);
602 * No need to memset here the intersected rule here as
603 * we're not using the stack anymore
605 if (r)
606 continue;
607 rule_idx++;
611 if (rule_idx != num_rules) {
612 kfree(rd);
613 return NULL;
616 rd->n_reg_rules = num_rules;
617 rd->alpha2[0] = '9';
618 rd->alpha2[1] = '8';
620 return rd;
624 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
625 * want to just have the channel structure use these
627 static u32 map_regdom_flags(u32 rd_flags)
629 u32 channel_flags = 0;
630 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
631 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
632 if (rd_flags & NL80211_RRF_NO_IBSS)
633 channel_flags |= IEEE80211_CHAN_NO_IBSS;
634 if (rd_flags & NL80211_RRF_DFS)
635 channel_flags |= IEEE80211_CHAN_RADAR;
636 return channel_flags;
639 static int freq_reg_info_regd(struct wiphy *wiphy,
640 u32 center_freq,
641 u32 desired_bw_khz,
642 const struct ieee80211_reg_rule **reg_rule,
643 const struct ieee80211_regdomain *custom_regd)
645 int i;
646 bool band_rule_found = false;
647 const struct ieee80211_regdomain *regd;
648 bool bw_fits = false;
650 if (!desired_bw_khz)
651 desired_bw_khz = MHZ_TO_KHZ(20);
653 regd = custom_regd ? custom_regd : cfg80211_regdomain;
656 * Follow the driver's regulatory domain, if present, unless a country
657 * IE has been processed or a user wants to help complaince further
659 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
660 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661 wiphy->regd)
662 regd = wiphy->regd;
664 if (!regd)
665 return -EINVAL;
667 for (i = 0; i < regd->n_reg_rules; i++) {
668 const struct ieee80211_reg_rule *rr;
669 const struct ieee80211_freq_range *fr = NULL;
670 const struct ieee80211_power_rule *pr = NULL;
672 rr = &regd->reg_rules[i];
673 fr = &rr->freq_range;
674 pr = &rr->power_rule;
677 * We only need to know if one frequency rule was
678 * was in center_freq's band, that's enough, so lets
679 * not overwrite it once found
681 if (!band_rule_found)
682 band_rule_found = freq_in_rule_band(fr, center_freq);
684 bw_fits = reg_does_bw_fit(fr,
685 center_freq,
686 desired_bw_khz);
688 if (band_rule_found && bw_fits) {
689 *reg_rule = rr;
690 return 0;
694 if (!band_rule_found)
695 return -ERANGE;
697 return -EINVAL;
700 int freq_reg_info(struct wiphy *wiphy,
701 u32 center_freq,
702 u32 desired_bw_khz,
703 const struct ieee80211_reg_rule **reg_rule)
705 assert_cfg80211_lock();
706 return freq_reg_info_regd(wiphy,
707 center_freq,
708 desired_bw_khz,
709 reg_rule,
710 NULL);
712 EXPORT_SYMBOL(freq_reg_info);
714 #ifdef CONFIG_CFG80211_REG_DEBUG
715 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
717 switch (initiator) {
718 case NL80211_REGDOM_SET_BY_CORE:
719 return "Set by core";
720 case NL80211_REGDOM_SET_BY_USER:
721 return "Set by user";
722 case NL80211_REGDOM_SET_BY_DRIVER:
723 return "Set by driver";
724 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
725 return "Set by country IE";
726 default:
727 WARN_ON(1);
728 return "Set by bug";
731 #endif
734 * Note that right now we assume the desired channel bandwidth
735 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
736 * per channel, the primary and the extension channel). To support
737 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
738 * new ieee80211_channel.target_bw and re run the regulatory check
739 * on the wiphy with the target_bw specified. Then we can simply use
740 * that below for the desired_bw_khz below.
742 static void handle_channel(struct wiphy *wiphy,
743 enum nl80211_reg_initiator initiator,
744 enum ieee80211_band band,
745 unsigned int chan_idx)
747 int r;
748 u32 flags, bw_flags = 0;
749 u32 desired_bw_khz = MHZ_TO_KHZ(20);
750 const struct ieee80211_reg_rule *reg_rule = NULL;
751 const struct ieee80211_power_rule *power_rule = NULL;
752 const struct ieee80211_freq_range *freq_range = NULL;
753 struct ieee80211_supported_band *sband;
754 struct ieee80211_channel *chan;
755 struct wiphy *request_wiphy = NULL;
757 assert_cfg80211_lock();
759 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
761 sband = wiphy->bands[band];
762 BUG_ON(chan_idx >= sband->n_channels);
763 chan = &sband->channels[chan_idx];
765 flags = chan->orig_flags;
767 r = freq_reg_info(wiphy,
768 MHZ_TO_KHZ(chan->center_freq),
769 desired_bw_khz,
770 &reg_rule);
772 if (r) {
774 * We will disable all channels that do not match our
775 * recieved regulatory rule unless the hint is coming
776 * from a Country IE and the Country IE had no information
777 * about a band. The IEEE 802.11 spec allows for an AP
778 * to send only a subset of the regulatory rules allowed,
779 * so an AP in the US that only supports 2.4 GHz may only send
780 * a country IE with information for the 2.4 GHz band
781 * while 5 GHz is still supported.
