ext4: simplify ext4_writepage()
[linux-2.6/btrfs-unstable.git] / fs / ext4 / inode.c
bloba08ec795995f3b50800e050c13dcc4f3a7d7bfaa
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 static int ext4_writepage(struct page *page, struct writeback_control *wbc);
66 * Test whether an inode is a fast symlink.
68 static int ext4_inode_is_fast_symlink(struct inode *inode)
70 int ea_blocks = EXT4_I(inode)->i_file_acl ?
71 (inode->i_sb->s_blocksize >> 9) : 0;
73 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
77 * Work out how many blocks we need to proceed with the next chunk of a
78 * truncate transaction.
80 static unsigned long blocks_for_truncate(struct inode *inode)
82 ext4_lblk_t needed;
84 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
86 /* Give ourselves just enough room to cope with inodes in which
87 * i_blocks is corrupt: we've seen disk corruptions in the past
88 * which resulted in random data in an inode which looked enough
89 * like a regular file for ext4 to try to delete it. Things
90 * will go a bit crazy if that happens, but at least we should
91 * try not to panic the whole kernel. */
92 if (needed < 2)
93 needed = 2;
95 /* But we need to bound the transaction so we don't overflow the
96 * journal. */
97 if (needed > EXT4_MAX_TRANS_DATA)
98 needed = EXT4_MAX_TRANS_DATA;
100 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
104 * Truncate transactions can be complex and absolutely huge. So we need to
105 * be able to restart the transaction at a conventient checkpoint to make
106 * sure we don't overflow the journal.
108 * start_transaction gets us a new handle for a truncate transaction,
109 * and extend_transaction tries to extend the existing one a bit. If
110 * extend fails, we need to propagate the failure up and restart the
111 * transaction in the top-level truncate loop. --sct
113 static handle_t *start_transaction(struct inode *inode)
115 handle_t *result;
117 result = ext4_journal_start(inode, blocks_for_truncate(inode));
118 if (!IS_ERR(result))
119 return result;
121 ext4_std_error(inode->i_sb, PTR_ERR(result));
122 return result;
126 * Try to extend this transaction for the purposes of truncation.
128 * Returns 0 if we managed to create more room. If we can't create more
129 * room, and the transaction must be restarted we return 1.
131 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
133 if (!ext4_handle_valid(handle))
134 return 0;
135 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
136 return 0;
137 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
138 return 0;
139 return 1;
143 * Restart the transaction associated with *handle. This does a commit,
144 * so before we call here everything must be consistently dirtied against
145 * this transaction.
147 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
148 int nblocks)
150 int ret;
153 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
154 * moment, get_block can be called only for blocks inside i_size since
155 * page cache has been already dropped and writes are blocked by
156 * i_mutex. So we can safely drop the i_data_sem here.
158 BUG_ON(EXT4_JOURNAL(inode) == NULL);
159 jbd_debug(2, "restarting handle %p\n", handle);
160 up_write(&EXT4_I(inode)->i_data_sem);
161 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
162 down_write(&EXT4_I(inode)->i_data_sem);
163 ext4_discard_preallocations(inode);
165 return ret;
169 * Called at the last iput() if i_nlink is zero.
171 void ext4_evict_inode(struct inode *inode)
173 handle_t *handle;
174 int err;
176 if (inode->i_nlink) {
177 truncate_inode_pages(&inode->i_data, 0);
178 goto no_delete;
181 if (!is_bad_inode(inode))
182 dquot_initialize(inode);
184 if (ext4_should_order_data(inode))
185 ext4_begin_ordered_truncate(inode, 0);
186 truncate_inode_pages(&inode->i_data, 0);
188 if (is_bad_inode(inode))
189 goto no_delete;
191 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
192 if (IS_ERR(handle)) {
193 ext4_std_error(inode->i_sb, PTR_ERR(handle));
195 * If we're going to skip the normal cleanup, we still need to
196 * make sure that the in-core orphan linked list is properly
197 * cleaned up.
199 ext4_orphan_del(NULL, inode);
200 goto no_delete;
203 if (IS_SYNC(inode))
204 ext4_handle_sync(handle);
205 inode->i_size = 0;
206 err = ext4_mark_inode_dirty(handle, inode);
207 if (err) {
208 ext4_warning(inode->i_sb,
209 "couldn't mark inode dirty (err %d)", err);
210 goto stop_handle;
212 if (inode->i_blocks)
213 ext4_truncate(inode);
216 * ext4_ext_truncate() doesn't reserve any slop when it
217 * restarts journal transactions; therefore there may not be
218 * enough credits left in the handle to remove the inode from
219 * the orphan list and set the dtime field.
221 if (!ext4_handle_has_enough_credits(handle, 3)) {
222 err = ext4_journal_extend(handle, 3);
223 if (err > 0)
224 err = ext4_journal_restart(handle, 3);
225 if (err != 0) {
226 ext4_warning(inode->i_sb,
227 "couldn't extend journal (err %d)", err);
228 stop_handle:
229 ext4_journal_stop(handle);
230 ext4_orphan_del(NULL, inode);
231 goto no_delete;
236 * Kill off the orphan record which ext4_truncate created.
237 * AKPM: I think this can be inside the above `if'.
238 * Note that ext4_orphan_del() has to be able to cope with the
239 * deletion of a non-existent orphan - this is because we don't
240 * know if ext4_truncate() actually created an orphan record.
241 * (Well, we could do this if we need to, but heck - it works)
243 ext4_orphan_del(handle, inode);
244 EXT4_I(inode)->i_dtime = get_seconds();
247 * One subtle ordering requirement: if anything has gone wrong
248 * (transaction abort, IO errors, whatever), then we can still
249 * do these next steps (the fs will already have been marked as
250 * having errors), but we can't free the inode if the mark_dirty
251 * fails.
253 if (ext4_mark_inode_dirty(handle, inode))
254 /* If that failed, just do the required in-core inode clear. */
255 ext4_clear_inode(inode);
256 else
257 ext4_free_inode(handle, inode);
258 ext4_journal_stop(handle);
259 return;
260 no_delete:
261 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
264 typedef struct {
265 __le32 *p;
266 __le32 key;
267 struct buffer_head *bh;
268 } Indirect;
270 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
272 p->key = *(p->p = v);
273 p->bh = bh;
277 * ext4_block_to_path - parse the block number into array of offsets
278 * @inode: inode in question (we are only interested in its superblock)
279 * @i_block: block number to be parsed
280 * @offsets: array to store the offsets in
281 * @boundary: set this non-zero if the referred-to block is likely to be
282 * followed (on disk) by an indirect block.
284 * To store the locations of file's data ext4 uses a data structure common
285 * for UNIX filesystems - tree of pointers anchored in the inode, with
286 * data blocks at leaves and indirect blocks in intermediate nodes.
287 * This function translates the block number into path in that tree -
288 * return value is the path length and @offsets[n] is the offset of
289 * pointer to (n+1)th node in the nth one. If @block is out of range
290 * (negative or too large) warning is printed and zero returned.
292 * Note: function doesn't find node addresses, so no IO is needed. All
293 * we need to know is the capacity of indirect blocks (taken from the
294 * inode->i_sb).
298 * Portability note: the last comparison (check that we fit into triple
299 * indirect block) is spelled differently, because otherwise on an
300 * architecture with 32-bit longs and 8Kb pages we might get into trouble
301 * if our filesystem had 8Kb blocks. We might use long long, but that would
302 * kill us on x86. Oh, well, at least the sign propagation does not matter -
303 * i_block would have to be negative in the very beginning, so we would not
304 * get there at all.
307 static int ext4_block_to_path(struct inode *inode,
308 ext4_lblk_t i_block,
309 ext4_lblk_t offsets[4], int *boundary)
311 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
312 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
313 const long direct_blocks = EXT4_NDIR_BLOCKS,
314 indirect_blocks = ptrs,
315 double_blocks = (1 << (ptrs_bits * 2));
316 int n = 0;
317 int final = 0;
319 if (i_block < direct_blocks) {
320 offsets[n++] = i_block;
321 final = direct_blocks;
322 } else if ((i_block -= direct_blocks) < indirect_blocks) {
323 offsets[n++] = EXT4_IND_BLOCK;
324 offsets[n++] = i_block;
325 final = ptrs;
326 } else if ((i_block -= indirect_blocks) < double_blocks) {
327 offsets[n++] = EXT4_DIND_BLOCK;
328 offsets[n++] = i_block >> ptrs_bits;
329 offsets[n++] = i_block & (ptrs - 1);
330 final = ptrs;
331 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
332 offsets[n++] = EXT4_TIND_BLOCK;
333 offsets[n++] = i_block >> (ptrs_bits * 2);
334 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
335 offsets[n++] = i_block & (ptrs - 1);
336 final = ptrs;
337 } else {
338 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
339 i_block + direct_blocks +
340 indirect_blocks + double_blocks, inode->i_ino);
342 if (boundary)
343 *boundary = final - 1 - (i_block & (ptrs - 1));
344 return n;
347 static int __ext4_check_blockref(const char *function, unsigned int line,
348 struct inode *inode,
349 __le32 *p, unsigned int max)
351 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
352 __le32 *bref = p;
353 unsigned int blk;
355 while (bref < p+max) {
356 blk = le32_to_cpu(*bref++);
357 if (blk &&
358 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
359 blk, 1))) {
360 es->s_last_error_block = cpu_to_le64(blk);
361 ext4_error_inode(inode, function, line, blk,
362 "invalid block");
363 return -EIO;
366 return 0;
370 #define ext4_check_indirect_blockref(inode, bh) \
371 __ext4_check_blockref(__func__, __LINE__, inode, \
372 (__le32 *)(bh)->b_data, \
373 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
375 #define ext4_check_inode_blockref(inode) \
376 __ext4_check_blockref(__func__, __LINE__, inode, \
377 EXT4_I(inode)->i_data, \
378 EXT4_NDIR_BLOCKS)
381 * ext4_get_branch - read the chain of indirect blocks leading to data
382 * @inode: inode in question
383 * @depth: depth of the chain (1 - direct pointer, etc.)
384 * @offsets: offsets of pointers in inode/indirect blocks
385 * @chain: place to store the result
386 * @err: here we store the error value
388 * Function fills the array of triples <key, p, bh> and returns %NULL
389 * if everything went OK or the pointer to the last filled triple
390 * (incomplete one) otherwise. Upon the return chain[i].key contains
391 * the number of (i+1)-th block in the chain (as it is stored in memory,
392 * i.e. little-endian 32-bit), chain[i].p contains the address of that
393 * number (it points into struct inode for i==0 and into the bh->b_data
394 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
395 * block for i>0 and NULL for i==0. In other words, it holds the block
396 * numbers of the chain, addresses they were taken from (and where we can
397 * verify that chain did not change) and buffer_heads hosting these
398 * numbers.
400 * Function stops when it stumbles upon zero pointer (absent block)
401 * (pointer to last triple returned, *@err == 0)
402 * or when it gets an IO error reading an indirect block
403 * (ditto, *@err == -EIO)
404 * or when it reads all @depth-1 indirect blocks successfully and finds
405 * the whole chain, all way to the data (returns %NULL, *err == 0).
407 * Need to be called with
408 * down_read(&EXT4_I(inode)->i_data_sem)
410 static Indirect *ext4_get_branch(struct inode *inode, int depth,
411 ext4_lblk_t *offsets,
412 Indirect chain[4], int *err)
414 struct super_block *sb = inode->i_sb;
415 Indirect *p = chain;
416 struct buffer_head *bh;
418 *err = 0;
419 /* i_data is not going away, no lock needed */
420 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
421 if (!p->key)
422 goto no_block;
423 while (--depth) {
424 bh = sb_getblk(sb, le32_to_cpu(p->key));
425 if (unlikely(!bh))
426 goto failure;
428 if (!bh_uptodate_or_lock(bh)) {
429 if (bh_submit_read(bh) < 0) {
430 put_bh(bh);
431 goto failure;
433 /* validate block references */
434 if (ext4_check_indirect_blockref(inode, bh)) {
435 put_bh(bh);
436 goto failure;
440 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
441 /* Reader: end */
442 if (!p->key)
443 goto no_block;
445 return NULL;
447 failure:
448 *err = -EIO;
449 no_block:
450 return p;
454 * ext4_find_near - find a place for allocation with sufficient locality
455 * @inode: owner
456 * @ind: descriptor of indirect block.
458 * This function returns the preferred place for block allocation.
459 * It is used when heuristic for sequential allocation fails.
460 * Rules are:
461 * + if there is a block to the left of our position - allocate near it.
462 * + if pointer will live in indirect block - allocate near that block.
463 * + if pointer will live in inode - allocate in the same
464 * cylinder group.
466 * In the latter case we colour the starting block by the callers PID to
467 * prevent it from clashing with concurrent allocations for a different inode
468 * in the same block group. The PID is used here so that functionally related
469 * files will be close-by on-disk.
471 * Caller must make sure that @ind is valid and will stay that way.
473 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
475 struct ext4_inode_info *ei = EXT4_I(inode);
476 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
477 __le32 *p;
478 ext4_fsblk_t bg_start;
479 ext4_fsblk_t last_block;
480 ext4_grpblk_t colour;
481 ext4_group_t block_group;
482 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
484 /* Try to find previous block */
485 for (p = ind->p - 1; p >= start; p--) {
486 if (*p)
487 return le32_to_cpu(*p);
490 /* No such thing, so let's try location of indirect block */
491 if (ind->bh)
492 return ind->bh->b_blocknr;
495 * It is going to be referred to from the inode itself? OK, just put it
496 * into the same cylinder group then.
498 block_group = ei->i_block_group;
499 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
500 block_group &= ~(flex_size-1);
501 if (S_ISREG(inode->i_mode))
502 block_group++;
504 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
505 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
508 * If we are doing delayed allocation, we don't need take
509 * colour into account.
511 if (test_opt(inode->i_sb, DELALLOC))
512 return bg_start;
514 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
515 colour = (current->pid % 16) *
516 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
517 else
518 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
519 return bg_start + colour;
523 * ext4_find_goal - find a preferred place for allocation.
524 * @inode: owner
525 * @block: block we want
526 * @partial: pointer to the last triple within a chain
528 * Normally this function find the preferred place for block allocation,
529 * returns it.
530 * Because this is only used for non-extent files, we limit the block nr
531 * to 32 bits.
533 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
534 Indirect *partial)
536 ext4_fsblk_t goal;
539 * XXX need to get goal block from mballoc's data structures
542 goal = ext4_find_near(inode, partial);
543 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
544 return goal;
548 * ext4_blks_to_allocate: Look up the block map and count the number
549 * of direct blocks need to be allocated for the given branch.
551 * @branch: chain of indirect blocks
552 * @k: number of blocks need for indirect blocks
553 * @blks: number of data blocks to be mapped.
554 * @blocks_to_boundary: the offset in the indirect block
556 * return the total number of blocks to be allocate, including the
557 * direct and indirect blocks.
559 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
560 int blocks_to_boundary)
562 unsigned int count = 0;
565 * Simple case, [t,d]Indirect block(s) has not allocated yet
566 * then it's clear blocks on that path have not allocated
568 if (k > 0) {
569 /* right now we don't handle cross boundary allocation */
570 if (blks < blocks_to_boundary + 1)
571 count += blks;
572 else
573 count += blocks_to_boundary + 1;
574 return count;
577 count++;
578 while (count < blks && count <= blocks_to_boundary &&
579 le32_to_cpu(*(branch[0].p + count)) == 0) {
580 count++;
582 return count;
586 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
587 * @indirect_blks: the number of blocks need to allocate for indirect
588 * blocks
590 * @new_blocks: on return it will store the new block numbers for
591 * the indirect blocks(if needed) and the first direct block,
592 * @blks: on return it will store the total number of allocated
593 * direct blocks
595 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
596 ext4_lblk_t iblock, ext4_fsblk_t goal,
597 int indirect_blks, int blks,
598 ext4_fsblk_t new_blocks[4], int *err)
600 struct ext4_allocation_request ar;
601 int target, i;
602 unsigned long count = 0, blk_allocated = 0;
603 int index = 0;
604 ext4_fsblk_t current_block = 0;
605 int ret = 0;
608 * Here we try to allocate the requested multiple blocks at once,
609 * on a best-effort basis.
610 * To build a branch, we should allocate blocks for
611 * the indirect blocks(if not allocated yet), and at least
612 * the first direct block of this branch. That's the
613 * minimum number of blocks need to allocate(required)
615 /* first we try to allocate the indirect blocks */
616 target = indirect_blks;
617 while (target > 0) {
618 count = target;
619 /* allocating blocks for indirect blocks and direct blocks */
620 current_block = ext4_new_meta_blocks(handle, inode,
621 goal, &count, err);
622 if (*err)
623 goto failed_out;
625 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
626 EXT4_ERROR_INODE(inode,
627 "current_block %llu + count %lu > %d!",
628 current_block, count,
629 EXT4_MAX_BLOCK_FILE_PHYS);
630 *err = -EIO;
631 goto failed_out;
634 target -= count;
635 /* allocate blocks for indirect blocks */
636 while (index < indirect_blks && count) {
637 new_blocks[index++] = current_block++;
638 count--;
640 if (count > 0) {
642 * save the new block number
643 * for the first direct block
645 new_blocks[index] = current_block;
646 printk(KERN_INFO "%s returned more blocks than "
647 "requested\n", __func__);
648 WARN_ON(1);
649 break;
653 target = blks - count ;
654 blk_allocated = count;
655 if (!target)
656 goto allocated;
657 /* Now allocate data blocks */
658 memset(&ar, 0, sizeof(ar));
659 ar.inode = inode;
660 ar.goal = goal;
661 ar.len = target;
662 ar.logical = iblock;
663 if (S_ISREG(inode->i_mode))
664 /* enable in-core preallocation only for regular files */
665 ar.flags = EXT4_MB_HINT_DATA;
667 current_block = ext4_mb_new_blocks(handle, &ar, err);
668 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
669 EXT4_ERROR_INODE(inode,
670 "current_block %llu + ar.len %d > %d!",
671 current_block, ar.len,
672 EXT4_MAX_BLOCK_FILE_PHYS);
673 *err = -EIO;
674 goto failed_out;
677 if (*err && (target == blks)) {
679 * if the allocation failed and we didn't allocate
680 * any blocks before
682 goto failed_out;
684 if (!*err) {
685 if (target == blks) {
687 * save the new block number
688 * for the first direct block
690 new_blocks[index] = current_block;
692 blk_allocated += ar.len;
694 allocated:
695 /* total number of blocks allocated for direct blocks */
696 ret = blk_allocated;
697 *err = 0;
698 return ret;
699 failed_out:
700 for (i = 0; i < index; i++)
701 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
702 return ret;
706 * ext4_alloc_branch - allocate and set up a chain of blocks.
707 * @inode: owner
708 * @indirect_blks: number of allocated indirect blocks
709 * @blks: number of allocated direct blocks
710 * @offsets: offsets (in the blocks) to store the pointers to next.
711 * @branch: place to store the chain in.
713 * This function allocates blocks, zeroes out all but the last one,
714 * links them into chain and (if we are synchronous) writes them to disk.
715 * In other words, it prepares a branch that can be spliced onto the
716 * inode. It stores the information about that chain in the branch[], in
717 * the same format as ext4_get_branch() would do. We are calling it after
718 * we had read the existing part of chain and partial points to the last
719 * triple of that (one with zero ->key). Upon the exit we have the same
720 * picture as after the successful ext4_get_block(), except that in one
721 * place chain is disconnected - *branch->p is still zero (we did not
722 * set the last link), but branch->key contains the number that should
723 * be placed into *branch->p to fill that gap.
725 * If allocation fails we free all blocks we've allocated (and forget
726 * their buffer_heads) and return the error value the from failed
727 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
728 * as described above and return 0.
730 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
731 ext4_lblk_t iblock, int indirect_blks,
732 int *blks, ext4_fsblk_t goal,
733 ext4_lblk_t *offsets, Indirect *branch)
735 int blocksize = inode->i_sb->s_blocksize;
736 int i, n = 0;
737 int err = 0;
738 struct buffer_head *bh;
739 int num;
740 ext4_fsblk_t new_blocks[4];
741 ext4_fsblk_t current_block;
743 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
744 *blks, new_blocks, &err);
745 if (err)
746 return err;
748 branch[0].key = cpu_to_le32(new_blocks[0]);
750 * metadata blocks and data blocks are allocated.
752 for (n = 1; n <= indirect_blks; n++) {
754 * Get buffer_head for parent block, zero it out
755 * and set the pointer to new one, then send
756 * parent to disk.
758 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
759 branch[n].bh = bh;
760 lock_buffer(bh);
761 BUFFER_TRACE(bh, "call get_create_access");
762 err = ext4_journal_get_create_access(handle, bh);
763 if (err) {
764 /* Don't brelse(bh) here; it's done in
765 * ext4_journal_forget() below */
766 unlock_buffer(bh);
767 goto failed;
770 memset(bh->b_data, 0, blocksize);
771 branch[n].p = (__le32 *) bh->b_data + offsets[n];
772 branch[n].key = cpu_to_le32(new_blocks[n]);
773 *branch[n].p = branch[n].key;
774 if (n == indirect_blks) {
775 current_block = new_blocks[n];
777 * End of chain, update the last new metablock of
778 * the chain to point to the new allocated
779 * data blocks numbers
781 for (i = 1; i < num; i++)
782 *(branch[n].p + i) = cpu_to_le32(++current_block);
784 BUFFER_TRACE(bh, "marking uptodate");
785 set_buffer_uptodate(bh);
786 unlock_buffer(bh);
788 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
789 err = ext4_handle_dirty_metadata(handle, inode, bh);
790 if (err)
791 goto failed;
793 *blks = num;
794 return err;
795 failed:
796 /* Allocation failed, free what we already allocated */
797 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
798 for (i = 1; i <= n ; i++) {
800 * branch[i].bh is newly allocated, so there is no
801 * need to revoke the block, which is why we don't
802 * need to set EXT4_FREE_BLOCKS_METADATA.
