NFS: Fix a race with the new commit code
[linux-2.6/btrfs-unstable.git] / fs / nfs / write.c
blob40297c4f1ee0621419e55e58ed7191eb9a9c95b9
1 /*
2 * linux/fs/nfs/write.c
4 * Write file data over NFS.
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
24 #include <asm/uaccess.h>
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
32 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34 #define MIN_POOL_WRITE (32)
35 #define MIN_POOL_COMMIT (4)
38 * Local function declarations
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
51 struct nfs_write_data *nfs_commitdata_alloc(void)
53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55 if (p) {
56 memset(p, 0, sizeof(*p));
57 INIT_LIST_HEAD(&p->pages);
58 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
60 return p;
63 void nfs_commit_free(struct nfs_write_data *p)
65 if (p && (p->pagevec != &p->page_array[0]))
66 kfree(p->pagevec);
67 mempool_free(p, nfs_commit_mempool);
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
74 if (p) {
75 memset(p, 0, sizeof(*p));
76 INIT_LIST_HEAD(&p->pages);
77 p->npages = pagecount;
78 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
79 if (pagecount <= ARRAY_SIZE(p->page_array))
80 p->pagevec = p->page_array;
81 else {
82 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
83 if (!p->pagevec) {
84 mempool_free(p, nfs_wdata_mempool);
85 p = NULL;
89 return p;
92 void nfs_writedata_free(struct nfs_write_data *p)
94 if (p && (p->pagevec != &p->page_array[0]))
95 kfree(p->pagevec);
96 mempool_free(p, nfs_wdata_mempool);
99 static void nfs_writedata_release(struct nfs_write_data *wdata)
101 put_nfs_open_context(wdata->args.context);
102 nfs_writedata_free(wdata);
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
107 ctx->error = error;
108 smp_wmb();
109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
114 struct nfs_page *req = NULL;
116 if (PagePrivate(page)) {
117 req = (struct nfs_page *)page_private(page);
118 if (req != NULL)
119 kref_get(&req->wb_kref);
121 return req;
124 static struct nfs_page *nfs_page_find_request(struct page *page)
126 struct inode *inode = page->mapping->host;
127 struct nfs_page *req = NULL;
129 spin_lock(&inode->i_lock);
130 req = nfs_page_find_request_locked(page);
131 spin_unlock(&inode->i_lock);
132 return req;
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
138 struct inode *inode = page->mapping->host;
139 loff_t end, i_size;
140 pgoff_t end_index;
142 spin_lock(&inode->i_lock);
143 i_size = i_size_read(inode);
144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 if (i_size > 0 && page->index < end_index)
146 goto out;
147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 if (i_size >= end)
149 goto out;
150 i_size_write(inode, end);
151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 spin_unlock(&inode->i_lock);
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
159 SetPageError(page);
160 nfs_zap_mapping(page->mapping->host, page->mapping);
163 /* We can set the PG_uptodate flag if we see that a write request
164 * covers the full page.
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
168 if (PageUptodate(page))
169 return;
170 if (base != 0)
171 return;
172 if (count != nfs_page_length(page))
173 return;
174 SetPageUptodate(page);
177 static int wb_priority(struct writeback_control *wbc)
179 if (wbc->for_reclaim)
180 return FLUSH_HIGHPRI | FLUSH_STABLE;
181 if (wbc->for_kupdate || wbc->for_background)
182 return FLUSH_LOWPRI;
183 return 0;
187 * NFS congestion control
190 int nfs_congestion_kb;
192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH \
194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
196 static int nfs_set_page_writeback(struct page *page)
198 int ret = test_set_page_writeback(page);
200 if (!ret) {
201 struct inode *inode = page->mapping->host;
202 struct nfs_server *nfss = NFS_SERVER(inode);
204 page_cache_get(page);
205 if (atomic_long_inc_return(&nfss->writeback) >
206 NFS_CONGESTION_ON_THRESH) {
207 set_bdi_congested(&nfss->backing_dev_info,
208 BLK_RW_ASYNC);
211 return ret;
214 static void nfs_end_page_writeback(struct page *page)
216 struct inode *inode = page->mapping->host;
217 struct nfs_server *nfss = NFS_SERVER(inode);
219 end_page_writeback(page);
220 page_cache_release(page);
221 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
222 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
225 static struct nfs_page *nfs_find_and_lock_request(struct page *page)
227 struct inode *inode = page->mapping->host;
228 struct nfs_page *req;
229 int ret;
231 spin_lock(&inode->i_lock);
232 for (;;) {
233 req = nfs_page_find_request_locked(page);
234 if (req == NULL)
235 break;
236 if (nfs_set_page_tag_locked(req))
237 break;
238 /* Note: If we hold the page lock, as is the case in nfs_writepage,
239 * then the call to nfs_set_page_tag_locked() will always
240 * succeed provided that someone hasn't already marked the
241 * request as dirty (in which case we don't care).
243 spin_unlock(&inode->i_lock);
244 ret = nfs_wait_on_request(req);
245 nfs_release_request(req);
246 if (ret != 0)
247 return ERR_PTR(ret);
248 spin_lock(&inode->i_lock);
250 spin_unlock(&inode->i_lock);
251 return req;
255 * Find an associated nfs write request, and prepare to flush it out
256 * May return an error if the user signalled nfs_wait_on_request().