783 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
784 r == -ERANGE)
785 return;
787 REG_DBG_PRINT("cfg80211: Disabling freq %d MHz\n",
788 chan->center_freq);
789 chan->flags = IEEE80211_CHAN_DISABLED;
790 return;
793 power_rule = &reg_rule->power_rule;
794 freq_range = &reg_rule->freq_range;
796 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
797 bw_flags = IEEE80211_CHAN_NO_HT40;
799 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
800 request_wiphy && request_wiphy == wiphy &&
801 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
803 * This gaurantees the driver's requested regulatory domain
804 * will always be used as a base for further regulatory
805 * settings
807 chan->flags = chan->orig_flags =
808 map_regdom_flags(reg_rule->flags) | bw_flags;
809 chan->max_antenna_gain = chan->orig_mag =
810 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
811 chan->max_power = chan->orig_mpwr =
812 (int) MBM_TO_DBM(power_rule->max_eirp);
813 return;
816 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
817 chan->max_antenna_gain = min(chan->orig_mag,
818 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
819 if (chan->orig_mpwr)
820 chan->max_power = min(chan->orig_mpwr,
821 (int) MBM_TO_DBM(power_rule->max_eirp));
822 else
823 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
826 static void handle_band(struct wiphy *wiphy,
827 enum ieee80211_band band,
828 enum nl80211_reg_initiator initiator)
830 unsigned int i;
831 struct ieee80211_supported_band *sband;
833 BUG_ON(!wiphy->bands[band]);
834 sband = wiphy->bands[band];
836 for (i = 0; i < sband->n_channels; i++)
837 handle_channel(wiphy, initiator, band, i);
840 static bool ignore_reg_update(struct wiphy *wiphy,
841 enum nl80211_reg_initiator initiator)
843 if (!last_request) {
844 REG_DBG_PRINT("cfg80211: Ignoring regulatory request %s since "
845 "last_request is not set\n",
846 reg_initiator_name(initiator));
847 return true;
850 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
851 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
852 REG_DBG_PRINT("cfg80211: Ignoring regulatory request %s "
853 "since the driver uses its own custom "
854 "regulatory domain ",
855 reg_initiator_name(initiator));
856 return true;
860 * wiphy->regd will be set once the device has its own
861 * desired regulatory domain set
863 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
864 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
865 !is_world_regdom(last_request->alpha2)) {
866 REG_DBG_PRINT("cfg80211: Ignoring regulatory request %s "
867 "since the driver requires its own regulaotry "
868 "domain to be set first",
869 reg_initiator_name(initiator));
870 return true;
873 return false;
876 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
878 struct cfg80211_registered_device *rdev;
880 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
881 wiphy_update_regulatory(&rdev->wiphy, initiator);
884 static void handle_reg_beacon(struct wiphy *wiphy,
885 unsigned int chan_idx,
886 struct reg_beacon *reg_beacon)
888 struct ieee80211_supported_band *sband;
889 struct ieee80211_channel *chan;
890 bool channel_changed = false;
891 struct ieee80211_channel chan_before;
893 assert_cfg80211_lock();
895 sband = wiphy->bands[reg_beacon->chan.band];
896 chan = &sband->channels[chan_idx];
898 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
899 return;
901 if (chan->beacon_found)
902 return;
904 chan->beacon_found = true;
906 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
907 return;
909 chan_before.center_freq = chan->center_freq;
910 chan_before.flags = chan->flags;
912 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
913 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
914 channel_changed = true;
917 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
918 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
919 channel_changed = true;
922 if (channel_changed)
923 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
927 * Called when a scan on a wiphy finds a beacon on
928 * new channel
930 static void wiphy_update_new_beacon(struct wiphy *wiphy,
931 struct reg_beacon *reg_beacon)
933 unsigned int i;
934 struct ieee80211_supported_band *sband;
936 assert_cfg80211_lock();
938 if (!wiphy->bands[reg_beacon->chan.band])
939 return;
941 sband = wiphy->bands[reg_beacon->chan.band];
943 for (i = 0; i < sband->n_channels; i++)
944 handle_reg_beacon(wiphy, i, reg_beacon);
948 * Called upon reg changes or a new wiphy is added
950 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
952 unsigned int i;
953 struct ieee80211_supported_band *sband;
954 struct reg_beacon *reg_beacon;
956 assert_cfg80211_lock();
958 if (list_empty(&reg_beacon_list))
959 return;
961 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
962 if (!wiphy->bands[reg_beacon->chan.band])
963 continue;
964 sband = wiphy->bands[reg_beacon->chan.band];
965 for (i = 0; i < sband->n_channels; i++)
966 handle_reg_beacon(wiphy, i, reg_beacon);
970 static bool reg_is_world_roaming(struct wiphy *wiphy)
972 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
973 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
974 return true;
975 if (last_request &&
976 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
977 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
978 return true;
979 return false;
982 /* Reap the advantages of previously found beacons */
983 static void reg_process_beacons(struct wiphy *wiphy)
986 * Means we are just firing up cfg80211, so no beacons would
987 * have been processed yet.