804 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
805 EXT4_FREE_BLOCKS_FORGET);
807 for (i = n+1; i < indirect_blks; i++)
808 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
810 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
812 return err;
816 * ext4_splice_branch - splice the allocated branch onto inode.
817 * @inode: owner
818 * @block: (logical) number of block we are adding
819 * @chain: chain of indirect blocks (with a missing link - see
820 * ext4_alloc_branch)
821 * @where: location of missing link
822 * @num: number of indirect blocks we are adding
823 * @blks: number of direct blocks we are adding
825 * This function fills the missing link and does all housekeeping needed in
826 * inode (->i_blocks, etc.). In case of success we end up with the full
827 * chain to new block and return 0.
829 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
830 ext4_lblk_t block, Indirect *where, int num,
831 int blks)
833 int i;
834 int err = 0;
835 ext4_fsblk_t current_block;
838 * If we're splicing into a [td]indirect block (as opposed to the
839 * inode) then we need to get write access to the [td]indirect block
840 * before the splice.
842 if (where->bh) {
843 BUFFER_TRACE(where->bh, "get_write_access");
844 err = ext4_journal_get_write_access(handle, where->bh);
845 if (err)
846 goto err_out;
848 /* That's it */
850 *where->p = where->key;
853 * Update the host buffer_head or inode to point to more just allocated
854 * direct blocks blocks
856 if (num == 0 && blks > 1) {
857 current_block = le32_to_cpu(where->key) + 1;
858 for (i = 1; i < blks; i++)
859 *(where->p + i) = cpu_to_le32(current_block++);
862 /* We are done with atomic stuff, now do the rest of housekeeping */
863 /* had we spliced it onto indirect block? */
864 if (where->bh) {
866 * If we spliced it onto an indirect block, we haven't
867 * altered the inode. Note however that if it is being spliced
868 * onto an indirect block at the very end of the file (the
869 * file is growing) then we *will* alter the inode to reflect
870 * the new i_size. But that is not done here - it is done in
871 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
873 jbd_debug(5, "splicing indirect only\n");
874 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
875 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
876 if (err)
877 goto err_out;
878 } else {
880 * OK, we spliced it into the inode itself on a direct block.
882 ext4_mark_inode_dirty(handle, inode);
883 jbd_debug(5, "splicing direct\n");
885 return err;
887 err_out:
888 for (i = 1; i <= num; i++) {
890 * branch[i].bh is newly allocated, so there is no
891 * need to revoke the block, which is why we don't
892 * need to set EXT4_FREE_BLOCKS_METADATA.
894 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
895 EXT4_FREE_BLOCKS_FORGET);
897 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
898 blks, 0);
900 return err;
904 * The ext4_ind_map_blocks() function handles non-extents inodes
905 * (i.e., using the traditional indirect/double-indirect i_blocks
906 * scheme) for ext4_map_blocks().
908 * Allocation strategy is simple: if we have to allocate something, we will
909 * have to go the whole way to leaf. So let's do it before attaching anything
910 * to tree, set linkage between the newborn blocks, write them if sync is
911 * required, recheck the path, free and repeat if check fails, otherwise
912 * set the last missing link (that will protect us from any truncate-generated
913 * removals - all blocks on the path are immune now) and possibly force the
914 * write on the parent block.
915 * That has a nice additional property: no special recovery from the failed
916 * allocations is needed - we simply release blocks and do not touch anything
917 * reachable from inode.
919 * `handle' can be NULL if create == 0.
921 * return > 0, # of blocks mapped or allocated.
922 * return = 0, if plain lookup failed.
923 * return < 0, error case.
925 * The ext4_ind_get_blocks() function should be called with
926 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
927 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
928 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
929 * blocks.
931 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
932 struct ext4_map_blocks *map,
933 int flags)
935 int err = -EIO;
936 ext4_lblk_t offsets[4];
937 Indirect chain[4];
938 Indirect *partial;
939 ext4_fsblk_t goal;
940 int indirect_blks;
941 int blocks_to_boundary = 0;
942 int depth;
943 int count = 0;
944 ext4_fsblk_t first_block = 0;
946 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
947 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
948 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
949 &blocks_to_boundary);
951 if (depth == 0)
952 goto out;
954 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
956 /* Simplest case - block found, no allocation needed */
957 if (!partial) {
958 first_block = le32_to_cpu(chain[depth - 1].key);
959 count++;
960 /*map more blocks*/
961 while (count < map->m_len && count <= blocks_to_boundary) {
962 ext4_fsblk_t blk;
964 blk = le32_to_cpu(*(chain[depth-1].p + count));
966 if (blk == first_block + count)
967 count++;
968 else
969 break;
971 goto got_it;
974 /* Next simple case - plain lookup or failed read of indirect block */
975 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
976 goto cleanup;
979 * Okay, we need to do block allocation.
981 goal = ext4_find_goal(inode, map->m_lblk, partial);
983 /* the number of blocks need to allocate for [d,t]indirect blocks */
984 indirect_blks = (chain + depth) - partial - 1;
987 * Next look up the indirect map to count the totoal number of
988 * direct blocks to allocate for this branch.
990 count = ext4_blks_to_allocate(partial, indirect_blks,
991 map->m_len, blocks_to_boundary);
993 * Block out ext4_truncate while we alter the tree
995 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
996 &count, goal,
997 offsets + (partial - chain), partial);
1000 * The ext4_splice_branch call will free and forget any buffers
1001 * on the new chain if there is a failure, but that risks using
1002 * up transaction credits, especially for bitmaps where the
1003 * credits cannot be returned. Can we handle this somehow? We
1004 * may need to return -EAGAIN upwards in the worst case. --sct
1006 if (!err)
1007 err = ext4_splice_branch(handle, inode, map->m_lblk,
1008 partial, indirect_blks, count);
1009 if (err)
1010 goto cleanup;
1012 map->m_flags |= EXT4_MAP_NEW;
1014 ext4_update_inode_fsync_trans(handle, inode, 1);
1015 got_it:
1016 map->m_flags |= EXT4_MAP_MAPPED;
1017 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1018 map->m_len = count;
1019 if (count > blocks_to_boundary)
1020 map->m_flags |= EXT4_MAP_BOUNDARY;
1021 err = count;
1022 /* Clean up and exit */
1023 partial = chain + depth - 1; /* the whole chain */
1024 cleanup:
1025 while (partial > chain) {
1026 BUFFER_TRACE(partial->bh, "call brelse");
1027 brelse(partial->bh);
1028 partial--;
1030 out:
1031 return err;
1034 #ifdef CONFIG_QUOTA
1035 qsize_t *ext4_get_reserved_space(struct inode *inode)
1037 return &EXT4_I(inode)->i_reserved_quota;
1039 #endif
1042 * Calculate the number of metadata blocks need to reserve
1043 * to allocate a new block at @lblocks for non extent file based file
1045 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1046 sector_t lblock)
1048 struct ext4_inode_info *ei = EXT4_I(inode);
1049 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1050 int blk_bits;
1052 if (lblock < EXT4_NDIR_BLOCKS)
1053 return 0;
1055 lblock -= EXT4_NDIR_BLOCKS;
1057 if (ei->i_da_metadata_calc_len &&
1058 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1059 ei->i_da_metadata_calc_len++;
1060 return 0;
1062 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1063 ei->i_da_metadata_calc_len = 1;
1064 blk_bits = order_base_2(lblock);
1065 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1069 * Calculate the number of metadata blocks need to reserve
1070 * to allocate a block located at @lblock
1072 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1074 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1075 return ext4_ext_calc_metadata_amount(inode, lblock);
1077 return ext4_indirect_calc_metadata_amount(inode, lblock);
1081 * Called with i_data_sem down, which is important since we can call
1082 * ext4_discard_preallocations() from here.
1084 void ext4_da_update_reserve_space(struct inode *inode,
1085 int used, int quota_claim)
1087 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1088 struct ext4_inode_info *ei = EXT4_I(inode);
1090 spin_lock(&ei->i_block_reservation_lock);
1091 trace_ext4_da_update_reserve_space(inode, used);
1092 if (unlikely(used > ei->i_reserved_data_blocks)) {
1093 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1094 "with only %d reserved data blocks\n",
1095 __func__, inode->i_ino, used,
1096 ei->i_reserved_data_blocks);
1097 WARN_ON(1);
1098 used = ei->i_reserved_data_blocks;
1101 /* Update per-inode reservations */
1102 ei->i_reserved_data_blocks -= used;
1103 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1104 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1105 used + ei->i_allocated_meta_blocks);
1106 ei->i_allocated_meta_blocks = 0;
1108 if (ei->i_reserved_data_blocks == 0) {
1110 * We can release all of the reserved metadata blocks
1111 * only when we have written all of the delayed
1112 * allocation blocks.
1114 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1115 ei->i_reserved_meta_blocks);
1116 ei->i_reserved_meta_blocks = 0;
1117 ei->i_da_metadata_calc_len = 0;
1119 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1121 /* Update quota subsystem for data blocks */
1122 if (quota_claim)
1123 dquot_claim_block(inode, used);
1124 else {
1126 * We did fallocate with an offset that is already delayed
1127 * allocated. So on delayed allocated writeback we should
1128 * not re-claim the quota for fallocated blocks.
1130 dquot_release_reservation_block(inode, used);
1134 * If we have done all the pending block allocations and if
1135 * there aren't any writers on the inode, we can discard the
1136 * inode's preallocations.
1138 if ((ei->i_reserved_data_blocks == 0) &&
1139 (atomic_read(&inode->i_writecount) == 0))
1140 ext4_discard_preallocations(inode);
1143 static int __check_block_validity(struct inode *inode, const char *func,
1144 unsigned int line,
1145 struct ext4_map_blocks *map)
1147 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1148 map->m_len)) {
1149 ext4_error_inode(inode, func, line, map->m_pblk,
1150 "lblock %lu mapped to illegal pblock "
1151 "(length %d)", (unsigned long) map->m_lblk,
1152 map->m_len);
1153 return -EIO;
1155 return 0;
1158 #define check_block_validity(inode, map) \
1159 __check_block_validity((inode), __func__, __LINE__, (map))
1162 * Return the number of contiguous dirty pages in a given inode
1163 * starting at page frame idx.
1165 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1166 unsigned int max_pages)
1168 struct address_space *mapping = inode->i_mapping;
1169 pgoff_t index;
1170 struct pagevec pvec;
1171 pgoff_t num = 0;
1172 int i, nr_pages, done = 0;
1174 if (max_pages == 0)
1175 return 0;
1176 pagevec_init(&pvec, 0);
1177 while (!done) {
1178 index = idx;
1179 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1180 PAGECACHE_TAG_DIRTY,
1181 (pgoff_t)PAGEVEC_SIZE);
1182 if (nr_pages == 0)
1183 break;
1184 for (i = 0; i < nr_pages; i++) {
1185 struct page *page = pvec.pages[i];
1186 struct buffer_head *bh, *head;
1188 lock_page(page);
1189 if (unlikely(page->mapping != mapping) ||
1190 !PageDirty(page) ||
1191 PageWriteback(page) ||
1192 page->index != idx) {
1193 done = 1;
1194 unlock_page(page);
1195 break;
1197 if (page_has_buffers(page)) {
1198 bh = head = page_buffers(page);
1199 do {
1200 if (!buffer_delay(bh) &&
1201 !buffer_unwritten(bh))
1202 done = 1;
1203 bh = bh->b_this_page;
1204 } while (!done && (bh != head));
1206 unlock_page(page);
1207 if (done)
1208 break;
1209 idx++;
1210 num++;
1211 if (num >= max_pages) {
1212 done = 1;
1213 break;
1216 pagevec_release(&pvec);
1218 return num;
1222 * The ext4_map_blocks() function tries to look up the requested blocks,
1223 * and returns if the blocks are already mapped.
1225 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1226 * and store the allocated blocks in the result buffer head and mark it
1227 * mapped.
1229 * If file type is extents based, it will call ext4_ext_map_blocks(),
1230 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1231 * based files
1233 * On success, it returns the number of blocks being mapped or allocate.
1234 * if create==0 and the blocks are pre-allocated and uninitialized block,
1235 * the result buffer head is unmapped. If the create ==1, it will make sure
1236 * the buffer head is mapped.
1238 * It returns 0 if plain look up failed (blocks have not been allocated), in
1239 * that casem, buffer head is unmapped
1241 * It returns the error in case of allocation failure.
1243 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1244 struct ext4_map_blocks *map, int flags)
1246 int retval;
1248 map->m_flags = 0;
1249 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1250 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1251 (unsigned long) map->m_lblk);
1253 * Try to see if we can get the block without requesting a new
1254 * file system block.
1256 down_read((&EXT4_I(inode)->i_data_sem));
1257 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1258 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1259 } else {
1260 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1262 up_read((&EXT4_I(inode)->i_data_sem));
1264 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1265 int ret = check_block_validity(inode, map);
1266 if (ret != 0)
1267 return ret;
1270 /* If it is only a block(s) look up */
1271 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1272 return retval;
1275 * Returns if the blocks have already allocated
1277 * Note that if blocks have been preallocated
1278 * ext4_ext_get_block() returns th create = 0
1279 * with buffer head unmapped.
1281 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1282 return retval;
1285 * When we call get_blocks without the create flag, the
1286 * BH_Unwritten flag could have gotten set if the blocks
1287 * requested were part of a uninitialized extent. We need to
1288 * clear this flag now that we are committed to convert all or
1289 * part of the uninitialized extent to be an initialized
1290 * extent. This is because we need to avoid the combination
1291 * of BH_Unwritten and BH_Mapped flags being simultaneously
1292 * set on the buffer_head.
1294 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1297 * New blocks allocate and/or writing to uninitialized extent
1298 * will possibly result in updating i_data, so we take
1299 * the write lock of i_data_sem, and call get_blocks()
1300 * with create == 1 flag.
1302 down_write((&EXT4_I(inode)->i_data_sem));
1305 * if the caller is from delayed allocation writeout path
1306 * we have already reserved fs blocks for allocation
1307 * let the underlying get_block() function know to
1308 * avoid double accounting
1310 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1311 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1313 * We need to check for EXT4 here because migrate
1314 * could have changed the inode type in between
1316 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1317 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1318 } else {
1319 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1321 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1323 * We allocated new blocks which will result in
1324 * i_data's format changing. Force the migrate
1325 * to fail by clearing migrate flags
1327 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1331 * Update reserved blocks/metadata blocks after successful
1332 * block allocation which had been deferred till now. We don't
1333 * support fallocate for non extent files. So we can update
1334 * reserve space here.
1336 if ((retval > 0) &&
1337 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1338 ext4_da_update_reserve_space(inode, retval, 1);
1340 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1343 up_write((&EXT4_I(inode)->i_data_sem));
1344 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1345 int ret = check_block_validity(inode, map);
1346 if (ret != 0)
1347 return ret;
1349 return retval;
1352 /* Maximum number of blocks we map for direct IO at once. */
1353 #define DIO_MAX_BLOCKS 4096
1355 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1356 struct buffer_head *bh, int flags)
1358 handle_t *handle = ext4_journal_current_handle();
1359 struct ext4_map_blocks map;
1360 int ret = 0, started = 0;
1361 int dio_credits;
1363 map.m_lblk = iblock;
1364 map.m_len = bh->b_size >> inode->i_blkbits;
1366 if (flags && !handle) {
1367 /* Direct IO write... */
1368 if (map.m_len > DIO_MAX_BLOCKS)
1369 map.m_len = DIO_MAX_BLOCKS;
1370 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1371 handle = ext4_journal_start(inode, dio_credits);
1372 if (IS_ERR(handle)) {
1373 ret = PTR_ERR(handle);
1374 return ret;
1376 started = 1;
1379 ret = ext4_map_blocks(handle, inode, &map, flags);
1380 if (ret > 0) {
1381 map_bh(bh, inode->i_sb, map.m_pblk);
1382 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1383 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1384 ret = 0;
1386 if (started)
1387 ext4_journal_stop(handle);
1388 return ret;
1391 int ext4_get_block(struct inode *inode, sector_t iblock,
1392 struct buffer_head *bh, int create)
1394 return _ext4_get_block(inode, iblock, bh,
1395 create ? EXT4_GET_BLOCKS_CREATE : 0);
1399 * `handle' can be NULL if create is zero
1401 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1402 ext4_lblk_t block, int create, int *errp)
1404 struct ext4_map_blocks map;
1405 struct buffer_head *bh;
1406 int fatal = 0, err;
1408 J_ASSERT(handle != NULL || create == 0);
1410 map.m_lblk = block;
1411 map.m_len = 1;
1412 err = ext4_map_blocks(handle, inode, &map,
1413 create ? EXT4_GET_BLOCKS_CREATE : 0);
1415 if (err < 0)
1416 *errp = err;
1417 if (err <= 0)
1418 return NULL;
1419 *errp = 0;
1421 bh = sb_getblk(inode->i_sb, map.m_pblk);
1422 if (!bh) {
1423 *errp = -EIO;
1424 return NULL;
1426 if (map.m_flags & EXT4_MAP_NEW) {
1427 J_ASSERT(create != 0);
1428 J_ASSERT(handle != NULL);
1431 * Now that we do not always journal data, we should
1432 * keep in mind whether this should always journal the
1433 * new buffer as metadata. For now, regular file
1434 * writes use ext4_get_block instead, so it's not a
1435 * problem.
1437 lock_buffer(bh);
1438 BUFFER_TRACE(bh, "call get_create_access");
1439 fatal = ext4_journal_get_create_access(handle, bh);
1440 if (!fatal && !buffer_uptodate(bh)) {
1441 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1442 set_buffer_uptodate(bh);
1444 unlock_buffer(bh);
1445 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1446 err = ext4_handle_dirty_metadata(handle, inode, bh);
1447 if (!fatal)
1448 fatal = err;
1449 } else {
1450 BUFFER_TRACE(bh, "not a new buffer");
1452 if (fatal) {
1453 *errp = fatal;
1454 brelse(bh);
1455 bh = NULL;
1457 return bh;
1460 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1461 ext4_lblk_t block, int create, int *err)
1463 struct buffer_head *bh;
1465 bh = ext4_getblk(handle, inode, block, create, err);
1466 if (!bh)
1467 return bh;
1468 if (buffer_uptodate(bh))
1469 return bh;
1470 ll_rw_block(READ_META, 1, &bh);
1471 wait_on_buffer(bh);
1472 if (buffer_uptodate(bh))
1473 return bh;
1474 put_bh(bh);
1475 *err = -EIO;
1476 return NULL;
1479 static int walk_page_buffers(handle_t *handle,
1480 struct buffer_head *head,
1481 unsigned from,
1482 unsigned to,
1483 int *partial,
1484 int (*fn)(handle_t *handle,
1485 struct buffer_head *bh))
1487 struct buffer_head *bh;
1488 unsigned block_start, block_end;
1489 unsigned blocksize = head->b_size;
1490 int err, ret = 0;
1491 struct buffer_head *next;
1493 for (bh = head, block_start = 0;
1494 ret == 0 && (bh != head || !block_start);
1495 block_start = block_end, bh = next) {
1496 next = bh->b_this_page;
1497 block_end = block_start + blocksize;
1498 if (block_end <= from || block_start >= to) {
1499 if (partial && !buffer_uptodate(bh))
1500 *partial = 1;
1501 continue;
1503 err = (*fn)(handle, bh);
1504 if (!ret)
1505 ret = err;
1507 return ret;
1511 * To preserve ordering, it is essential that the hole instantiation and
1512 * the data write be encapsulated in a single transaction. We cannot
1513 * close off a transaction and start a new one between the ext4_get_block()
1514 * and the commit_write(). So doing the jbd2_journal_start at the start of
1515 * prepare_write() is the right place.
1517 * Also, this function can nest inside ext4_writepage() ->
1518 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1519 * has generated enough buffer credits to do the whole page. So we won't
1520 * block on the journal in that case, which is good, because the caller may
1521 * be PF_MEMALLOC.
1523 * By accident, ext4 can be reentered when a transaction is open via
1524 * quota file writes. If we were to commit the transaction while thus
1525 * reentered, there can be a deadlock - we would be holding a quota
1526 * lock, and the commit would never complete if another thread had a
1527 * transaction open and was blocking on the quota lock - a ranking
1528 * violation.
1530 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1531 * will _not_ run commit under these circumstances because handle->h_ref
1532 * is elevated. We'll still have enough credits for the tiny quotafile
1533 * write.
1535 static int do_journal_get_write_access(handle_t *handle,
1536 struct buffer_head *bh)
1538 int dirty = buffer_dirty(bh);
1539 int ret;
1541 if (!buffer_mapped(bh) || buffer_freed(bh))
1542 return 0;
1544 * __block_prepare_write() could have dirtied some buffers. Clean
1545 * the dirty bit as jbd2_journal_get_write_access() could complain
1546 * otherwise about fs integrity issues. Setting of the dirty bit
1547 * by __block_prepare_write() isn't a real problem here as we clear
1548 * the bit before releasing a page lock and thus writeback cannot
1549 * ever write the buffer.
1551 if (dirty)
1552 clear_buffer_dirty(bh);
1553 ret = ext4_journal_get_write_access(handle, bh);
1554 if (!ret && dirty)
1555 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1556 return ret;
1560 * Truncate blocks that were not used by write. We have to truncate the
1561 * pagecache as well so that corresponding buffers get properly unmapped.