258 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
259 struct page *page)
261 struct nfs_page *req;
262 int ret = 0;
264 req = nfs_find_and_lock_request(page);
265 if (!req)
266 goto out;
267 ret = PTR_ERR(req);
268 if (IS_ERR(req))
269 goto out;
271 ret = nfs_set_page_writeback(page);
272 BUG_ON(ret != 0);
273 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
275 if (!nfs_pageio_add_request(pgio, req)) {
276 nfs_redirty_request(req);
277 ret = pgio->pg_error;
279 out:
280 return ret;
283 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
285 struct inode *inode = page->mapping->host;
287 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
288 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
290 nfs_pageio_cond_complete(pgio, page->index);
291 return nfs_page_async_flush(pgio, page);
295 * Write an mmapped page to the server.
297 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
299 struct nfs_pageio_descriptor pgio;
300 int err;
302 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
303 err = nfs_do_writepage(page, wbc, &pgio);
304 nfs_pageio_complete(&pgio);
305 if (err < 0)
306 return err;
307 if (pgio.pg_error < 0)
308 return pgio.pg_error;
309 return 0;
312 int nfs_writepage(struct page *page, struct writeback_control *wbc)
314 int ret;
316 ret = nfs_writepage_locked(page, wbc);
317 unlock_page(page);
318 return ret;
321 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
323 int ret;
325 ret = nfs_do_writepage(page, wbc, data);
326 unlock_page(page);
327 return ret;
330 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
332 struct inode *inode = mapping->host;
333 unsigned long *bitlock = &NFS_I(inode)->flags;
334 struct nfs_pageio_descriptor pgio;
335 int err;
337 /* Stop dirtying of new pages while we sync */
338 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
339 nfs_wait_bit_killable, TASK_KILLABLE);
340 if (err)
341 goto out_err;
343 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
345 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
346 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
347 nfs_pageio_complete(&pgio);
349 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
350 smp_mb__after_clear_bit();
351 wake_up_bit(bitlock, NFS_INO_FLUSHING);
353 if (err < 0)
354 goto out_err;
355 err = pgio.pg_error;
356 if (err < 0)
357 goto out_err;
358 return 0;
359 out_err:
360 return err;
364 * Insert a write request into an inode
366 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
368 struct nfs_inode *nfsi = NFS_I(inode);
369 int error;
371 error = radix_tree_preload(GFP_NOFS);
372 if (error != 0)
373 goto out;
375 /* Lock the request! */
376 nfs_lock_request_dontget(req);
378 spin_lock(&inode->i_lock);
379 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
380 BUG_ON(error);
381 if (!nfsi->npages) {
382 igrab(inode);
383 if (nfs_have_delegation(inode, FMODE_WRITE))
384 nfsi->change_attr++;
386 SetPagePrivate(req->wb_page);
387 set_page_private(req->wb_page, (unsigned long)req);
388 nfsi->npages++;
389 kref_get(&req->wb_kref);
390 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
391 NFS_PAGE_TAG_LOCKED);
392 spin_unlock(&inode->i_lock);
393 radix_tree_preload_end();
394 out:
395 return error;
399 * Remove a write request from an inode
401 static void nfs_inode_remove_request(struct nfs_page *req)
403 struct inode *inode = req->wb_context->path.dentry->d_inode;
404 struct nfs_inode *nfsi = NFS_I(inode);
406 BUG_ON (!NFS_WBACK_BUSY(req));
408 spin_lock(&inode->i_lock);
409 set_page_private(req->wb_page, 0);
410 ClearPagePrivate(req->wb_page);
411 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
412 nfsi->npages--;
413 if (!nfsi->npages) {
414 spin_unlock(&inode->i_lock);
415 iput(inode);
416 } else
417 spin_unlock(&inode->i_lock);
418 nfs_clear_request(req);
419 nfs_release_request(req);
422 static void
423 nfs_mark_request_dirty(struct nfs_page *req)
425 __set_page_dirty_nobuffers(req->wb_page);
426 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
429 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
431 * Add a request to the inode's commit list.
433 static void
434 nfs_mark_request_commit(struct nfs_page *req)
436 struct inode *inode = req->wb_context->path.dentry->d_inode;
437 struct nfs_inode *nfsi = NFS_I(inode);
439 spin_lock(&inode->i_lock);
440 set_bit(PG_CLEAN, &(req)->wb_flags);
441 radix_tree_tag_set(&nfsi->nfs_page_tree,
442 req->wb_index,
443 NFS_PAGE_TAG_COMMIT);
444 nfsi->ncommit++;
445 spin_unlock(&inode->i_lock);
446 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
447 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
448 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
451 static int
452 nfs_clear_request_commit(struct nfs_page *req)
454 struct page *page = req->wb_page;
456 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
457 dec_zone_page_state(page, NR_UNSTABLE_NFS);
458 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
459 return 1;
461 return 0;
464 static inline
465 int nfs_write_need_commit(struct nfs_write_data *data)
467 return data->verf.committed != NFS_FILE_SYNC;
470 static inline
471 int nfs_reschedule_unstable_write(struct nfs_page *req)
473 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
474 nfs_mark_request_commit(req);
475 return 1;
477 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
478 nfs_mark_request_dirty(req);
479 return 1;
481 return 0;
483 #else
484 static inline void
485 nfs_mark_request_commit(struct nfs_page *req)
489 static inline int
490 nfs_clear_request_commit(struct nfs_page *req)
492 return 0;
495 static inline
496 int nfs_write_need_commit(struct nfs_write_data *data)
498 return 0;
501 static inline
502 int nfs_reschedule_unstable_write(struct nfs_page *req)
504 return 0;
506 #endif
508 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
509 static int
510 nfs_need_commit(struct nfs_inode *nfsi)
512 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
516 * nfs_scan_commit - Scan an inode for commit requests
517 * @inode: NFS inode to scan
518 * @dst: destination list
519 * @idx_start: lower bound of page->index to scan.