989 if (!last_request)
990 return;
991 if (!reg_is_world_roaming(wiphy))
992 return;
993 wiphy_update_beacon_reg(wiphy);
996 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
998 if (!chan)
999 return true;
1000 if (chan->flags & IEEE80211_CHAN_DISABLED)
1001 return true;
1002 /* This would happen when regulatory rules disallow HT40 completely */
1003 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1004 return true;
1005 return false;
1008 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1009 enum ieee80211_band band,
1010 unsigned int chan_idx)
1012 struct ieee80211_supported_band *sband;
1013 struct ieee80211_channel *channel;
1014 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1015 unsigned int i;
1017 assert_cfg80211_lock();
1019 sband = wiphy->bands[band];
1020 BUG_ON(chan_idx >= sband->n_channels);
1021 channel = &sband->channels[chan_idx];
1023 if (is_ht40_not_allowed(channel)) {
1024 channel->flags |= IEEE80211_CHAN_NO_HT40;
1025 return;
1029 * We need to ensure the extension channels exist to
1030 * be able to use HT40- or HT40+, this finds them (or not)
1032 for (i = 0; i < sband->n_channels; i++) {
1033 struct ieee80211_channel *c = &sband->channels[i];
1034 if (c->center_freq == (channel->center_freq - 20))
1035 channel_before = c;
1036 if (c->center_freq == (channel->center_freq + 20))
1037 channel_after = c;
1041 * Please note that this assumes target bandwidth is 20 MHz,
1042 * if that ever changes we also need to change the below logic
1043 * to include that as well.
1045 if (is_ht40_not_allowed(channel_before))
1046 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1047 else
1048 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1050 if (is_ht40_not_allowed(channel_after))
1051 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1052 else
1053 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1056 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1057 enum ieee80211_band band)
1059 unsigned int i;
1060 struct ieee80211_supported_band *sband;
1062 BUG_ON(!wiphy->bands[band]);
1063 sband = wiphy->bands[band];
1065 for (i = 0; i < sband->n_channels; i++)
1066 reg_process_ht_flags_channel(wiphy, band, i);
1069 static void reg_process_ht_flags(struct wiphy *wiphy)
1071 enum ieee80211_band band;
1073 if (!wiphy)
1074 return;
1076 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1077 if (wiphy->bands[band])
1078 reg_process_ht_flags_band(wiphy, band);
1083 void wiphy_update_regulatory(struct wiphy *wiphy,
1084 enum nl80211_reg_initiator initiator)
1086 enum ieee80211_band band;
1088 if (ignore_reg_update(wiphy, initiator))
1089 goto out;
1090 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1091 if (wiphy->bands[band])
1092 handle_band(wiphy, band, initiator);
1094 out:
1095 reg_process_beacons(wiphy);
1096 reg_process_ht_flags(wiphy);
1097 if (wiphy->reg_notifier)
1098 wiphy->reg_notifier(wiphy, last_request);
1101 static void handle_channel_custom(struct wiphy *wiphy,
1102 enum ieee80211_band band,
1103 unsigned int chan_idx,
1104 const struct ieee80211_regdomain *regd)
1106 int r;
1107 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1108 u32 bw_flags = 0;
1109 const struct ieee80211_reg_rule *reg_rule = NULL;
1110 const struct ieee80211_power_rule *power_rule = NULL;
1111 const struct ieee80211_freq_range *freq_range = NULL;
1112 struct ieee80211_supported_band *sband;
1113 struct ieee80211_channel *chan;
1115 assert_reg_lock();
1117 sband = wiphy->bands[band];
1118 BUG_ON(chan_idx >= sband->n_channels);
1119 chan = &sband->channels[chan_idx];
1121 r = freq_reg_info_regd(wiphy,
1122 MHZ_TO_KHZ(chan->center_freq),
1123 desired_bw_khz,
1124 &reg_rule,
1125 regd);
1127 if (r) {
1128 REG_DBG_PRINT("cfg80211: Disabling freq %d MHz as custom "
1129 "regd has no rule that fits a %d MHz "
1130 "wide channel\n",
1131 chan->center_freq,
1132 KHZ_TO_MHZ(desired_bw_khz));
1133 chan->flags = IEEE80211_CHAN_DISABLED;
1134 return;
1137 power_rule = &reg_rule->power_rule;
1138 freq_range = &reg_rule->freq_range;
1140 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1141 bw_flags = IEEE80211_CHAN_NO_HT40;
1143 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1144 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1145 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1148 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1149 const struct ieee80211_regdomain *regd)
1151 unsigned int i;
1152 struct ieee80211_supported_band *sband;
1154 BUG_ON(!wiphy->bands[band]);
1155 sband = wiphy->bands[band];
1157 for (i = 0; i < sband->n_channels; i++)
1158 handle_channel_custom(wiphy, band, i, regd);
1161 /* Used by drivers prior to wiphy registration */
1162 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1163 const struct ieee80211_regdomain *regd)
1165 enum ieee80211_band band;
1166 unsigned int bands_set = 0;
1168 mutex_lock(&reg_mutex);
1169 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1170 if (!wiphy->bands[band])
1171 continue;
1172 handle_band_custom(wiphy, band, regd);
1173 bands_set++;
1175 mutex_unlock(&reg_mutex);
1178 * no point in calling this if it won't have any effect
1179 * on your device's supportd bands.