1563 static void ext4_truncate_failed_write(struct inode *inode)
1565 truncate_inode_pages(inode->i_mapping, inode->i_size);
1566 ext4_truncate(inode);
1569 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1570 struct buffer_head *bh_result, int create);
1571 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1572 loff_t pos, unsigned len, unsigned flags,
1573 struct page **pagep, void **fsdata)
1575 struct inode *inode = mapping->host;
1576 int ret, needed_blocks;
1577 handle_t *handle;
1578 int retries = 0;
1579 struct page *page;
1580 pgoff_t index;
1581 unsigned from, to;
1583 trace_ext4_write_begin(inode, pos, len, flags);
1585 * Reserve one block more for addition to orphan list in case
1586 * we allocate blocks but write fails for some reason
1588 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1589 index = pos >> PAGE_CACHE_SHIFT;
1590 from = pos & (PAGE_CACHE_SIZE - 1);
1591 to = from + len;
1593 retry:
1594 handle = ext4_journal_start(inode, needed_blocks);
1595 if (IS_ERR(handle)) {
1596 ret = PTR_ERR(handle);
1597 goto out;
1600 /* We cannot recurse into the filesystem as the transaction is already
1601 * started */
1602 flags |= AOP_FLAG_NOFS;
1604 page = grab_cache_page_write_begin(mapping, index, flags);
1605 if (!page) {
1606 ext4_journal_stop(handle);
1607 ret = -ENOMEM;
1608 goto out;
1610 *pagep = page;
1612 if (ext4_should_dioread_nolock(inode))
1613 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1614 else
1615 ret = __block_write_begin(page, pos, len, ext4_get_block);
1617 if (!ret && ext4_should_journal_data(inode)) {
1618 ret = walk_page_buffers(handle, page_buffers(page),
1619 from, to, NULL, do_journal_get_write_access);
1622 if (ret) {
1623 unlock_page(page);
1624 page_cache_release(page);
1626 * __block_write_begin may have instantiated a few blocks
1627 * outside i_size. Trim these off again. Don't need
1628 * i_size_read because we hold i_mutex.
1630 * Add inode to orphan list in case we crash before
1631 * truncate finishes
1633 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1634 ext4_orphan_add(handle, inode);
1636 ext4_journal_stop(handle);
1637 if (pos + len > inode->i_size) {
1638 ext4_truncate_failed_write(inode);
1640 * If truncate failed early the inode might
1641 * still be on the orphan list; we need to
1642 * make sure the inode is removed from the
1643 * orphan list in that case.
1645 if (inode->i_nlink)
1646 ext4_orphan_del(NULL, inode);
1650 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1651 goto retry;
1652 out:
1653 return ret;
1656 /* For write_end() in data=journal mode */
1657 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1659 if (!buffer_mapped(bh) || buffer_freed(bh))
1660 return 0;
1661 set_buffer_uptodate(bh);
1662 return ext4_handle_dirty_metadata(handle, NULL, bh);
1665 static int ext4_generic_write_end(struct file *file,
1666 struct address_space *mapping,
1667 loff_t pos, unsigned len, unsigned copied,
1668 struct page *page, void *fsdata)
1670 int i_size_changed = 0;
1671 struct inode *inode = mapping->host;
1672 handle_t *handle = ext4_journal_current_handle();
1674 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1677 * No need to use i_size_read() here, the i_size
1678 * cannot change under us because we hold i_mutex.
1680 * But it's important to update i_size while still holding page lock:
1681 * page writeout could otherwise come in and zero beyond i_size.
1683 if (pos + copied > inode->i_size) {
1684 i_size_write(inode, pos + copied);
1685 i_size_changed = 1;
1688 if (pos + copied > EXT4_I(inode)->i_disksize) {
1689 /* We need to mark inode dirty even if
1690 * new_i_size is less that inode->i_size
1691 * bu greater than i_disksize.(hint delalloc)
1693 ext4_update_i_disksize(inode, (pos + copied));
1694 i_size_changed = 1;
1696 unlock_page(page);
1697 page_cache_release(page);
1700 * Don't mark the inode dirty under page lock. First, it unnecessarily
1701 * makes the holding time of page lock longer. Second, it forces lock
1702 * ordering of page lock and transaction start for journaling
1703 * filesystems.
1705 if (i_size_changed)
1706 ext4_mark_inode_dirty(handle, inode);
1708 return copied;
1712 * We need to pick up the new inode size which generic_commit_write gave us
1713 * `file' can be NULL - eg, when called from page_symlink().
1715 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1716 * buffers are managed internally.
1718 static int ext4_ordered_write_end(struct file *file,
1719 struct address_space *mapping,
1720 loff_t pos, unsigned len, unsigned copied,
1721 struct page *page, void *fsdata)
1723 handle_t *handle = ext4_journal_current_handle();
1724 struct inode *inode = mapping->host;
1725 int ret = 0, ret2;
1727 trace_ext4_ordered_write_end(inode, pos, len, copied);
1728 ret = ext4_jbd2_file_inode(handle, inode);
1730 if (ret == 0) {
1731 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1732 page, fsdata);
1733 copied = ret2;
1734 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1735 /* if we have allocated more blocks and copied
1736 * less. We will have blocks allocated outside
1737 * inode->i_size. So truncate them
1739 ext4_orphan_add(handle, inode);
1740 if (ret2 < 0)
1741 ret = ret2;
1743 ret2 = ext4_journal_stop(handle);
1744 if (!ret)
1745 ret = ret2;
1747 if (pos + len > inode->i_size) {
1748 ext4_truncate_failed_write(inode);
1750 * If truncate failed early the inode might still be
1751 * on the orphan list; we need to make sure the inode
1752 * is removed from the orphan list in that case.
1754 if (inode->i_nlink)
1755 ext4_orphan_del(NULL, inode);
1759 return ret ? ret : copied;
1762 static int ext4_writeback_write_end(struct file *file,
1763 struct address_space *mapping,
1764 loff_t pos, unsigned len, unsigned copied,
1765 struct page *page, void *fsdata)
1767 handle_t *handle = ext4_journal_current_handle();
1768 struct inode *inode = mapping->host;
1769 int ret = 0, ret2;
1771 trace_ext4_writeback_write_end(inode, pos, len, copied);
1772 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1773 page, fsdata);
1774 copied = ret2;
1775 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1776 /* if we have allocated more blocks and copied
1777 * less. We will have blocks allocated outside
1778 * inode->i_size. So truncate them
1780 ext4_orphan_add(handle, inode);
1782 if (ret2 < 0)
1783 ret = ret2;
1785 ret2 = ext4_journal_stop(handle);
1786 if (!ret)
1787 ret = ret2;
1789 if (pos + len > inode->i_size) {
1790 ext4_truncate_failed_write(inode);
1792 * If truncate failed early the inode might still be
1793 * on the orphan list; we need to make sure the inode
1794 * is removed from the orphan list in that case.
1796 if (inode->i_nlink)
1797 ext4_orphan_del(NULL, inode);
1800 return ret ? ret : copied;
1803 static int ext4_journalled_write_end(struct file *file,
1804 struct address_space *mapping,
1805 loff_t pos, unsigned len, unsigned copied,
1806 struct page *page, void *fsdata)
1808 handle_t *handle = ext4_journal_current_handle();
1809 struct inode *inode = mapping->host;
1810 int ret = 0, ret2;
1811 int partial = 0;
1812 unsigned from, to;
1813 loff_t new_i_size;
1815 trace_ext4_journalled_write_end(inode, pos, len, copied);
1816 from = pos & (PAGE_CACHE_SIZE - 1);
1817 to = from + len;
1819 if (copied < len) {
1820 if (!PageUptodate(page))
1821 copied = 0;
1822 page_zero_new_buffers(page, from+copied, to);
1825 ret = walk_page_buffers(handle, page_buffers(page), from,
1826 to, &partial, write_end_fn);
1827 if (!partial)
1828 SetPageUptodate(page);
1829 new_i_size = pos + copied;
1830 if (new_i_size > inode->i_size)
1831 i_size_write(inode, pos+copied);
1832 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1833 if (new_i_size > EXT4_I(inode)->i_disksize) {
1834 ext4_update_i_disksize(inode, new_i_size);
1835 ret2 = ext4_mark_inode_dirty(handle, inode);
1836 if (!ret)
1837 ret = ret2;
1840 unlock_page(page);
1841 page_cache_release(page);
1842 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1843 /* if we have allocated more blocks and copied
1844 * less. We will have blocks allocated outside
1845 * inode->i_size. So truncate them
1847 ext4_orphan_add(handle, inode);
1849 ret2 = ext4_journal_stop(handle);
1850 if (!ret)
1851 ret = ret2;
1852 if (pos + len > inode->i_size) {
1853 ext4_truncate_failed_write(inode);
1855 * If truncate failed early the inode might still be
1856 * on the orphan list; we need to make sure the inode
1857 * is removed from the orphan list in that case.
1859 if (inode->i_nlink)
1860 ext4_orphan_del(NULL, inode);
1863 return ret ? ret : copied;
1867 * Reserve a single block located at lblock
1869 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1871 int retries = 0;
1872 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1873 struct ext4_inode_info *ei = EXT4_I(inode);
1874 unsigned long md_needed;
1875 int ret;
1878 * recalculate the amount of metadata blocks to reserve
1879 * in order to allocate nrblocks
1880 * worse case is one extent per block
1882 repeat:
1883 spin_lock(&ei->i_block_reservation_lock);
1884 md_needed = ext4_calc_metadata_amount(inode, lblock);
1885 trace_ext4_da_reserve_space(inode, md_needed);
1886 spin_unlock(&ei->i_block_reservation_lock);
1889 * We will charge metadata quota at writeout time; this saves
1890 * us from metadata over-estimation, though we may go over by
1891 * a small amount in the end. Here we just reserve for data.
1893 ret = dquot_reserve_block(inode, 1);
1894 if (ret)
1895 return ret;
1897 * We do still charge estimated metadata to the sb though;
1898 * we cannot afford to run out of free blocks.
1900 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1901 dquot_release_reservation_block(inode, 1);
1902 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1903 yield();
1904 goto repeat;
1906 return -ENOSPC;
1908 spin_lock(&ei->i_block_reservation_lock);
1909 ei->i_reserved_data_blocks++;
1910 ei->i_reserved_meta_blocks += md_needed;
1911 spin_unlock(&ei->i_block_reservation_lock);
1913 return 0; /* success */
1916 static void ext4_da_release_space(struct inode *inode, int to_free)
1918 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1919 struct ext4_inode_info *ei = EXT4_I(inode);
1921 if (!to_free)
1922 return; /* Nothing to release, exit */
1924 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1926 trace_ext4_da_release_space(inode, to_free);
1927 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1929 * if there aren't enough reserved blocks, then the
1930 * counter is messed up somewhere. Since this
1931 * function is called from invalidate page, it's
1932 * harmless to return without any action.
1934 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1935 "ino %lu, to_free %d with only %d reserved "
1936 "data blocks\n", inode->i_ino, to_free,
1937 ei->i_reserved_data_blocks);
1938 WARN_ON(1);
1939 to_free = ei->i_reserved_data_blocks;
1941 ei->i_reserved_data_blocks -= to_free;
1943 if (ei->i_reserved_data_blocks == 0) {
1945 * We can release all of the reserved metadata blocks
1946 * only when we have written all of the delayed
1947 * allocation blocks.
1949 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1950 ei->i_reserved_meta_blocks);
1951 ei->i_reserved_meta_blocks = 0;
1952 ei->i_da_metadata_calc_len = 0;
1955 /* update fs dirty data blocks counter */
1956 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1958 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1960 dquot_release_reservation_block(inode, to_free);
1963 static void ext4_da_page_release_reservation(struct page *page,
1964 unsigned long offset)
1966 int to_release = 0;
1967 struct buffer_head *head, *bh;
1968 unsigned int curr_off = 0;
1970 head = page_buffers(page);
1971 bh = head;
1972 do {
1973 unsigned int next_off = curr_off + bh->b_size;
1975 if ((offset <= curr_off) && (buffer_delay(bh))) {
1976 to_release++;
1977 clear_buffer_delay(bh);
1979 curr_off = next_off;
1980 } while ((bh = bh->b_this_page) != head);
1981 ext4_da_release_space(page->mapping->host, to_release);
1985 * Delayed allocation stuff
1989 * mpage_da_submit_io - walks through extent of pages and try to write
1990 * them with writepage() call back
1992 * @mpd->inode: inode
1993 * @mpd->first_page: first page of the extent
1994 * @mpd->next_page: page after the last page of the extent
1996 * By the time mpage_da_submit_io() is called we expect all blocks
1997 * to be allocated. this may be wrong if allocation failed.
1999 * As pages are already locked by write_cache_pages(), we can't use it
2001 static int mpage_da_submit_io(struct mpage_da_data *mpd)
2003 long pages_skipped;
2004 struct pagevec pvec;
2005 unsigned long index, end;
2006 int ret = 0, err, nr_pages, i;
2007 struct inode *inode = mpd->inode;
2008 struct address_space *mapping = inode->i_mapping;
2010 BUG_ON(mpd->next_page <= mpd->first_page);
2012 * We need to start from the first_page to the next_page - 1
2013 * to make sure we also write the mapped dirty buffer_heads.
2014 * If we look at mpd->b_blocknr we would only be looking
2015 * at the currently mapped buffer_heads.
2017 index = mpd->first_page;
2018 end = mpd->next_page - 1;
2020 pagevec_init(&pvec, 0);
2021 while (index <= end) {
2022 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2023 if (nr_pages == 0)
2024 break;
2025 for (i = 0; i < nr_pages; i++) {
2026 struct page *page = pvec.pages[i];
2028 index = page->index;
2029 if (index > end)
2030 break;
2031 index++;
2033 BUG_ON(!PageLocked(page));
2034 BUG_ON(PageWriteback(page));
2036 pages_skipped = mpd->wbc->pages_skipped;
2037 err = ext4_writepage(page, mpd->wbc);
2038 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2040 * have successfully written the page
2041 * without skipping the same
2043 mpd->pages_written++;
2045 * In error case, we have to continue because
2046 * remaining pages are still locked
2047 * XXX: unlock and re-dirty them?
2049 if (ret == 0)
2050 ret = err;
2052 pagevec_release(&pvec);
2054 return ret;
2058 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2060 * the function goes through all passed space and put actual disk
2061 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2063 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2064 struct ext4_map_blocks *map)
2066 struct inode *inode = mpd->inode;
2067 struct address_space *mapping = inode->i_mapping;
2068 int blocks = map->m_len;
2069 sector_t pblock = map->m_pblk, cur_logical;
2070 struct buffer_head *head, *bh;
2071 pgoff_t index, end;
2072 struct pagevec pvec;
2073 int nr_pages, i;
2075 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2076 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2079 pagevec_init(&pvec, 0);
2081 while (index <= end) {
2082 /* XXX: optimize tail */
2083 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2084 if (nr_pages == 0)
2085 break;
2086 for (i = 0; i < nr_pages; i++) {
2087 struct page *page = pvec.pages[i];
2089 index = page->index;
2090 if (index > end)
2091 break;
2092 index++;
2094 BUG_ON(!PageLocked(page));
2095 BUG_ON(PageWriteback(page));
2096 BUG_ON(!page_has_buffers(page));
2098 bh = page_buffers(page);
2099 head = bh;
2101 /* skip blocks out of the range */
2102 do {
2103 if (cur_logical >= map->m_lblk)
2104 break;
2105 cur_logical++;
2106 } while ((bh = bh->b_this_page) != head);
2108 do {
2109 if (cur_logical > map->m_lblk + (blocks - 1))
2110 break;
2112 if (buffer_delay(bh) || buffer_unwritten(bh)) {
2114 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2116 if (buffer_delay(bh)) {
2117 clear_buffer_delay(bh);
2118 bh->b_blocknr = pblock;
2119 } else {
2121 * unwritten already should have
2122 * blocknr assigned. Verify that
2124 clear_buffer_unwritten(bh);
2125 BUG_ON(bh->b_blocknr != pblock);
2128 } else if (buffer_mapped(bh))
2129 BUG_ON(bh->b_blocknr != pblock);
2131 if (map->m_flags & EXT4_MAP_UNINIT)
2132 set_buffer_uninit(bh);
2133 cur_logical++;
2134 pblock++;
2135 } while ((bh = bh->b_this_page) != head);
2137 pagevec_release(&pvec);
2142 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2143 sector_t logical, long blk_cnt)
2145 int nr_pages, i;
2146 pgoff_t index, end;
2147 struct pagevec pvec;
2148 struct inode *inode = mpd->inode;
2149 struct address_space *mapping = inode->i_mapping;
2151 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2152 end = (logical + blk_cnt - 1) >>
2153 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2154 while (index <= end) {
2155 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2156 if (nr_pages == 0)
2157 break;
2158 for (i = 0; i < nr_pages; i++) {
2159 struct page *page = pvec.pages[i];
2160 if (page->index > end)
2161 break;
2162 BUG_ON(!PageLocked(page));
2163 BUG_ON(PageWriteback(page));
2164 block_invalidatepage(page, 0);
2165 ClearPageUptodate(page);
2166 unlock_page(page);
2168 index = pvec.pages[nr_pages - 1]->index + 1;
2169 pagevec_release(&pvec);
2171 return;
2174 static void ext4_print_free_blocks(struct inode *inode)
2176 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2177 printk(KERN_CRIT "Total free blocks count %lld\n",
2178 ext4_count_free_blocks(inode->i_sb));
2179 printk(KERN_CRIT "Free/Dirty block details\n");
2180 printk(KERN_CRIT "free_blocks=%lld\n",
2181 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2182 printk(KERN_CRIT "dirty_blocks=%lld\n",
2183 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2184 printk(KERN_CRIT "Block reservation details\n");
2185 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2186 EXT4_I(inode)->i_reserved_data_blocks);
2187 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2188 EXT4_I(inode)->i_reserved_meta_blocks);
2189 return;
2193 * mpage_da_map_and_submit - go through given space, map them
2194 * if necessary, and then submit them for I/O
2196 * @mpd - bh describing space
2198 * The function skips space we know is already mapped to disk blocks.
2201 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2203 int err, blks, get_blocks_flags;
2204 struct ext4_map_blocks map;
2205 sector_t next = mpd->b_blocknr;
2206 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2207 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2208 handle_t *handle = NULL;
2211 * If the blocks are mapped already, or we couldn't accumulate
2212 * any blocks, then proceed immediately to the submission stage.
2214 if ((mpd->b_size == 0) ||
2215 ((mpd->b_state & (1 << BH_Mapped)) &&
2216 !(mpd->b_state & (1 << BH_Delay)) &&
2217 !(mpd->b_state & (1 << BH_Unwritten))))
2218 goto submit_io;
2220 handle = ext4_journal_current_handle();
2221 BUG_ON(!handle);
2224 * Call ext4_map_blocks() to allocate any delayed allocation
2225 * blocks, or to convert an uninitialized extent to be
2226 * initialized (in the case where we have written into
2227 * one or more preallocated blocks).
2229 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2230 * indicate that we are on the delayed allocation path. This
2231 * affects functions in many different parts of the allocation
2232 * call path. This flag exists primarily because we don't
2233 * want to change *many* call functions, so ext4_map_blocks()
2234 * will set the magic i_delalloc_reserved_flag once the
2235 * inode's allocation semaphore is taken.
2237 * If the blocks in questions were delalloc blocks, set
2238 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2239 * variables are updated after the blocks have been allocated.
2241 map.m_lblk = next;
2242 map.m_len = max_blocks;
2243 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2244 if (ext4_should_dioread_nolock(mpd->inode))
2245 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2246 if (mpd->b_state & (1 << BH_Delay))
2247 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2249 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2250 if (blks < 0) {
2251 struct super_block *sb = mpd->inode->i_sb;
2253 err = blks;
2255 * If get block returns EAGAIN or ENOSPC and there
2256 * appears to be free blocks we will call
2257 * ext4_writepage() for all of the pages which will
2258 * just redirty the pages.
2260 if (err == -EAGAIN)
2261 goto submit_io;
2263 if (err == -ENOSPC &&
2264 ext4_count_free_blocks(sb)) {
2265 mpd->retval = err;
2266 goto submit_io;
2270 * get block failure will cause us to loop in
2271 * writepages, because a_ops->writepage won't be able
2272 * to make progress. The page will be redirtied by
2273 * writepage and writepages will again try to write
2274 * the same.
2276 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2277 ext4_msg(sb, KERN_CRIT,
2278 "delayed block allocation failed for inode %lu "
2279 "at logical offset %llu with max blocks %zd "
2280 "with error %d", mpd->inode->i_ino,
2281 (unsigned long long) next,
2282 mpd->b_size >> mpd->inode->i_blkbits, err);
2283 ext4_msg(sb, KERN_CRIT,
2284 "This should not happen!! Data will be lost\n");
2285 if (err == -ENOSPC)
2286 ext4_print_free_blocks(mpd->inode);
2288 /* invalidate all the pages */
2289 ext4_da_block_invalidatepages(mpd, next,
2290 mpd->b_size >> mpd->inode->i_blkbits);
2291 return;
2293 BUG_ON(blks == 0);
2295 if (map.m_flags & EXT4_MAP_NEW) {
2296 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2297 int i;
2299 for (i = 0; i < map.m_len; i++)
2300 unmap_underlying_metadata(bdev, map.m_pblk + i);
2304 * If blocks are delayed marked, we need to
2305 * put actual blocknr and drop delayed bit
2307 if ((mpd->b_state & (1 << BH_Delay)) ||
2308 (mpd->b_state & (1 << BH_Unwritten)))
2309 mpage_put_bnr_to_bhs(mpd, &map);
2311 if (ext4_should_order_data(mpd->inode)) {
2312 err = ext4_jbd2_file_inode(handle, mpd->inode);
2313 if (err)
2314 /* This only happens if the journal is aborted */
2315 return;
2319 * Update on-disk size along with block allocation.