520 * @npages: idx_start + npages sets the upper bound to scan.
522 * Moves requests from the inode's 'commit' request list.
523 * The requests are *not* checked to ensure that they form a contiguous set.
525 static int
526 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
528 struct nfs_inode *nfsi = NFS_I(inode);
529 int ret;
531 if (!nfs_need_commit(nfsi))
532 return 0;
534 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
535 if (ret > 0)
536 nfsi->ncommit -= ret;
537 if (nfs_need_commit(NFS_I(inode)))
538 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
539 return ret;
541 #else
542 static inline int nfs_need_commit(struct nfs_inode *nfsi)
544 return 0;
547 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
549 return 0;
551 #endif
554 * Search for an existing write request, and attempt to update
555 * it to reflect a new dirty region on a given page.
557 * If the attempt fails, then the existing request is flushed out
558 * to disk.
560 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
561 struct page *page,
562 unsigned int offset,
563 unsigned int bytes)
565 struct nfs_page *req;
566 unsigned int rqend;
567 unsigned int end;
568 int error;
570 if (!PagePrivate(page))
571 return NULL;
573 end = offset + bytes;
574 spin_lock(&inode->i_lock);
576 for (;;) {
577 req = nfs_page_find_request_locked(page);
578 if (req == NULL)
579 goto out_unlock;
581 rqend = req->wb_offset + req->wb_bytes;
583 * Tell the caller to flush out the request if
584 * the offsets are non-contiguous.
585 * Note: nfs_flush_incompatible() will already
586 * have flushed out requests having wrong owners.
588 if (offset > rqend
589 || end < req->wb_offset)
590 goto out_flushme;
592 if (nfs_set_page_tag_locked(req))
593 break;
595 /* The request is locked, so wait and then retry */
596 spin_unlock(&inode->i_lock);
597 error = nfs_wait_on_request(req);
598 nfs_release_request(req);
599 if (error != 0)
600 goto out_err;
601 spin_lock(&inode->i_lock);
604 if (nfs_clear_request_commit(req) &&
605 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
606 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
607 NFS_I(inode)->ncommit--;
609 /* Okay, the request matches. Update the region */
610 if (offset < req->wb_offset) {
611 req->wb_offset = offset;
612 req->wb_pgbase = offset;
614 if (end > rqend)
615 req->wb_bytes = end - req->wb_offset;
616 else
617 req->wb_bytes = rqend - req->wb_offset;
618 out_unlock:
619 spin_unlock(&inode->i_lock);
620 return req;
621 out_flushme:
622 spin_unlock(&inode->i_lock);
623 nfs_release_request(req);
624 error = nfs_wb_page(inode, page);
625 out_err:
626 return ERR_PTR(error);
630 * Try to update an existing write request, or create one if there is none.
632 * Note: Should always be called with the Page Lock held to prevent races
633 * if we have to add a new request. Also assumes that the caller has
634 * already called nfs_flush_incompatible() if necessary.
636 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
637 struct page *page, unsigned int offset, unsigned int bytes)
639 struct inode *inode = page->mapping->host;
640 struct nfs_page *req;
641 int error;
643 req = nfs_try_to_update_request(inode, page, offset, bytes);
644 if (req != NULL)
645 goto out;
646 req = nfs_create_request(ctx, inode, page, offset, bytes);
647 if (IS_ERR(req))
648 goto out;
649 error = nfs_inode_add_request(inode, req);
650 if (error != 0) {
651 nfs_release_request(req);
652 req = ERR_PTR(error);
654 out:
655 return req;
658 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
659 unsigned int offset, unsigned int count)
661 struct nfs_page *req;
663 req = nfs_setup_write_request(ctx, page, offset, count);
664 if (IS_ERR(req))
665 return PTR_ERR(req);
666 nfs_mark_request_dirty(req);
667 /* Update file length */
668 nfs_grow_file(page, offset, count);
669 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
670 nfs_mark_request_dirty(req);
671 nfs_clear_page_tag_locked(req);
672 return 0;
675 int nfs_flush_incompatible(struct file *file, struct page *page)
677 struct nfs_open_context *ctx = nfs_file_open_context(file);
678 struct nfs_page *req;
679 int do_flush, status;
681 * Look for a request corresponding to this page. If there
682 * is one, and it belongs to another file, we flush it out
683 * before we try to copy anything into the page. Do this
684 * due to the lack of an ACCESS-type call in NFSv2.
