mmc: block: Add new ioctl to send multi commands
[linux-2.6/btrfs-unstable.git] / drivers / mmc / card / block.c
blobf6acf0f6c4106f06bfe6c1300dc939aa534e9f3f
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
39 #include <linux/mmc/ioctl.h>
40 #include <linux/mmc/card.h>
41 #include <linux/mmc/host.h>
42 #include <linux/mmc/mmc.h>
43 #include <linux/mmc/sd.h>
45 #include <asm/uaccess.h>
47 #include "queue.h"
49 MODULE_ALIAS("mmc:block");
51 #ifdef KERNEL
52 #ifdef MODULE_PARAM_PREFIX
53 #undef MODULE_PARAM_PREFIX
54 #endif
55 #define MODULE_PARAM_PREFIX "mmcblk."
56 #endif
58 #define INAND_CMD38_ARG_EXT_CSD 113
59 #define INAND_CMD38_ARG_ERASE 0x00
60 #define INAND_CMD38_ARG_TRIM 0x01
61 #define INAND_CMD38_ARG_SECERASE 0x80
62 #define INAND_CMD38_ARG_SECTRIM1 0x81
63 #define INAND_CMD38_ARG_SECTRIM2 0x88
64 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
65 #define MMC_SANITIZE_REQ_TIMEOUT 240000
66 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
68 #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \
69 (req->cmd_flags & REQ_META)) && \
70 (rq_data_dir(req) == WRITE))
71 #define PACKED_CMD_VER 0x01
72 #define PACKED_CMD_WR 0x02
74 static DEFINE_MUTEX(block_mutex);
77 * The defaults come from config options but can be overriden by module
78 * or bootarg options.
80 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
83 * We've only got one major, so number of mmcblk devices is
84 * limited to (1 << 20) / number of minors per device. It is also
85 * currently limited by the size of the static bitmaps below.
87 static int max_devices;
89 #define MAX_DEVICES 256
91 /* TODO: Replace these with struct ida */
92 static DECLARE_BITMAP(dev_use, MAX_DEVICES);
93 static DECLARE_BITMAP(name_use, MAX_DEVICES);
96 * There is one mmc_blk_data per slot.
98 struct mmc_blk_data {
99 spinlock_t lock;
100 struct gendisk *disk;
101 struct mmc_queue queue;
102 struct list_head part;
104 unsigned int flags;
105 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
106 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
107 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
109 unsigned int usage;
110 unsigned int read_only;
111 unsigned int part_type;
112 unsigned int name_idx;
113 unsigned int reset_done;
114 #define MMC_BLK_READ BIT(0)
115 #define MMC_BLK_WRITE BIT(1)
116 #define MMC_BLK_DISCARD BIT(2)
117 #define MMC_BLK_SECDISCARD BIT(3)
120 * Only set in main mmc_blk_data associated
121 * with mmc_card with dev_set_drvdata, and keeps
122 * track of the current selected device partition.
124 unsigned int part_curr;
125 struct device_attribute force_ro;
126 struct device_attribute power_ro_lock;
127 int area_type;
130 static DEFINE_MUTEX(open_lock);
132 enum {
133 MMC_PACKED_NR_IDX = -1,
134 MMC_PACKED_NR_ZERO,
135 MMC_PACKED_NR_SINGLE,
138 module_param(perdev_minors, int, 0444);
139 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
141 static inline int mmc_blk_part_switch(struct mmc_card *card,
142 struct mmc_blk_data *md);
143 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
145 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
147 struct mmc_packed *packed = mqrq->packed;
149 BUG_ON(!packed);
151 mqrq->cmd_type = MMC_PACKED_NONE;
152 packed->nr_entries = MMC_PACKED_NR_ZERO;
153 packed->idx_failure = MMC_PACKED_NR_IDX;
154 packed->retries = 0;
155 packed->blocks = 0;
158 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
160 struct mmc_blk_data *md;
162 mutex_lock(&open_lock);
163 md = disk->private_data;
164 if (md && md->usage == 0)
165 md = NULL;
166 if (md)
167 md->usage++;
168 mutex_unlock(&open_lock);
170 return md;
173 static inline int mmc_get_devidx(struct gendisk *disk)
175 int devmaj = MAJOR(disk_devt(disk));
176 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
178 if (!devmaj)
179 devidx = disk->first_minor / perdev_minors;
180 return devidx;
183 static void mmc_blk_put(struct mmc_blk_data *md)
185 mutex_lock(&open_lock);
186 md->usage--;
187 if (md->usage == 0) {
188 int devidx = mmc_get_devidx(md->disk);
189 blk_cleanup_queue(md->queue.queue);
191 __clear_bit(devidx, dev_use);
193 put_disk(md->disk);
194 kfree(md);
196 mutex_unlock(&open_lock);
199 static ssize_t power_ro_lock_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
202 int ret;
203 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
204 struct mmc_card *card = md->queue.card;
205 int locked = 0;
207 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
208 locked = 2;
209 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
210 locked = 1;
212 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
214 mmc_blk_put(md);
216 return ret;
219 static ssize_t power_ro_lock_store(struct device *dev,
220 struct device_attribute *attr, const char *buf, size_t count)
222 int ret;
223 struct mmc_blk_data *md, *part_md;
224 struct mmc_card *card;
225 unsigned long set;
227 if (kstrtoul(buf, 0, &set))
228 return -EINVAL;
230 if (set != 1)
231 return count;
233 md = mmc_blk_get(dev_to_disk(dev));
234 card = md->queue.card;
236 mmc_get_card(card);
238 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
239 card->ext_csd.boot_ro_lock |
240 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
241 card->ext_csd.part_time);
242 if (ret)
243 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
244 else
245 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
247 mmc_put_card(card);
249 if (!ret) {
250 pr_info("%s: Locking boot partition ro until next power on\n",
251 md->disk->disk_name);
252 set_disk_ro(md->disk, 1);
254 list_for_each_entry(part_md, &md->part, part)
255 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
256 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
257 set_disk_ro(part_md->disk, 1);
261 mmc_blk_put(md);
262 return count;
265 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
266 char *buf)
268 int ret;
269 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
271 ret = snprintf(buf, PAGE_SIZE, "%d\n",
272 get_disk_ro(dev_to_disk(dev)) ^
273 md->read_only);
274 mmc_blk_put(md);
275 return ret;
278 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
279 const char *buf, size_t count)
281 int ret;
282 char *end;
283 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
284 unsigned long set = simple_strtoul(buf, &end, 0);
285 if (end == buf) {
286 ret = -EINVAL;
287 goto out;
290 set_disk_ro(dev_to_disk(dev), set || md->read_only);
291 ret = count;
292 out:
293 mmc_blk_put(md);
294 return ret;
297 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
299 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
300 int ret = -ENXIO;
302 mutex_lock(&block_mutex);
303 if (md) {
304 if (md->usage == 2)
305 check_disk_change(bdev);
306 ret = 0;
308 if ((mode & FMODE_WRITE) && md->read_only) {
309 mmc_blk_put(md);
310 ret = -EROFS;
313 mutex_unlock(&block_mutex);
315 return ret;
318 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
320 struct mmc_blk_data *md = disk->private_data;
322 mutex_lock(&block_mutex);
323 mmc_blk_put(md);
324 mutex_unlock(&block_mutex);
327 static int
328 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
330 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
331 geo->heads = 4;
332 geo->sectors = 16;
333 return 0;
336 struct mmc_blk_ioc_data {
337 struct mmc_ioc_cmd ic;
338 unsigned char *buf;
339 u64 buf_bytes;
342 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
343 struct mmc_ioc_cmd __user *user)
345 struct mmc_blk_ioc_data *idata;
346 int err;
348 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
349 if (!idata) {
350 err = -ENOMEM;
351 goto out;
354 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
355 err = -EFAULT;
356 goto idata_err;
359 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
360 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
361 err = -EOVERFLOW;
362 goto idata_err;
365 if (!idata->buf_bytes)
366 return idata;
368 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
369 if (!idata->buf) {
370 err = -ENOMEM;
371 goto idata_err;
374 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
375 idata->ic.data_ptr, idata->buf_bytes)) {
376 err = -EFAULT;
377 goto copy_err;
380 return idata;
382 copy_err:
383 kfree(idata->buf);
384 idata_err:
385 kfree(idata);
386 out:
387 return ERR_PTR(err);
390 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
391 struct mmc_blk_ioc_data *idata)
393 struct mmc_ioc_cmd *ic = &idata->ic;
395 if (copy_to_user(&(ic_ptr->response), ic->response,
396 sizeof(ic->response)))
397 return -EFAULT;
399 if (!idata->ic.write_flag) {
400 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
401 idata->buf, idata->buf_bytes))
402 return -EFAULT;
405 return 0;
408 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
409 u32 retries_max)
411 int err;
412 u32 retry_count = 0;
414 if (!status || !retries_max)
415 return -EINVAL;
417 do {
418 err = get_card_status(card, status, 5);
419 if (err)
420 break;
422 if (!R1_STATUS(*status) &&
423 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
424 break; /* RPMB programming operation complete */
427 * Rechedule to give the MMC device a chance to continue
428 * processing the previous command without being polled too
429 * frequently.