2321 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2322 if (disksize > i_size_read(mpd->inode))
2323 disksize = i_size_read(mpd->inode);
2324 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2325 ext4_update_i_disksize(mpd->inode, disksize);
2326 err = ext4_mark_inode_dirty(handle, mpd->inode);
2327 if (err)
2328 ext4_error(mpd->inode->i_sb,
2329 "Failed to mark inode %lu dirty",
2330 mpd->inode->i_ino);
2333 submit_io:
2334 mpage_da_submit_io(mpd);
2335 mpd->io_done = 1;
2338 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2339 (1 << BH_Delay) | (1 << BH_Unwritten))
2342 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2344 * @mpd->lbh - extent of blocks
2345 * @logical - logical number of the block in the file
2346 * @bh - bh of the block (used to access block's state)
2348 * the function is used to collect contig. blocks in same state
2350 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2351 sector_t logical, size_t b_size,
2352 unsigned long b_state)
2354 sector_t next;
2355 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2358 * XXX Don't go larger than mballoc is willing to allocate
2359 * This is a stopgap solution. We eventually need to fold
2360 * mpage_da_submit_io() into this function and then call
2361 * ext4_map_blocks() multiple times in a loop
2363 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2364 goto flush_it;
2366 /* check if thereserved journal credits might overflow */
2367 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2368 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2370 * With non-extent format we are limited by the journal
2371 * credit available. Total credit needed to insert
2372 * nrblocks contiguous blocks is dependent on the
2373 * nrblocks. So limit nrblocks.
2375 goto flush_it;
2376 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2377 EXT4_MAX_TRANS_DATA) {
2379 * Adding the new buffer_head would make it cross the
2380 * allowed limit for which we have journal credit
2381 * reserved. So limit the new bh->b_size
2383 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2384 mpd->inode->i_blkbits;
2385 /* we will do mpage_da_submit_io in the next loop */
2389 * First block in the extent
2391 if (mpd->b_size == 0) {
2392 mpd->b_blocknr = logical;
2393 mpd->b_size = b_size;
2394 mpd->b_state = b_state & BH_FLAGS;
2395 return;
2398 next = mpd->b_blocknr + nrblocks;
2400 * Can we merge the block to our big extent?
2402 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2403 mpd->b_size += b_size;
2404 return;
2407 flush_it:
2409 * We couldn't merge the block to our extent, so we
2410 * need to flush current extent and start new one
2412 mpage_da_map_and_submit(mpd);
2413 return;
2416 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2418 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2422 * __mpage_da_writepage - finds extent of pages and blocks
2424 * @page: page to consider
2425 * @wbc: not used, we just follow rules
2426 * @data: context
2428 * The function finds extents of pages and scan them for all blocks.
2430 static int __mpage_da_writepage(struct page *page,
2431 struct writeback_control *wbc, void *data)
2433 struct mpage_da_data *mpd = data;
2434 struct inode *inode = mpd->inode;
2435 struct buffer_head *bh, *head;
2436 sector_t logical;
2439 * Can we merge this page to current extent?
2441 if (mpd->next_page != page->index) {
2443 * Nope, we can't. So, we map non-allocated blocks
2444 * and start IO on them
2446 if (mpd->next_page != mpd->first_page) {
2447 mpage_da_map_and_submit(mpd);
2449 * skip rest of the page in the page_vec
2451 redirty_page_for_writepage(wbc, page);
2452 unlock_page(page);
2453 return MPAGE_DA_EXTENT_TAIL;
2457 * Start next extent of pages ...
2459 mpd->first_page = page->index;
2462 * ... and blocks
2464 mpd->b_size = 0;
2465 mpd->b_state = 0;
2466 mpd->b_blocknr = 0;
2469 mpd->next_page = page->index + 1;
2470 logical = (sector_t) page->index <<
2471 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2473 if (!page_has_buffers(page)) {
2474 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2475 (1 << BH_Dirty) | (1 << BH_Uptodate));
2476 if (mpd->io_done)
2477 return MPAGE_DA_EXTENT_TAIL;
2478 } else {
2480 * Page with regular buffer heads, just add all dirty ones
2482 head = page_buffers(page);
2483 bh = head;
2484 do {
2485 BUG_ON(buffer_locked(bh));
2487 * We need to try to allocate
2488 * unmapped blocks in the same page.
2489 * Otherwise we won't make progress
2490 * with the page in ext4_writepage
2492 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2493 mpage_add_bh_to_extent(mpd, logical,
2494 bh->b_size,
2495 bh->b_state);
2496 if (mpd->io_done)
2497 return MPAGE_DA_EXTENT_TAIL;
2498 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2500 * mapped dirty buffer. We need to update
2501 * the b_state because we look at
2502 * b_state in mpage_da_map_blocks. We don't
2503 * update b_size because if we find an
2504 * unmapped buffer_head later we need to
2505 * use the b_state flag of that buffer_head.
2507 if (mpd->b_size == 0)
2508 mpd->b_state = bh->b_state & BH_FLAGS;
2510 logical++;
2511 } while ((bh = bh->b_this_page) != head);
2514 return 0;
2518 * This is a special get_blocks_t callback which is used by
2519 * ext4_da_write_begin(). It will either return mapped block or
2520 * reserve space for a single block.
2522 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2523 * We also have b_blocknr = -1 and b_bdev initialized properly
2525 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2526 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2527 * initialized properly.
2529 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2530 struct buffer_head *bh, int create)
2532 struct ext4_map_blocks map;
2533 int ret = 0;
2534 sector_t invalid_block = ~((sector_t) 0xffff);
2536 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2537 invalid_block = ~0;
2539 BUG_ON(create == 0);
2540 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2542 map.m_lblk = iblock;
2543 map.m_len = 1;
2546 * first, we need to know whether the block is allocated already
2547 * preallocated blocks are unmapped but should treated
2548 * the same as allocated blocks.
2550 ret = ext4_map_blocks(NULL, inode, &map, 0);
2551 if (ret < 0)
2552 return ret;
2553 if (ret == 0) {
2554 if (buffer_delay(bh))
2555 return 0; /* Not sure this could or should happen */
2557 * XXX: __block_prepare_write() unmaps passed block,
2558 * is it OK?
2560 ret = ext4_da_reserve_space(inode, iblock);
2561 if (ret)
2562 /* not enough space to reserve */
2563 return ret;
2565 map_bh(bh, inode->i_sb, invalid_block);
2566 set_buffer_new(bh);
2567 set_buffer_delay(bh);
2568 return 0;
2571 map_bh(bh, inode->i_sb, map.m_pblk);
2572 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2574 if (buffer_unwritten(bh)) {
2575 /* A delayed write to unwritten bh should be marked
2576 * new and mapped. Mapped ensures that we don't do
2577 * get_block multiple times when we write to the same
2578 * offset and new ensures that we do proper zero out
2579 * for partial write.
2581 set_buffer_new(bh);
2582 set_buffer_mapped(bh);
2584 return 0;
2588 * This function is used as a standard get_block_t calback function
2589 * when there is no desire to allocate any blocks. It is used as a
2590 * callback function for block_prepare_write() and block_write_full_page().
2591 * These functions should only try to map a single block at a time.
2593 * Since this function doesn't do block allocations even if the caller
2594 * requests it by passing in create=1, it is critically important that
2595 * any caller checks to make sure that any buffer heads are returned
2596 * by this function are either all already mapped or marked for
2597 * delayed allocation before calling block_write_full_page(). Otherwise,
2598 * b_blocknr could be left unitialized, and the page write functions will
2599 * be taken by surprise.
2601 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2602 struct buffer_head *bh_result, int create)
2604 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2605 return _ext4_get_block(inode, iblock, bh_result, 0);
2608 static int bget_one(handle_t *handle, struct buffer_head *bh)
2610 get_bh(bh);
2611 return 0;
2614 static int bput_one(handle_t *handle, struct buffer_head *bh)
2616 put_bh(bh);
2617 return 0;
2620 static int __ext4_journalled_writepage(struct page *page,
2621 unsigned int len)
2623 struct address_space *mapping = page->mapping;
2624 struct inode *inode = mapping->host;
2625 struct buffer_head *page_bufs;
2626 handle_t *handle = NULL;
2627 int ret = 0;
2628 int err;
2630 page_bufs = page_buffers(page);
2631 BUG_ON(!page_bufs);
2632 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2633 /* As soon as we unlock the page, it can go away, but we have
2634 * references to buffers so we are safe */
2635 unlock_page(page);
2637 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2638 if (IS_ERR(handle)) {
2639 ret = PTR_ERR(handle);
2640 goto out;
2643 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2644 do_journal_get_write_access);
2646 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2647 write_end_fn);
2648 if (ret == 0)
2649 ret = err;
2650 err = ext4_journal_stop(handle);
2651 if (!ret)
2652 ret = err;
2654 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2655 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2656 out:
2657 return ret;
2660 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2661 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2664 * Note that we don't need to start a transaction unless we're journaling data
2665 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2666 * need to file the inode to the transaction's list in ordered mode because if
2667 * we are writing back data added by write(), the inode is already there and if
2668 * we are writing back data modified via mmap(), noone guarantees in which
2669 * transaction the data will hit the disk. In case we are journaling data, we
2670 * cannot start transaction directly because transaction start ranks above page
2671 * lock so we have to do some magic.
2673 * This function can get called via...
2674 * - ext4_da_writepages after taking page lock (have journal handle)
2675 * - journal_submit_inode_data_buffers (no journal handle)
2676 * - shrink_page_list via pdflush (no journal handle)
2677 * - grab_page_cache when doing write_begin (have journal handle)
2679 * We don't do any block allocation in this function. If we have page with
2680 * multiple blocks we need to write those buffer_heads that are mapped. This
2681 * is important for mmaped based write. So if we do with blocksize 1K
2682 * truncate(f, 1024);
2683 * a = mmap(f, 0, 4096);
2684 * a[0] = 'a';
2685 * truncate(f, 4096);
2686 * we have in the page first buffer_head mapped via page_mkwrite call back
2687 * but other bufer_heads would be unmapped but dirty(dirty done via the
2688 * do_wp_page). So writepage should write the first block. If we modify
2689 * the mmap area beyond 1024 we will again get a page_fault and the
2690 * page_mkwrite callback will do the block allocation and mark the
2691 * buffer_heads mapped.
2693 * We redirty the page if we have any buffer_heads that is either delay or
2694 * unwritten in the page.
2696 * We can get recursively called as show below.
2698 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2699 * ext4_writepage()
2701 * But since we don't do any block allocation we should not deadlock.
2702 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2704 static int ext4_writepage(struct page *page,
2705 struct writeback_control *wbc)
2707 int ret = 0, commit_write = 0;
2708 loff_t size;
2709 unsigned int len;
2710 struct buffer_head *page_bufs = NULL;
2711 struct inode *inode = page->mapping->host;
2713 trace_ext4_writepage(inode, page);
2714 size = i_size_read(inode);
2715 if (page->index == size >> PAGE_CACHE_SHIFT)
2716 len = size & ~PAGE_CACHE_MASK;
2717 else
2718 len = PAGE_CACHE_SIZE;
2721 * If the page does not have buffers (for whatever reason),
2722 * try to create them using block_prepare_write. If this
2723 * fails, redirty the page and move on.
2725 if (!page_buffers(page)) {
2726 if (block_prepare_write(page, 0, len,
2727 noalloc_get_block_write)) {
2728 redirty_page:
2729 redirty_page_for_writepage(wbc, page);
2730 unlock_page(page);
2731 return 0;
2733 commit_write = 1;
2735 page_bufs = page_buffers(page);
2736 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2737 ext4_bh_delay_or_unwritten)) {
2739 * We don't want to do block allocation So redirty the
2740 * page and return We may reach here when we do a
2741 * journal commit via
2742 * journal_submit_inode_data_buffers. If we don't
2743 * have mapping block we just ignore them. We can also
2744 * reach here via shrink_page_list
2746 goto redirty_page;
2748 if (commit_write)
2749 /* now mark the buffer_heads as dirty and uptodate */
2750 block_commit_write(page, 0, len);
2752 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2754 * It's mmapped pagecache. Add buffers and journal it. There
2755 * doesn't seem much point in redirtying the page here.
2757 ClearPageChecked(page);
2758 return __ext4_journalled_writepage(page, len);
2761 if (buffer_uninit(page_bufs)) {
2762 ext4_set_bh_endio(page_bufs, inode);
2763 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2764 wbc, ext4_end_io_buffer_write);
2765 } else
2766 ret = block_write_full_page(page, noalloc_get_block_write,
2767 wbc);
2769 return ret;
2773 * This is called via ext4_da_writepages() to
2774 * calulate the total number of credits to reserve to fit
2775 * a single extent allocation into a single transaction,
2776 * ext4_da_writpeages() will loop calling this before
2777 * the block allocation.
2780 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2782 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2785 * With non-extent format the journal credit needed to
2786 * insert nrblocks contiguous block is dependent on
2787 * number of contiguous block. So we will limit
2788 * number of contiguous block to a sane value
2790 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2791 (max_blocks > EXT4_MAX_TRANS_DATA))
2792 max_blocks = EXT4_MAX_TRANS_DATA;
2794 return ext4_chunk_trans_blocks(inode, max_blocks);
2798 * write_cache_pages_da - walk the list of dirty pages of the given
2799 * address space and call the callback function (which usually writes
2800 * the pages).
2802 * This is a forked version of write_cache_pages(). Differences:
2803 * Range cyclic is ignored.
2804 * no_nrwrite_index_update is always presumed true
2806 static int write_cache_pages_da(struct address_space *mapping,
2807 struct writeback_control *wbc,
2808 struct mpage_da_data *mpd)
2810 int ret = 0;
2811 int done = 0;
2812 struct pagevec pvec;
2813 int nr_pages;
2814 pgoff_t index;
2815 pgoff_t end; /* Inclusive */
2816 long nr_to_write = wbc->nr_to_write;
2818 pagevec_init(&pvec, 0);
2819 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2820 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2822 while (!done && (index <= end)) {
2823 int i;
2825 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2826 PAGECACHE_TAG_DIRTY,
2827 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2828 if (nr_pages == 0)
2829 break;
2831 for (i = 0; i < nr_pages; i++) {
2832 struct page *page = pvec.pages[i];
2835 * At this point, the page may be truncated or
2836 * invalidated (changing page->mapping to NULL), or
2837 * even swizzled back from swapper_space to tmpfs file
2838 * mapping. However, page->index will not change
2839 * because we have a reference on the page.
2841 if (page->index > end) {
2842 done = 1;
2843 break;
2846 lock_page(page);
2849 * Page truncated or invalidated. We can freely skip it
2850 * then, even for data integrity operations: the page
2851 * has disappeared concurrently, so there could be no
2852 * real expectation of this data interity operation
2853 * even if there is now a new, dirty page at the same
2854 * pagecache address.
2856 if (unlikely(page->mapping != mapping)) {
2857 continue_unlock:
2858 unlock_page(page);
2859 continue;
2862 if (!PageDirty(page)) {
2863 /* someone wrote it for us */
2864 goto continue_unlock;
2867 if (PageWriteback(page)) {
2868 if (wbc->sync_mode != WB_SYNC_NONE)
2869 wait_on_page_writeback(page);
2870 else
2871 goto continue_unlock;
2874 BUG_ON(PageWriteback(page));
2875 if (!clear_page_dirty_for_io(page))
2876 goto continue_unlock;
2878 ret = __mpage_da_writepage(page, wbc, mpd);
2879 if (unlikely(ret)) {
2880 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2881 unlock_page(page);
2882 ret = 0;
2883 } else {
2884 done = 1;
2885 break;
2889 if (nr_to_write > 0) {
2890 nr_to_write--;
2891 if (nr_to_write == 0 &&
2892 wbc->sync_mode == WB_SYNC_NONE) {
2894 * We stop writing back only if we are
2895 * not doing integrity sync. In case of
2896 * integrity sync we have to keep going
2897 * because someone may be concurrently
2898 * dirtying pages, and we might have
2899 * synced a lot of newly appeared dirty
2900 * pages, but have not synced all of the
2901 * old dirty pages.
2903 done = 1;
2904 break;
2908 pagevec_release(&pvec);
2909 cond_resched();
2911 return ret;
2915 static int ext4_da_writepages(struct address_space *mapping,
2916 struct writeback_control *wbc)
2918 pgoff_t index;
2919 int range_whole = 0;
2920 handle_t *handle = NULL;
2921 struct mpage_da_data mpd;
2922 struct inode *inode = mapping->host;
2923 int pages_written = 0;
2924 long pages_skipped;
2925 unsigned int max_pages;
2926 int range_cyclic, cycled = 1, io_done = 0;
2927 int needed_blocks, ret = 0;
2928 long desired_nr_to_write, nr_to_writebump = 0;
2929 loff_t range_start = wbc->range_start;
2930 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2932 trace_ext4_da_writepages(inode, wbc);
2935 * No pages to write? This is mainly a kludge to avoid starting
2936 * a transaction for special inodes like journal inode on last iput()
2937 * because that could violate lock ordering on umount
2939 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2940 return 0;
2943 * If the filesystem has aborted, it is read-only, so return
2944 * right away instead of dumping stack traces later on that
2945 * will obscure the real source of the problem. We test
2946 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2947 * the latter could be true if the filesystem is mounted
2948 * read-only, and in that case, ext4_da_writepages should
2949 * *never* be called, so if that ever happens, we would want
2950 * the stack trace.
2952 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2953 return -EROFS;
2955 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2956 range_whole = 1;
2958 range_cyclic = wbc->range_cyclic;
2959 if (wbc->range_cyclic) {
2960 index = mapping->writeback_index;
2961 if (index)
2962 cycled = 0;
2963 wbc->range_start = index << PAGE_CACHE_SHIFT;
2964 wbc->range_end = LLONG_MAX;
2965 wbc->range_cyclic = 0;
2966 } else
2967 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2970 * This works around two forms of stupidity. The first is in
2971 * the writeback code, which caps the maximum number of pages
2972 * written to be 1024 pages. This is wrong on multiple
2973 * levels; different architectues have a different page size,
2974 * which changes the maximum amount of data which gets
2975 * written. Secondly, 4 megabytes is way too small. XFS
2976 * forces this value to be 16 megabytes by multiplying
2977 * nr_to_write parameter by four, and then relies on its
2978 * allocator to allocate larger extents to make them
2979 * contiguous. Unfortunately this brings us to the second
2980 * stupidity, which is that ext4's mballoc code only allocates
2981 * at most 2048 blocks. So we force contiguous writes up to
2982 * the number of dirty blocks in the inode, or
2983 * sbi->max_writeback_mb_bump whichever is smaller.
2985 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2986 if (!range_cyclic && range_whole) {
2987 if (wbc->nr_to_write == LONG_MAX)
2988 desired_nr_to_write = wbc->nr_to_write;
2989 else
2990 desired_nr_to_write = wbc->nr_to_write * 8;
2991 } else
2992 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2993 max_pages);
2994 if (desired_nr_to_write > max_pages)
2995 desired_nr_to_write = max_pages;
2997 if (wbc->nr_to_write < desired_nr_to_write) {
2998 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2999 wbc->nr_to_write = desired_nr_to_write;
3002 mpd.wbc = wbc;
3003 mpd.inode = mapping->host;
3005 pages_skipped = wbc->pages_skipped;
3007 retry:
3008 while (!ret && wbc->nr_to_write > 0) {
3011 * we insert one extent at a time. So we need
3012 * credit needed for single extent allocation.
3013 * journalled mode is currently not supported
3014 * by delalloc
3016 BUG_ON(ext4_should_journal_data(inode));
3017 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3019 /* start a new transaction*/
3020 handle = ext4_journal_start(inode, needed_blocks);
3021 if (IS_ERR(handle)) {
3022 ret = PTR_ERR(handle);
3023 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3024 "%ld pages, ino %lu; err %d", __func__,
3025 wbc->nr_to_write, inode->i_ino, ret);
3026 goto out_writepages;
3030 * Now call __mpage_da_writepage to find the next
3031 * contiguous region of logical blocks that need
3032 * blocks to be allocated by ext4. We don't actually
3033 * submit the blocks for I/O here, even though
3034 * write_cache_pages thinks it will, and will set the
3035 * pages as clean for write before calling
3036 * __mpage_da_writepage().
3038 mpd.b_size = 0;
3039 mpd.b_state = 0;
3040 mpd.b_blocknr = 0;
3041 mpd.first_page = 0;
3042 mpd.next_page = 0;
3043 mpd.io_done = 0;
3044 mpd.pages_written = 0;
3045 mpd.retval = 0;
3046 ret = write_cache_pages_da(mapping, wbc, &mpd);
3048 * If we have a contiguous extent of pages and we
3049 * haven't done the I/O yet, map the blocks and submit
3050 * them for I/O.