685 * Also do the same if we find a request from an existing
686 * dropped page.
688 do {
689 req = nfs_page_find_request(page);
690 if (req == NULL)
691 return 0;
692 do_flush = req->wb_page != page || req->wb_context != ctx;
693 nfs_release_request(req);
694 if (!do_flush)
695 return 0;
696 status = nfs_wb_page(page->mapping->host, page);
697 } while (status == 0);
698 return status;
702 * If the page cache is marked as unsafe or invalid, then we can't rely on
703 * the PageUptodate() flag. In this case, we will need to turn off
704 * write optimisations that depend on the page contents being correct.
706 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
708 return PageUptodate(page) &&
709 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
713 * Update and possibly write a cached page of an NFS file.
715 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
716 * things with a page scheduled for an RPC call (e.g. invalidate it).
718 int nfs_updatepage(struct file *file, struct page *page,
719 unsigned int offset, unsigned int count)
721 struct nfs_open_context *ctx = nfs_file_open_context(file);
722 struct inode *inode = page->mapping->host;
723 int status = 0;
725 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
727 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
728 file->f_path.dentry->d_parent->d_name.name,
729 file->f_path.dentry->d_name.name, count,
730 (long long)(page_offset(page) + offset));
732 /* If we're not using byte range locks, and we know the page
733 * is up to date, it may be more efficient to extend the write
734 * to cover the entire page in order to avoid fragmentation
735 * inefficiencies.
737 if (nfs_write_pageuptodate(page, inode) &&
738 inode->i_flock == NULL &&
739 !(file->f_flags & O_DSYNC)) {
740 count = max(count + offset, nfs_page_length(page));
741 offset = 0;
744 status = nfs_writepage_setup(ctx, page, offset, count);
745 if (status < 0)
746 nfs_set_pageerror(page);
748 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
749 status, (long long)i_size_read(inode));
750 return status;
753 static void nfs_writepage_release(struct nfs_page *req)
755 struct page *page = req->wb_page;
757 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
758 nfs_inode_remove_request(req);
759 nfs_clear_page_tag_locked(req);
760 nfs_end_page_writeback(page);
763 static int flush_task_priority(int how)
765 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
766 case FLUSH_HIGHPRI:
767 return RPC_PRIORITY_HIGH;
768 case FLUSH_LOWPRI:
769 return RPC_PRIORITY_LOW;
771 return RPC_PRIORITY_NORMAL;
775 * Set up the argument/result storage required for the RPC call.
777 static int nfs_write_rpcsetup(struct nfs_page *req,
778 struct nfs_write_data *data,
779 const struct rpc_call_ops *call_ops,
780 unsigned int count, unsigned int offset,
781 int how)
783 struct inode *inode = req->wb_context->path.dentry->d_inode;
784 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
785 int priority = flush_task_priority(how);
786 struct rpc_task *task;
787 struct rpc_message msg = {
788 .rpc_argp = &data->args,
789 .rpc_resp = &data->res,
790 .rpc_cred = req->wb_context->cred,
792 struct rpc_task_setup task_setup_data = {
793 .rpc_client = NFS_CLIENT(inode),
794 .task = &data->task,
795 .rpc_message = &msg,
796 .callback_ops = call_ops,
797 .callback_data = data,
798 .workqueue = nfsiod_workqueue,
799 .flags = flags,
800 .priority = priority,
803 /* Set up the RPC argument and reply structs
804 * NB: take care not to mess about with data->commit et al. */
806 data->req = req;
807 data->inode = inode = req->wb_context->path.dentry->d_inode;
808 data->cred = msg.rpc_cred;
810 data->args.fh = NFS_FH(inode);
811 data->args.offset = req_offset(req) + offset;
812 data->args.pgbase = req->wb_pgbase + offset;
813 data->args.pages = data->pagevec;
814 data->args.count = count;
815 data->args.context = get_nfs_open_context(req->wb_context);
816 data->args.stable = NFS_UNSTABLE;
817 if (how & FLUSH_STABLE) {
818 data->args.stable = NFS_DATA_SYNC;
819 if (!nfs_need_commit(NFS_I(inode)))
820 data->args.stable = NFS_FILE_SYNC;
823 data->res.fattr = &data->fattr;
824 data->res.count = count;
825 data->res.verf = &data->verf;
826 nfs_fattr_init(&data->fattr);
828 /* Set up the initial task struct. */
829 NFS_PROTO(inode)->write_setup(data, &msg);
831 dprintk("NFS: %5u initiated write call "
832 "(req %s/%lld, %u bytes @ offset %llu)\n",
833 data->task.tk_pid,
834 inode->i_sb->s_id,
835 (long long)NFS_FILEID(inode),
836 count,
837 (unsigned long long)data->args.offset);
839 task = rpc_run_task(&task_setup_data);
840 if (IS_ERR(task))
841 return PTR_ERR(task);
842 rpc_put_task(task);
843 return 0;
846 /* If a nfs_flush_* function fails, it should remove reqs from @head and
847 * call this on each, which will prepare them to be retried on next
848 * writeback using standard nfs.