1181 WARN_ON(!bands_set);
1183 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1186 * Return value which can be used by ignore_request() to indicate
1187 * it has been determined we should intersect two regulatory domains
1189 #define REG_INTERSECT 1
1191 /* This has the logic which determines when a new request
1192 * should be ignored. */
1193 static int ignore_request(struct wiphy *wiphy,
1194 struct regulatory_request *pending_request)
1196 struct wiphy *last_wiphy = NULL;
1198 assert_cfg80211_lock();
1200 /* All initial requests are respected */
1201 if (!last_request)
1202 return 0;
1204 switch (pending_request->initiator) {
1205 case NL80211_REGDOM_SET_BY_CORE:
1206 return 0;
1207 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1209 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1211 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1212 return -EINVAL;
1213 if (last_request->initiator ==
1214 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1215 if (last_wiphy != wiphy) {
1217 * Two cards with two APs claiming different
1218 * Country IE alpha2s. We could
1219 * intersect them, but that seems unlikely
1220 * to be correct. Reject second one for now.
1222 if (regdom_changes(pending_request->alpha2))
1223 return -EOPNOTSUPP;
1224 return -EALREADY;
1227 * Two consecutive Country IE hints on the same wiphy.
1228 * This should be picked up early by the driver/stack
1230 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1231 return 0;
1232 return -EALREADY;
1234 return 0;
1235 case NL80211_REGDOM_SET_BY_DRIVER:
1236 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1237 if (regdom_changes(pending_request->alpha2))
1238 return 0;
1239 return -EALREADY;
1243 * This would happen if you unplug and plug your card
1244 * back in or if you add a new device for which the previously
1245 * loaded card also agrees on the regulatory domain.
1247 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1248 !regdom_changes(pending_request->alpha2))
1249 return -EALREADY;
1251 return REG_INTERSECT;
1252 case NL80211_REGDOM_SET_BY_USER:
1253 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1254 return REG_INTERSECT;
1256 * If the user knows better the user should set the regdom
1257 * to their country before the IE is picked up
1259 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1260 last_request->intersect)
1261 return -EOPNOTSUPP;
1263 * Process user requests only after previous user/driver/core
1264 * requests have been processed
1266 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1267 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1268 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1269 if (regdom_changes(last_request->alpha2))
1270 return -EAGAIN;
1273 if (!regdom_changes(pending_request->alpha2))
1274 return -EALREADY;
1276 return 0;
1279 return -EINVAL;
1283 * __regulatory_hint - hint to the wireless core a regulatory domain
1284 * @wiphy: if the hint comes from country information from an AP, this
1285 * is required to be set to the wiphy that received the information
1286 * @pending_request: the regulatory request currently being processed
1288 * The Wireless subsystem can use this function to hint to the wireless core
1289 * what it believes should be the current regulatory domain.
1291 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1292 * already been set or other standard error codes.
1294 * Caller must hold &cfg80211_mutex and &reg_mutex
1296 static int __regulatory_hint(struct wiphy *wiphy,
1297 struct regulatory_request *pending_request)
1299 bool intersect = false;
1300 int r = 0;
1302 assert_cfg80211_lock();
1304 r = ignore_request(wiphy, pending_request);
1306 if (r == REG_INTERSECT) {
1307 if (pending_request->initiator ==
1308 NL80211_REGDOM_SET_BY_DRIVER) {
1309 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1310 if (r) {
1311 kfree(pending_request);
1312 return r;
1315 intersect = true;
1316 } else if (r) {
1318 * If the regulatory domain being requested by the
1319 * driver has already been set just copy it to the
1320 * wiphy
1322 if (r == -EALREADY &&
1323 pending_request->initiator ==
1324 NL80211_REGDOM_SET_BY_DRIVER) {
1325 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1326 if (r) {
1327 kfree(pending_request);
1328 return r;
1330 r = -EALREADY;
1331 goto new_request;
1333 kfree(pending_request);
1334 return r;
1337 new_request:
1338 kfree(last_request);
1340 last_request = pending_request;
1341 last_request->intersect = intersect;
1343 pending_request = NULL;
1345 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1346 user_alpha2[0] = last_request->alpha2[0];
1347 user_alpha2[1] = last_request->alpha2[1];
1350 /* When r == REG_INTERSECT we do need to call CRDA */
1351 if (r < 0) {
1353 * Since CRDA will not be called in this case as we already
1354 * have applied the requested regulatory domain before we just
1355 * inform userspace we have processed the request
1357 if (r == -EALREADY)
1358 nl80211_send_reg_change_event(last_request);
1359 return r;
1362 return call_crda(last_request->alpha2);
1365 /* This processes *all* regulatory hints */
1366 static void reg_process_hint(struct regulatory_request *reg_request)
1368 int r = 0;
1369 struct wiphy *wiphy = NULL;
1370 enum nl80211_reg_initiator initiator = reg_request->initiator;
1372 BUG_ON(!reg_request->alpha2);
1374 mutex_lock(&cfg80211_mutex);
1375 mutex_lock(&reg_mutex);
1377 if (wiphy_idx_valid(reg_request->wiphy_idx))
1378 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1380 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1381 !wiphy) {
1382 kfree(reg_request);
1383 goto out;
1386 r = __regulatory_hint(wiphy, reg_request);
1387 /* This is required so that the orig_* parameters are saved */
1388 if (r == -EALREADY && wiphy &&
1389 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1390 wiphy_update_regulatory(wiphy, initiator);
1391 out:
1392 mutex_unlock(&reg_mutex);
1393 mutex_unlock(&cfg80211_mutex);
1396 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1397 static void reg_process_pending_hints(void)
1399 struct regulatory_request *reg_request;
1401 spin_lock(&reg_requests_lock);
1402 while (!list_empty(&reg_requests_list)) {
1403 reg_request = list_first_entry(&reg_requests_list,
1404 struct regulatory_request,
1405 list);
1406 list_del_init(&reg_request->list);
1408 spin_unlock(&reg_requests_lock);
1409 reg_process_hint(reg_request);
1410 spin_lock(&reg_requests_lock);
1412 spin_unlock(&reg_requests_lock);
1415 /* Processes beacon hints -- this has nothing to do with country IEs */
1416 static void reg_process_pending_beacon_hints(void)
1418 struct cfg80211_registered_device *rdev;
1419 struct reg_beacon *pending_beacon, *tmp;
1422 * No need to hold the reg_mutex here as we just touch wiphys
1423 * and do not read or access regulatory variables.