431 usleep_range(1000, 5000);
432 } while (++retry_count < retries_max);
434 if (retry_count == retries_max)
435 err = -EPERM;
437 return err;
440 static int ioctl_do_sanitize(struct mmc_card *card)
442 int err;
444 if (!mmc_can_sanitize(card)) {
445 pr_warn("%s: %s - SANITIZE is not supported\n",
446 mmc_hostname(card->host), __func__);
447 err = -EOPNOTSUPP;
448 goto out;
451 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
452 mmc_hostname(card->host), __func__);
454 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
455 EXT_CSD_SANITIZE_START, 1,
456 MMC_SANITIZE_REQ_TIMEOUT);
458 if (err)
459 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
460 mmc_hostname(card->host), __func__, err);
462 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
463 __func__);
464 out:
465 return err;
468 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
469 struct mmc_blk_ioc_data *idata)
471 struct mmc_command cmd = {0};
472 struct mmc_data data = {0};
473 struct mmc_request mrq = {NULL};
474 struct scatterlist sg;
475 int err;
476 int is_rpmb = false;
477 u32 status = 0;
479 if (!card || !md || !idata)
480 return -EINVAL;
482 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
483 is_rpmb = true;
485 cmd.opcode = idata->ic.opcode;
486 cmd.arg = idata->ic.arg;
487 cmd.flags = idata->ic.flags;
489 if (idata->buf_bytes) {
490 data.sg = &sg;
491 data.sg_len = 1;
492 data.blksz = idata->ic.blksz;
493 data.blocks = idata->ic.blocks;
495 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
497 if (idata->ic.write_flag)
498 data.flags = MMC_DATA_WRITE;
499 else
500 data.flags = MMC_DATA_READ;
502 /* data.flags must already be set before doing this. */
503 mmc_set_data_timeout(&data, card);
505 /* Allow overriding the timeout_ns for empirical tuning. */
506 if (idata->ic.data_timeout_ns)
507 data.timeout_ns = idata->ic.data_timeout_ns;
509 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
511 * Pretend this is a data transfer and rely on the
512 * host driver to compute timeout. When all host
513 * drivers support cmd.cmd_timeout for R1B, this
514 * can be changed to:
516 * mrq.data = NULL;
517 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
519 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
522 mrq.data = &data;
525 mrq.cmd = &cmd;
527 err = mmc_blk_part_switch(card, md);
528 if (err)
529 return err;
531 if (idata->ic.is_acmd) {
532 err = mmc_app_cmd(card->host, card);
533 if (err)
534 return err;
537 if (is_rpmb) {
538 err = mmc_set_blockcount(card, data.blocks,
539 idata->ic.write_flag & (1 << 31));
540 if (err)
541 return err;
544 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
545 (cmd.opcode == MMC_SWITCH)) {
546 err = ioctl_do_sanitize(card);
548 if (err)
549 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
550 __func__, err);
552 return err;
555 mmc_wait_for_req(card->host, &mrq);
557 if (cmd.error) {
558 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
559 __func__, cmd.error);
560 return cmd.error;
562 if (data.error) {
563 dev_err(mmc_dev(card->host), "%s: data error %d\n",
564 __func__, data.error);
565 return data.error;
569 * According to the SD specs, some commands require a delay after
570 * issuing the command.
572 if (idata->ic.postsleep_min_us)
573 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
575 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
577 if (is_rpmb) {
579 * Ensure RPMB command has completed by polling CMD13
580 * "Send Status".
582 err = ioctl_rpmb_card_status_poll(card, &status, 5);
583 if (err)
584 dev_err(mmc_dev(card->host),
585 "%s: Card Status=0x%08X, error %d\n",
586 __func__, status, err);
589 return err;
592 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
593 struct mmc_ioc_cmd __user *ic_ptr)
595 struct mmc_blk_ioc_data *idata;
596 struct mmc_blk_data *md;
597 struct mmc_card *card;
598 int err;
600 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
601 if (IS_ERR(idata))
602 return PTR_ERR(idata);
604 md = mmc_blk_get(bdev->bd_disk);
605 if (!md) {
606 err = -EINVAL;
607 goto cmd_err;
610 card = md->queue.card;
611 if (IS_ERR(card)) {
612 err = PTR_ERR(card);
613 goto cmd_done;
616 mmc_get_card(card);
618 err = __mmc_blk_ioctl_cmd(card, md, idata);
620 mmc_put_card(card);
622 if (!err)
623 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
625 cmd_done:
626 mmc_blk_put(md);
627 cmd_err:
628 kfree(idata->buf);
629 kfree(idata);
630 return err;
633 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
634 struct mmc_ioc_multi_cmd __user *user)
636 struct mmc_blk_ioc_data **idata = NULL;
637 struct mmc_ioc_cmd __user *cmds = user->cmds;
638 struct mmc_card *card;
639 struct mmc_blk_data *md;
640 int i, err = -EFAULT;
641 __u64 num_of_cmds;
643 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
644 sizeof(num_of_cmds)))
645 return -EFAULT;
647 if (num_of_cmds > MMC_IOC_MAX_CMDS)
648 return -EINVAL;
650 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
651 if (!idata)
652 return -ENOMEM;
654 for (i = 0; i < num_of_cmds; i++) {
655 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
656 if (IS_ERR(idata[i])) {
657 err = PTR_ERR(idata[i]);
658 num_of_cmds = i;
659 goto cmd_err;
663 md = mmc_blk_get(bdev->bd_disk);
664 if (!md)
665 goto cmd_err;
667 card = md->queue.card;
668 if (IS_ERR(card)) {
669 err = PTR_ERR(card);
670 goto cmd_done;
673 mmc_get_card(card);
675 for (i = 0; i < num_of_cmds; i++) {
676 err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
677 if (err) {
678 mmc_put_card(card);
679 goto cmd_done;
683 mmc_put_card(card);
685 /* copy to user if data and response */
686 for (i = 0; i < num_of_cmds; i++) {
687 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
688 if (err)
689 break;
692 cmd_done:
693 mmc_blk_put(md);
694 cmd_err:
695 for (i = 0; i < num_of_cmds; i++) {
696 kfree(idata[i]->buf);
697 kfree(idata[i]);
699 kfree(idata);
700 return err;
703 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
704 unsigned int cmd, unsigned long arg)
707 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
708 * whole block device, not on a partition. This prevents overspray
709 * between sibling partitions.
711 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
712 return -EPERM;
714 switch (cmd) {
715 case MMC_IOC_CMD:
716 return mmc_blk_ioctl_cmd(bdev,
717 (struct mmc_ioc_cmd __user *)arg);
718 case MMC_IOC_MULTI_CMD:
719 return mmc_blk_ioctl_multi_cmd(bdev,
720 (struct mmc_ioc_multi_cmd __user *)arg);
721 default:
722 return -EINVAL;
726 #ifdef CONFIG_COMPAT
727 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
728 unsigned int cmd, unsigned long arg)
730 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
732 #endif
734 static const struct block_device_operations mmc_bdops = {
735 .open = mmc_blk_open,
736 .release = mmc_blk_release,
737 .getgeo = mmc_blk_getgeo,
738 .owner = THIS_MODULE,
739 .ioctl = mmc_blk_ioctl,
740 #ifdef CONFIG_COMPAT
741 .compat_ioctl = mmc_blk_compat_ioctl,
742 #endif
745 static inline int mmc_blk_part_switch(struct mmc_card *card,
746 struct mmc_blk_data *md)
748 int ret;
749 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
751 if (main_md->part_curr == md->part_type)
752 return 0;
754 if (mmc_card_mmc(card)) {
755 u8 part_config = card->ext_csd.part_config;
757 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
758 part_config |= md->part_type;
760 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
761 EXT_CSD_PART_CONFIG, part_config,
762 card->ext_csd.part_time);
763 if (ret)
764 return ret;
766 card->ext_csd.part_config = part_config;
769 main_md->part_curr = md->part_type;
770 return 0;
773 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
775 int err;
776 u32 result;
777 __be32 *blocks;
779 struct mmc_request mrq = {NULL};
780 struct mmc_command cmd = {0};
781 struct mmc_data data = {0};
783 struct scatterlist sg;
785 cmd.opcode = MMC_APP_CMD;
786 cmd.arg = card->rca << 16;
787 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
789 err = mmc_wait_for_cmd(card->host, &cmd, 0);
790 if (err)
791 return (u32)-1;
792 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
793 return (u32)-1;
795 memset(&cmd, 0, sizeof(struct mmc_command));
797 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
798 cmd.arg = 0;
799 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
801 data.blksz = 4;
802 data.blocks = 1;
803 data.flags = MMC_DATA_READ;
804 data.sg = &sg;
805 data.sg_len = 1;
806 mmc_set_data_timeout(&data, card);
808 mrq.cmd = &cmd;
809 mrq.data = &data;
811 blocks = kmalloc(4, GFP_KERNEL);
812 if (!blocks)
813 return (u32)-1;
815 sg_init_one(&sg, blocks, 4);
817 mmc_wait_for_req(card->host, &mrq);
819 result = ntohl(*blocks);
820 kfree(blocks);
822 if (cmd.error || data.error)
823 result = (u32)-1;
825 return result;
828 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
830 struct mmc_command cmd = {0};
831 int err;
833 cmd.opcode = MMC_SEND_STATUS;
834 if (!mmc_host_is_spi(card->host))
835 cmd.arg = card->rca << 16;
836 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
837 err = mmc_wait_for_cmd(card->host, &cmd, retries);
838 if (err == 0)
839 *status = cmd.resp[0];
840 return err;
843 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
844 bool hw_busy_detect, struct request *req, int *gen_err)
846 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
847 int err = 0;
848 u32 status;
850 do {
851 err = get_card_status(card, &status, 5);
852 if (err) {
853 pr_err("%s: error %d requesting status\n",
854 req->rq_disk->disk_name, err);
855 return err;
858 if (status & R1_ERROR) {
859 pr_err("%s: %s: error sending status cmd, status %#x\n",
860 req->rq_disk->disk_name, __func__, status);
861 *gen_err = 1;
864 /* We may rely on the host hw to handle busy detection.*/
865 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
866 hw_busy_detect)
867 break;
870 * Timeout if the device never becomes ready for data and never
871 * leaves the program state.