850 static void nfs_redirty_request(struct nfs_page *req)
852 struct page *page = req->wb_page;
854 nfs_mark_request_dirty(req);
855 nfs_clear_page_tag_locked(req);
856 nfs_end_page_writeback(page);
860 * Generate multiple small requests to write out a single
861 * contiguous dirty area on one page.
863 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
865 struct nfs_page *req = nfs_list_entry(head->next);
866 struct page *page = req->wb_page;
867 struct nfs_write_data *data;
868 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
869 unsigned int offset;
870 int requests = 0;
871 int ret = 0;
872 LIST_HEAD(list);
874 nfs_list_remove_request(req);
876 nbytes = count;
877 do {
878 size_t len = min(nbytes, wsize);
880 data = nfs_writedata_alloc(1);
881 if (!data)
882 goto out_bad;
883 list_add(&data->pages, &list);
884 requests++;
885 nbytes -= len;
886 } while (nbytes != 0);
887 atomic_set(&req->wb_complete, requests);
889 ClearPageError(page);
890 offset = 0;
891 nbytes = count;
892 do {
893 int ret2;
895 data = list_entry(list.next, struct nfs_write_data, pages);
896 list_del_init(&data->pages);
898 data->pagevec[0] = page;
900 if (nbytes < wsize)
901 wsize = nbytes;
902 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
903 wsize, offset, how);
904 if (ret == 0)
905 ret = ret2;
906 offset += wsize;
907 nbytes -= wsize;
908 } while (nbytes != 0);
910 return ret;
912 out_bad:
913 while (!list_empty(&list)) {
914 data = list_entry(list.next, struct nfs_write_data, pages);
915 list_del(&data->pages);
916 nfs_writedata_release(data);
918 nfs_redirty_request(req);
919 return -ENOMEM;
923 * Create an RPC task for the given write request and kick it.
924 * The page must have been locked by the caller.
926 * It may happen that the page we're passed is not marked dirty.
927 * This is the case if nfs_updatepage detects a conflicting request
928 * that has been written but not committed.
930 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
932 struct nfs_page *req;
933 struct page **pages;
934 struct nfs_write_data *data;
936 data = nfs_writedata_alloc(npages);
937 if (!data)
938 goto out_bad;
940 pages = data->pagevec;
941 while (!list_empty(head)) {
942 req = nfs_list_entry(head->next);
943 nfs_list_remove_request(req);
944 nfs_list_add_request(req, &data->pages);
945 ClearPageError(req->wb_page);
946 *pages++ = req->wb_page;
948 req = nfs_list_entry(data->pages.next);
950 /* Set up the argument struct */
951 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
952 out_bad:
953 while (!list_empty(head)) {
954 req = nfs_list_entry(head->next);
955 nfs_list_remove_request(req);
956 nfs_redirty_request(req);
958 return -ENOMEM;
961 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
962 struct inode *inode, int ioflags)
964 size_t wsize = NFS_SERVER(inode)->wsize;
966 if (wsize < PAGE_CACHE_SIZE)
967 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
968 else
969 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
973 * Handle a write reply that flushed part of a page.
975 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
977 struct nfs_write_data *data = calldata;
979 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
980 task->tk_pid,
981 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
982 (long long)
983 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
984 data->req->wb_bytes, (long long)req_offset(data->req));
986 nfs_writeback_done(task, data);
989 static void nfs_writeback_release_partial(void *calldata)
991 struct nfs_write_data *data = calldata;
992 struct nfs_page *req = data->req;
993 struct page *page = req->wb_page;
994 int status = data->task.tk_status;
996 if (status < 0) {
997 nfs_set_pageerror(page);
998 nfs_context_set_write_error(req->wb_context, status);
999 dprintk(", error = %d\n", status);
1000 goto out;
1003 if (nfs_write_need_commit(data)) {
1004 struct inode *inode = page->mapping->host;
1006 spin_lock(&inode->i_lock);
1007 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1008 /* Do nothing we need to resend the writes */
1009 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1010 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1011 dprintk(" defer commit\n");
1012 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1013 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1014 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1015 dprintk(" server reboot detected\n");
1017 spin_unlock(&inode->i_lock);
1018 } else
1019 dprintk(" OK\n");
1021 out:
1022 if (atomic_dec_and_test(&req->wb_complete))
1023 nfs_writepage_release(req);
1024 nfs_writedata_release(calldata);
1027 #if defined(CONFIG_NFS_V4_1)
1028 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1030 struct nfs_write_data *data = calldata;
1031 struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
1033 if (nfs4_setup_sequence(clp, &data->args.seq_args,
1034 &data->res.seq_res, 1, task))
1035 return;
1036 rpc_call_start(task);
1038 #endif /* CONFIG_NFS_V4_1 */
1040 static const struct rpc_call_ops nfs_write_partial_ops = {
1041 #if defined(CONFIG_NFS_V4_1)
1042 .rpc_call_prepare = nfs_write_prepare,
1043 #endif /* CONFIG_NFS_V4_1 */
1044 .rpc_call_done = nfs_writeback_done_partial,
1045 .rpc_release = nfs_writeback_release_partial,
1049 * Handle a write reply that flushes a whole page.