1425 mutex_lock(&cfg80211_mutex);
1427 /* This goes through the _pending_ beacon list */
1428 spin_lock_bh(&reg_pending_beacons_lock);
1430 if (list_empty(&reg_pending_beacons)) {
1431 spin_unlock_bh(&reg_pending_beacons_lock);
1432 goto out;
1435 list_for_each_entry_safe(pending_beacon, tmp,
1436 &reg_pending_beacons, list) {
1438 list_del_init(&pending_beacon->list);
1440 /* Applies the beacon hint to current wiphys */
1441 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1442 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1444 /* Remembers the beacon hint for new wiphys or reg changes */
1445 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1448 spin_unlock_bh(&reg_pending_beacons_lock);
1449 out:
1450 mutex_unlock(&cfg80211_mutex);
1453 static void reg_todo(struct work_struct *work)
1455 reg_process_pending_hints();
1456 reg_process_pending_beacon_hints();
1459 static DECLARE_WORK(reg_work, reg_todo);
1461 static void queue_regulatory_request(struct regulatory_request *request)
1463 if (isalpha(request->alpha2[0]))
1464 request->alpha2[0] = toupper(request->alpha2[0]);
1465 if (isalpha(request->alpha2[1]))
1466 request->alpha2[1] = toupper(request->alpha2[1]);
1468 spin_lock(&reg_requests_lock);
1469 list_add_tail(&request->list, &reg_requests_list);
1470 spin_unlock(&reg_requests_lock);
1472 schedule_work(&reg_work);
1476 * Core regulatory hint -- happens during cfg80211_init()
1477 * and when we restore regulatory settings.
1479 static int regulatory_hint_core(const char *alpha2)
1481 struct regulatory_request *request;
1483 kfree(last_request);
1484 last_request = NULL;
1486 request = kzalloc(sizeof(struct regulatory_request),
1487 GFP_KERNEL);
1488 if (!request)
1489 return -ENOMEM;
1491 request->alpha2[0] = alpha2[0];
1492 request->alpha2[1] = alpha2[1];
1493 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1496 * This ensures last_request is populated once modules
1497 * come swinging in and calling regulatory hints and
1498 * wiphy_apply_custom_regulatory().
1500 reg_process_hint(request);
1502 return 0;
1505 /* User hints */
1506 int regulatory_hint_user(const char *alpha2)
1508 struct regulatory_request *request;
1510 BUG_ON(!alpha2);
1512 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1513 if (!request)
1514 return -ENOMEM;
1516 request->wiphy_idx = WIPHY_IDX_STALE;
1517 request->alpha2[0] = alpha2[0];
1518 request->alpha2[1] = alpha2[1];
1519 request->initiator = NL80211_REGDOM_SET_BY_USER;
1521 queue_regulatory_request(request);
1523 return 0;
1526 /* Driver hints */
1527 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1529 struct regulatory_request *request;
1531 BUG_ON(!alpha2);
1532 BUG_ON(!wiphy);
1534 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1535 if (!request)
1536 return -ENOMEM;
1538 request->wiphy_idx = get_wiphy_idx(wiphy);
1540 /* Must have registered wiphy first */
1541 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1543 request->alpha2[0] = alpha2[0];
1544 request->alpha2[1] = alpha2[1];
1545 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1547 queue_regulatory_request(request);
1549 return 0;
1551 EXPORT_SYMBOL(regulatory_hint);
1554 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1555 * therefore cannot iterate over the rdev list here.
1557 void regulatory_hint_11d(struct wiphy *wiphy,
1558 enum ieee80211_band band,
1559 u8 *country_ie,
1560 u8 country_ie_len)
1562 char alpha2[2];
1563 enum environment_cap env = ENVIRON_ANY;
1564 struct regulatory_request *request;
1566 mutex_lock(&reg_mutex);
1568 if (unlikely(!last_request))
1569 goto out;
1571 /* IE len must be evenly divisible by 2 */
1572 if (country_ie_len & 0x01)
1573 goto out;
1575 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1576 goto out;
1578 alpha2[0] = country_ie[0];
1579 alpha2[1] = country_ie[1];
1581 if (country_ie[2] == 'I')
1582 env = ENVIRON_INDOOR;
1583 else if (country_ie[2] == 'O')
1584 env = ENVIRON_OUTDOOR;
1587 * We will run this only upon a successful connection on cfg80211.
1588 * We leave conflict resolution to the workqueue, where can hold
1589 * cfg80211_mutex.
