s390/cio: use basic blocks for i/o inline assemblies
[linux-2.6/btrfs-unstable.git] / drivers / clk / clk-xgene.c
blob343313250c58a2cbf60e7c6999358a0cdea00b22
1 /*
2 * clk-xgene.c - AppliedMicro X-Gene Clock Interface
4 * Copyright (c) 2013, Applied Micro Circuits Corporation
5 * Author: Loc Ho <lho@apm.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20 * MA 02111-1307 USA
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/io.h>
26 #include <linux/of.h>
27 #include <linux/clkdev.h>
28 #include <linux/clk-provider.h>
29 #include <linux/of_address.h>
31 /* Register SCU_PCPPLL bit fields */
32 #define N_DIV_RD(src) ((src) & 0x000001ff)
33 #define SC_N_DIV_RD(src) ((src) & 0x0000007f)
34 #define SC_OUTDIV2(src) (((src) & 0x00000100) >> 8)
36 /* Register SCU_SOCPLL bit fields */
37 #define CLKR_RD(src) (((src) & 0x07000000)>>24)
38 #define CLKOD_RD(src) (((src) & 0x00300000)>>20)
39 #define REGSPEC_RESET_F1_MASK 0x00010000
40 #define CLKF_RD(src) (((src) & 0x000001ff))
42 #define XGENE_CLK_DRIVER_VER "0.1"
44 static DEFINE_SPINLOCK(clk_lock);
46 static inline u32 xgene_clk_read(void __iomem *csr)
48 return readl_relaxed(csr);
51 static inline void xgene_clk_write(u32 data, void __iomem *csr)
53 writel_relaxed(data, csr);
56 /* PLL Clock */
57 enum xgene_pll_type {
58 PLL_TYPE_PCP = 0,
59 PLL_TYPE_SOC = 1,
62 struct xgene_clk_pll {
63 struct clk_hw hw;
64 void __iomem *reg;
65 spinlock_t *lock;
66 u32 pll_offset;
67 enum xgene_pll_type type;
68 int version;
71 #define to_xgene_clk_pll(_hw) container_of(_hw, struct xgene_clk_pll, hw)
73 static int xgene_clk_pll_is_enabled(struct clk_hw *hw)
75 struct xgene_clk_pll *pllclk = to_xgene_clk_pll(hw);
76 u32 data;
78 data = xgene_clk_read(pllclk->reg + pllclk->pll_offset);
79 pr_debug("%s pll %s\n", clk_hw_get_name(hw),
80 data & REGSPEC_RESET_F1_MASK ? "disabled" : "enabled");
82 return data & REGSPEC_RESET_F1_MASK ? 0 : 1;
85 static unsigned long xgene_clk_pll_recalc_rate(struct clk_hw *hw,
86 unsigned long parent_rate)
88 struct xgene_clk_pll *pllclk = to_xgene_clk_pll(hw);
89 unsigned long fref;
90 unsigned long fvco;
91 u32 pll;
92 u32 nref;
93 u32 nout;
94 u32 nfb;
96 pll = xgene_clk_read(pllclk->reg + pllclk->pll_offset);
98 if (pllclk->version <= 1) {
99 if (pllclk->type == PLL_TYPE_PCP) {
101 * PLL VCO = Reference clock * NF
102 * PCP PLL = PLL_VCO / 2
104 nout = 2;
105 fvco = parent_rate * (N_DIV_RD(pll) + 4);
106 } else {
108 * Fref = Reference Clock / NREF;
109 * Fvco = Fref * NFB;
110 * Fout = Fvco / NOUT;
112 nref = CLKR_RD(pll) + 1;
113 nout = CLKOD_RD(pll) + 1;
114 nfb = CLKF_RD(pll);
115 fref = parent_rate / nref;
116 fvco = fref * nfb;
118 } else {
120 * fvco = Reference clock * FBDIVC
121 * PLL freq = fvco / NOUT
123 nout = SC_OUTDIV2(pll) ? 2 : 3;
124 fvco = parent_rate * SC_N_DIV_RD(pll);
126 pr_debug("%s pll recalc rate %ld parent %ld version %d\n",
127 clk_hw_get_name(hw), fvco / nout, parent_rate,
128 pllclk->version);
130 return fvco / nout;
133 static const struct clk_ops xgene_clk_pll_ops = {