1051 * FIXME: There is an inherent race with invalidate_inode_pages and
1052 * writebacks since the page->count is kept > 1 for as long
1053 * as the page has a write request pending.
1055 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1057 struct nfs_write_data *data = calldata;
1059 nfs_writeback_done(task, data);
1062 static void nfs_writeback_release_full(void *calldata)
1064 struct nfs_write_data *data = calldata;
1065 int status = data->task.tk_status;
1067 /* Update attributes as result of writeback. */
1068 while (!list_empty(&data->pages)) {
1069 struct nfs_page *req = nfs_list_entry(data->pages.next);
1070 struct page *page = req->wb_page;
1072 nfs_list_remove_request(req);
1074 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1075 data->task.tk_pid,
1076 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1077 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1078 req->wb_bytes,
1079 (long long)req_offset(req));
1081 if (status < 0) {
1082 nfs_set_pageerror(page);
1083 nfs_context_set_write_error(req->wb_context, status);
1084 dprintk(", error = %d\n", status);
1085 goto remove_request;
1088 if (nfs_write_need_commit(data)) {
1089 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1090 nfs_mark_request_commit(req);
1091 dprintk(" marked for commit\n");
1092 goto next;
1094 dprintk(" OK\n");
1095 remove_request:
1096 nfs_inode_remove_request(req);
1097 next:
1098 nfs_clear_page_tag_locked(req);
1099 nfs_end_page_writeback(page);
1101 nfs_writedata_release(calldata);
1104 static const struct rpc_call_ops nfs_write_full_ops = {
1105 #if defined(CONFIG_NFS_V4_1)
1106 .rpc_call_prepare = nfs_write_prepare,
1107 #endif /* CONFIG_NFS_V4_1 */
1108 .rpc_call_done = nfs_writeback_done_full,
1109 .rpc_release = nfs_writeback_release_full,
1114 * This function is called when the WRITE call is complete.
1116 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1118 struct nfs_writeargs *argp = &data->args;
1119 struct nfs_writeres *resp = &data->res;
1120 struct nfs_server *server = NFS_SERVER(data->inode);
1121 int status;
1123 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1124 task->tk_pid, task->tk_status);
1127 * ->write_done will attempt to use post-op attributes to detect
1128 * conflicting writes by other clients. A strict interpretation
1129 * of close-to-open would allow us to continue caching even if
1130 * another writer had changed the file, but some applications
1131 * depend on tighter cache coherency when writing.
1133 status = NFS_PROTO(data->inode)->write_done(task, data);
1134 if (status != 0)
1135 return status;
1136 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1138 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1139 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1140 /* We tried a write call, but the server did not
1141 * commit data to stable storage even though we
1142 * requested it.
1143 * Note: There is a known bug in Tru64 < 5.0 in which
1144 * the server reports NFS_DATA_SYNC, but performs
1145 * NFS_FILE_SYNC. We therefore implement this checking
1146 * as a dprintk() in order to avoid filling syslog.
1148 static unsigned long complain;
1150 if (time_before(complain, jiffies)) {
1151 dprintk("NFS: faulty NFS server %s:"
1152 " (committed = %d) != (stable = %d)\n",
1153 server->nfs_client->cl_hostname,
1154 resp->verf->committed, argp->stable);
1155 complain = jiffies + 300 * HZ;
1158 #endif
1159 /* Is this a short write? */
1160 if (task->tk_status >= 0 && resp->count < argp->count) {
1161 static unsigned long complain;
1163 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1165 /* Has the server at least made some progress? */
1166 if (resp->count != 0) {
1167 /* Was this an NFSv2 write or an NFSv3 stable write? */
1168 if (resp->verf->committed != NFS_UNSTABLE) {
1169 /* Resend from where the server left off */
1170 argp->offset += resp->count;
1171 argp->pgbase += resp->count;
1172 argp->count -= resp->count;
1173 } else {
1174 /* Resend as a stable write in order to avoid
1175 * headaches in the case of a server crash.
1177 argp->stable = NFS_FILE_SYNC;
1179 nfs_restart_rpc(task, server->nfs_client);
1180 return -EAGAIN;
1182 if (time_before(complain, jiffies)) {
1183 printk(KERN_WARNING
1184 "NFS: Server wrote zero bytes, expected %u.\n",
1185 argp->count);
1186 complain = jiffies + 300 * HZ;
1188 /* Can't do anything about it except throw an error. */
1189 task->tk_status = -EIO;
1191 return 0;
1195 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1196 static void nfs_commitdata_release(void *data)
1198 struct nfs_write_data *wdata = data;
1200 put_nfs_open_context(wdata->args.context);
1201 nfs_commit_free(wdata);
1205 * Set up the argument/result storage required for the RPC call.