1591 if (likely(last_request->initiator ==
1592 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1593 wiphy_idx_valid(last_request->wiphy_idx)))
1594 goto out;
1596 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1597 if (!request)
1598 goto out;
1600 request->wiphy_idx = get_wiphy_idx(wiphy);
1601 request->alpha2[0] = alpha2[0];
1602 request->alpha2[1] = alpha2[1];
1603 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1604 request->country_ie_env = env;
1606 mutex_unlock(&reg_mutex);
1608 queue_regulatory_request(request);
1610 return;
1612 out:
1613 mutex_unlock(&reg_mutex);
1616 static void restore_alpha2(char *alpha2, bool reset_user)
1618 /* indicates there is no alpha2 to consider for restoration */
1619 alpha2[0] = '9';
1620 alpha2[1] = '7';
1622 /* The user setting has precedence over the module parameter */
1623 if (is_user_regdom_saved()) {
1624 /* Unless we're asked to ignore it and reset it */
1625 if (reset_user) {
1626 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1627 "including user preference\n");
1628 user_alpha2[0] = '9';
1629 user_alpha2[1] = '7';
1632 * If we're ignoring user settings, we still need to
1633 * check the module parameter to ensure we put things
1634 * back as they were for a full restore.
1636 if (!is_world_regdom(ieee80211_regdom)) {
1637 REG_DBG_PRINT("cfg80211: Keeping preference on "
1638 "module parameter ieee80211_regdom: %c%c\n",
1639 ieee80211_regdom[0],
1640 ieee80211_regdom[1]);
1641 alpha2[0] = ieee80211_regdom[0];
1642 alpha2[1] = ieee80211_regdom[1];
1644 } else {
1645 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1646 "while preserving user preference for: %c%c\n",
1647 user_alpha2[0],
1648 user_alpha2[1]);
1649 alpha2[0] = user_alpha2[0];
1650 alpha2[1] = user_alpha2[1];
1652 } else if (!is_world_regdom(ieee80211_regdom)) {
1653 REG_DBG_PRINT("cfg80211: Keeping preference on "
1654 "module parameter ieee80211_regdom: %c%c\n",
1655 ieee80211_regdom[0],
1656 ieee80211_regdom[1]);
1657 alpha2[0] = ieee80211_regdom[0];
1658 alpha2[1] = ieee80211_regdom[1];
1659 } else
1660 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1664 * Restoring regulatory settings involves ingoring any
1665 * possibly stale country IE information and user regulatory
1666 * settings if so desired, this includes any beacon hints
1667 * learned as we could have traveled outside to another country
1668 * after disconnection. To restore regulatory settings we do
1669 * exactly what we did at bootup:
1671 * - send a core regulatory hint
1672 * - send a user regulatory hint if applicable
1674 * Device drivers that send a regulatory hint for a specific country
1675 * keep their own regulatory domain on wiphy->regd so that does does
1676 * not need to be remembered.
1678 static void restore_regulatory_settings(bool reset_user)
1680 char alpha2[2];
1681 struct reg_beacon *reg_beacon, *btmp;
1683 mutex_lock(&cfg80211_mutex);
1684 mutex_lock(&reg_mutex);
1686 reset_regdomains();
1687 restore_alpha2(alpha2, reset_user);
1689 /* Clear beacon hints */
1690 spin_lock_bh(&reg_pending_beacons_lock);
1691 if (!list_empty(&reg_pending_beacons)) {
1692 list_for_each_entry_safe(reg_beacon, btmp,
1693 &reg_pending_beacons, list) {
1694 list_del(&reg_beacon->list);
1695 kfree(reg_beacon);
1698 spin_unlock_bh(&reg_pending_beacons_lock);
1700 if (!list_empty(&reg_beacon_list)) {
1701 list_for_each_entry_safe(reg_beacon, btmp,
1702 &reg_beacon_list, list) {
1703 list_del(&reg_beacon->list);
1704 kfree(reg_beacon);
1708 /* First restore to the basic regulatory settings */
1709 cfg80211_regdomain = cfg80211_world_regdom;
1711 mutex_unlock(&reg_mutex);
1712 mutex_unlock(&cfg80211_mutex);
1714 regulatory_hint_core(cfg80211_regdomain->alpha2);
1717 * This restores the ieee80211_regdom module parameter
1718 * preference or the last user requested regulatory
1719 * settings, user regulatory settings takes precedence.