3052 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3053 mpage_da_map_and_submit(&mpd);
3054 ret = MPAGE_DA_EXTENT_TAIL;
3056 trace_ext4_da_write_pages(inode, &mpd);
3057 wbc->nr_to_write -= mpd.pages_written;
3059 ext4_journal_stop(handle);
3061 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3062 /* commit the transaction which would
3063 * free blocks released in the transaction
3064 * and try again
3066 jbd2_journal_force_commit_nested(sbi->s_journal);
3067 wbc->pages_skipped = pages_skipped;
3068 ret = 0;
3069 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3071 * got one extent now try with
3072 * rest of the pages
3074 pages_written += mpd.pages_written;
3075 wbc->pages_skipped = pages_skipped;
3076 ret = 0;
3077 io_done = 1;
3078 } else if (wbc->nr_to_write)
3080 * There is no more writeout needed
3081 * or we requested for a noblocking writeout
3082 * and we found the device congested
3084 break;
3086 if (!io_done && !cycled) {
3087 cycled = 1;
3088 index = 0;
3089 wbc->range_start = index << PAGE_CACHE_SHIFT;
3090 wbc->range_end = mapping->writeback_index - 1;
3091 goto retry;
3093 if (pages_skipped != wbc->pages_skipped)
3094 ext4_msg(inode->i_sb, KERN_CRIT,
3095 "This should not happen leaving %s "
3096 "with nr_to_write = %ld ret = %d",
3097 __func__, wbc->nr_to_write, ret);
3099 /* Update index */
3100 index += pages_written;
3101 wbc->range_cyclic = range_cyclic;
3102 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3104 * set the writeback_index so that range_cyclic
3105 * mode will write it back later
3107 mapping->writeback_index = index;
3109 out_writepages:
3110 wbc->nr_to_write -= nr_to_writebump;
3111 wbc->range_start = range_start;
3112 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3113 return ret;
3116 #define FALL_BACK_TO_NONDELALLOC 1
3117 static int ext4_nonda_switch(struct super_block *sb)
3119 s64 free_blocks, dirty_blocks;
3120 struct ext4_sb_info *sbi = EXT4_SB(sb);
3123 * switch to non delalloc mode if we are running low
3124 * on free block. The free block accounting via percpu
3125 * counters can get slightly wrong with percpu_counter_batch getting
3126 * accumulated on each CPU without updating global counters
3127 * Delalloc need an accurate free block accounting. So switch
3128 * to non delalloc when we are near to error range.
3130 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3131 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3132 if (2 * free_blocks < 3 * dirty_blocks ||
3133 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3135 * free block count is less than 150% of dirty blocks
3136 * or free blocks is less than watermark
3138 return 1;
3141 * Even if we don't switch but are nearing capacity,
3142 * start pushing delalloc when 1/2 of free blocks are dirty.
3144 if (free_blocks < 2 * dirty_blocks)
3145 writeback_inodes_sb_if_idle(sb);
3147 return 0;
3150 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3151 loff_t pos, unsigned len, unsigned flags,
3152 struct page **pagep, void **fsdata)
3154 int ret, retries = 0;
3155 struct page *page;
3156 pgoff_t index;
3157 struct inode *inode = mapping->host;
3158 handle_t *handle;
3160 index = pos >> PAGE_CACHE_SHIFT;
3162 if (ext4_nonda_switch(inode->i_sb)) {
3163 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3164 return ext4_write_begin(file, mapping, pos,
3165 len, flags, pagep, fsdata);
3167 *fsdata = (void *)0;
3168 trace_ext4_da_write_begin(inode, pos, len, flags);
3169 retry:
3171 * With delayed allocation, we don't log the i_disksize update
3172 * if there is delayed block allocation. But we still need
3173 * to journalling the i_disksize update if writes to the end
3174 * of file which has an already mapped buffer.
3176 handle = ext4_journal_start(inode, 1);
3177 if (IS_ERR(handle)) {
3178 ret = PTR_ERR(handle);
3179 goto out;
3181 /* We cannot recurse into the filesystem as the transaction is already
3182 * started */
3183 flags |= AOP_FLAG_NOFS;
3185 page = grab_cache_page_write_begin(mapping, index, flags);
3186 if (!page) {
3187 ext4_journal_stop(handle);
3188 ret = -ENOMEM;
3189 goto out;
3191 *pagep = page;
3193 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3194 if (ret < 0) {
3195 unlock_page(page);
3196 ext4_journal_stop(handle);
3197 page_cache_release(page);
3199 * block_write_begin may have instantiated a few blocks
3200 * outside i_size. Trim these off again. Don't need
3201 * i_size_read because we hold i_mutex.
3203 if (pos + len > inode->i_size)
3204 ext4_truncate_failed_write(inode);
3207 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3208 goto retry;
3209 out:
3210 return ret;
3214 * Check if we should update i_disksize
3215 * when write to the end of file but not require block allocation
3217 static int ext4_da_should_update_i_disksize(struct page *page,
3218 unsigned long offset)
3220 struct buffer_head *bh;
3221 struct inode *inode = page->mapping->host;
3222 unsigned int idx;
3223 int i;
3225 bh = page_buffers(page);
3226 idx = offset >> inode->i_blkbits;
3228 for (i = 0; i < idx; i++)
3229 bh = bh->b_this_page;
3231 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3232 return 0;
3233 return 1;
3236 static int ext4_da_write_end(struct file *file,
3237 struct address_space *mapping,
3238 loff_t pos, unsigned len, unsigned copied,
3239 struct page *page, void *fsdata)
3241 struct inode *inode = mapping->host;
3242 int ret = 0, ret2;
3243 handle_t *handle = ext4_journal_current_handle();
3244 loff_t new_i_size;
3245 unsigned long start, end;
3246 int write_mode = (int)(unsigned long)fsdata;
3248 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3249 if (ext4_should_order_data(inode)) {
3250 return ext4_ordered_write_end(file, mapping, pos,
3251 len, copied, page, fsdata);
3252 } else if (ext4_should_writeback_data(inode)) {
3253 return ext4_writeback_write_end(file, mapping, pos,
3254 len, copied, page, fsdata);
3255 } else {
3256 BUG();
3260 trace_ext4_da_write_end(inode, pos, len, copied);
3261 start = pos & (PAGE_CACHE_SIZE - 1);
3262 end = start + copied - 1;
3265 * generic_write_end() will run mark_inode_dirty() if i_size
3266 * changes. So let's piggyback the i_disksize mark_inode_dirty
3267 * into that.
3270 new_i_size = pos + copied;
3271 if (new_i_size > EXT4_I(inode)->i_disksize) {
3272 if (ext4_da_should_update_i_disksize(page, end)) {
3273 down_write(&EXT4_I(inode)->i_data_sem);
3274 if (new_i_size > EXT4_I(inode)->i_disksize) {
3276 * Updating i_disksize when extending file
3277 * without needing block allocation
3279 if (ext4_should_order_data(inode))
3280 ret = ext4_jbd2_file_inode(handle,
3281 inode);
3283 EXT4_I(inode)->i_disksize = new_i_size;
3285 up_write(&EXT4_I(inode)->i_data_sem);
3286 /* We need to mark inode dirty even if
3287 * new_i_size is less that inode->i_size
3288 * bu greater than i_disksize.(hint delalloc)
3290 ext4_mark_inode_dirty(handle, inode);
3293 ret2 = generic_write_end(file, mapping, pos, len, copied,
3294 page, fsdata);
3295 copied = ret2;
3296 if (ret2 < 0)
3297 ret = ret2;
3298 ret2 = ext4_journal_stop(handle);
3299 if (!ret)
3300 ret = ret2;
3302 return ret ? ret : copied;
3305 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3308 * Drop reserved blocks
3310 BUG_ON(!PageLocked(page));
3311 if (!page_has_buffers(page))
3312 goto out;
3314 ext4_da_page_release_reservation(page, offset);
3316 out:
3317 ext4_invalidatepage(page, offset);
3319 return;
3323 * Force all delayed allocation blocks to be allocated for a given inode.
3325 int ext4_alloc_da_blocks(struct inode *inode)
3327 trace_ext4_alloc_da_blocks(inode);
3329 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3330 !EXT4_I(inode)->i_reserved_meta_blocks)
3331 return 0;
3334 * We do something simple for now. The filemap_flush() will
3335 * also start triggering a write of the data blocks, which is
3336 * not strictly speaking necessary (and for users of
3337 * laptop_mode, not even desirable). However, to do otherwise
3338 * would require replicating code paths in:
3340 * ext4_da_writepages() ->
3341 * write_cache_pages() ---> (via passed in callback function)
3342 * __mpage_da_writepage() -->
3343 * mpage_add_bh_to_extent()
3344 * mpage_da_map_blocks()
3346 * The problem is that write_cache_pages(), located in
3347 * mm/page-writeback.c, marks pages clean in preparation for
3348 * doing I/O, which is not desirable if we're not planning on
3349 * doing I/O at all.
3351 * We could call write_cache_pages(), and then redirty all of
3352 * the pages by calling redirty_page_for_writeback() but that
3353 * would be ugly in the extreme. So instead we would need to
3354 * replicate parts of the code in the above functions,
3355 * simplifying them becuase we wouldn't actually intend to
3356 * write out the pages, but rather only collect contiguous
3357 * logical block extents, call the multi-block allocator, and
3358 * then update the buffer heads with the block allocations.
3360 * For now, though, we'll cheat by calling filemap_flush(),
3361 * which will map the blocks, and start the I/O, but not
3362 * actually wait for the I/O to complete.
3364 return filemap_flush(inode->i_mapping);
3368 * bmap() is special. It gets used by applications such as lilo and by
3369 * the swapper to find the on-disk block of a specific piece of data.
3371 * Naturally, this is dangerous if the block concerned is still in the
3372 * journal. If somebody makes a swapfile on an ext4 data-journaling
3373 * filesystem and enables swap, then they may get a nasty shock when the
3374 * data getting swapped to that swapfile suddenly gets overwritten by
3375 * the original zero's written out previously to the journal and
3376 * awaiting writeback in the kernel's buffer cache.
3378 * So, if we see any bmap calls here on a modified, data-journaled file,
3379 * take extra steps to flush any blocks which might be in the cache.
3381 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3383 struct inode *inode = mapping->host;
3384 journal_t *journal;
3385 int err;
3387 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3388 test_opt(inode->i_sb, DELALLOC)) {
3390 * With delalloc we want to sync the file
3391 * so that we can make sure we allocate
3392 * blocks for file
3394 filemap_write_and_wait(mapping);
3397 if (EXT4_JOURNAL(inode) &&
3398 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3400 * This is a REALLY heavyweight approach, but the use of
3401 * bmap on dirty files is expected to be extremely rare:
3402 * only if we run lilo or swapon on a freshly made file
3403 * do we expect this to happen.
3405 * (bmap requires CAP_SYS_RAWIO so this does not
3406 * represent an unprivileged user DOS attack --- we'd be
3407 * in trouble if mortal users could trigger this path at
3408 * will.)
3410 * NB. EXT4_STATE_JDATA is not set on files other than
3411 * regular files. If somebody wants to bmap a directory
3412 * or symlink and gets confused because the buffer
3413 * hasn't yet been flushed to disk, they deserve
3414 * everything they get.
3417 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3418 journal = EXT4_JOURNAL(inode);
3419 jbd2_journal_lock_updates(journal);
3420 err = jbd2_journal_flush(journal);
3421 jbd2_journal_unlock_updates(journal);
3423 if (err)
3424 return 0;
3427 return generic_block_bmap(mapping, block, ext4_get_block);
3430 static int ext4_readpage(struct file *file, struct page *page)
3432 return mpage_readpage(page, ext4_get_block);
3435 static int
3436 ext4_readpages(struct file *file, struct address_space *mapping,
3437 struct list_head *pages, unsigned nr_pages)
3439 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3442 static void ext4_free_io_end(ext4_io_end_t *io)
3444 BUG_ON(!io);
3445 if (io->page)
3446 put_page(io->page);
3447 iput(io->inode);
3448 kfree(io);
3451 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3453 struct buffer_head *head, *bh;
3454 unsigned int curr_off = 0;
3456 if (!page_has_buffers(page))
3457 return;
3458 head = bh = page_buffers(page);
3459 do {
3460 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3461 && bh->b_private) {
3462 ext4_free_io_end(bh->b_private);
3463 bh->b_private = NULL;
3464 bh->b_end_io = NULL;
3466 curr_off = curr_off + bh->b_size;
3467 bh = bh->b_this_page;
3468 } while (bh != head);
3471 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3473 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3476 * free any io_end structure allocated for buffers to be discarded
3478 if (ext4_should_dioread_nolock(page->mapping->host))
3479 ext4_invalidatepage_free_endio(page, offset);
3481 * If it's a full truncate we just forget about the pending dirtying
3483 if (offset == 0)
3484 ClearPageChecked(page);
3486 if (journal)
3487 jbd2_journal_invalidatepage(journal, page, offset);
3488 else
3489 block_invalidatepage(page, offset);
3492 static int ext4_releasepage(struct page *page, gfp_t wait)
3494 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3496 WARN_ON(PageChecked(page));
3497 if (!page_has_buffers(page))
3498 return 0;
3499 if (journal)
3500 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3501 else
3502 return try_to_free_buffers(page);
3506 * O_DIRECT for ext3 (or indirect map) based files
3508 * If the O_DIRECT write will extend the file then add this inode to the
3509 * orphan list. So recovery will truncate it back to the original size
3510 * if the machine crashes during the write.
3512 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3513 * crashes then stale disk data _may_ be exposed inside the file. But current
3514 * VFS code falls back into buffered path in that case so we are safe.
3516 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3517 const struct iovec *iov, loff_t offset,
3518 unsigned long nr_segs)
3520 struct file *file = iocb->ki_filp;
3521 struct inode *inode = file->f_mapping->host;
3522 struct ext4_inode_info *ei = EXT4_I(inode);
3523 handle_t *handle;
3524 ssize_t ret;
3525 int orphan = 0;
3526 size_t count = iov_length(iov, nr_segs);
3527 int retries = 0;
3529 if (rw == WRITE) {
3530 loff_t final_size = offset + count;
3532 if (final_size > inode->i_size) {
3533 /* Credits for sb + inode write */
3534 handle = ext4_journal_start(inode, 2);
3535 if (IS_ERR(handle)) {
3536 ret = PTR_ERR(handle);
3537 goto out;
3539 ret = ext4_orphan_add(handle, inode);
3540 if (ret) {
3541 ext4_journal_stop(handle);
3542 goto out;
3544 orphan = 1;
3545 ei->i_disksize = inode->i_size;
3546 ext4_journal_stop(handle);
3550 retry:
3551 if (rw == READ && ext4_should_dioread_nolock(inode))
3552 ret = __blockdev_direct_IO(rw, iocb, inode,
3553 inode->i_sb->s_bdev, iov,
3554 offset, nr_segs,
3555 ext4_get_block, NULL, NULL, 0);
3556 else {
3557 ret = blockdev_direct_IO(rw, iocb, inode,
3558 inode->i_sb->s_bdev, iov,
3559 offset, nr_segs,
3560 ext4_get_block, NULL);
3562 if (unlikely((rw & WRITE) && ret < 0)) {
3563 loff_t isize = i_size_read(inode);
3564 loff_t end = offset + iov_length(iov, nr_segs);
3566 if (end > isize)
3567 vmtruncate(inode, isize);
3570 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3571 goto retry;
3573 if (orphan) {
3574 int err;
3576 /* Credits for sb + inode write */
3577 handle = ext4_journal_start(inode, 2);
3578 if (IS_ERR(handle)) {
3579 /* This is really bad luck. We've written the data
3580 * but cannot extend i_size. Bail out and pretend
3581 * the write failed... */
3582 ret = PTR_ERR(handle);
3583 if (inode->i_nlink)
3584 ext4_orphan_del(NULL, inode);
3586 goto out;
3588 if (inode->i_nlink)
3589 ext4_orphan_del(handle, inode);
3590 if (ret > 0) {
3591 loff_t end = offset + ret;
3592 if (end > inode->i_size) {
3593 ei->i_disksize = end;
3594 i_size_write(inode, end);
3596 * We're going to return a positive `ret'
3597 * here due to non-zero-length I/O, so there's
3598 * no way of reporting error returns from
3599 * ext4_mark_inode_dirty() to userspace. So
3600 * ignore it.
3602 ext4_mark_inode_dirty(handle, inode);
3605 err = ext4_journal_stop(handle);
3606 if (ret == 0)
3607 ret = err;
3609 out:
3610 return ret;
3614 * ext4_get_block used when preparing for a DIO write or buffer write.
3615 * We allocate an uinitialized extent if blocks haven't been allocated.
3616 * The extent will be converted to initialized after the IO is complete.
3618 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3619 struct buffer_head *bh_result, int create)
3621 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3622 inode->i_ino, create);
3623 return _ext4_get_block(inode, iblock, bh_result,
3624 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3627 static void dump_completed_IO(struct inode * inode)
3629 #ifdef EXT4_DEBUG
3630 struct list_head *cur, *before, *after;
3631 ext4_io_end_t *io, *io0, *io1;
3632 unsigned long flags;
3634 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3635 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3636 return;
3639 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3640 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3641 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3642 cur = &io->list;
3643 before = cur->prev;
3644 io0 = container_of(before, ext4_io_end_t, list);
3645 after = cur->next;
3646 io1 = container_of(after, ext4_io_end_t, list);
3648 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3649 io, inode->i_ino, io0, io1);
3651 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3652 #endif
3656 * check a range of space and convert unwritten extents to written.
3658 static int ext4_end_io_nolock(ext4_io_end_t *io)
3660 struct inode *inode = io->inode;
3661 loff_t offset = io->offset;
3662 ssize_t size = io->size;
3663 int ret = 0;
3665 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3666 "list->prev 0x%p\n",
3667 io, inode->i_ino, io->list.next, io->list.prev);
3669 if (list_empty(&io->list))
3670 return ret;
3672 if (io->flag != EXT4_IO_UNWRITTEN)
3673 return ret;
3675 ret = ext4_convert_unwritten_extents(inode, offset, size);
3676 if (ret < 0) {
3677 printk(KERN_EMERG "%s: failed to convert unwritten"
3678 "extents to written extents, error is %d"
3679 " io is still on inode %lu aio dio list\n",
3680 __func__, ret, inode->i_ino);
3681 return ret;
3684 if (io->iocb)
3685 aio_complete(io->iocb, io->result, 0);
3686 /* clear the DIO AIO unwritten flag */
3687 io->flag = 0;
3688 return ret;
3692 * work on completed aio dio IO, to convert unwritten extents to extents
3694 static void ext4_end_io_work(struct work_struct *work)
3696 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3697 struct inode *inode = io->inode;
3698 struct ext4_inode_info *ei = EXT4_I(inode);
3699 unsigned long flags;
3700 int ret;
3702 mutex_lock(&inode->i_mutex);
3703 ret = ext4_end_io_nolock(io);
3704 if (ret < 0) {
3705 mutex_unlock(&inode->i_mutex);
3706 return;
3709 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3710 if (!list_empty(&io->list))
3711 list_del_init(&io->list);
3712 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3713 mutex_unlock(&inode->i_mutex);
3714 ext4_free_io_end(io);
3718 * This function is called from ext4_sync_file().
3720 * When IO is completed, the work to convert unwritten extents to
3721 * written is queued on workqueue but may not get immediately
3722 * scheduled. When fsync is called, we need to ensure the
3723 * conversion is complete before fsync returns.
3724 * The inode keeps track of a list of pending/completed IO that
3725 * might needs to do the conversion. This function walks through
3726 * the list and convert the related unwritten extents for completed IO
3727 * to written.
3728 * The function return the number of pending IOs on success.
3730 int flush_completed_IO(struct inode *inode)
3732 ext4_io_end_t *io;
3733 struct ext4_inode_info *ei = EXT4_I(inode);
3734 unsigned long flags;
3735 int ret = 0;
3736 int ret2 = 0;
3738 if (list_empty(&ei->i_completed_io_list))
3739 return ret;
3741 dump_completed_IO(inode);
3742 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3743 while (!list_empty(&ei->i_completed_io_list)){
3744 io = list_entry(ei->i_completed_io_list.next,
3745 ext4_io_end_t, list);
3747 * Calling ext4_end_io_nolock() to convert completed
3748 * IO to written.
3750 * When ext4_sync_file() is called, run_queue() may already
3751 * about to flush the work corresponding to this io structure.
3752 * It will be upset if it founds the io structure related
3753 * to the work-to-be schedule is freed.
3755 * Thus we need to keep the io structure still valid here after
3756 * convertion finished. The io structure has a flag to
3757 * avoid double converting from both fsync and background work
3758 * queue work.
3760 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3761 ret = ext4_end_io_nolock(io);
3762 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3763 if (ret < 0)
3764 ret2 = ret;
3765 else
3766 list_del_init(&io->list);
3768 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3769 return (ret2 < 0) ? ret2 : 0;
3772 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3774 ext4_io_end_t *io = NULL;
3776 io = kmalloc(sizeof(*io), flags);
3778 if (io) {
3779 igrab(inode);
3780 io->inode = inode;
3781 io->flag = 0;
3782 io->offset = 0;
3783 io->size = 0;
3784 io->page = NULL;
3785 io->iocb = NULL;
3786 io->result = 0;
3787 INIT_WORK(&io->work, ext4_end_io_work);
3788 INIT_LIST_HEAD(&io->list);
3791 return io;
3794 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3795 ssize_t size, void *private, int ret,
3796 bool is_async)
3798 ext4_io_end_t *io_end = iocb->private;
3799 struct workqueue_struct *wq;
3800 unsigned long flags;
3801 struct ext4_inode_info *ei;
3803 /* if not async direct IO or dio with 0 bytes write, just return */
3804 if (!io_end || !size)
3805 goto out;
3807 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3808 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3809 iocb->private, io_end->inode->i_ino, iocb, offset,
3810 size);
3812 /* if not aio dio with unwritten extents, just free io and return */
3813 if (io_end->flag != EXT4_IO_UNWRITTEN){
3814 ext4_free_io_end(io_end);
3815 iocb->private = NULL;
3816 out:
3817 if (is_async)
3818 aio_complete(iocb, ret, 0);
3819 return;
3822 io_end->offset = offset;
3823 io_end->size = size;
3824 if (is_async) {
3825 io_end->iocb = iocb;
3826 io_end->result = ret;
3828 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3830 /* Add the io_end to per-inode completed aio dio list*/
3831 ei = EXT4_I(io_end->inode);
3832 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3833 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3834 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3836 /* queue the work to convert unwritten extents to written */
3837 queue_work(wq, &io_end->work);
3838 iocb->private = NULL;
3841 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3843 ext4_io_end_t *io_end = bh->b_private;
3844 struct workqueue_struct *wq;
3845 struct inode *inode;
3846 unsigned long flags;
3848 if (!test_clear_buffer_uninit(bh) || !io_end)
3849 goto out;
3851 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3852 printk("sb umounted, discard end_io request for inode %lu\n",
3853 io_end->inode->i_ino);
3854 ext4_free_io_end(io_end);
3855 goto out;
3858 io_end->flag = EXT4_IO_UNWRITTEN;
3859 inode = io_end->inode;
3861 /* Add the io_end to per-inode completed io list*/
3862 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3863 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3864 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3866 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3867 /* queue the work to convert unwritten extents to written */
3868 queue_work(wq, &io_end->work);
3869 out:
3870 bh->b_private = NULL;
3871 bh->b_end_io = NULL;
3872 clear_buffer_uninit(bh);
3873 end_buffer_async_write(bh, uptodate);
3876 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3878 ext4_io_end_t *io_end;
3879 struct page *page = bh->b_page;
3880 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3881 size_t size = bh->b_size;
3883 retry:
3884 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3885 if (!io_end) {
3886 if (printk_ratelimit())
3887 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3888 schedule();
3889 goto retry;
3891 io_end->offset = offset;
3892 io_end->size = size;
3894 * We need to hold a reference to the page to make sure it
3895 * doesn't get evicted before ext4_end_io_work() has a chance
3896 * to convert the extent from written to unwritten.