1207 static int nfs_commit_rpcsetup(struct list_head *head,
1208 struct nfs_write_data *data,
1209 int how)
1211 struct nfs_page *first = nfs_list_entry(head->next);
1212 struct inode *inode = first->wb_context->path.dentry->d_inode;
1213 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1214 int priority = flush_task_priority(how);
1215 struct rpc_task *task;
1216 struct rpc_message msg = {
1217 .rpc_argp = &data->args,
1218 .rpc_resp = &data->res,
1219 .rpc_cred = first->wb_context->cred,
1221 struct rpc_task_setup task_setup_data = {
1222 .task = &data->task,
1223 .rpc_client = NFS_CLIENT(inode),
1224 .rpc_message = &msg,
1225 .callback_ops = &nfs_commit_ops,
1226 .callback_data = data,
1227 .workqueue = nfsiod_workqueue,
1228 .flags = flags,
1229 .priority = priority,
1232 /* Set up the RPC argument and reply structs
1233 * NB: take care not to mess about with data->commit et al. */
1235 list_splice_init(head, &data->pages);
1237 data->inode = inode;
1238 data->cred = msg.rpc_cred;
1240 data->args.fh = NFS_FH(data->inode);
1241 /* Note: we always request a commit of the entire inode */
1242 data->args.offset = 0;
1243 data->args.count = 0;
1244 data->args.context = get_nfs_open_context(first->wb_context);
1245 data->res.count = 0;
1246 data->res.fattr = &data->fattr;
1247 data->res.verf = &data->verf;
1248 nfs_fattr_init(&data->fattr);
1250 /* Set up the initial task struct. */
1251 NFS_PROTO(inode)->commit_setup(data, &msg);
1253 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1255 task = rpc_run_task(&task_setup_data);
1256 if (IS_ERR(task))
1257 return PTR_ERR(task);
1258 rpc_put_task(task);
1259 return 0;
1263 * Commit dirty pages
1265 static int
1266 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1268 struct nfs_write_data *data;
1269 struct nfs_page *req;
1271 data = nfs_commitdata_alloc();
1273 if (!data)
1274 goto out_bad;
1276 /* Set up the argument struct */
1277 return nfs_commit_rpcsetup(head, data, how);
1278 out_bad:
1279 while (!list_empty(head)) {
1280 req = nfs_list_entry(head->next);
1281 nfs_list_remove_request(req);
1282 nfs_mark_request_commit(req);
1283 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1284 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1285 BDI_RECLAIMABLE);
1286 nfs_clear_page_tag_locked(req);
1288 return -ENOMEM;
1292 * COMMIT call returned
1294 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1296 struct nfs_write_data *data = calldata;
1298 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1299 task->tk_pid, task->tk_status);
1301 /* Call the NFS version-specific code */
1302 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1303 return;
1306 static void nfs_commit_release(void *calldata)
1308 struct nfs_write_data *data = calldata;
1309 struct nfs_page *req;
1310 int status = data->task.tk_status;
1312 while (!list_empty(&data->pages)) {
1313 req = nfs_list_entry(data->pages.next);
1314 nfs_list_remove_request(req);
1315 nfs_clear_request_commit(req);
1317 dprintk("NFS: commit (%s/%lld %d@%lld)",
1318 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1319 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1320 req->wb_bytes,
1321 (long long)req_offset(req));
1322 if (status < 0) {
1323 nfs_context_set_write_error(req->wb_context, status);
1324 nfs_inode_remove_request(req);
1325 dprintk(", error = %d\n", status);
1326 goto next;
1329 /* Okay, COMMIT succeeded, apparently. Check the verifier
1330 * returned by the server against all stored verfs. */
1331 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1332 /* We have a match */
1333 nfs_inode_remove_request(req);
1334 dprintk(" OK\n");
1335 goto next;
1337 /* We have a mismatch. Write the page again */
1338 dprintk(" mismatch\n");
1339 nfs_mark_request_dirty(req);
1340 next:
1341 nfs_clear_page_tag_locked(req);
1343 nfs_commitdata_release(calldata);
1346 static const struct rpc_call_ops nfs_commit_ops = {
1347 #if defined(CONFIG_NFS_V4_1)
1348 .rpc_call_prepare = nfs_write_prepare,
1349 #endif /* CONFIG_NFS_V4_1 */
1350 .rpc_call_done = nfs_commit_done,
1351 .rpc_release = nfs_commit_release,
1354 static int nfs_commit_inode(struct inode *inode, int how)
1356 LIST_HEAD(head);
1357 int res;
1359 spin_lock(&inode->i_lock);
1360 res = nfs_scan_commit(inode, &head, 0, 0);
1361 spin_unlock(&inode->i_lock);
1362 if (res) {
1363 int error = nfs_commit_list(inode, &head, how);
1364 if (error < 0)
1365 return error;
1367 return res;
1370 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1372 struct nfs_inode *nfsi = NFS_I(inode);
1373 int flags = FLUSH_SYNC;
1374 int ret = 0;
1376 /* Don't commit yet if this is a non-blocking flush and there are
1377 * lots of outstanding writes for this mapping.