873 if (time_after(jiffies, timeout)) {
874 pr_err("%s: Card stuck in programming state! %s %s\n",
875 mmc_hostname(card->host),
876 req->rq_disk->disk_name, __func__);
877 return -ETIMEDOUT;
881 * Some cards mishandle the status bits,
882 * so make sure to check both the busy
883 * indication and the card state.
885 } while (!(status & R1_READY_FOR_DATA) ||
886 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
888 return err;
891 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
892 struct request *req, int *gen_err, u32 *stop_status)
894 struct mmc_host *host = card->host;
895 struct mmc_command cmd = {0};
896 int err;
897 bool use_r1b_resp = rq_data_dir(req) == WRITE;
900 * Normally we use R1B responses for WRITE, but in cases where the host
901 * has specified a max_busy_timeout we need to validate it. A failure
902 * means we need to prevent the host from doing hw busy detection, which
903 * is done by converting to a R1 response instead.
905 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
906 use_r1b_resp = false;
908 cmd.opcode = MMC_STOP_TRANSMISSION;
909 if (use_r1b_resp) {
910 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
911 cmd.busy_timeout = timeout_ms;
912 } else {
913 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
916 err = mmc_wait_for_cmd(host, &cmd, 5);
917 if (err)
918 return err;
920 *stop_status = cmd.resp[0];
922 /* No need to check card status in case of READ. */
923 if (rq_data_dir(req) == READ)
924 return 0;
926 if (!mmc_host_is_spi(host) &&
927 (*stop_status & R1_ERROR)) {
928 pr_err("%s: %s: general error sending stop command, resp %#x\n",
929 req->rq_disk->disk_name, __func__, *stop_status);
930 *gen_err = 1;
933 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
936 #define ERR_NOMEDIUM 3
937 #define ERR_RETRY 2
938 #define ERR_ABORT 1
939 #define ERR_CONTINUE 0
941 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
942 bool status_valid, u32 status)
944 switch (error) {
945 case -EILSEQ:
946 /* response crc error, retry the r/w cmd */
947 pr_err("%s: %s sending %s command, card status %#x\n",
948 req->rq_disk->disk_name, "response CRC error",
949 name, status);
950 return ERR_RETRY;
952 case -ETIMEDOUT:
953 pr_err("%s: %s sending %s command, card status %#x\n",
954 req->rq_disk->disk_name, "timed out", name, status);
956 /* If the status cmd initially failed, retry the r/w cmd */
957 if (!status_valid)
958 return ERR_RETRY;
961 * If it was a r/w cmd crc error, or illegal command
962 * (eg, issued in wrong state) then retry - we should
963 * have corrected the state problem above.
965 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
966 return ERR_RETRY;
968 /* Otherwise abort the command */
969 return ERR_ABORT;
971 default:
972 /* We don't understand the error code the driver gave us */
973 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
974 req->rq_disk->disk_name, error, status);
975 return ERR_ABORT;
980 * Initial r/w and stop cmd error recovery.
981 * We don't know whether the card received the r/w cmd or not, so try to
982 * restore things back to a sane state. Essentially, we do this as follows:
983 * - Obtain card status. If the first attempt to obtain card status fails,
984 * the status word will reflect the failed status cmd, not the failed
985 * r/w cmd. If we fail to obtain card status, it suggests we can no
986 * longer communicate with the card.
987 * - Check the card state. If the card received the cmd but there was a
988 * transient problem with the response, it might still be in a data transfer
989 * mode. Try to send it a stop command. If this fails, we can't recover.
990 * - If the r/w cmd failed due to a response CRC error, it was probably
991 * transient, so retry the cmd.
992 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
993 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
994 * illegal cmd, retry.
995 * Otherwise we don't understand what happened, so abort.
997 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
998 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
1000 bool prev_cmd_status_valid = true;
1001 u32 status, stop_status = 0;
1002 int err, retry;
1004 if (mmc_card_removed(card))
1005 return ERR_NOMEDIUM;
1008 * Try to get card status which indicates both the card state
1009 * and why there was no response. If the first attempt fails,
1010 * we can't be sure the returned status is for the r/w command.
1012 for (retry = 2; retry >= 0; retry--) {
1013 err = get_card_status(card, &status, 0);
1014 if (!err)
1015 break;
1017 /* Re-tune if needed */
1018 mmc_retune_recheck(card->host);
1020 prev_cmd_status_valid = false;
1021 pr_err("%s: error %d sending status command, %sing\n",
1022 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1025 /* We couldn't get a response from the card. Give up. */
1026 if (err) {
1027 /* Check if the card is removed */
1028 if (mmc_detect_card_removed(card->host))
1029 return ERR_NOMEDIUM;
1030 return ERR_ABORT;
1033 /* Flag ECC errors */
1034 if ((status & R1_CARD_ECC_FAILED) ||
1035 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1036 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1037 *ecc_err = 1;
1039 /* Flag General errors */
1040 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1041 if ((status & R1_ERROR) ||
1042 (brq->stop.resp[0] & R1_ERROR)) {
1043 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1044 req->rq_disk->disk_name, __func__,
1045 brq->stop.resp[0], status);
1046 *gen_err = 1;
1050 * Check the current card state. If it is in some data transfer
1051 * mode, tell it to stop (and hopefully transition back to TRAN.)
1053 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1054 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1055 err = send_stop(card,
1056 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1057 req, gen_err, &stop_status);
1058 if (err) {
1059 pr_err("%s: error %d sending stop command\n",
1060 req->rq_disk->disk_name, err);
1062 * If the stop cmd also timed out, the card is probably
1063 * not present, so abort. Other errors are bad news too.
1065 return ERR_ABORT;
1068 if (stop_status & R1_CARD_ECC_FAILED)
1069 *ecc_err = 1;
1072 /* Check for set block count errors */
1073 if (brq->sbc.error)
1074 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1075 prev_cmd_status_valid, status);
1077 /* Check for r/w command errors */
1078 if (brq->cmd.error)
1079 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1080 prev_cmd_status_valid, status);
1082 /* Data errors */
1083 if (!brq->stop.error)
1084 return ERR_CONTINUE;
1086 /* Now for stop errors. These aren't fatal to the transfer. */
1087 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1088 req->rq_disk->disk_name, brq->stop.error,
1089 brq->cmd.resp[0], status);
1092 * Subsitute in our own stop status as this will give the error
1093 * state which happened during the execution of the r/w command.
1095 if (stop_status) {
1096 brq->stop.resp[0] = stop_status;
1097 brq->stop.error = 0;
1099 return ERR_CONTINUE;
1102 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1103 int type)
1105 int err;
1107 if (md->reset_done & type)
1108 return -EEXIST;
1110 md->reset_done |= type;
1111 err = mmc_hw_reset(host);
1112 /* Ensure we switch back to the correct partition */
1113 if (err != -EOPNOTSUPP) {
1114 struct mmc_blk_data *main_md =
1115 dev_get_drvdata(&host->card->dev);
1116 int part_err;
1118 main_md->part_curr = main_md->part_type;
1119 part_err = mmc_blk_part_switch(host->card, md);
1120 if (part_err) {
1122 * We have failed to get back into the correct
1123 * partition, so we need to abort the whole request.