1721 if (is_an_alpha2(alpha2))
1722 regulatory_hint_user(user_alpha2);
1726 void regulatory_hint_disconnect(void)
1728 REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1729 "restore regulatory settings\n");
1730 restore_regulatory_settings(false);
1733 static bool freq_is_chan_12_13_14(u16 freq)
1735 if (freq == ieee80211_channel_to_frequency(12) ||
1736 freq == ieee80211_channel_to_frequency(13) ||
1737 freq == ieee80211_channel_to_frequency(14))
1738 return true;
1739 return false;
1742 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1743 struct ieee80211_channel *beacon_chan,
1744 gfp_t gfp)
1746 struct reg_beacon *reg_beacon;
1748 if (likely((beacon_chan->beacon_found ||
1749 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1750 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1751 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1752 return 0;
1754 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1755 if (!reg_beacon)
1756 return -ENOMEM;
1758 REG_DBG_PRINT("cfg80211: Found new beacon on "
1759 "frequency: %d MHz (Ch %d) on %s\n",
1760 beacon_chan->center_freq,
1761 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1762 wiphy_name(wiphy));
1764 memcpy(&reg_beacon->chan, beacon_chan,
1765 sizeof(struct ieee80211_channel));
1769 * Since we can be called from BH or and non-BH context
1770 * we must use spin_lock_bh()
1772 spin_lock_bh(&reg_pending_beacons_lock);
1773 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1774 spin_unlock_bh(&reg_pending_beacons_lock);
1776 schedule_work(&reg_work);
1778 return 0;
1781 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1783 unsigned int i;
1784 const struct ieee80211_reg_rule *reg_rule = NULL;
1785 const struct ieee80211_freq_range *freq_range = NULL;
1786 const struct ieee80211_power_rule *power_rule = NULL;
1788 printk(KERN_INFO " (start_freq - end_freq @ bandwidth), "
1789 "(max_antenna_gain, max_eirp)\n");
1791 for (i = 0; i < rd->n_reg_rules; i++) {
1792 reg_rule = &rd->reg_rules[i];
1793 freq_range = &reg_rule->freq_range;
1794 power_rule = &reg_rule->power_rule;
1797 * There may not be documentation for max antenna gain
1798 * in certain regions
1800 if (power_rule->max_antenna_gain)
1801 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
1802 "(%d mBi, %d mBm)\n",
1803 freq_range->start_freq_khz,
1804 freq_range->end_freq_khz,
1805 freq_range->max_bandwidth_khz,
1806 power_rule->max_antenna_gain,
1807 power_rule->max_eirp);
1808 else
1809 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
1810 "(N/A, %d mBm)\n",
1811 freq_range->start_freq_khz,
1812 freq_range->end_freq_khz,
1813 freq_range->max_bandwidth_khz,
1814 power_rule->max_eirp);
1818 static void print_regdomain(const struct ieee80211_regdomain *rd)
1821 if (is_intersected_alpha2(rd->alpha2)) {
1823 if (last_request->initiator ==
1824 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1825 struct cfg80211_registered_device *rdev;
1826 rdev = cfg80211_rdev_by_wiphy_idx(
1827 last_request->wiphy_idx);
1828 if (rdev) {
1829 printk(KERN_INFO "cfg80211: Current regulatory "
1830 "domain updated by AP to: %c%c\n",
1831 rdev->country_ie_alpha2[0],
1832 rdev->country_ie_alpha2[1]);
1833 } else
1834 printk(KERN_INFO "cfg80211: Current regulatory "
1835 "domain intersected:\n");
1836 } else
1837 printk(KERN_INFO "cfg80211: Current regulatory "
1838 "domain intersected:\n");
1839 } else if (is_world_regdom(rd->alpha2))
1840 printk(KERN_INFO "cfg80211: World regulatory "
1841 "domain updated:\n");
1842 else {
1843 if (is_unknown_alpha2(rd->alpha2))
1844 printk(KERN_INFO "cfg80211: Regulatory domain "
1845 "changed to driver built-in settings "
1846 "(unknown country)\n");
1847 else
1848 printk(KERN_INFO "cfg80211: Regulatory domain "
1849 "changed to country: %c%c\n",
1850 rd->alpha2[0], rd->alpha2[1]);
1852 print_rd_rules(rd);
1855 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1857 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1858 rd->alpha2[0], rd->alpha2[1]);
1859 print_rd_rules(rd);
1862 /* Takes ownership of rd only if it doesn't fail */
1863 static int __set_regdom(const struct ieee80211_regdomain *rd)
1865 const struct ieee80211_regdomain *intersected_rd = NULL;
1866 struct cfg80211_registered_device *rdev = NULL;
1867 struct wiphy *request_wiphy;
1868 /* Some basic sanity checks first */
1870 if (is_world_regdom(rd->alpha2)) {
1871 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1872 return -EINVAL;
1873 update_world_regdomain(rd);
1874 return 0;
1877 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1878 !is_unknown_alpha2(rd->alpha2))
1879 return -EINVAL;
1881 if (!last_request)
1882 return -EINVAL;
1885 * Lets only bother proceeding on the same alpha2 if the current
1886 * rd is non static (it means CRDA was present and was used last)
1887 * and the pending request came in from a country IE
1889 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1891 * If someone else asked us to change the rd lets only bother
1892 * checking if the alpha2 changes if CRDA was already called
1894 if (!regdom_changes(rd->alpha2))
1895 return -EINVAL;
1899 * Now lets set the regulatory domain, update all driver channels
1900 * and finally inform them of what we have done, in case they want
1901 * to review or adjust their own settings based on their own
1902 * internal EEPROM data
1905 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1906 return -EINVAL;
1908 if (!is_valid_rd(rd)) {
1909 printk(KERN_ERR "cfg80211: Invalid "
1910 "regulatory domain detected:\n");
1911 print_regdomain_info(rd);
1912 return -EINVAL;
1915 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1917 if (!last_request->intersect) {
1918 int r;
1920 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1921 reset_regdomains();
1922 cfg80211_regdomain = rd;
1923 return 0;
1927 * For a driver hint, lets copy the regulatory domain the
1928 * driver wanted to the wiphy to deal with conflicts
1932 * Userspace could have sent two replies with only
1933 * one kernel request.
1935 if (request_wiphy->regd)
1936 return -EALREADY;
1938 r = reg_copy_regd(&request_wiphy->regd, rd);
1939 if (r)
1940 return r;
1942 reset_regdomains();
1943 cfg80211_regdomain = rd;
1944 return 0;
1947 /* Intersection requires a bit more work */
1949 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1951 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1952 if (!intersected_rd)
1953 return -EINVAL;
1956 * We can trash what CRDA provided now.