3898 io_end->page = page;
3899 get_page(io_end->page);
3901 bh->b_private = io_end;
3902 bh->b_end_io = ext4_end_io_buffer_write;
3903 return 0;
3907 * For ext4 extent files, ext4 will do direct-io write to holes,
3908 * preallocated extents, and those write extend the file, no need to
3909 * fall back to buffered IO.
3911 * For holes, we fallocate those blocks, mark them as unintialized
3912 * If those blocks were preallocated, we mark sure they are splited, but
3913 * still keep the range to write as unintialized.
3915 * The unwrritten extents will be converted to written when DIO is completed.
3916 * For async direct IO, since the IO may still pending when return, we
3917 * set up an end_io call back function, which will do the convertion
3918 * when async direct IO completed.
3920 * If the O_DIRECT write will extend the file then add this inode to the
3921 * orphan list. So recovery will truncate it back to the original size
3922 * if the machine crashes during the write.
3925 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3926 const struct iovec *iov, loff_t offset,
3927 unsigned long nr_segs)
3929 struct file *file = iocb->ki_filp;
3930 struct inode *inode = file->f_mapping->host;
3931 ssize_t ret;
3932 size_t count = iov_length(iov, nr_segs);
3934 loff_t final_size = offset + count;
3935 if (rw == WRITE && final_size <= inode->i_size) {
3937 * We could direct write to holes and fallocate.
3939 * Allocated blocks to fill the hole are marked as uninitialized
3940 * to prevent paralel buffered read to expose the stale data
3941 * before DIO complete the data IO.
3943 * As to previously fallocated extents, ext4 get_block
3944 * will just simply mark the buffer mapped but still
3945 * keep the extents uninitialized.
3947 * for non AIO case, we will convert those unwritten extents
3948 * to written after return back from blockdev_direct_IO.
3950 * for async DIO, the conversion needs to be defered when
3951 * the IO is completed. The ext4 end_io callback function
3952 * will be called to take care of the conversion work.
3953 * Here for async case, we allocate an io_end structure to
3954 * hook to the iocb.
3956 iocb->private = NULL;
3957 EXT4_I(inode)->cur_aio_dio = NULL;
3958 if (!is_sync_kiocb(iocb)) {
3959 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3960 if (!iocb->private)
3961 return -ENOMEM;
3963 * we save the io structure for current async
3964 * direct IO, so that later ext4_map_blocks()
3965 * could flag the io structure whether there
3966 * is a unwritten extents needs to be converted
3967 * when IO is completed.
3969 EXT4_I(inode)->cur_aio_dio = iocb->private;
3972 ret = blockdev_direct_IO(rw, iocb, inode,
3973 inode->i_sb->s_bdev, iov,
3974 offset, nr_segs,
3975 ext4_get_block_write,
3976 ext4_end_io_dio);
3977 if (iocb->private)
3978 EXT4_I(inode)->cur_aio_dio = NULL;
3980 * The io_end structure takes a reference to the inode,
3981 * that structure needs to be destroyed and the
3982 * reference to the inode need to be dropped, when IO is
3983 * complete, even with 0 byte write, or failed.
3985 * In the successful AIO DIO case, the io_end structure will be
3986 * desctroyed and the reference to the inode will be dropped
3987 * after the end_io call back function is called.
3989 * In the case there is 0 byte write, or error case, since
3990 * VFS direct IO won't invoke the end_io call back function,
3991 * we need to free the end_io structure here.
3993 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3994 ext4_free_io_end(iocb->private);
3995 iocb->private = NULL;
3996 } else if (ret > 0 && ext4_test_inode_state(inode,
3997 EXT4_STATE_DIO_UNWRITTEN)) {
3998 int err;
4000 * for non AIO case, since the IO is already
4001 * completed, we could do the convertion right here
4003 err = ext4_convert_unwritten_extents(inode,
4004 offset, ret);
4005 if (err < 0)
4006 ret = err;
4007 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4009 return ret;
4012 /* for write the the end of file case, we fall back to old way */
4013 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4016 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4017 const struct iovec *iov, loff_t offset,
4018 unsigned long nr_segs)
4020 struct file *file = iocb->ki_filp;
4021 struct inode *inode = file->f_mapping->host;
4023 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4024 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4026 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4030 * Pages can be marked dirty completely asynchronously from ext4's journalling
4031 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4032 * much here because ->set_page_dirty is called under VFS locks. The page is
4033 * not necessarily locked.
4035 * We cannot just dirty the page and leave attached buffers clean, because the
4036 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4037 * or jbddirty because all the journalling code will explode.
4039 * So what we do is to mark the page "pending dirty" and next time writepage
4040 * is called, propagate that into the buffers appropriately.
4042 static int ext4_journalled_set_page_dirty(struct page *page)
4044 SetPageChecked(page);
4045 return __set_page_dirty_nobuffers(page);
4048 static const struct address_space_operations ext4_ordered_aops = {
4049 .readpage = ext4_readpage,
4050 .readpages = ext4_readpages,
4051 .writepage = ext4_writepage,
4052 .sync_page = block_sync_page,
4053 .write_begin = ext4_write_begin,
4054 .write_end = ext4_ordered_write_end,
4055 .bmap = ext4_bmap,
4056 .invalidatepage = ext4_invalidatepage,
4057 .releasepage = ext4_releasepage,
4058 .direct_IO = ext4_direct_IO,
4059 .migratepage = buffer_migrate_page,
4060 .is_partially_uptodate = block_is_partially_uptodate,
4061 .error_remove_page = generic_error_remove_page,
4064 static const struct address_space_operations ext4_writeback_aops = {
4065 .readpage = ext4_readpage,
4066 .readpages = ext4_readpages,
4067 .writepage = ext4_writepage,
4068 .sync_page = block_sync_page,
4069 .write_begin = ext4_write_begin,
4070 .write_end = ext4_writeback_write_end,
4071 .bmap = ext4_bmap,
4072 .invalidatepage = ext4_invalidatepage,
4073 .releasepage = ext4_releasepage,
4074 .direct_IO = ext4_direct_IO,
4075 .migratepage = buffer_migrate_page,
4076 .is_partially_uptodate = block_is_partially_uptodate,
4077 .error_remove_page = generic_error_remove_page,
4080 static const struct address_space_operations ext4_journalled_aops = {
4081 .readpage = ext4_readpage,
4082 .readpages = ext4_readpages,
4083 .writepage = ext4_writepage,
4084 .sync_page = block_sync_page,
4085 .write_begin = ext4_write_begin,
4086 .write_end = ext4_journalled_write_end,
4087 .set_page_dirty = ext4_journalled_set_page_dirty,
4088 .bmap = ext4_bmap,
4089 .invalidatepage = ext4_invalidatepage,
4090 .releasepage = ext4_releasepage,
4091 .is_partially_uptodate = block_is_partially_uptodate,
4092 .error_remove_page = generic_error_remove_page,
4095 static const struct address_space_operations ext4_da_aops = {
4096 .readpage = ext4_readpage,
4097 .readpages = ext4_readpages,
4098 .writepage = ext4_writepage,
4099 .writepages = ext4_da_writepages,
4100 .sync_page = block_sync_page,
4101 .write_begin = ext4_da_write_begin,
4102 .write_end = ext4_da_write_end,
4103 .bmap = ext4_bmap,
4104 .invalidatepage = ext4_da_invalidatepage,
4105 .releasepage = ext4_releasepage,
4106 .direct_IO = ext4_direct_IO,
4107 .migratepage = buffer_migrate_page,
4108 .is_partially_uptodate = block_is_partially_uptodate,
4109 .error_remove_page = generic_error_remove_page,
4112 void ext4_set_aops(struct inode *inode)
4114 if (ext4_should_order_data(inode) &&
4115 test_opt(inode->i_sb, DELALLOC))
4116 inode->i_mapping->a_ops = &ext4_da_aops;
4117 else if (ext4_should_order_data(inode))
4118 inode->i_mapping->a_ops = &ext4_ordered_aops;
4119 else if (ext4_should_writeback_data(inode) &&
4120 test_opt(inode->i_sb, DELALLOC))
4121 inode->i_mapping->a_ops = &ext4_da_aops;
4122 else if (ext4_should_writeback_data(inode))
4123 inode->i_mapping->a_ops = &ext4_writeback_aops;
4124 else
4125 inode->i_mapping->a_ops = &ext4_journalled_aops;
4129 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4130 * up to the end of the block which corresponds to `from'.
4131 * This required during truncate. We need to physically zero the tail end
4132 * of that block so it doesn't yield old data if the file is later grown.
4134 int ext4_block_truncate_page(handle_t *handle,
4135 struct address_space *mapping, loff_t from)
4137 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4138 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4139 unsigned blocksize, length, pos;
4140 ext4_lblk_t iblock;
4141 struct inode *inode = mapping->host;
4142 struct buffer_head *bh;
4143 struct page *page;
4144 int err = 0;
4146 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4147 mapping_gfp_mask(mapping) & ~__GFP_FS);
4148 if (!page)
4149 return -EINVAL;
4151 blocksize = inode->i_sb->s_blocksize;
4152 length = blocksize - (offset & (blocksize - 1));
4153 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4155 if (!page_has_buffers(page))
4156 create_empty_buffers(page, blocksize, 0);
4158 /* Find the buffer that contains "offset" */
4159 bh = page_buffers(page);
4160 pos = blocksize;
4161 while (offset >= pos) {
4162 bh = bh->b_this_page;
4163 iblock++;
4164 pos += blocksize;
4167 err = 0;
4168 if (buffer_freed(bh)) {
4169 BUFFER_TRACE(bh, "freed: skip");
4170 goto unlock;
4173 if (!buffer_mapped(bh)) {
4174 BUFFER_TRACE(bh, "unmapped");
4175 ext4_get_block(inode, iblock, bh, 0);
4176 /* unmapped? It's a hole - nothing to do */
4177 if (!buffer_mapped(bh)) {
4178 BUFFER_TRACE(bh, "still unmapped");
4179 goto unlock;
4183 /* Ok, it's mapped. Make sure it's up-to-date */
4184 if (PageUptodate(page))
4185 set_buffer_uptodate(bh);
4187 if (!buffer_uptodate(bh)) {
4188 err = -EIO;
4189 ll_rw_block(READ, 1, &bh);
4190 wait_on_buffer(bh);
4191 /* Uhhuh. Read error. Complain and punt. */
4192 if (!buffer_uptodate(bh))
4193 goto unlock;
4196 if (ext4_should_journal_data(inode)) {
4197 BUFFER_TRACE(bh, "get write access");
4198 err = ext4_journal_get_write_access(handle, bh);
4199 if (err)
4200 goto unlock;
4203 zero_user(page, offset, length);
4205 BUFFER_TRACE(bh, "zeroed end of block");
4207 err = 0;
4208 if (ext4_should_journal_data(inode)) {
4209 err = ext4_handle_dirty_metadata(handle, inode, bh);
4210 } else {
4211 if (ext4_should_order_data(inode))
4212 err = ext4_jbd2_file_inode(handle, inode);
4213 mark_buffer_dirty(bh);
4216 unlock:
4217 unlock_page(page);
4218 page_cache_release(page);
4219 return err;
4223 * Probably it should be a library function... search for first non-zero word
4224 * or memcmp with zero_page, whatever is better for particular architecture.
4225 * Linus?
4227 static inline int all_zeroes(__le32 *p, __le32 *q)
4229 while (p < q)
4230 if (*p++)
4231 return 0;
4232 return 1;
4236 * ext4_find_shared - find the indirect blocks for partial truncation.
4237 * @inode: inode in question
4238 * @depth: depth of the affected branch
4239 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4240 * @chain: place to store the pointers to partial indirect blocks
4241 * @top: place to the (detached) top of branch
4243 * This is a helper function used by ext4_truncate().
4245 * When we do truncate() we may have to clean the ends of several
4246 * indirect blocks but leave the blocks themselves alive. Block is
4247 * partially truncated if some data below the new i_size is refered
4248 * from it (and it is on the path to the first completely truncated
4249 * data block, indeed). We have to free the top of that path along
4250 * with everything to the right of the path. Since no allocation
4251 * past the truncation point is possible until ext4_truncate()
4252 * finishes, we may safely do the latter, but top of branch may
4253 * require special attention - pageout below the truncation point
4254 * might try to populate it.
4256 * We atomically detach the top of branch from the tree, store the
4257 * block number of its root in *@top, pointers to buffer_heads of
4258 * partially truncated blocks - in @chain[].bh and pointers to
4259 * their last elements that should not be removed - in
4260 * @chain[].p. Return value is the pointer to last filled element
4261 * of @chain.
4263 * The work left to caller to do the actual freeing of subtrees:
4264 * a) free the subtree starting from *@top
4265 * b) free the subtrees whose roots are stored in
4266 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4267 * c) free the subtrees growing from the inode past the @chain[0].
4268 * (no partially truncated stuff there). */
4270 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4271 ext4_lblk_t offsets[4], Indirect chain[4],
4272 __le32 *top)
4274 Indirect *partial, *p;
4275 int k, err;
4277 *top = 0;
4278 /* Make k index the deepest non-null offset + 1 */
4279 for (k = depth; k > 1 && !offsets[k-1]; k--)
4281 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4282 /* Writer: pointers */
4283 if (!partial)
4284 partial = chain + k-1;
4286 * If the branch acquired continuation since we've looked at it -
4287 * fine, it should all survive and (new) top doesn't belong to us.
4289 if (!partial->key && *partial->p)
4290 /* Writer: end */
4291 goto no_top;
4292 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4295 * OK, we've found the last block that must survive. The rest of our
4296 * branch should be detached before unlocking. However, if that rest
4297 * of branch is all ours and does not grow immediately from the inode
4298 * it's easier to cheat and just decrement partial->p.
4300 if (p == chain + k - 1 && p > chain) {
4301 p->p--;
4302 } else {
4303 *top = *p->p;
4304 /* Nope, don't do this in ext4. Must leave the tree intact */
4305 #if 0
4306 *p->p = 0;
4307 #endif
4309 /* Writer: end */
4311 while (partial > p) {
4312 brelse(partial->bh);
4313 partial--;
4315 no_top:
4316 return partial;
4320 * Zero a number of block pointers in either an inode or an indirect block.
4321 * If we restart the transaction we must again get write access to the
4322 * indirect block for further modification.
4324 * We release `count' blocks on disk, but (last - first) may be greater
4325 * than `count' because there can be holes in there.
4327 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4328 struct buffer_head *bh,
4329 ext4_fsblk_t block_to_free,
4330 unsigned long count, __le32 *first,
4331 __le32 *last)
4333 __le32 *p;
4334 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4336 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4337 flags |= EXT4_FREE_BLOCKS_METADATA;
4339 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4340 count)) {
4341 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4342 "blocks %llu len %lu",
4343 (unsigned long long) block_to_free, count);
4344 return 1;
4347 if (try_to_extend_transaction(handle, inode)) {
4348 if (bh) {
4349 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4350 ext4_handle_dirty_metadata(handle, inode, bh);
4352 ext4_mark_inode_dirty(handle, inode);
4353 ext4_truncate_restart_trans(handle, inode,
4354 blocks_for_truncate(inode));
4355 if (bh) {
4356 BUFFER_TRACE(bh, "retaking write access");
4357 ext4_journal_get_write_access(handle, bh);
4361 for (p = first; p < last; p++)
4362 *p = 0;
4364 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4365 return 0;
4369 * ext4_free_data - free a list of data blocks
4370 * @handle: handle for this transaction
4371 * @inode: inode we are dealing with
4372 * @this_bh: indirect buffer_head which contains *@first and *@last
4373 * @first: array of block numbers
4374 * @last: points immediately past the end of array
4376 * We are freeing all blocks refered from that array (numbers are stored as
4377 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4379 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4380 * blocks are contiguous then releasing them at one time will only affect one
4381 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4382 * actually use a lot of journal space.
4384 * @this_bh will be %NULL if @first and @last point into the inode's direct
4385 * block pointers.
4387 static void ext4_free_data(handle_t *handle, struct inode *inode,
4388 struct buffer_head *this_bh,
4389 __le32 *first, __le32 *last)
4391 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4392 unsigned long count = 0; /* Number of blocks in the run */
4393 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4394 corresponding to
4395 block_to_free */
4396 ext4_fsblk_t nr; /* Current block # */
4397 __le32 *p; /* Pointer into inode/ind
4398 for current block */
4399 int err;
4401 if (this_bh) { /* For indirect block */
4402 BUFFER_TRACE(this_bh, "get_write_access");
4403 err = ext4_journal_get_write_access(handle, this_bh);
4404 /* Important: if we can't update the indirect pointers
4405 * to the blocks, we can't free them. */
4406 if (err)
4407 return;
4410 for (p = first; p < last; p++) {
4411 nr = le32_to_cpu(*p);
4412 if (nr) {
4413 /* accumulate blocks to free if they're contiguous */
4414 if (count == 0) {
4415 block_to_free = nr;
4416 block_to_free_p = p;
4417 count = 1;
4418 } else if (nr == block_to_free + count) {
4419 count++;
4420 } else {
4421 if (ext4_clear_blocks(handle, inode, this_bh,
4422 block_to_free, count,
4423 block_to_free_p, p))
4424 break;
4425 block_to_free = nr;
4426 block_to_free_p = p;
4427 count = 1;
4432 if (count > 0)
4433 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4434 count, block_to_free_p, p);
4436 if (this_bh) {
4437 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4440 * The buffer head should have an attached journal head at this
4441 * point. However, if the data is corrupted and an indirect
4442 * block pointed to itself, it would have been detached when
4443 * the block was cleared. Check for this instead of OOPSing.
4445 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4446 ext4_handle_dirty_metadata(handle, inode, this_bh);
4447 else
4448 EXT4_ERROR_INODE(inode,
4449 "circular indirect block detected at "
4450 "block %llu",
4451 (unsigned long long) this_bh->b_blocknr);
4456 * ext4_free_branches - free an array of branches
4457 * @handle: JBD handle for this transaction
4458 * @inode: inode we are dealing with
4459 * @parent_bh: the buffer_head which contains *@first and *@last
4460 * @first: array of block numbers
4461 * @last: pointer immediately past the end of array
4462 * @depth: depth of the branches to free
4464 * We are freeing all blocks refered from these branches (numbers are
4465 * stored as little-endian 32-bit) and updating @inode->i_blocks
4466 * appropriately.
4468 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4469 struct buffer_head *parent_bh,
4470 __le32 *first, __le32 *last, int depth)
4472 ext4_fsblk_t nr;
4473 __le32 *p;
4475 if (ext4_handle_is_aborted(handle))
4476 return;
4478 if (depth--) {
4479 struct buffer_head *bh;
4480 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4481 p = last;
4482 while (--p >= first) {
4483 nr = le32_to_cpu(*p);
4484 if (!nr)
4485 continue; /* A hole */
4487 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4488 nr, 1)) {
4489 EXT4_ERROR_INODE(inode,
4490 "invalid indirect mapped "
4491 "block %lu (level %d)",
4492 (unsigned long) nr, depth);
4493 break;
4496 /* Go read the buffer for the next level down */
4497 bh = sb_bread(inode->i_sb, nr);
4500 * A read failure? Report error and clear slot
4501 * (should be rare).
4503 if (!bh) {
4504 EXT4_ERROR_INODE_BLOCK(inode, nr,
4505 "Read failure");
4506 continue;
4509 /* This zaps the entire block. Bottom up. */
4510 BUFFER_TRACE(bh, "free child branches");
4511 ext4_free_branches(handle, inode, bh,
4512 (__le32 *) bh->b_data,
4513 (__le32 *) bh->b_data + addr_per_block,
4514 depth);
4517 * Everything below this this pointer has been
4518 * released. Now let this top-of-subtree go.
4520 * We want the freeing of this indirect block to be
4521 * atomic in the journal with the updating of the
4522 * bitmap block which owns it. So make some room in
4523 * the journal.
4525 * We zero the parent pointer *after* freeing its
4526 * pointee in the bitmaps, so if extend_transaction()
4527 * for some reason fails to put the bitmap changes and
4528 * the release into the same transaction, recovery
4529 * will merely complain about releasing a free block,
4530 * rather than leaking blocks.