1125 return -ENODEV;
1128 return err;
1131 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1133 md->reset_done &= ~type;
1136 int mmc_access_rpmb(struct mmc_queue *mq)
1138 struct mmc_blk_data *md = mq->data;
1140 * If this is a RPMB partition access, return ture
1142 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1143 return true;
1145 return false;
1148 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1150 struct mmc_blk_data *md = mq->data;
1151 struct mmc_card *card = md->queue.card;
1152 unsigned int from, nr, arg;
1153 int err = 0, type = MMC_BLK_DISCARD;
1155 if (!mmc_can_erase(card)) {
1156 err = -EOPNOTSUPP;
1157 goto out;
1160 from = blk_rq_pos(req);
1161 nr = blk_rq_sectors(req);
1163 if (mmc_can_discard(card))
1164 arg = MMC_DISCARD_ARG;
1165 else if (mmc_can_trim(card))
1166 arg = MMC_TRIM_ARG;
1167 else
1168 arg = MMC_ERASE_ARG;
1169 retry:
1170 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1171 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 INAND_CMD38_ARG_EXT_CSD,
1173 arg == MMC_TRIM_ARG ?
1174 INAND_CMD38_ARG_TRIM :
1175 INAND_CMD38_ARG_ERASE,
1177 if (err)
1178 goto out;
1180 err = mmc_erase(card, from, nr, arg);
1181 out:
1182 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1183 goto retry;
1184 if (!err)
1185 mmc_blk_reset_success(md, type);
1186 blk_end_request(req, err, blk_rq_bytes(req));
1188 return err ? 0 : 1;
1191 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1192 struct request *req)
1194 struct mmc_blk_data *md = mq->data;
1195 struct mmc_card *card = md->queue.card;
1196 unsigned int from, nr, arg;
1197 int err = 0, type = MMC_BLK_SECDISCARD;
1199 if (!(mmc_can_secure_erase_trim(card))) {
1200 err = -EOPNOTSUPP;
1201 goto out;
1204 from = blk_rq_pos(req);
1205 nr = blk_rq_sectors(req);
1207 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1208 arg = MMC_SECURE_TRIM1_ARG;
1209 else
1210 arg = MMC_SECURE_ERASE_ARG;
1212 retry:
1213 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1214 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1215 INAND_CMD38_ARG_EXT_CSD,
1216 arg == MMC_SECURE_TRIM1_ARG ?
1217 INAND_CMD38_ARG_SECTRIM1 :
1218 INAND_CMD38_ARG_SECERASE,
1220 if (err)
1221 goto out_retry;
1224 err = mmc_erase(card, from, nr, arg);
1225 if (err == -EIO)
1226 goto out_retry;
1227 if (err)
1228 goto out;
1230 if (arg == MMC_SECURE_TRIM1_ARG) {
1231 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1232 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1233 INAND_CMD38_ARG_EXT_CSD,
1234 INAND_CMD38_ARG_SECTRIM2,
1236 if (err)
1237 goto out_retry;
1240 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1241 if (err == -EIO)
1242 goto out_retry;
1243 if (err)
1244 goto out;
1247 out_retry:
1248 if (err && !mmc_blk_reset(md, card->host, type))
1249 goto retry;
1250 if (!err)
1251 mmc_blk_reset_success(md, type);
1252 out:
1253 blk_end_request(req, err, blk_rq_bytes(req));
1255 return err ? 0 : 1;
1258 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1260 struct mmc_blk_data *md = mq->data;
1261 struct mmc_card *card = md->queue.card;
1262 int ret = 0;
1264 ret = mmc_flush_cache(card);
1265 if (ret)
1266 ret = -EIO;
1268 blk_end_request_all(req, ret);
1270 return ret ? 0 : 1;
1274 * Reformat current write as a reliable write, supporting
1275 * both legacy and the enhanced reliable write MMC cards.
1276 * In each transfer we'll handle only as much as a single
1277 * reliable write can handle, thus finish the request in
1278 * partial completions.
1280 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1281 struct mmc_card *card,
1282 struct request *req)
1284 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1285 /* Legacy mode imposes restrictions on transfers. */
1286 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1287 brq->data.blocks = 1;
1289 if (brq->data.blocks > card->ext_csd.rel_sectors)
1290 brq->data.blocks = card->ext_csd.rel_sectors;
1291 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1292 brq->data.blocks = 1;
1296 #define CMD_ERRORS \
1297 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1298 R1_ADDRESS_ERROR | /* Misaligned address */ \
1299 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1300 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1301 R1_CC_ERROR | /* Card controller error */ \
1302 R1_ERROR) /* General/unknown error */
1304 static int mmc_blk_err_check(struct mmc_card *card,
1305 struct mmc_async_req *areq)
1307 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1308 mmc_active);
1309 struct mmc_blk_request *brq = &mq_mrq->brq;
1310 struct request *req = mq_mrq->req;
1311 int need_retune = card->host->need_retune;
1312 int ecc_err = 0, gen_err = 0;
1315 * sbc.error indicates a problem with the set block count
1316 * command. No data will have been transferred.
1318 * cmd.error indicates a problem with the r/w command. No
1319 * data will have been transferred.
1321 * stop.error indicates a problem with the stop command. Data
1322 * may have been transferred, or may still be transferring.
1324 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1325 brq->data.error) {
1326 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1327 case ERR_RETRY:
1328 return MMC_BLK_RETRY;
1329 case ERR_ABORT:
1330 return MMC_BLK_ABORT;
1331 case ERR_NOMEDIUM:
1332 return MMC_BLK_NOMEDIUM;
1333 case ERR_CONTINUE:
1334 break;
1339 * Check for errors relating to the execution of the
1340 * initial command - such as address errors. No data
1341 * has been transferred.
1343 if (brq->cmd.resp[0] & CMD_ERRORS) {
1344 pr_err("%s: r/w command failed, status = %#x\n",
1345 req->rq_disk->disk_name, brq->cmd.resp[0]);
1346 return MMC_BLK_ABORT;
1350 * Everything else is either success, or a data error of some
1351 * kind. If it was a write, we may have transitioned to
1352 * program mode, which we have to wait for it to complete.
1354 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1355 int err;
1357 /* Check stop command response */
1358 if (brq->stop.resp[0] & R1_ERROR) {
1359 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1360 req->rq_disk->disk_name, __func__,
1361 brq->stop.resp[0]);
1362 gen_err = 1;
1365 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1366 &gen_err);
1367 if (err)
1368 return MMC_BLK_CMD_ERR;
1371 /* if general error occurs, retry the write operation. */
1372 if (gen_err) {
1373 pr_warn("%s: retrying write for general error\n",
1374 req->rq_disk->disk_name);
1375 return MMC_BLK_RETRY;
1378 if (brq->data.error) {
1379 if (need_retune && !brq->retune_retry_done) {
1380 pr_info("%s: retrying because a re-tune was needed\n",
1381 req->rq_disk->disk_name);
1382 brq->retune_retry_done = 1;
1383 return MMC_BLK_RETRY;
1385 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1386 req->rq_disk->disk_name, brq->data.error,
1387 (unsigned)blk_rq_pos(req),
1388 (unsigned)blk_rq_sectors(req),
1389 brq->cmd.resp[0], brq->stop.resp[0]);
1391 if (rq_data_dir(req) == READ) {
1392 if (ecc_err)
1393 return MMC_BLK_ECC_ERR;
1394 return MMC_BLK_DATA_ERR;
1395 } else {
1396 return MMC_BLK_CMD_ERR;
1400 if (!brq->data.bytes_xfered)
1401 return MMC_BLK_RETRY;
1403 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1404 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1405 return MMC_BLK_PARTIAL;
1406 else
1407 return MMC_BLK_SUCCESS;
1410 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1411 return MMC_BLK_PARTIAL;
1413 return MMC_BLK_SUCCESS;
1416 static int mmc_blk_packed_err_check(struct mmc_card *card,
1417 struct mmc_async_req *areq)
1419 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1420 mmc_active);
1421 struct request *req = mq_rq->req;
1422 struct mmc_packed *packed = mq_rq->packed;
1423 int err, check, status;
1424 u8 *ext_csd;
1426 BUG_ON(!packed);
1428 packed->retries--;
1429 check = mmc_blk_err_check(card, areq);
1430 err = get_card_status(card, &status, 0);
1431 if (err) {
1432 pr_err("%s: error %d sending status command\n",
1433 req->rq_disk->disk_name, err);
1434 return MMC_BLK_ABORT;
1437 if (status & R1_EXCEPTION_EVENT) {
1438 err = mmc_get_ext_csd(card, &ext_csd);
1439 if (err) {
1440 pr_err("%s: error %d sending ext_csd\n",
1441 req->rq_disk->disk_name, err);
1442 return MMC_BLK_ABORT;
1445 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1446 EXT_CSD_PACKED_FAILURE) &&
1447 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1448 EXT_CSD_PACKED_GENERIC_ERROR)) {
1449 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1450 EXT_CSD_PACKED_INDEXED_ERROR) {
1451 packed->idx_failure =
1452 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1453 check = MMC_BLK_PARTIAL;
1455 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1456 "failure index: %d\n",
1457 req->rq_disk->disk_name, packed->nr_entries,
1458 packed->blocks, packed->idx_failure);
1460 kfree(ext_csd);
1463 return check;
1466 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1467 struct mmc_card *card,
1468 int disable_multi,
1469 struct mmc_queue *mq)
1471 u32 readcmd, writecmd;
1472 struct mmc_blk_request *brq = &mqrq->brq;
1473 struct request *req = mqrq->req;
1474 struct mmc_blk_data *md = mq->data;
1475 bool do_data_tag;
1478 * Reliable writes are used to implement Forced Unit Access and
1479 * REQ_META accesses, and are supported only on MMCs.