134 .is_enabled = xgene_clk_pll_is_enabled,
135 .recalc_rate = xgene_clk_pll_recalc_rate,
138 static struct clk *xgene_register_clk_pll(struct device *dev,
139 const char *name, const char *parent_name,
140 unsigned long flags, void __iomem *reg, u32 pll_offset,
141 u32 type, spinlock_t *lock, int version)
143 struct xgene_clk_pll *apmclk;
144 struct clk *clk;
145 struct clk_init_data init;
147 /* allocate the APM clock structure */
148 apmclk = kzalloc(sizeof(*apmclk), GFP_KERNEL);
149 if (!apmclk) {
150 pr_err("%s: could not allocate APM clk\n", __func__);
151 return ERR_PTR(-ENOMEM);
154 init.name = name;
155 init.ops = &xgene_clk_pll_ops;
156 init.flags = flags;
157 init.parent_names = parent_name ? &parent_name : NULL;
158 init.num_parents = parent_name ? 1 : 0;
160 apmclk->version = version;
161 apmclk->reg = reg;
162 apmclk->lock = lock;
163 apmclk->pll_offset = pll_offset;
164 apmclk->type = type;
165 apmclk->hw.init = &init;
167 /* Register the clock */
168 clk = clk_register(dev, &apmclk->hw);
169 if (IS_ERR(clk)) {
170 pr_err("%s: could not register clk %s\n", __func__, name);
171 kfree(apmclk);
172 return NULL;
174 return clk;
177 static int xgene_pllclk_version(struct device_node *np)
179 if (of_device_is_compatible(np, "apm,xgene-socpll-clock"))
180 return 1;
181 if (of_device_is_compatible(np, "apm,xgene-pcppll-clock"))
182 return 1;
183 return 2;
186 static void xgene_pllclk_init(struct device_node *np, enum xgene_pll_type pll_type)
188 const char *clk_name = np->full_name;
189 struct clk *clk;
190 void __iomem *reg;
191 int version = xgene_pllclk_version(np);
193 reg = of_iomap(np, 0);
194 if (reg == NULL) {
195 pr_err("Unable to map CSR register for %s\n", np->full_name);
196 return;
198 of_property_read_string(np, "clock-output-names", &clk_name);
199 clk = xgene_register_clk_pll(NULL,
200 clk_name, of_clk_get_parent_name(np, 0),
201 0, reg, 0, pll_type, &clk_lock,
202 version);
203 if (!IS_ERR(clk)) {
204 of_clk_add_provider(np, of_clk_src_simple_get, clk);
205 clk_register_clkdev(clk, clk_name, NULL);
206 pr_debug("Add %s clock PLL\n", clk_name);
210 static void xgene_socpllclk_init(struct device_node *np)
212 xgene_pllclk_init(np, PLL_TYPE_SOC);
215 static void xgene_pcppllclk_init(struct device_node *np)
217 xgene_pllclk_init(np, PLL_TYPE_PCP);
220 /* IP Clock */
221 struct xgene_dev_parameters {
222 void __iomem *csr_reg; /* CSR for IP clock */
223 u32 reg_clk_offset; /* Offset to clock enable CSR */
224 u32 reg_clk_mask; /* Mask bit for clock enable */
225 u32 reg_csr_offset; /* Offset to CSR reset */
226 u32 reg_csr_mask; /* Mask bit for disable CSR reset */
227 void __iomem *divider_reg; /* CSR for divider */
228 u32 reg_divider_offset; /* Offset to divider register */
229 u32 reg_divider_shift; /* Bit shift to divider field */
230 u32 reg_divider_width; /* Width of the bit to divider field */
233 struct xgene_clk {
234 struct clk_hw hw;
235 spinlock_t *lock;
236 struct xgene_dev_parameters param;
239 #define to_xgene_clk(_hw) container_of(_hw, struct xgene_clk, hw)