4532 if (ext4_handle_is_aborted(handle))
4533 return;
4534 if (try_to_extend_transaction(handle, inode)) {
4535 ext4_mark_inode_dirty(handle, inode);
4536 ext4_truncate_restart_trans(handle, inode,
4537 blocks_for_truncate(inode));
4541 * The forget flag here is critical because if
4542 * we are journaling (and not doing data
4543 * journaling), we have to make sure a revoke
4544 * record is written to prevent the journal
4545 * replay from overwriting the (former)
4546 * indirect block if it gets reallocated as a
4547 * data block. This must happen in the same
4548 * transaction where the data blocks are
4549 * actually freed.
4551 ext4_free_blocks(handle, inode, 0, nr, 1,
4552 EXT4_FREE_BLOCKS_METADATA|
4553 EXT4_FREE_BLOCKS_FORGET);
4555 if (parent_bh) {
4557 * The block which we have just freed is
4558 * pointed to by an indirect block: journal it
4560 BUFFER_TRACE(parent_bh, "get_write_access");
4561 if (!ext4_journal_get_write_access(handle,
4562 parent_bh)){
4563 *p = 0;
4564 BUFFER_TRACE(parent_bh,
4565 "call ext4_handle_dirty_metadata");
4566 ext4_handle_dirty_metadata(handle,
4567 inode,
4568 parent_bh);
4572 } else {
4573 /* We have reached the bottom of the tree. */
4574 BUFFER_TRACE(parent_bh, "free data blocks");
4575 ext4_free_data(handle, inode, parent_bh, first, last);
4579 int ext4_can_truncate(struct inode *inode)
4581 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4582 return 0;
4583 if (S_ISREG(inode->i_mode))
4584 return 1;
4585 if (S_ISDIR(inode->i_mode))
4586 return 1;
4587 if (S_ISLNK(inode->i_mode))
4588 return !ext4_inode_is_fast_symlink(inode);
4589 return 0;
4593 * ext4_truncate()
4595 * We block out ext4_get_block() block instantiations across the entire
4596 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4597 * simultaneously on behalf of the same inode.
4599 * As we work through the truncate and commmit bits of it to the journal there
4600 * is one core, guiding principle: the file's tree must always be consistent on
4601 * disk. We must be able to restart the truncate after a crash.
4603 * The file's tree may be transiently inconsistent in memory (although it
4604 * probably isn't), but whenever we close off and commit a journal transaction,
4605 * the contents of (the filesystem + the journal) must be consistent and
4606 * restartable. It's pretty simple, really: bottom up, right to left (although
4607 * left-to-right works OK too).
4609 * Note that at recovery time, journal replay occurs *before* the restart of
4610 * truncate against the orphan inode list.
4612 * The committed inode has the new, desired i_size (which is the same as
4613 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4614 * that this inode's truncate did not complete and it will again call
4615 * ext4_truncate() to have another go. So there will be instantiated blocks
4616 * to the right of the truncation point in a crashed ext4 filesystem. But
4617 * that's fine - as long as they are linked from the inode, the post-crash
4618 * ext4_truncate() run will find them and release them.
4620 void ext4_truncate(struct inode *inode)
4622 handle_t *handle;
4623 struct ext4_inode_info *ei = EXT4_I(inode);
4624 __le32 *i_data = ei->i_data;
4625 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4626 struct address_space *mapping = inode->i_mapping;
4627 ext4_lblk_t offsets[4];
4628 Indirect chain[4];
4629 Indirect *partial;
4630 __le32 nr = 0;
4631 int n;
4632 ext4_lblk_t last_block;
4633 unsigned blocksize = inode->i_sb->s_blocksize;
4635 if (!ext4_can_truncate(inode))
4636 return;
4638 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4640 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4641 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4643 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4644 ext4_ext_truncate(inode);
4645 return;
4648 handle = start_transaction(inode);
4649 if (IS_ERR(handle))
4650 return; /* AKPM: return what? */
4652 last_block = (inode->i_size + blocksize-1)
4653 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4655 if (inode->i_size & (blocksize - 1))
4656 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4657 goto out_stop;
4659 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4660 if (n == 0)
4661 goto out_stop; /* error */
4664 * OK. This truncate is going to happen. We add the inode to the
4665 * orphan list, so that if this truncate spans multiple transactions,
4666 * and we crash, we will resume the truncate when the filesystem
4667 * recovers. It also marks the inode dirty, to catch the new size.
4669 * Implication: the file must always be in a sane, consistent
4670 * truncatable state while each transaction commits.
4672 if (ext4_orphan_add(handle, inode))
4673 goto out_stop;
4676 * From here we block out all ext4_get_block() callers who want to
4677 * modify the block allocation tree.
4679 down_write(&ei->i_data_sem);
4681 ext4_discard_preallocations(inode);
4684 * The orphan list entry will now protect us from any crash which
4685 * occurs before the truncate completes, so it is now safe to propagate
4686 * the new, shorter inode size (held for now in i_size) into the
4687 * on-disk inode. We do this via i_disksize, which is the value which
4688 * ext4 *really* writes onto the disk inode.
4690 ei->i_disksize = inode->i_size;
4692 if (n == 1) { /* direct blocks */
4693 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4694 i_data + EXT4_NDIR_BLOCKS);
4695 goto do_indirects;
4698 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4699 /* Kill the top of shared branch (not detached) */
4700 if (nr) {
4701 if (partial == chain) {
4702 /* Shared branch grows from the inode */
4703 ext4_free_branches(handle, inode, NULL,
4704 &nr, &nr+1, (chain+n-1) - partial);
4705 *partial->p = 0;
4707 * We mark the inode dirty prior to restart,
4708 * and prior to stop. No need for it here.
4710 } else {
4711 /* Shared branch grows from an indirect block */
4712 BUFFER_TRACE(partial->bh, "get_write_access");
4713 ext4_free_branches(handle, inode, partial->bh,
4714 partial->p,
4715 partial->p+1, (chain+n-1) - partial);
4718 /* Clear the ends of indirect blocks on the shared branch */
4719 while (partial > chain) {
4720 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4721 (__le32*)partial->bh->b_data+addr_per_block,
4722 (chain+n-1) - partial);
4723 BUFFER_TRACE(partial->bh, "call brelse");
4724 brelse(partial->bh);
4725 partial--;
4727 do_indirects:
4728 /* Kill the remaining (whole) subtrees */
4729 switch (offsets[0]) {
4730 default:
4731 nr = i_data[EXT4_IND_BLOCK];
4732 if (nr) {
4733 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4734 i_data[EXT4_IND_BLOCK] = 0;
4736 case EXT4_IND_BLOCK:
4737 nr = i_data[EXT4_DIND_BLOCK];
4738 if (nr) {
4739 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4740 i_data[EXT4_DIND_BLOCK] = 0;
4742 case EXT4_DIND_BLOCK:
4743 nr = i_data[EXT4_TIND_BLOCK];
4744 if (nr) {
4745 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4746 i_data[EXT4_TIND_BLOCK] = 0;
4748 case EXT4_TIND_BLOCK:
4752 up_write(&ei->i_data_sem);
4753 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4754 ext4_mark_inode_dirty(handle, inode);
4757 * In a multi-transaction truncate, we only make the final transaction
4758 * synchronous
4760 if (IS_SYNC(inode))
4761 ext4_handle_sync(handle);
4762 out_stop:
4764 * If this was a simple ftruncate(), and the file will remain alive
4765 * then we need to clear up the orphan record which we created above.
4766 * However, if this was a real unlink then we were called by
4767 * ext4_delete_inode(), and we allow that function to clean up the
4768 * orphan info for us.
4770 if (inode->i_nlink)
4771 ext4_orphan_del(handle, inode);
4773 ext4_journal_stop(handle);
4777 * ext4_get_inode_loc returns with an extra refcount against the inode's
4778 * underlying buffer_head on success. If 'in_mem' is true, we have all
4779 * data in memory that is needed to recreate the on-disk version of this
4780 * inode.
4782 static int __ext4_get_inode_loc(struct inode *inode,
4783 struct ext4_iloc *iloc, int in_mem)
4785 struct ext4_group_desc *gdp;
4786 struct buffer_head *bh;
4787 struct super_block *sb = inode->i_sb;
4788 ext4_fsblk_t block;
4789 int inodes_per_block, inode_offset;
4791 iloc->bh = NULL;
4792 if (!ext4_valid_inum(sb, inode->i_ino))
4793 return -EIO;
4795 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4796 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4797 if (!gdp)
4798 return -EIO;
4801 * Figure out the offset within the block group inode table
4803 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4804 inode_offset = ((inode->i_ino - 1) %
4805 EXT4_INODES_PER_GROUP(sb));
4806 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4807 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4809 bh = sb_getblk(sb, block);
4810 if (!bh) {
4811 EXT4_ERROR_INODE_BLOCK(inode, block,
4812 "unable to read itable block");
4813 return -EIO;
4815 if (!buffer_uptodate(bh)) {
4816 lock_buffer(bh);
4819 * If the buffer has the write error flag, we have failed
4820 * to write out another inode in the same block. In this
4821 * case, we don't have to read the block because we may
4822 * read the old inode data successfully.
4824 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4825 set_buffer_uptodate(bh);
4827 if (buffer_uptodate(bh)) {
4828 /* someone brought it uptodate while we waited */
4829 unlock_buffer(bh);
4830 goto has_buffer;
4834 * If we have all information of the inode in memory and this
4835 * is the only valid inode in the block, we need not read the
4836 * block.
4838 if (in_mem) {
4839 struct buffer_head *bitmap_bh;
4840 int i, start;
4842 start = inode_offset & ~(inodes_per_block - 1);
4844 /* Is the inode bitmap in cache? */
4845 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4846 if (!bitmap_bh)
4847 goto make_io;
4850 * If the inode bitmap isn't in cache then the
4851 * optimisation may end up performing two reads instead
4852 * of one, so skip it.
4854 if (!buffer_uptodate(bitmap_bh)) {
4855 brelse(bitmap_bh);
4856 goto make_io;
4858 for (i = start; i < start + inodes_per_block; i++) {
4859 if (i == inode_offset)
4860 continue;
4861 if (ext4_test_bit(i, bitmap_bh->b_data))
4862 break;
4864 brelse(bitmap_bh);
4865 if (i == start + inodes_per_block) {
4866 /* all other inodes are free, so skip I/O */
4867 memset(bh->b_data, 0, bh->b_size);
4868 set_buffer_uptodate(bh);
4869 unlock_buffer(bh);
4870 goto has_buffer;
4874 make_io:
4876 * If we need to do any I/O, try to pre-readahead extra
4877 * blocks from the inode table.
4879 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4880 ext4_fsblk_t b, end, table;
4881 unsigned num;
4883 table = ext4_inode_table(sb, gdp);
4884 /* s_inode_readahead_blks is always a power of 2 */
4885 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4886 if (table > b)
4887 b = table;
4888 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4889 num = EXT4_INODES_PER_GROUP(sb);
4890 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4891 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4892 num -= ext4_itable_unused_count(sb, gdp);
4893 table += num / inodes_per_block;
4894 if (end > table)
4895 end = table;
4896 while (b <= end)
4897 sb_breadahead(sb, b++);
4901 * There are other valid inodes in the buffer, this inode
4902 * has in-inode xattrs, or we don't have this inode in memory.
4903 * Read the block from disk.
4905 get_bh(bh);
4906 bh->b_end_io = end_buffer_read_sync;
4907 submit_bh(READ_META, bh);
4908 wait_on_buffer(bh);
4909 if (!buffer_uptodate(bh)) {
4910 EXT4_ERROR_INODE_BLOCK(inode, block,
4911 "unable to read itable block");
4912 brelse(bh);
4913 return -EIO;
4916 has_buffer:
4917 iloc->bh = bh;
4918 return 0;
4921 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4923 /* We have all inode data except xattrs in memory here. */
4924 return __ext4_get_inode_loc(inode, iloc,
4925 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4928 void ext4_set_inode_flags(struct inode *inode)
4930 unsigned int flags = EXT4_I(inode)->i_flags;
4932 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4933 if (flags & EXT4_SYNC_FL)
4934 inode->i_flags |= S_SYNC;
4935 if (flags & EXT4_APPEND_FL)
4936 inode->i_flags |= S_APPEND;
4937 if (flags & EXT4_IMMUTABLE_FL)
4938 inode->i_flags |= S_IMMUTABLE;
4939 if (flags & EXT4_NOATIME_FL)
4940 inode->i_flags |= S_NOATIME;
4941 if (flags & EXT4_DIRSYNC_FL)
4942 inode->i_flags |= S_DIRSYNC;
4945 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4946 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4948 unsigned int vfs_fl;
4949 unsigned long old_fl, new_fl;
4951 do {
4952 vfs_fl = ei->vfs_inode.i_flags;
4953 old_fl = ei->i_flags;
4954 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4955 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4956 EXT4_DIRSYNC_FL);
4957 if (vfs_fl & S_SYNC)
4958 new_fl |= EXT4_SYNC_FL;
4959 if (vfs_fl & S_APPEND)
4960 new_fl |= EXT4_APPEND_FL;
4961 if (vfs_fl & S_IMMUTABLE)
4962 new_fl |= EXT4_IMMUTABLE_FL;
4963 if (vfs_fl & S_NOATIME)
4964 new_fl |= EXT4_NOATIME_FL;
4965 if (vfs_fl & S_DIRSYNC)
4966 new_fl |= EXT4_DIRSYNC_FL;
4967 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4970 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4971 struct ext4_inode_info *ei)
4973 blkcnt_t i_blocks ;
4974 struct inode *inode = &(ei->vfs_inode);
4975 struct super_block *sb = inode->i_sb;
4977 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4978 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4979 /* we are using combined 48 bit field */
4980 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4981 le32_to_cpu(raw_inode->i_blocks_lo);
4982 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4983 /* i_blocks represent file system block size */
4984 return i_blocks << (inode->i_blkbits - 9);
4985 } else {
4986 return i_blocks;
4988 } else {
4989 return le32_to_cpu(raw_inode->i_blocks_lo);
4993 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4995 struct ext4_iloc iloc;
4996 struct ext4_inode *raw_inode;
4997 struct ext4_inode_info *ei;
4998 struct inode *inode;
4999 journal_t *journal = EXT4_SB(sb)->s_journal;
5000 long ret;
5001 int block;
5003 inode = iget_locked(sb, ino);
5004 if (!inode)
5005 return ERR_PTR(-ENOMEM);
5006 if (!(inode->i_state & I_NEW))
5007 return inode;
5009 ei = EXT4_I(inode);
5010 iloc.bh = 0;
5012 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5013 if (ret < 0)
5014 goto bad_inode;
5015 raw_inode = ext4_raw_inode(&iloc);
5016 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5017 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5018 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5019 if (!(test_opt(inode->i_sb, NO_UID32))) {
5020 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5021 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5023 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5025 ei->i_state_flags = 0;
5026 ei->i_dir_start_lookup = 0;
5027 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5028 /* We now have enough fields to check if the inode was active or not.
5029 * This is needed because nfsd might try to access dead inodes
5030 * the test is that same one that e2fsck uses
5031 * NeilBrown 1999oct15
5033 if (inode->i_nlink == 0) {
5034 if (inode->i_mode == 0 ||
5035 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5036 /* this inode is deleted */
5037 ret = -ESTALE;
5038 goto bad_inode;
5040 /* The only unlinked inodes we let through here have
5041 * valid i_mode and are being read by the orphan
5042 * recovery code: that's fine, we're about to complete
5043 * the process of deleting those. */
5045 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5046 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5047 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5048 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5049 ei->i_file_acl |=
5050 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5051 inode->i_size = ext4_isize(raw_inode);
5052 ei->i_disksize = inode->i_size;
5053 #ifdef CONFIG_QUOTA
5054 ei->i_reserved_quota = 0;
5055 #endif
5056 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5057 ei->i_block_group = iloc.block_group;
5058 ei->i_last_alloc_group = ~0;
5060 * NOTE! The in-memory inode i_data array is in little-endian order
5061 * even on big-endian machines: we do NOT byteswap the block numbers!
5063 for (block = 0; block < EXT4_N_BLOCKS; block++)
5064 ei->i_data[block] = raw_inode->i_block[block];
5065 INIT_LIST_HEAD(&ei->i_orphan);
5068 * Set transaction id's of transactions that have to be committed
5069 * to finish f[data]sync. We set them to currently running transaction
5070 * as we cannot be sure that the inode or some of its metadata isn't
5071 * part of the transaction - the inode could have been reclaimed and
5072 * now it is reread from disk.
5074 if (journal) {
5075 transaction_t *transaction;
5076 tid_t tid;
5078 read_lock(&journal->j_state_lock);
5079 if (journal->j_running_transaction)
5080 transaction = journal->j_running_transaction;
5081 else
5082 transaction = journal->j_committing_transaction;
5083 if (transaction)
5084 tid = transaction->t_tid;
5085 else
5086 tid = journal->j_commit_sequence;
5087 read_unlock(&journal->j_state_lock);
5088 ei->i_sync_tid = tid;
5089 ei->i_datasync_tid = tid;
5092 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5093 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5094 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5095 EXT4_INODE_SIZE(inode->i_sb)) {
5096 ret = -EIO;
5097 goto bad_inode;
5099 if (ei->i_extra_isize == 0) {
5100 /* The extra space is currently unused. Use it. */
5101 ei->i_extra_isize = sizeof(struct ext4_inode) -
5102 EXT4_GOOD_OLD_INODE_SIZE;
5103 } else {
5104 __le32 *magic = (void *)raw_inode +
5105 EXT4_GOOD_OLD_INODE_SIZE +
5106 ei->i_extra_isize;
5107 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5108 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5110 } else
5111 ei->i_extra_isize = 0;
5113 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5114 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5115 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5116 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5118 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5119 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5120 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5121 inode->i_version |=
5122 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5125 ret = 0;
5126 if (ei->i_file_acl &&
5127 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5128 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5129 ei->i_file_acl);
5130 ret = -EIO;
5131 goto bad_inode;
5132 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5133 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5134 (S_ISLNK(inode->i_mode) &&
5135 !ext4_inode_is_fast_symlink(inode)))
5136 /* Validate extent which is part of inode */
5137 ret = ext4_ext_check_inode(inode);
5138 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5139 (S_ISLNK(inode->i_mode) &&
5140 !ext4_inode_is_fast_symlink(inode))) {
5141 /* Validate block references which are part of inode */
5142 ret = ext4_check_inode_blockref(inode);
5144 if (ret)
5145 goto bad_inode;
5147 if (S_ISREG(inode->i_mode)) {
5148 inode->i_op = &ext4_file_inode_operations;
5149 inode->i_fop = &ext4_file_operations;
5150 ext4_set_aops(inode);
5151 } else if (S_ISDIR(inode->i_mode)) {
5152 inode->i_op = &ext4_dir_inode_operations;
5153 inode->i_fop = &ext4_dir_operations;
5154 } else if (S_ISLNK(inode->i_mode)) {
5155 if (ext4_inode_is_fast_symlink(inode)) {
5156 inode->i_op = &ext4_fast_symlink_inode_operations;
5157 nd_terminate_link(ei->i_data, inode->i_size,
5158 sizeof(ei->i_data) - 1);
5159 } else {
5160 inode->i_op = &ext4_symlink_inode_operations;
5161 ext4_set_aops(inode);
5163 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5164 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5165 inode->i_op = &ext4_special_inode_operations;
5166 if (raw_inode->i_block[0])
5167 init_special_inode(inode, inode->i_mode,
5168 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5169 else
5170 init_special_inode(inode, inode->i_mode,
5171 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5172 } else {
5173 ret = -EIO;
5174 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5175 goto bad_inode;
5177 brelse(iloc.bh);
5178 ext4_set_inode_flags(inode);
5179 unlock_new_inode(inode);
5180 return inode;
5182 bad_inode:
5183 brelse(iloc.bh);
5184 iget_failed(inode);
5185 return ERR_PTR(ret);
5188 static int ext4_inode_blocks_set(handle_t *handle,
5189 struct ext4_inode *raw_inode,
5190 struct ext4_inode_info *ei)
5192 struct inode *inode = &(ei->vfs_inode);
5193 u64 i_blocks = inode->i_blocks;
5194 struct super_block *sb = inode->i_sb;
5196 if (i_blocks <= ~0U) {
5198 * i_blocks can be represnted in a 32 bit variable
5199 * as multiple of 512 bytes
5201 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5202 raw_inode->i_blocks_high = 0;
5203 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5204 return 0;
5206 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5207 return -EFBIG;
5209 if (i_blocks <= 0xffffffffffffULL) {
5211 * i_blocks can be represented in a 48 bit variable
5212 * as multiple of 512 bytes
5214 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5215 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5216 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5217 } else {
5218 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5219 /* i_block is stored in file system block size */
5220 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5221 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5222 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5224 return 0;
5228 * Post the struct inode info into an on-disk inode location in the
5229 * buffer-cache. This gobbles the caller's reference to the
5230 * buffer_head in the inode location struct.
5232 * The caller must have write access to iloc->bh.