1481 * XXX: this really needs a good explanation of why REQ_META
1482 * is treated special.
1484 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1485 (req->cmd_flags & REQ_META)) &&
1486 (rq_data_dir(req) == WRITE) &&
1487 (md->flags & MMC_BLK_REL_WR);
1489 memset(brq, 0, sizeof(struct mmc_blk_request));
1490 brq->mrq.cmd = &brq->cmd;
1491 brq->mrq.data = &brq->data;
1493 brq->cmd.arg = blk_rq_pos(req);
1494 if (!mmc_card_blockaddr(card))
1495 brq->cmd.arg <<= 9;
1496 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1497 brq->data.blksz = 512;
1498 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1499 brq->stop.arg = 0;
1500 brq->data.blocks = blk_rq_sectors(req);
1503 * The block layer doesn't support all sector count
1504 * restrictions, so we need to be prepared for too big
1505 * requests.
1507 if (brq->data.blocks > card->host->max_blk_count)
1508 brq->data.blocks = card->host->max_blk_count;
1510 if (brq->data.blocks > 1) {
1512 * After a read error, we redo the request one sector
1513 * at a time in order to accurately determine which
1514 * sectors can be read successfully.
1516 if (disable_multi)
1517 brq->data.blocks = 1;
1520 * Some controllers have HW issues while operating
1521 * in multiple I/O mode
1523 if (card->host->ops->multi_io_quirk)
1524 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1525 (rq_data_dir(req) == READ) ?
1526 MMC_DATA_READ : MMC_DATA_WRITE,
1527 brq->data.blocks);
1530 if (brq->data.blocks > 1 || do_rel_wr) {
1531 /* SPI multiblock writes terminate using a special
1532 * token, not a STOP_TRANSMISSION request.
1534 if (!mmc_host_is_spi(card->host) ||
1535 rq_data_dir(req) == READ)
1536 brq->mrq.stop = &brq->stop;
1537 readcmd = MMC_READ_MULTIPLE_BLOCK;
1538 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1539 } else {
1540 brq->mrq.stop = NULL;
1541 readcmd = MMC_READ_SINGLE_BLOCK;
1542 writecmd = MMC_WRITE_BLOCK;
1544 if (rq_data_dir(req) == READ) {
1545 brq->cmd.opcode = readcmd;
1546 brq->data.flags |= MMC_DATA_READ;
1547 if (brq->mrq.stop)
1548 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1549 MMC_CMD_AC;
1550 } else {
1551 brq->cmd.opcode = writecmd;
1552 brq->data.flags |= MMC_DATA_WRITE;
1553 if (brq->mrq.stop)
1554 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1555 MMC_CMD_AC;
1558 if (do_rel_wr)
1559 mmc_apply_rel_rw(brq, card, req);
1562 * Data tag is used only during writing meta data to speed
1563 * up write and any subsequent read of this meta data
1565 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1566 (req->cmd_flags & REQ_META) &&
1567 (rq_data_dir(req) == WRITE) &&
1568 ((brq->data.blocks * brq->data.blksz) >=
1569 card->ext_csd.data_tag_unit_size);
1572 * Pre-defined multi-block transfers are preferable to
1573 * open ended-ones (and necessary for reliable writes).
1574 * However, it is not sufficient to just send CMD23,
1575 * and avoid the final CMD12, as on an error condition
1576 * CMD12 (stop) needs to be sent anyway. This, coupled
1577 * with Auto-CMD23 enhancements provided by some
1578 * hosts, means that the complexity of dealing
1579 * with this is best left to the host. If CMD23 is
1580 * supported by card and host, we'll fill sbc in and let
1581 * the host deal with handling it correctly. This means
1582 * that for hosts that don't expose MMC_CAP_CMD23, no
1583 * change of behavior will be observed.
1585 * N.B: Some MMC cards experience perf degradation.
1586 * We'll avoid using CMD23-bounded multiblock writes for
1587 * these, while retaining features like reliable writes.
1589 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1590 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1591 do_data_tag)) {
1592 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1593 brq->sbc.arg = brq->data.blocks |
1594 (do_rel_wr ? (1 << 31) : 0) |
1595 (do_data_tag ? (1 << 29) : 0);
1596 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1597 brq->mrq.sbc = &brq->sbc;
1600 mmc_set_data_timeout(&brq->data, card);
1602 brq->data.sg = mqrq->sg;
1603 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1606 * Adjust the sg list so it is the same size as the
1607 * request.
1609 if (brq->data.blocks != blk_rq_sectors(req)) {
1610 int i, data_size = brq->data.blocks << 9;
1611 struct scatterlist *sg;
1613 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1614 data_size -= sg->length;
1615 if (data_size <= 0) {
1616 sg->length += data_size;
1617 i++;
1618 break;
1621 brq->data.sg_len = i;
1624 mqrq->mmc_active.mrq = &brq->mrq;
1625 mqrq->mmc_active.err_check = mmc_blk_err_check;
1627 mmc_queue_bounce_pre(mqrq);
1630 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1631 struct mmc_card *card)
1633 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1634 unsigned int max_seg_sz = queue_max_segment_size(q);
1635 unsigned int len, nr_segs = 0;
1637 do {
1638 len = min(hdr_sz, max_seg_sz);
1639 hdr_sz -= len;
1640 nr_segs++;
1641 } while (hdr_sz);
1643 return nr_segs;
1646 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1648 struct request_queue *q = mq->queue;
1649 struct mmc_card *card = mq->card;
1650 struct request *cur = req, *next = NULL;
1651 struct mmc_blk_data *md = mq->data;
1652 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1653 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1654 unsigned int req_sectors = 0, phys_segments = 0;
1655 unsigned int max_blk_count, max_phys_segs;
1656 bool put_back = true;
1657 u8 max_packed_rw = 0;
1658 u8 reqs = 0;
1660 if (!(md->flags & MMC_BLK_PACKED_CMD))
1661 goto no_packed;
1663 if ((rq_data_dir(cur) == WRITE) &&
1664 mmc_host_packed_wr(card->host))
1665 max_packed_rw = card->ext_csd.max_packed_writes;
1667 if (max_packed_rw == 0)
1668 goto no_packed;
1670 if (mmc_req_rel_wr(cur) &&
1671 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1672 goto no_packed;
1674 if (mmc_large_sector(card) &&
1675 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1676 goto no_packed;
1678 mmc_blk_clear_packed(mqrq);
1680 max_blk_count = min(card->host->max_blk_count,
1681 card->host->max_req_size >> 9);
1682 if (unlikely(max_blk_count > 0xffff))
1683 max_blk_count = 0xffff;
1685 max_phys_segs = queue_max_segments(q);
1686 req_sectors += blk_rq_sectors(cur);
1687 phys_segments += cur->nr_phys_segments;
1689 if (rq_data_dir(cur) == WRITE) {
1690 req_sectors += mmc_large_sector(card) ? 8 : 1;
1691 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1694 do {
1695 if (reqs >= max_packed_rw - 1) {
1696 put_back = false;
1697 break;
1700 spin_lock_irq(q->queue_lock);
1701 next = blk_fetch_request(q);
1702 spin_unlock_irq(q->queue_lock);
1703 if (!next) {
1704 put_back = false;
1705 break;
1708 if (mmc_large_sector(card) &&
1709 !IS_ALIGNED(blk_rq_sectors(next), 8))
1710 break;
1712 if (next->cmd_flags & REQ_DISCARD ||
1713 next->cmd_flags & REQ_FLUSH)
1714 break;
1716 if (rq_data_dir(cur) != rq_data_dir(next))
1717 break;
1719 if (mmc_req_rel_wr(next) &&
1720 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1721 break;
1723 req_sectors += blk_rq_sectors(next);
1724 if (req_sectors > max_blk_count)
1725 break;
1727 phys_segments += next->nr_phys_segments;
1728 if (phys_segments > max_phys_segs)
1729 break;
1731 list_add_tail(&next->queuelist, &mqrq->packed->list);
1732 cur = next;
1733 reqs++;
1734 } while (1);
1736 if (put_back) {
1737 spin_lock_irq(q->queue_lock);
1738 blk_requeue_request(q, next);
1739 spin_unlock_irq(q->queue_lock);
1742 if (reqs > 0) {
1743 list_add(&req->queuelist, &mqrq->packed->list);
1744 mqrq->packed->nr_entries = ++reqs;
1745 mqrq->packed->retries = reqs;
1746 return reqs;
1749 no_packed:
1750 mqrq->cmd_type = MMC_PACKED_NONE;
1751 return 0;
1754 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1755 struct mmc_card *card,
1756 struct mmc_queue *mq)
1758 struct mmc_blk_request *brq = &mqrq->brq;
1759 struct request *req = mqrq->req;
1760 struct request *prq;
1761 struct mmc_blk_data *md = mq->data;
1762 struct mmc_packed *packed = mqrq->packed;
1763 bool do_rel_wr, do_data_tag;
1764 u32 *packed_cmd_hdr;
1765 u8 hdr_blocks;
1766 u8 i = 1;
1768 BUG_ON(!packed);
1770 mqrq->cmd_type = MMC_PACKED_WRITE;
1771 packed->blocks = 0;
1772 packed->idx_failure = MMC_PACKED_NR_IDX;
1774 packed_cmd_hdr = packed->cmd_hdr;
1775 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1776 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1777 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1778 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1781 * Argument for each entry of packed group
1783 list_for_each_entry(prq, &packed->list, queuelist) {
1784 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1785 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1786 (prq->cmd_flags & REQ_META) &&
1787 (rq_data_dir(prq) == WRITE) &&
1788 ((brq->data.blocks * brq->data.blksz) >=
1789 card->ext_csd.data_tag_unit_size);
1790 /* Argument of CMD23 */
1791 packed_cmd_hdr[(i * 2)] =
1792 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1793 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1794 blk_rq_sectors(prq);
1795 /* Argument of CMD18 or CMD25 */
1796 packed_cmd_hdr[((i * 2)) + 1] =
1797 mmc_card_blockaddr(card) ?