241 static int xgene_clk_enable(struct clk_hw *hw)
243 struct xgene_clk *pclk = to_xgene_clk(hw);
244 unsigned long flags = 0;
245 u32 data;
246 phys_addr_t reg;
248 if (pclk->lock)
249 spin_lock_irqsave(pclk->lock, flags);
251 if (pclk->param.csr_reg != NULL) {
252 pr_debug("%s clock enabled\n", clk_hw_get_name(hw));
253 reg = __pa(pclk->param.csr_reg);
254 /* First enable the clock */
255 data = xgene_clk_read(pclk->param.csr_reg +
256 pclk->param.reg_clk_offset);
257 data |= pclk->param.reg_clk_mask;
258 xgene_clk_write(data, pclk->param.csr_reg +
259 pclk->param.reg_clk_offset);
260 pr_debug("%s clock PADDR base %pa clk offset 0x%08X mask 0x%08X value 0x%08X\n",
261 clk_hw_get_name(hw), &reg,
262 pclk->param.reg_clk_offset, pclk->param.reg_clk_mask,
263 data);
265 /* Second enable the CSR */
266 data = xgene_clk_read(pclk->param.csr_reg +
267 pclk->param.reg_csr_offset);
268 data &= ~pclk->param.reg_csr_mask;
269 xgene_clk_write(data, pclk->param.csr_reg +
270 pclk->param.reg_csr_offset);
271 pr_debug("%s CSR RESET PADDR base %pa csr offset 0x%08X mask 0x%08X value 0x%08X\n",
272 clk_hw_get_name(hw), &reg,
273 pclk->param.reg_csr_offset, pclk->param.reg_csr_mask,
274 data);
277 if (pclk->lock)
278 spin_unlock_irqrestore(pclk->lock, flags);
280 return 0;
283 static void xgene_clk_disable(struct clk_hw *hw)
285 struct xgene_clk *pclk = to_xgene_clk(hw);
286 unsigned long flags = 0;
287 u32 data;
289 if (pclk->lock)
290 spin_lock_irqsave(pclk->lock, flags);
292 if (pclk->param.csr_reg != NULL) {
293 pr_debug("%s clock disabled\n", clk_hw_get_name(hw));
294 /* First put the CSR in reset */
295 data = xgene_clk_read(pclk->param.csr_reg +
296 pclk->param.reg_csr_offset);
297 data |= pclk->param.reg_csr_mask;
298 xgene_clk_write(data, pclk->param.csr_reg +
299 pclk->param.reg_csr_offset);
301 /* Second disable the clock */
302 data = xgene_clk_read(pclk->param.csr_reg +
303 pclk->param.reg_clk_offset);
304 data &= ~pclk->param.reg_clk_mask;
305 xgene_clk_write(data, pclk->param.csr_reg +
306 pclk->param.reg_clk_offset);
309 if (pclk->lock)
310 spin_unlock_irqrestore(pclk->lock, flags);
313 static int xgene_clk_is_enabled(struct clk_hw *hw)
315 struct xgene_clk *pclk = to_xgene_clk(hw);
316 u32 data = 0;
318 if (pclk->param.csr_reg != NULL) {
319 pr_debug("%s clock checking\n", clk_hw_get_name(hw));
320 data = xgene_clk_read(pclk->param.csr_reg +
321 pclk->param.reg_clk_offset);
322 pr_debug("%s clock is %s\n", clk_hw_get_name(hw),
323 data & pclk->param.reg_clk_mask ? "enabled" :
324 "disabled");
327 if (pclk->param.csr_reg == NULL)
328 return 1;
329 return data & pclk->param.reg_clk_mask ? 1 : 0;
332 static unsigned long xgene_clk_recalc_rate(struct clk_hw *hw,
333 unsigned long parent_rate)
335 struct xgene_clk *pclk = to_xgene_clk(hw);
336 u32 data;
338 if (pclk->param.divider_reg) {
339 data = xgene_clk_read(pclk->param.divider_reg +
340 pclk->param.reg_divider_offset);
341 data >>= pclk->param.reg_divider_shift;
342 data &= (1 << pclk->param.reg_divider_width) - 1;