5234 static int ext4_do_update_inode(handle_t *handle,
5235 struct inode *inode,
5236 struct ext4_iloc *iloc)
5238 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5239 struct ext4_inode_info *ei = EXT4_I(inode);
5240 struct buffer_head *bh = iloc->bh;
5241 int err = 0, rc, block;
5243 /* For fields not not tracking in the in-memory inode,
5244 * initialise them to zero for new inodes. */
5245 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5246 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5248 ext4_get_inode_flags(ei);
5249 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5250 if (!(test_opt(inode->i_sb, NO_UID32))) {
5251 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5252 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5254 * Fix up interoperability with old kernels. Otherwise, old inodes get
5255 * re-used with the upper 16 bits of the uid/gid intact
5257 if (!ei->i_dtime) {
5258 raw_inode->i_uid_high =
5259 cpu_to_le16(high_16_bits(inode->i_uid));
5260 raw_inode->i_gid_high =
5261 cpu_to_le16(high_16_bits(inode->i_gid));
5262 } else {
5263 raw_inode->i_uid_high = 0;
5264 raw_inode->i_gid_high = 0;
5266 } else {
5267 raw_inode->i_uid_low =
5268 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5269 raw_inode->i_gid_low =
5270 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5271 raw_inode->i_uid_high = 0;
5272 raw_inode->i_gid_high = 0;
5274 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5276 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5277 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5278 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5279 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5281 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5282 goto out_brelse;
5283 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5284 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5285 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5286 cpu_to_le32(EXT4_OS_HURD))
5287 raw_inode->i_file_acl_high =
5288 cpu_to_le16(ei->i_file_acl >> 32);
5289 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5290 ext4_isize_set(raw_inode, ei->i_disksize);
5291 if (ei->i_disksize > 0x7fffffffULL) {
5292 struct super_block *sb = inode->i_sb;
5293 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5294 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5295 EXT4_SB(sb)->s_es->s_rev_level ==
5296 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5297 /* If this is the first large file
5298 * created, add a flag to the superblock.
5300 err = ext4_journal_get_write_access(handle,
5301 EXT4_SB(sb)->s_sbh);
5302 if (err)
5303 goto out_brelse;
5304 ext4_update_dynamic_rev(sb);
5305 EXT4_SET_RO_COMPAT_FEATURE(sb,
5306 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5307 sb->s_dirt = 1;
5308 ext4_handle_sync(handle);
5309 err = ext4_handle_dirty_metadata(handle, NULL,
5310 EXT4_SB(sb)->s_sbh);
5313 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5314 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5315 if (old_valid_dev(inode->i_rdev)) {
5316 raw_inode->i_block[0] =
5317 cpu_to_le32(old_encode_dev(inode->i_rdev));
5318 raw_inode->i_block[1] = 0;
5319 } else {
5320 raw_inode->i_block[0] = 0;
5321 raw_inode->i_block[1] =
5322 cpu_to_le32(new_encode_dev(inode->i_rdev));
5323 raw_inode->i_block[2] = 0;
5325 } else
5326 for (block = 0; block < EXT4_N_BLOCKS; block++)
5327 raw_inode->i_block[block] = ei->i_data[block];
5329 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5330 if (ei->i_extra_isize) {
5331 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5332 raw_inode->i_version_hi =
5333 cpu_to_le32(inode->i_version >> 32);
5334 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5337 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5338 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5339 if (!err)
5340 err = rc;
5341 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5343 ext4_update_inode_fsync_trans(handle, inode, 0);
5344 out_brelse:
5345 brelse(bh);
5346 ext4_std_error(inode->i_sb, err);
5347 return err;
5351 * ext4_write_inode()
5353 * We are called from a few places:
5355 * - Within generic_file_write() for O_SYNC files.
5356 * Here, there will be no transaction running. We wait for any running
5357 * trasnaction to commit.
5359 * - Within sys_sync(), kupdate and such.
5360 * We wait on commit, if tol to.
5362 * - Within prune_icache() (PF_MEMALLOC == true)
5363 * Here we simply return. We can't afford to block kswapd on the
5364 * journal commit.
5366 * In all cases it is actually safe for us to return without doing anything,
5367 * because the inode has been copied into a raw inode buffer in
5368 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5369 * knfsd.
5371 * Note that we are absolutely dependent upon all inode dirtiers doing the
5372 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5373 * which we are interested.
5375 * It would be a bug for them to not do this. The code:
5377 * mark_inode_dirty(inode)
5378 * stuff();
5379 * inode->i_size = expr;
5381 * is in error because a kswapd-driven write_inode() could occur while
5382 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5383 * will no longer be on the superblock's dirty inode list.
5385 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5387 int err;
5389 if (current->flags & PF_MEMALLOC)
5390 return 0;
5392 if (EXT4_SB(inode->i_sb)->s_journal) {
5393 if (ext4_journal_current_handle()) {
5394 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5395 dump_stack();
5396 return -EIO;
5399 if (wbc->sync_mode != WB_SYNC_ALL)
5400 return 0;
5402 err = ext4_force_commit(inode->i_sb);
5403 } else {
5404 struct ext4_iloc iloc;
5406 err = __ext4_get_inode_loc(inode, &iloc, 0);
5407 if (err)
5408 return err;
5409 if (wbc->sync_mode == WB_SYNC_ALL)
5410 sync_dirty_buffer(iloc.bh);
5411 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5412 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5413 "IO error syncing inode");
5414 err = -EIO;
5416 brelse(iloc.bh);
5418 return err;
5422 * ext4_setattr()
5424 * Called from notify_change.
5426 * We want to trap VFS attempts to truncate the file as soon as
5427 * possible. In particular, we want to make sure that when the VFS
5428 * shrinks i_size, we put the inode on the orphan list and modify
5429 * i_disksize immediately, so that during the subsequent flushing of
5430 * dirty pages and freeing of disk blocks, we can guarantee that any
5431 * commit will leave the blocks being flushed in an unused state on
5432 * disk. (On recovery, the inode will get truncated and the blocks will
5433 * be freed, so we have a strong guarantee that no future commit will
5434 * leave these blocks visible to the user.)
5436 * Another thing we have to assure is that if we are in ordered mode
5437 * and inode is still attached to the committing transaction, we must
5438 * we start writeout of all the dirty pages which are being truncated.
5439 * This way we are sure that all the data written in the previous
5440 * transaction are already on disk (truncate waits for pages under
5441 * writeback).
5443 * Called with inode->i_mutex down.
5445 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5447 struct inode *inode = dentry->d_inode;
5448 int error, rc = 0;
5449 const unsigned int ia_valid = attr->ia_valid;
5451 error = inode_change_ok(inode, attr);
5452 if (error)
5453 return error;
5455 if (is_quota_modification(inode, attr))
5456 dquot_initialize(inode);
5457 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5458 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5459 handle_t *handle;
5461 /* (user+group)*(old+new) structure, inode write (sb,
5462 * inode block, ? - but truncate inode update has it) */
5463 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5464 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5465 if (IS_ERR(handle)) {
5466 error = PTR_ERR(handle);
5467 goto err_out;
5469 error = dquot_transfer(inode, attr);
5470 if (error) {
5471 ext4_journal_stop(handle);
5472 return error;
5474 /* Update corresponding info in inode so that everything is in
5475 * one transaction */
5476 if (attr->ia_valid & ATTR_UID)
5477 inode->i_uid = attr->ia_uid;
5478 if (attr->ia_valid & ATTR_GID)
5479 inode->i_gid = attr->ia_gid;
5480 error = ext4_mark_inode_dirty(handle, inode);
5481 ext4_journal_stop(handle);
5484 if (attr->ia_valid & ATTR_SIZE) {
5485 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5488 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5489 return -EFBIG;
5493 if (S_ISREG(inode->i_mode) &&
5494 attr->ia_valid & ATTR_SIZE &&
5495 (attr->ia_size < inode->i_size ||
5496 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5497 handle_t *handle;
5499 handle = ext4_journal_start(inode, 3);
5500 if (IS_ERR(handle)) {
5501 error = PTR_ERR(handle);
5502 goto err_out;
5505 error = ext4_orphan_add(handle, inode);
5506 EXT4_I(inode)->i_disksize = attr->ia_size;
5507 rc = ext4_mark_inode_dirty(handle, inode);
5508 if (!error)
5509 error = rc;
5510 ext4_journal_stop(handle);
5512 if (ext4_should_order_data(inode)) {
5513 error = ext4_begin_ordered_truncate(inode,
5514 attr->ia_size);
5515 if (error) {
5516 /* Do as much error cleanup as possible */
5517 handle = ext4_journal_start(inode, 3);
5518 if (IS_ERR(handle)) {
5519 ext4_orphan_del(NULL, inode);
5520 goto err_out;
5522 ext4_orphan_del(handle, inode);
5523 ext4_journal_stop(handle);
5524 goto err_out;
5527 /* ext4_truncate will clear the flag */
5528 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5529 ext4_truncate(inode);
5532 if ((attr->ia_valid & ATTR_SIZE) &&
5533 attr->ia_size != i_size_read(inode))
5534 rc = vmtruncate(inode, attr->ia_size);
5536 if (!rc) {
5537 setattr_copy(inode, attr);
5538 mark_inode_dirty(inode);
5542 * If the call to ext4_truncate failed to get a transaction handle at
5543 * all, we need to clean up the in-core orphan list manually.
5545 if (inode->i_nlink)
5546 ext4_orphan_del(NULL, inode);
5548 if (!rc && (ia_valid & ATTR_MODE))
5549 rc = ext4_acl_chmod(inode);
5551 err_out:
5552 ext4_std_error(inode->i_sb, error);
5553 if (!error)
5554 error = rc;
5555 return error;
5558 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5559 struct kstat *stat)
5561 struct inode *inode;
5562 unsigned long delalloc_blocks;
5564 inode = dentry->d_inode;
5565 generic_fillattr(inode, stat);
5568 * We can't update i_blocks if the block allocation is delayed
5569 * otherwise in the case of system crash before the real block
5570 * allocation is done, we will have i_blocks inconsistent with
5571 * on-disk file blocks.
5572 * We always keep i_blocks updated together with real
5573 * allocation. But to not confuse with user, stat
5574 * will return the blocks that include the delayed allocation
5575 * blocks for this file.
5577 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5578 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5579 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5581 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5582 return 0;
5585 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5586 int chunk)
5588 int indirects;
5590 /* if nrblocks are contiguous */
5591 if (chunk) {
5593 * With N contiguous data blocks, it need at most
5594 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5595 * 2 dindirect blocks
5596 * 1 tindirect block
5598 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5599 return indirects + 3;
5602 * if nrblocks are not contiguous, worse case, each block touch
5603 * a indirect block, and each indirect block touch a double indirect
5604 * block, plus a triple indirect block
5606 indirects = nrblocks * 2 + 1;
5607 return indirects;
5610 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5612 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5613 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5614 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5618 * Account for index blocks, block groups bitmaps and block group
5619 * descriptor blocks if modify datablocks and index blocks
5620 * worse case, the indexs blocks spread over different block groups
5622 * If datablocks are discontiguous, they are possible to spread over
5623 * different block groups too. If they are contiuguous, with flexbg,
5624 * they could still across block group boundary.
5626 * Also account for superblock, inode, quota and xattr blocks
5628 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5630 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5631 int gdpblocks;
5632 int idxblocks;
5633 int ret = 0;
5636 * How many index blocks need to touch to modify nrblocks?
5637 * The "Chunk" flag indicating whether the nrblocks is
5638 * physically contiguous on disk
5640 * For Direct IO and fallocate, they calls get_block to allocate
5641 * one single extent at a time, so they could set the "Chunk" flag
5643 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5645 ret = idxblocks;
5648 * Now let's see how many group bitmaps and group descriptors need
5649 * to account
5651 groups = idxblocks;
5652 if (chunk)
5653 groups += 1;
5654 else
5655 groups += nrblocks;
5657 gdpblocks = groups;
5658 if (groups > ngroups)
5659 groups = ngroups;
5660 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5661 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5663 /* bitmaps and block group descriptor blocks */
5664 ret += groups + gdpblocks;
5666 /* Blocks for super block, inode, quota and xattr blocks */
5667 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5669 return ret;
5673 * Calulate the total number of credits to reserve to fit
5674 * the modification of a single pages into a single transaction,
5675 * which may include multiple chunks of block allocations.
5677 * This could be called via ext4_write_begin()
5679 * We need to consider the worse case, when
5680 * one new block per extent.
5682 int ext4_writepage_trans_blocks(struct inode *inode)
5684 int bpp = ext4_journal_blocks_per_page(inode);
5685 int ret;
5687 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5689 /* Account for data blocks for journalled mode */
5690 if (ext4_should_journal_data(inode))
5691 ret += bpp;
5692 return ret;
5696 * Calculate the journal credits for a chunk of data modification.
5698 * This is called from DIO, fallocate or whoever calling
5699 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5701 * journal buffers for data blocks are not included here, as DIO
5702 * and fallocate do no need to journal data buffers.
5704 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5706 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5710 * The caller must have previously called ext4_reserve_inode_write().
5711 * Give this, we know that the caller already has write access to iloc->bh.
5713 int ext4_mark_iloc_dirty(handle_t *handle,
5714 struct inode *inode, struct ext4_iloc *iloc)
5716 int err = 0;
5718 if (test_opt(inode->i_sb, I_VERSION))
5719 inode_inc_iversion(inode);
5721 /* the do_update_inode consumes one bh->b_count */
5722 get_bh(iloc->bh);
5724 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5725 err = ext4_do_update_inode(handle, inode, iloc);
5726 put_bh(iloc->bh);
5727 return err;
5731 * On success, We end up with an outstanding reference count against
5732 * iloc->bh. This _must_ be cleaned up later.
5736 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5737 struct ext4_iloc *iloc)
5739 int err;
5741 err = ext4_get_inode_loc(inode, iloc);
5742 if (!err) {
5743 BUFFER_TRACE(iloc->bh, "get_write_access");
5744 err = ext4_journal_get_write_access(handle, iloc->bh);
5745 if (err) {
5746 brelse(iloc->bh);
5747 iloc->bh = NULL;
5750 ext4_std_error(inode->i_sb, err);
5751 return err;
5755 * Expand an inode by new_extra_isize bytes.
5756 * Returns 0 on success or negative error number on failure.
5758 static int ext4_expand_extra_isize(struct inode *inode,
5759 unsigned int new_extra_isize,
5760 struct ext4_iloc iloc,
5761 handle_t *handle)
5763 struct ext4_inode *raw_inode;
5764 struct ext4_xattr_ibody_header *header;
5766 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5767 return 0;
5769 raw_inode = ext4_raw_inode(&iloc);
5771 header = IHDR(inode, raw_inode);
5773 /* No extended attributes present */
5774 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5775 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5776 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5777 new_extra_isize);
5778 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5779 return 0;
5782 /* try to expand with EAs present */
5783 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5784 raw_inode, handle);
5788 * What we do here is to mark the in-core inode as clean with respect to inode
5789 * dirtiness (it may still be data-dirty).
5790 * This means that the in-core inode may be reaped by prune_icache
5791 * without having to perform any I/O. This is a very good thing,
5792 * because *any* task may call prune_icache - even ones which
5793 * have a transaction open against a different journal.
5795 * Is this cheating? Not really. Sure, we haven't written the
5796 * inode out, but prune_icache isn't a user-visible syncing function.
5797 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5798 * we start and wait on commits.
5800 * Is this efficient/effective? Well, we're being nice to the system
5801 * by cleaning up our inodes proactively so they can be reaped
5802 * without I/O. But we are potentially leaving up to five seconds'
5803 * worth of inodes floating about which prune_icache wants us to
5804 * write out. One way to fix that would be to get prune_icache()
5805 * to do a write_super() to free up some memory. It has the desired
5806 * effect.
5808 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5810 struct ext4_iloc iloc;
5811 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5812 static unsigned int mnt_count;
5813 int err, ret;
5815 might_sleep();
5816 err = ext4_reserve_inode_write(handle, inode, &iloc);
5817 if (ext4_handle_valid(handle) &&
5818 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5819 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5821 * We need extra buffer credits since we may write into EA block
5822 * with this same handle. If journal_extend fails, then it will
5823 * only result in a minor loss of functionality for that inode.
5824 * If this is felt to be critical, then e2fsck should be run to
5825 * force a large enough s_min_extra_isize.
5827 if ((jbd2_journal_extend(handle,
5828 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5829 ret = ext4_expand_extra_isize(inode,
5830 sbi->s_want_extra_isize,
5831 iloc, handle);
5832 if (ret) {
5833 ext4_set_inode_state(inode,
5834 EXT4_STATE_NO_EXPAND);
5835 if (mnt_count !=
5836 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5837 ext4_warning(inode->i_sb,
5838 "Unable to expand inode %lu. Delete"
5839 " some EAs or run e2fsck.",
5840 inode->i_ino);
5841 mnt_count =
5842 le16_to_cpu(sbi->s_es->s_mnt_count);
5847 if (!err)
5848 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5849 return err;
5853 * ext4_dirty_inode() is called from __mark_inode_dirty()
5855 * We're really interested in the case where a file is being extended.
5856 * i_size has been changed by generic_commit_write() and we thus need
5857 * to include the updated inode in the current transaction.
5859 * Also, dquot_alloc_block() will always dirty the inode when blocks
5860 * are allocated to the file.
5862 * If the inode is marked synchronous, we don't honour that here - doing
5863 * so would cause a commit on atime updates, which we don't bother doing.
5864 * We handle synchronous inodes at the highest possible level.
5866 void ext4_dirty_inode(struct inode *inode)
5868 handle_t *handle;
5870 handle = ext4_journal_start(inode, 2);
5871 if (IS_ERR(handle))
5872 goto out;
5874 ext4_mark_inode_dirty(handle, inode);
5876 ext4_journal_stop(handle);
5877 out:
5878 return;
5881 #if 0
5883 * Bind an inode's backing buffer_head into this transaction, to prevent
5884 * it from being flushed to disk early. Unlike
5885 * ext4_reserve_inode_write, this leaves behind no bh reference and
5886 * returns no iloc structure, so the caller needs to repeat the iloc
5887 * lookup to mark the inode dirty later.
5889 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5891 struct ext4_iloc iloc;
5893 int err = 0;
5894 if (handle) {
5895 err = ext4_get_inode_loc(inode, &iloc);
5896 if (!err) {
5897 BUFFER_TRACE(iloc.bh, "get_write_access");
5898 err = jbd2_journal_get_write_access(handle, iloc.bh);
5899 if (!err)
5900 err = ext4_handle_dirty_metadata(handle,
5901 NULL,
5902 iloc.bh);
5903 brelse(iloc.bh);
5906 ext4_std_error(inode->i_sb, err);
5907 return err;
5909 #endif
5911 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5913 journal_t *journal;
5914 handle_t *handle;
5915 int err;
5918 * We have to be very careful here: changing a data block's
5919 * journaling status dynamically is dangerous. If we write a
5920 * data block to the journal, change the status and then delete
5921 * that block, we risk forgetting to revoke the old log record
5922 * from the journal and so a subsequent replay can corrupt data.
5923 * So, first we make sure that the journal is empty and that
5924 * nobody is changing anything.
5927 journal = EXT4_JOURNAL(inode);
5928 if (!journal)
5929 return 0;
5930 if (is_journal_aborted(journal))
5931 return -EROFS;
5933 jbd2_journal_lock_updates(journal);
5934 jbd2_journal_flush(journal);
5937 * OK, there are no updates running now, and all cached data is
5938 * synced to disk. We are now in a completely consistent state
5939 * which doesn't have anything in the journal, and we know that
5940 * no filesystem updates are running, so it is safe to modify
5941 * the inode's in-core data-journaling state flag now.
5944 if (val)
5945 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5946 else
5947 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5948 ext4_set_aops(inode);
5950 jbd2_journal_unlock_updates(journal);
5952 /* Finally we can mark the inode as dirty. */
5954 handle = ext4_journal_start(inode, 1);
5955 if (IS_ERR(handle))
5956 return PTR_ERR(handle);
5958 err = ext4_mark_inode_dirty(handle, inode);
5959 ext4_handle_sync(handle);
5960 ext4_journal_stop(handle);
5961 ext4_std_error(inode->i_sb, err);
5963 return err;
5966 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5968 return !buffer_mapped(bh);
5971 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5973 struct page *page = vmf->page;
5974 loff_t size;
5975 unsigned long len;
5976 int ret = -EINVAL;
5977 void *fsdata;
5978 struct file *file = vma->vm_file;
5979 struct inode *inode = file->f_path.dentry->d_inode;
5980 struct address_space *mapping = inode->i_mapping;
5983 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5984 * get i_mutex because we are already holding mmap_sem.
5986 down_read(&inode->i_alloc_sem);
5987 size = i_size_read(inode);
5988 if (page->mapping != mapping || size <= page_offset(page)
5989 || !PageUptodate(page)) {
5990 /* page got truncated from under us? */
5991 goto out_unlock;
5993 ret = 0;
5994 if (PageMappedToDisk(page))
5995 goto out_unlock;
5997 if (page->index == size >> PAGE_CACHE_SHIFT)
5998 len = size & ~PAGE_CACHE_MASK;
5999 else
6000 len = PAGE_CACHE_SIZE;
6002 lock_page(page);
6004 * return if we have all the buffers mapped. This avoid
6005 * the need to call write_begin/write_end which does a
6006 * journal_start/journal_stop which can block and take
6007 * long time
6009 if (page_has_buffers(page)) {
6010 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6011 ext4_bh_unmapped)) {
6012 unlock_page(page);
6013 goto out_unlock;
6016 unlock_page(page);
6018 * OK, we need to fill the hole... Do write_begin write_end
6019 * to do block allocation/reservation.We are not holding
6020 * inode.i__mutex here. That allow * parallel write_begin,
6021 * write_end call. lock_page prevent this from happening
6022 * on the same page though
6024 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6025 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6026 if (ret < 0)
6027 goto out_unlock;
6028 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6029 len, len, page, fsdata);
6030 if (ret < 0)
6031 goto out_unlock;
6032 ret = 0;
6033 out_unlock:
6034 if (ret)
6035 ret = VM_FAULT_SIGBUS;
6036 up_read(&inode->i_alloc_sem);
6037 return ret;