1798 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1799 packed->blocks += blk_rq_sectors(prq);
1800 i++;
1803 memset(brq, 0, sizeof(struct mmc_blk_request));
1804 brq->mrq.cmd = &brq->cmd;
1805 brq->mrq.data = &brq->data;
1806 brq->mrq.sbc = &brq->sbc;
1807 brq->mrq.stop = &brq->stop;
1809 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1810 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1811 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1813 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1814 brq->cmd.arg = blk_rq_pos(req);
1815 if (!mmc_card_blockaddr(card))
1816 brq->cmd.arg <<= 9;
1817 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1819 brq->data.blksz = 512;
1820 brq->data.blocks = packed->blocks + hdr_blocks;
1821 brq->data.flags |= MMC_DATA_WRITE;
1823 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1824 brq->stop.arg = 0;
1825 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1827 mmc_set_data_timeout(&brq->data, card);
1829 brq->data.sg = mqrq->sg;
1830 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1832 mqrq->mmc_active.mrq = &brq->mrq;
1833 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1835 mmc_queue_bounce_pre(mqrq);
1838 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1839 struct mmc_blk_request *brq, struct request *req,
1840 int ret)
1842 struct mmc_queue_req *mq_rq;
1843 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1846 * If this is an SD card and we're writing, we can first
1847 * mark the known good sectors as ok.
1849 * If the card is not SD, we can still ok written sectors
1850 * as reported by the controller (which might be less than
1851 * the real number of written sectors, but never more).
1853 if (mmc_card_sd(card)) {
1854 u32 blocks;
1856 blocks = mmc_sd_num_wr_blocks(card);
1857 if (blocks != (u32)-1) {
1858 ret = blk_end_request(req, 0, blocks << 9);
1860 } else {
1861 if (!mmc_packed_cmd(mq_rq->cmd_type))
1862 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1864 return ret;
1867 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1869 struct request *prq;
1870 struct mmc_packed *packed = mq_rq->packed;
1871 int idx = packed->idx_failure, i = 0;
1872 int ret = 0;
1874 BUG_ON(!packed);
1876 while (!list_empty(&packed->list)) {
1877 prq = list_entry_rq(packed->list.next);
1878 if (idx == i) {
1879 /* retry from error index */
1880 packed->nr_entries -= idx;
1881 mq_rq->req = prq;
1882 ret = 1;
1884 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1885 list_del_init(&prq->queuelist);
1886 mmc_blk_clear_packed(mq_rq);
1888 return ret;
1890 list_del_init(&prq->queuelist);
1891 blk_end_request(prq, 0, blk_rq_bytes(prq));
1892 i++;
1895 mmc_blk_clear_packed(mq_rq);
1896 return ret;
1899 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1901 struct request *prq;
1902 struct mmc_packed *packed = mq_rq->packed;
1904 BUG_ON(!packed);
1906 while (!list_empty(&packed->list)) {
1907 prq = list_entry_rq(packed->list.next);
1908 list_del_init(&prq->queuelist);
1909 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1912 mmc_blk_clear_packed(mq_rq);
1915 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1916 struct mmc_queue_req *mq_rq)
1918 struct request *prq;
1919 struct request_queue *q = mq->queue;
1920 struct mmc_packed *packed = mq_rq->packed;
1922 BUG_ON(!packed);
1924 while (!list_empty(&packed->list)) {
1925 prq = list_entry_rq(packed->list.prev);
1926 if (prq->queuelist.prev != &packed->list) {
1927 list_del_init(&prq->queuelist);
1928 spin_lock_irq(q->queue_lock);
1929 blk_requeue_request(mq->queue, prq);
1930 spin_unlock_irq(q->queue_lock);
1931 } else {
1932 list_del_init(&prq->queuelist);
1936 mmc_blk_clear_packed(mq_rq);
1939 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1941 struct mmc_blk_data *md = mq->data;
1942 struct mmc_card *card = md->queue.card;
1943 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1944 int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1945 enum mmc_blk_status status;
1946 struct mmc_queue_req *mq_rq;
1947 struct request *req = rqc;
1948 struct mmc_async_req *areq;
1949 const u8 packed_nr = 2;
1950 u8 reqs = 0;
1952 if (!rqc && !mq->mqrq_prev->req)
1953 return 0;
1955 if (rqc)
1956 reqs = mmc_blk_prep_packed_list(mq, rqc);
1958 do {
1959 if (rqc) {
1961 * When 4KB native sector is enabled, only 8 blocks
1962 * multiple read or write is allowed
1964 if ((brq->data.blocks & 0x07) &&
1965 (card->ext_csd.data_sector_size == 4096)) {
1966 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1967 req->rq_disk->disk_name);
1968 mq_rq = mq->mqrq_cur;
1969 goto cmd_abort;
1972 if (reqs >= packed_nr)
1973 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1974 card, mq);
1975 else
1976 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1977 areq = &mq->mqrq_cur->mmc_active;
1978 } else
1979 areq = NULL;
1980 areq = mmc_start_req(card->host, areq, (int *) &status);
1981 if (!areq) {
1982 if (status == MMC_BLK_NEW_REQUEST)
1983 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1984 return 0;
1987 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1988 brq = &mq_rq->brq;
1989 req = mq_rq->req;
1990 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1991 mmc_queue_bounce_post(mq_rq);
1993 switch (status) {
1994 case MMC_BLK_SUCCESS:
1995 case MMC_BLK_PARTIAL:
1997 * A block was successfully transferred.
1999 mmc_blk_reset_success(md, type);
2001 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2002 ret = mmc_blk_end_packed_req(mq_rq);
2003 break;
2004 } else {
2005 ret = blk_end_request(req, 0,
2006 brq->data.bytes_xfered);
2010 * If the blk_end_request function returns non-zero even
2011 * though all data has been transferred and no errors
2012 * were returned by the host controller, it's a bug.
2014 if (status == MMC_BLK_SUCCESS && ret) {
2015 pr_err("%s BUG rq_tot %d d_xfer %d\n",
2016 __func__, blk_rq_bytes(req),
2017 brq->data.bytes_xfered);
2018 rqc = NULL;
2019 goto cmd_abort;
2021 break;
2022 case MMC_BLK_CMD_ERR:
2023 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
2024 if (mmc_blk_reset(md, card->host, type))
2025 goto cmd_abort;
2026 if (!ret)
2027 goto start_new_req;
2028 break;
2029 case MMC_BLK_RETRY:
2030 retune_retry_done = brq->retune_retry_done;
2031 if (retry++ < 5)
2032 break;
2033 /* Fall through */
2034 case MMC_BLK_ABORT:
2035 if (!mmc_blk_reset(md, card->host, type))
2036 break;
2037 goto cmd_abort;
2038 case MMC_BLK_DATA_ERR: {
2039 int err;
2041 err = mmc_blk_reset(md, card->host, type);
2042 if (!err)
2043 break;
2044 if (err == -ENODEV ||
2045 mmc_packed_cmd(mq_rq->cmd_type))
2046 goto cmd_abort;
2047 /* Fall through */
2049 case MMC_BLK_ECC_ERR:
2050 if (brq->data.blocks > 1) {
2051 /* Redo read one sector at a time */
2052 pr_warn("%s: retrying using single block read\n",
2053 req->rq_disk->disk_name);
2054 disable_multi = 1;
2055 break;
2058 * After an error, we redo I/O one sector at a
2059 * time, so we only reach here after trying to
2060 * read a single sector.