344 pr_debug("%s clock recalc rate %ld parent %ld\n",
345 clk_hw_get_name(hw),
346 parent_rate / data, parent_rate);
348 return parent_rate / data;
349 } else {
350 pr_debug("%s clock recalc rate %ld parent %ld\n",
351 clk_hw_get_name(hw), parent_rate, parent_rate);
352 return parent_rate;
356 static int xgene_clk_set_rate(struct clk_hw *hw, unsigned long rate,
357 unsigned long parent_rate)
359 struct xgene_clk *pclk = to_xgene_clk(hw);
360 unsigned long flags = 0;
361 u32 data;
362 u32 divider;
363 u32 divider_save;
365 if (pclk->lock)
366 spin_lock_irqsave(pclk->lock, flags);
368 if (pclk->param.divider_reg) {
369 /* Let's compute the divider */
370 if (rate > parent_rate)
371 rate = parent_rate;
372 divider_save = divider = parent_rate / rate; /* Rounded down */
373 divider &= (1 << pclk->param.reg_divider_width) - 1;
374 divider <<= pclk->param.reg_divider_shift;
376 /* Set new divider */
377 data = xgene_clk_read(pclk->param.divider_reg +
378 pclk->param.reg_divider_offset);
379 data &= ~(((1 << pclk->param.reg_divider_width) - 1)
380 << pclk->param.reg_divider_shift);
381 data |= divider;
382 xgene_clk_write(data, pclk->param.divider_reg +
383 pclk->param.reg_divider_offset);
384 pr_debug("%s clock set rate %ld\n", clk_hw_get_name(hw),
385 parent_rate / divider_save);
386 } else {
387 divider_save = 1;
390 if (pclk->lock)
391 spin_unlock_irqrestore(pclk->lock, flags);
393 return parent_rate / divider_save;
396 static long xgene_clk_round_rate(struct clk_hw *hw, unsigned long rate,
397 unsigned long *prate)
399 struct xgene_clk *pclk = to_xgene_clk(hw);
400 unsigned long parent_rate = *prate;
401 u32 divider;
403 if (pclk->param.divider_reg) {
404 /* Let's compute the divider */
405 if (rate > parent_rate)
406 rate = parent_rate;
407 divider = parent_rate / rate; /* Rounded down */
408 } else {
409 divider = 1;
412 return parent_rate / divider;
415 static const struct clk_ops xgene_clk_ops = {
416 .enable = xgene_clk_enable,
417 .disable = xgene_clk_disable,
418 .is_enabled = xgene_clk_is_enabled,
419 .recalc_rate = xgene_clk_recalc_rate,
420 .set_rate = xgene_clk_set_rate,
421 .round_rate = xgene_clk_round_rate,
424 static struct clk *xgene_register_clk(struct device *dev,
425 const char *name, const char *parent_name,
426 struct xgene_dev_parameters *parameters, spinlock_t *lock)
428 struct xgene_clk *apmclk;
429 struct clk *clk;
430 struct clk_init_data init;
431 int rc;
433 /* allocate the APM clock structure */
434 apmclk = kzalloc(sizeof(*apmclk), GFP_KERNEL);
435 if (!apmclk) {
436 pr_err("%s: could not allocate APM clk\n", __func__);
437 return ERR_PTR(-ENOMEM);
440 init.name = name;
441 init.ops = &xgene_clk_ops;
442 init.flags = 0;
443 init.parent_names = parent_name ? &parent_name : NULL;
444 init.num_parents = parent_name ? 1 : 0;
446 apmclk->lock = lock;
447 apmclk->hw.init = &init;
448 apmclk->param = *parameters;
450 /* Register the clock */
451 clk = clk_register(dev, &apmclk->hw);
452 if (IS_ERR(clk)) {
453 pr_err("%s: could not register clk %s\n", __func__, name);