1379 if (wbc->sync_mode == WB_SYNC_NONE &&
1380 nfsi->ncommit <= (nfsi->npages >> 1))
1381 goto out_mark_dirty;
1383 if (wbc->nonblocking || wbc->for_background)
1384 flags = 0;
1385 ret = nfs_commit_inode(inode, flags);
1386 if (ret >= 0) {
1387 if (wbc->sync_mode == WB_SYNC_NONE) {
1388 if (ret < wbc->nr_to_write)
1389 wbc->nr_to_write -= ret;
1390 else
1391 wbc->nr_to_write = 0;
1393 return 0;
1395 out_mark_dirty:
1396 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1397 return ret;
1399 #else
1400 static int nfs_commit_inode(struct inode *inode, int how)
1402 return 0;
1405 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1407 return 0;
1409 #endif
1411 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1413 return nfs_commit_unstable_pages(inode, wbc);
1417 * flush the inode to disk.
1419 int nfs_wb_all(struct inode *inode)
1421 struct writeback_control wbc = {
1422 .sync_mode = WB_SYNC_ALL,
1423 .nr_to_write = LONG_MAX,
1424 .range_start = 0,
1425 .range_end = LLONG_MAX,
1428 return sync_inode(inode, &wbc);
1431 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1433 struct nfs_page *req;
1434 int ret = 0;
1436 BUG_ON(!PageLocked(page));
1437 for (;;) {
1438 req = nfs_page_find_request(page);
1439 if (req == NULL)
1440 break;
1441 if (nfs_lock_request_dontget(req)) {
1442 nfs_inode_remove_request(req);
1444 * In case nfs_inode_remove_request has marked the
1445 * page as being dirty
1447 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1448 nfs_unlock_request(req);
1449 break;
1451 ret = nfs_wait_on_request(req);
1452 nfs_release_request(req);
1453 if (ret < 0)
1454 break;
1456 return ret;
1460 * Write back all requests on one page - we do this before reading it.
1462 int nfs_wb_page(struct inode *inode, struct page *page)
1464 loff_t range_start = page_offset(page);
1465 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1466 struct writeback_control wbc = {
1467 .sync_mode = WB_SYNC_ALL,
1468 .nr_to_write = 0,
1469 .range_start = range_start,
1470 .range_end = range_end,
1472 struct nfs_page *req;
1473 int need_commit;
1474 int ret;
1476 while(PagePrivate(page)) {
1477 if (clear_page_dirty_for_io(page)) {
1478 ret = nfs_writepage_locked(page, &wbc);
1479 if (ret < 0)
1480 goto out_error;
1482 req = nfs_find_and_lock_request(page);
1483 if (!req)
1484 break;
1485 if (IS_ERR(req)) {
1486 ret = PTR_ERR(req);
1487 goto out_error;
1489 need_commit = test_bit(PG_CLEAN, &req->wb_flags);
1490 nfs_clear_page_tag_locked(req);
1491 if (need_commit) {
1492 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1493 if (ret < 0)
1494 goto out_error;
1497 return 0;
1498 out_error:
1499 return ret;
1502 #ifdef CONFIG_MIGRATION
1503 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1504 struct page *page)
1506 struct nfs_page *req;
1507 int ret;
1509 nfs_fscache_release_page(page, GFP_KERNEL);
1511 req = nfs_find_and_lock_request(page);
1512 ret = PTR_ERR(req);
1513 if (IS_ERR(req))
1514 goto out;
1516 ret = migrate_page(mapping, newpage, page);
1517 if (!req)
1518 goto out;
1519 if (ret)
1520 goto out_unlock;
1521 page_cache_get(newpage);
1522 spin_lock(&mapping->host->i_lock);
1523 req->wb_page = newpage;
1524 SetPagePrivate(newpage);
1525 set_page_private(newpage, (unsigned long)req);
1526 ClearPagePrivate(page);
1527 set_page_private(page, 0);
1528 spin_unlock(&mapping->host->i_lock);
1529 page_cache_release(page);
1530 out_unlock:
1531 nfs_clear_page_tag_locked(req);
1532 out:
1533 return ret;
1535 #endif
1537 int __init nfs_init_writepagecache(void)
1539 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1540 sizeof(struct nfs_write_data),
1541 0, SLAB_HWCACHE_ALIGN,
1542 NULL);
1543 if (nfs_wdata_cachep == NULL)
1544 return -ENOMEM;
1546 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1547 nfs_wdata_cachep);
1548 if (nfs_wdata_mempool == NULL)
1549 return -ENOMEM;
1551 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1552 nfs_wdata_cachep);
1553 if (nfs_commit_mempool == NULL)
1554 return -ENOMEM;
1557 * NFS congestion size, scale with available memory.
1559 * 64MB: 8192k
1560 * 128MB: 11585k
1561 * 256MB: 16384k
1562 * 512MB: 23170k
1563 * 1GB: 32768k
1564 * 2GB: 46340k
1565 * 4GB: 65536k
1566 * 8GB: 92681k
1567 * 16GB: 131072k
1569 * This allows larger machines to have larger/more transfers.
1570 * Limit the default to 256M
1572 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1573 if (nfs_congestion_kb > 256*1024)
1574 nfs_congestion_kb = 256*1024;
1576 return 0;
1579 void nfs_destroy_writepagecache(void)
1581 mempool_destroy(nfs_commit_mempool);
1582 mempool_destroy(nfs_wdata_mempool);
1583 kmem_cache_destroy(nfs_wdata_cachep);