2062 ret = blk_end_request(req, -EIO,
2063 brq->data.blksz);
2064 if (!ret)
2065 goto start_new_req;
2066 break;
2067 case MMC_BLK_NOMEDIUM:
2068 goto cmd_abort;
2069 default:
2070 pr_err("%s: Unhandled return value (%d)",
2071 req->rq_disk->disk_name, status);
2072 goto cmd_abort;
2075 if (ret) {
2076 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2077 if (!mq_rq->packed->retries)
2078 goto cmd_abort;
2079 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
2080 mmc_start_req(card->host,
2081 &mq_rq->mmc_active, NULL);
2082 } else {
2085 * In case of a incomplete request
2086 * prepare it again and resend.
2088 mmc_blk_rw_rq_prep(mq_rq, card,
2089 disable_multi, mq);
2090 mmc_start_req(card->host,
2091 &mq_rq->mmc_active, NULL);
2093 mq_rq->brq.retune_retry_done = retune_retry_done;
2095 } while (ret);
2097 return 1;
2099 cmd_abort:
2100 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2101 mmc_blk_abort_packed_req(mq_rq);
2102 } else {
2103 if (mmc_card_removed(card))
2104 req->cmd_flags |= REQ_QUIET;
2105 while (ret)
2106 ret = blk_end_request(req, -EIO,
2107 blk_rq_cur_bytes(req));
2110 start_new_req:
2111 if (rqc) {
2112 if (mmc_card_removed(card)) {
2113 rqc->cmd_flags |= REQ_QUIET;
2114 blk_end_request_all(rqc, -EIO);
2115 } else {
2117 * If current request is packed, it needs to put back.
2119 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
2120 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
2122 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2123 mmc_start_req(card->host,
2124 &mq->mqrq_cur->mmc_active, NULL);
2128 return 0;
2131 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2133 int ret;
2134 struct mmc_blk_data *md = mq->data;
2135 struct mmc_card *card = md->queue.card;
2136 struct mmc_host *host = card->host;
2137 unsigned long flags;
2138 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2140 if (req && !mq->mqrq_prev->req)
2141 /* claim host only for the first request */
2142 mmc_get_card(card);
2144 ret = mmc_blk_part_switch(card, md);
2145 if (ret) {
2146 if (req) {
2147 blk_end_request_all(req, -EIO);
2149 ret = 0;
2150 goto out;
2153 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2154 if (cmd_flags & REQ_DISCARD) {
2155 /* complete ongoing async transfer before issuing discard */
2156 if (card->host->areq)
2157 mmc_blk_issue_rw_rq(mq, NULL);
2158 if (req->cmd_flags & REQ_SECURE)
2159 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2160 else
2161 ret = mmc_blk_issue_discard_rq(mq, req);
2162 } else if (cmd_flags & REQ_FLUSH) {
2163 /* complete ongoing async transfer before issuing flush */
2164 if (card->host->areq)
2165 mmc_blk_issue_rw_rq(mq, NULL);
2166 ret = mmc_blk_issue_flush(mq, req);
2167 } else {
2168 if (!req && host->areq) {
2169 spin_lock_irqsave(&host->context_info.lock, flags);
2170 host->context_info.is_waiting_last_req = true;
2171 spin_unlock_irqrestore(&host->context_info.lock, flags);
2173 ret = mmc_blk_issue_rw_rq(mq, req);
2176 out:
2177 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2178 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2180 * Release host when there are no more requests
2181 * and after special request(discard, flush) is done.
2182 * In case sepecial request, there is no reentry to
2183 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2185 mmc_put_card(card);
2186 return ret;
2189 static inline int mmc_blk_readonly(struct mmc_card *card)
2191 return mmc_card_readonly(card) ||
2192 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2195 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2196 struct device *parent,
2197 sector_t size,
2198 bool default_ro,
2199 const char *subname,
2200 int area_type)
2202 struct mmc_blk_data *md;
2203 int devidx, ret;
2205 devidx = find_first_zero_bit(dev_use, max_devices);
2206 if (devidx >= max_devices)
2207 return ERR_PTR(-ENOSPC);
2208 __set_bit(devidx, dev_use);
2210 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2211 if (!md) {
2212 ret = -ENOMEM;
2213 goto out;
2217 * !subname implies we are creating main mmc_blk_data that will be
2218 * associated with mmc_card with dev_set_drvdata. Due to device
2219 * partitions, devidx will not coincide with a per-physical card
2220 * index anymore so we keep track of a name index.
2222 if (!subname) {
2223 md->name_idx = find_first_zero_bit(name_use, max_devices);
2224 __set_bit(md->name_idx, name_use);
2225 } else
2226 md->name_idx = ((struct mmc_blk_data *)
2227 dev_to_disk(parent)->private_data)->name_idx;
2229 md->area_type = area_type;
2232 * Set the read-only status based on the supported commands
2233 * and the write protect switch.
2235 md->read_only = mmc_blk_readonly(card);
2237 md->disk = alloc_disk(perdev_minors);
2238 if (md->disk == NULL) {
2239 ret = -ENOMEM;
2240 goto err_kfree;
2243 spin_lock_init(&md->lock);
2244 INIT_LIST_HEAD(&md->part);
2245 md->usage = 1;
2247 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2248 if (ret)
2249 goto err_putdisk;
2251 md->queue.issue_fn = mmc_blk_issue_rq;
2252 md->queue.data = md;
2254 md->disk->major = MMC_BLOCK_MAJOR;
2255 md->disk->first_minor = devidx * perdev_minors;
2256 md->disk->fops = &mmc_bdops;
2257 md->disk->private_data = md;
2258 md->disk->queue = md->queue.queue;
2259 md->disk->driverfs_dev = parent;
2260 set_disk_ro(md->disk, md->read_only || default_ro);
2261 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2262 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2265 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2267 * - be set for removable media with permanent block devices
2268 * - be unset for removable block devices with permanent media
2270 * Since MMC block devices clearly fall under the second
2271 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2272 * should use the block device creation/destruction hotplug
2273 * messages to tell when the card is present.
2276 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2277 "mmcblk%u%s", md->name_idx, subname ? subname : "");
2279 if (mmc_card_mmc(card))
2280 blk_queue_logical_block_size(md->queue.queue,
2281 card->ext_csd.data_sector_size);
2282 else
2283 blk_queue_logical_block_size(md->queue.queue, 512);
2285 set_capacity(md->disk, size);
2287 if (mmc_host_cmd23(card->host)) {
2288 if (mmc_card_mmc(card) ||
2289 (mmc_card_sd(card) &&
2290 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2291 md->flags |= MMC_BLK_CMD23;
2294 if (mmc_card_mmc(card) &&
2295 md->flags & MMC_BLK_CMD23 &&
2296 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2297 card->ext_csd.rel_sectors)) {
2298 md->flags |= MMC_BLK_REL_WR;
2299 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2302 if (mmc_card_mmc(card) &&
2303 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2304 (md->flags & MMC_BLK_CMD23) &&
2305 card->ext_csd.packed_event_en) {
2306 if (!mmc_packed_init(&md->queue, card))
2307 md->flags |= MMC_BLK_PACKED_CMD;
2310 return md;
2312 err_putdisk:
2313 put_disk(md->disk);
2314 err_kfree:
2315 kfree(md);
2316 out:
2317 return ERR_PTR(ret);
2320 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2322 sector_t size;
2324 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2326 * The EXT_CSD sector count is in number or 512 byte
2327 * sectors.
2329 size = card->ext_csd.sectors;
2330 } else {
2332 * The CSD capacity field is in units of read_blkbits.
2333 * set_capacity takes units of 512 bytes.
2335 size = (typeof(sector_t))card->csd.capacity
2336 << (card->csd.read_blkbits - 9);
2339 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2340 MMC_BLK_DATA_AREA_MAIN);
2343 static int mmc_blk_alloc_part(struct mmc_card *card,
2344 struct mmc_blk_data *md,
2345 unsigned int part_type,
2346 sector_t size,
2347 bool default_ro,
2348 const char *subname,
2349 int area_type)
2351 char cap_str[10];
2352 struct mmc_blk_data *part_md;
2354 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2355 subname, area_type);
2356 if (IS_ERR(part_md))
2357 return PTR_ERR(part_md);
2358 part_md->part_type = part_type;
2359 list_add(&part_md->part, &md->part);
2361 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2362 cap_str, sizeof(cap_str));
2363 pr_info("%s: %s %s partition %u %s\n",
2364 part_md->disk->disk_name, mmc_card_id(card),
2365 mmc_card_name(card), part_md->part_type, cap_str);
2366 return 0;
2369 /* MMC Physical partitions consist of two boot partitions and
2370 * up to four general purpose partitions.
2371 * For each partition enabled in EXT_CSD a block device will be allocatedi
2372 * to provide access to the partition.