454 kfree(apmclk);
455 return clk;
458 /* Register the clock for lookup */
459 rc = clk_register_clkdev(clk, name, NULL);
460 if (rc != 0) {
461 pr_err("%s: could not register lookup clk %s\n",
462 __func__, name);
464 return clk;
467 static void __init xgene_devclk_init(struct device_node *np)
469 const char *clk_name = np->full_name;
470 struct clk *clk;
471 struct resource res;
472 int rc;
473 struct xgene_dev_parameters parameters;
474 int i;
476 /* Check if the entry is disabled */
477 if (!of_device_is_available(np))
478 return;
480 /* Parse the DTS register for resource */
481 parameters.csr_reg = NULL;
482 parameters.divider_reg = NULL;
483 for (i = 0; i < 2; i++) {
484 void __iomem *map_res;
485 rc = of_address_to_resource(np, i, &res);
486 if (rc != 0) {
487 if (i == 0) {
488 pr_err("no DTS register for %s\n",
489 np->full_name);
490 return;
492 break;
494 map_res = of_iomap(np, i);
495 if (map_res == NULL) {
496 pr_err("Unable to map resource %d for %s\n",
497 i, np->full_name);
498 goto err;
500 if (strcmp(res.name, "div-reg") == 0)
501 parameters.divider_reg = map_res;
502 else /* if (strcmp(res->name, "csr-reg") == 0) */
503 parameters.csr_reg = map_res;
505 if (of_property_read_u32(np, "csr-offset", &parameters.reg_csr_offset))
506 parameters.reg_csr_offset = 0;
507 if (of_property_read_u32(np, "csr-mask", &parameters.reg_csr_mask))
508 parameters.reg_csr_mask = 0xF;
509 if (of_property_read_u32(np, "enable-offset",
510 &parameters.reg_clk_offset))
511 parameters.reg_clk_offset = 0x8;
512 if (of_property_read_u32(np, "enable-mask", &parameters.reg_clk_mask))
513 parameters.reg_clk_mask = 0xF;
514 if (of_property_read_u32(np, "divider-offset",
515 &parameters.reg_divider_offset))
516 parameters.reg_divider_offset = 0;
517 if (of_property_read_u32(np, "divider-width",
518 &parameters.reg_divider_width))
519 parameters.reg_divider_width = 0;
520 if (of_property_read_u32(np, "divider-shift",
521 &parameters.reg_divider_shift))
522 parameters.reg_divider_shift = 0;
523 of_property_read_string(np, "clock-output-names", &clk_name);
525 clk = xgene_register_clk(NULL, clk_name,
526 of_clk_get_parent_name(np, 0), &parameters, &clk_lock);
527 if (IS_ERR(clk))
528 goto err;
529 pr_debug("Add %s clock\n", clk_name);
530 rc = of_clk_add_provider(np, of_clk_src_simple_get, clk);
531 if (rc != 0)
532 pr_err("%s: could register provider clk %s\n", __func__,
533 np->full_name);
535 return;
537 err:
538 if (parameters.csr_reg)
539 iounmap(parameters.csr_reg);
540 if (parameters.divider_reg)
541 iounmap(parameters.divider_reg);
544 CLK_OF_DECLARE(xgene_socpll_clock, "apm,xgene-socpll-clock", xgene_socpllclk_init);
545 CLK_OF_DECLARE(xgene_pcppll_clock, "apm,xgene-pcppll-clock", xgene_pcppllclk_init);
546 CLK_OF_DECLARE(xgene_socpll_v2_clock, "apm,xgene-socpll-v2-clock",
547 xgene_socpllclk_init);
548 CLK_OF_DECLARE(xgene_pcppll_v2_clock, "apm,xgene-pcppll-v2-clock",
549 xgene_pcppllclk_init);
550 CLK_OF_DECLARE(xgene_dev_clock, "apm,xgene-device-clock", xgene_devclk_init);