1957 * However if a driver requested this specific regulatory
1958 * domain we keep it for its private use
1960 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1961 request_wiphy->regd = rd;
1962 else
1963 kfree(rd);
1965 rd = NULL;
1967 reset_regdomains();
1968 cfg80211_regdomain = intersected_rd;
1970 return 0;
1973 if (!intersected_rd)
1974 return -EINVAL;
1976 rdev = wiphy_to_dev(request_wiphy);
1978 rdev->country_ie_alpha2[0] = rd->alpha2[0];
1979 rdev->country_ie_alpha2[1] = rd->alpha2[1];
1980 rdev->env = last_request->country_ie_env;
1982 BUG_ON(intersected_rd == rd);
1984 kfree(rd);
1985 rd = NULL;
1987 reset_regdomains();
1988 cfg80211_regdomain = intersected_rd;
1990 return 0;
1995 * Use this call to set the current regulatory domain. Conflicts with
1996 * multiple drivers can be ironed out later. Caller must've already
1997 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1999 int set_regdom(const struct ieee80211_regdomain *rd)
2001 int r;
2003 assert_cfg80211_lock();
2005 mutex_lock(&reg_mutex);
2007 /* Note that this doesn't update the wiphys, this is done below */
2008 r = __set_regdom(rd);
2009 if (r) {
2010 kfree(rd);
2011 mutex_unlock(&reg_mutex);
2012 return r;
2015 /* This would make this whole thing pointless */
2016 if (!last_request->intersect)
2017 BUG_ON(rd != cfg80211_regdomain);
2019 /* update all wiphys now with the new established regulatory domain */
2020 update_all_wiphy_regulatory(last_request->initiator);
2022 print_regdomain(cfg80211_regdomain);
2024 nl80211_send_reg_change_event(last_request);
2026 mutex_unlock(&reg_mutex);
2028 return r;
2031 /* Caller must hold cfg80211_mutex */
2032 void reg_device_remove(struct wiphy *wiphy)
2034 struct wiphy *request_wiphy = NULL;
2036 assert_cfg80211_lock();
2038 mutex_lock(&reg_mutex);
2040 kfree(wiphy->regd);
2042 if (last_request)
2043 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2045 if (!request_wiphy || request_wiphy != wiphy)
2046 goto out;
2048 last_request->wiphy_idx = WIPHY_IDX_STALE;
2049 last_request->country_ie_env = ENVIRON_ANY;
2050 out:
2051 mutex_unlock(&reg_mutex);
2054 int __init regulatory_init(void)
2056 int err = 0;
2058 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2059 if (IS_ERR(reg_pdev))
2060 return PTR_ERR(reg_pdev);
2062 spin_lock_init(&reg_requests_lock);
2063 spin_lock_init(&reg_pending_beacons_lock);
2065 cfg80211_regdomain = cfg80211_world_regdom;
2067 user_alpha2[0] = '9';
2068 user_alpha2[1] = '7';
2070 /* We always try to get an update for the static regdomain */
2071 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2072 if (err) {
2073 if (err == -ENOMEM)
2074 return err;
2076 * N.B. kobject_uevent_env() can fail mainly for when we're out
2077 * memory which is handled and propagated appropriately above
2078 * but it can also fail during a netlink_broadcast() or during
2079 * early boot for call_usermodehelper(). For now treat these
2080 * errors as non-fatal.
2082 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2083 "to call CRDA during init");
2084 #ifdef CONFIG_CFG80211_REG_DEBUG
2085 /* We want to find out exactly why when debugging */
2086 WARN_ON(err);
2087 #endif
2091 * Finally, if the user set the module parameter treat it
2092 * as a user hint.
2094 if (!is_world_regdom(ieee80211_regdom))
2095 regulatory_hint_user(ieee80211_regdom);
2097 return 0;
2100 void /* __init_or_exit */ regulatory_exit(void)
2102 struct regulatory_request *reg_request, *tmp;
2103 struct reg_beacon *reg_beacon, *btmp;
2105 cancel_work_sync(&reg_work);
2107 mutex_lock(&cfg80211_mutex);
2108 mutex_lock(&reg_mutex);
2110 reset_regdomains();
2112 kfree(last_request);
2114 platform_device_unregister(reg_pdev);
2116 spin_lock_bh(&reg_pending_beacons_lock);
2117 if (!list_empty(&reg_pending_beacons)) {
2118 list_for_each_entry_safe(reg_beacon, btmp,
2119 &reg_pending_beacons, list) {
2120 list_del(&reg_beacon->list);
2121 kfree(reg_beacon);
2124 spin_unlock_bh(&reg_pending_beacons_lock);
2126 if (!list_empty(&reg_beacon_list)) {
2127 list_for_each_entry_safe(reg_beacon, btmp,
2128 &reg_beacon_list, list) {
2129 list_del(&reg_beacon->list);
2130 kfree(reg_beacon);
2134 spin_lock(&reg_requests_lock);
2135 if (!list_empty(&reg_requests_list)) {
2136 list_for_each_entry_safe(reg_request, tmp,
2137 &reg_requests_list, list) {
2138 list_del(&reg_request->list);
2139 kfree(reg_request);
2142 spin_unlock(&reg_requests_lock);
2144 mutex_unlock(&reg_mutex);
2145 mutex_unlock(&cfg80211_mutex);