2375 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2377 int idx, ret = 0;
2379 if (!mmc_card_mmc(card))
2380 return 0;
2382 for (idx = 0; idx < card->nr_parts; idx++) {
2383 if (card->part[idx].size) {
2384 ret = mmc_blk_alloc_part(card, md,
2385 card->part[idx].part_cfg,
2386 card->part[idx].size >> 9,
2387 card->part[idx].force_ro,
2388 card->part[idx].name,
2389 card->part[idx].area_type);
2390 if (ret)
2391 return ret;
2395 return ret;
2398 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2400 struct mmc_card *card;
2402 if (md) {
2404 * Flush remaining requests and free queues. It
2405 * is freeing the queue that stops new requests
2406 * from being accepted.
2408 card = md->queue.card;
2409 mmc_cleanup_queue(&md->queue);
2410 if (md->flags & MMC_BLK_PACKED_CMD)
2411 mmc_packed_clean(&md->queue);
2412 if (md->disk->flags & GENHD_FL_UP) {
2413 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2414 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2415 card->ext_csd.boot_ro_lockable)
2416 device_remove_file(disk_to_dev(md->disk),
2417 &md->power_ro_lock);
2419 del_gendisk(md->disk);
2421 mmc_blk_put(md);
2425 static void mmc_blk_remove_parts(struct mmc_card *card,
2426 struct mmc_blk_data *md)
2428 struct list_head *pos, *q;
2429 struct mmc_blk_data *part_md;
2431 __clear_bit(md->name_idx, name_use);
2432 list_for_each_safe(pos, q, &md->part) {
2433 part_md = list_entry(pos, struct mmc_blk_data, part);
2434 list_del(pos);
2435 mmc_blk_remove_req(part_md);
2439 static int mmc_add_disk(struct mmc_blk_data *md)
2441 int ret;
2442 struct mmc_card *card = md->queue.card;
2444 add_disk(md->disk);
2445 md->force_ro.show = force_ro_show;
2446 md->force_ro.store = force_ro_store;
2447 sysfs_attr_init(&md->force_ro.attr);
2448 md->force_ro.attr.name = "force_ro";
2449 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2450 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2451 if (ret)
2452 goto force_ro_fail;
2454 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2455 card->ext_csd.boot_ro_lockable) {
2456 umode_t mode;
2458 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2459 mode = S_IRUGO;
2460 else
2461 mode = S_IRUGO | S_IWUSR;
2463 md->power_ro_lock.show = power_ro_lock_show;
2464 md->power_ro_lock.store = power_ro_lock_store;
2465 sysfs_attr_init(&md->power_ro_lock.attr);
2466 md->power_ro_lock.attr.mode = mode;
2467 md->power_ro_lock.attr.name =
2468 "ro_lock_until_next_power_on";
2469 ret = device_create_file(disk_to_dev(md->disk),
2470 &md->power_ro_lock);
2471 if (ret)
2472 goto power_ro_lock_fail;
2474 return ret;
2476 power_ro_lock_fail:
2477 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2478 force_ro_fail:
2479 del_gendisk(md->disk);
2481 return ret;
2484 #define CID_MANFID_SANDISK 0x2
2485 #define CID_MANFID_TOSHIBA 0x11
2486 #define CID_MANFID_MICRON 0x13
2487 #define CID_MANFID_SAMSUNG 0x15
2488 #define CID_MANFID_KINGSTON 0x70
2490 static const struct mmc_fixup blk_fixups[] =
2492 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2493 MMC_QUIRK_INAND_CMD38),
2494 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2495 MMC_QUIRK_INAND_CMD38),
2496 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2497 MMC_QUIRK_INAND_CMD38),
2498 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2499 MMC_QUIRK_INAND_CMD38),
2500 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2501 MMC_QUIRK_INAND_CMD38),
2504 * Some MMC cards experience performance degradation with CMD23
2505 * instead of CMD12-bounded multiblock transfers. For now we'll
2506 * black list what's bad...
2507 * - Certain Toshiba cards.
2509 * N.B. This doesn't affect SD cards.
2511 MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2512 MMC_QUIRK_BLK_NO_CMD23),
2513 MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2514 MMC_QUIRK_BLK_NO_CMD23),
2515 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2516 MMC_QUIRK_BLK_NO_CMD23),
2517 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2518 MMC_QUIRK_BLK_NO_CMD23),
2519 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2520 MMC_QUIRK_BLK_NO_CMD23),
2523 * Some Micron MMC cards needs longer data read timeout than
2524 * indicated in CSD.
2526 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2527 MMC_QUIRK_LONG_READ_TIME),
2530 * On these Samsung MoviNAND parts, performing secure erase or
2531 * secure trim can result in unrecoverable corruption due to a
2532 * firmware bug.
2534 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2535 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2536 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2537 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2538 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2539 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2540 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2541 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2542 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2543 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2544 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2545 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2546 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2547 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2548 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2549 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2552 * On Some Kingston eMMCs, performing trim can result in
2553 * unrecoverable data conrruption occasionally due to a firmware bug.
2555 MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2556 MMC_QUIRK_TRIM_BROKEN),
2557 MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2558 MMC_QUIRK_TRIM_BROKEN),
2560 END_FIXUP
2563 static int mmc_blk_probe(struct mmc_card *card)
2565 struct mmc_blk_data *md, *part_md;
2566 char cap_str[10];
2569 * Check that the card supports the command class(es) we need.
2571 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2572 return -ENODEV;
2574 mmc_fixup_device(card, blk_fixups);
2576 md = mmc_blk_alloc(card);
2577 if (IS_ERR(md))
2578 return PTR_ERR(md);
2580 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2581 cap_str, sizeof(cap_str));
2582 pr_info("%s: %s %s %s %s\n",
2583 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2584 cap_str, md->read_only ? "(ro)" : "");
2586 if (mmc_blk_alloc_parts(card, md))
2587 goto out;
2589 dev_set_drvdata(&card->dev, md);
2591 if (mmc_add_disk(md))
2592 goto out;
2594 list_for_each_entry(part_md, &md->part, part) {
2595 if (mmc_add_disk(part_md))
2596 goto out;
2599 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2600 pm_runtime_use_autosuspend(&card->dev);
2603 * Don't enable runtime PM for SD-combo cards here. Leave that
2604 * decision to be taken during the SDIO init sequence instead.
2606 if (card->type != MMC_TYPE_SD_COMBO) {
2607 pm_runtime_set_active(&card->dev);
2608 pm_runtime_enable(&card->dev);
2611 return 0;
2613 out:
2614 mmc_blk_remove_parts(card, md);
2615 mmc_blk_remove_req(md);
2616 return 0;
2619 static void mmc_blk_remove(struct mmc_card *card)
2621 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2623 mmc_blk_remove_parts(card, md);
2624 pm_runtime_get_sync(&card->dev);
2625 mmc_claim_host(card->host);
2626 mmc_blk_part_switch(card, md);
2627 mmc_release_host(card->host);
2628 if (card->type != MMC_TYPE_SD_COMBO)
2629 pm_runtime_disable(&card->dev);
2630 pm_runtime_put_noidle(&card->dev);
2631 mmc_blk_remove_req(md);
2632 dev_set_drvdata(&card->dev, NULL);
2635 static int _mmc_blk_suspend(struct mmc_card *card)
2637 struct mmc_blk_data *part_md;
2638 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2640 if (md) {
2641 mmc_queue_suspend(&md->queue);
2642 list_for_each_entry(part_md, &md->part, part) {
2643 mmc_queue_suspend(&part_md->queue);
2646 return 0;
2649 static void mmc_blk_shutdown(struct mmc_card *card)
2651 _mmc_blk_suspend(card);
2654 #ifdef CONFIG_PM_SLEEP
2655 static int mmc_blk_suspend(struct device *dev)
2657 struct mmc_card *card = mmc_dev_to_card(dev);
2659 return _mmc_blk_suspend(card);
2662 static int mmc_blk_resume(struct device *dev)
2664 struct mmc_blk_data *part_md;
2665 struct mmc_blk_data *md = dev_get_drvdata(dev);
2667 if (md) {
2669 * Resume involves the card going into idle state,
2670 * so current partition is always the main one.
2672 md->part_curr = md->part_type;
2673 mmc_queue_resume(&md->queue);
2674 list_for_each_entry(part_md, &md->part, part) {
2675 mmc_queue_resume(&part_md->queue);
2678 return 0;
2680 #endif
2682 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2684 static struct mmc_driver mmc_driver = {
2685 .drv = {
2686 .name = "mmcblk",
2687 .pm = &mmc_blk_pm_ops,
2689 .probe = mmc_blk_probe,
2690 .remove = mmc_blk_remove,
2691 .shutdown = mmc_blk_shutdown,
2694 static int __init mmc_blk_init(void)
2696 int res;
2698 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2699 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2701 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2703 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2704 if (res)
2705 goto out;
2707 res = mmc_register_driver(&mmc_driver);
2708 if (res)
2709 goto out2;
2711 return 0;
2712 out2:
2713 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2714 out:
2715 return res;
2718 static void __exit mmc_blk_exit(void)
2720 mmc_unregister_driver(&mmc_driver);
2721 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2724 module_init(mmc_blk_init);
2725 module_exit(mmc_blk_exit);
2727 MODULE_LICENSE("GPL");
2728 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");