EVM: prevent array underflow in evm_write_xattrs()
[linux-2.6/btrfs-unstable.git] / lib / rhashtable.c
blob2b2b79974b614a94e5325e8c2271804cb27069aa
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
32 #define HASH_DEFAULT_SIZE 64UL
33 #define HASH_MIN_SIZE 4U
34 #define BUCKET_LOCKS_PER_CPU 32UL
36 union nested_table {
37 union nested_table __rcu *table;
38 struct rhash_head __rcu *bucket;
41 static u32 head_hashfn(struct rhashtable *ht,
42 const struct bucket_table *tbl,
43 const struct rhash_head *he)
45 return rht_head_hashfn(ht, tbl, he, ht->p);
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
53 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
59 spinlock_t *lock = rht_bucket_lock(tbl, hash);
61 return (debug_locks) ? lockdep_is_held(lock) : 1;
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
68 static void nested_table_free(union nested_table *ntbl, unsigned int size)
70 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
71 const unsigned int len = 1 << shift;
72 unsigned int i;
74 ntbl = rcu_dereference_raw(ntbl->table);
75 if (!ntbl)
76 return;
78 if (size > len) {
79 size >>= shift;
80 for (i = 0; i < len; i++)
81 nested_table_free(ntbl + i, size);
84 kfree(ntbl);
87 static void nested_bucket_table_free(const struct bucket_table *tbl)
89 unsigned int size = tbl->size >> tbl->nest;
90 unsigned int len = 1 << tbl->nest;
91 union nested_table *ntbl;
92 unsigned int i;
94 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
96 for (i = 0; i < len; i++)
97 nested_table_free(ntbl + i, size);
99 kfree(ntbl);
102 static void bucket_table_free(const struct bucket_table *tbl)
104 if (tbl->nest)
105 nested_bucket_table_free(tbl);
107 free_bucket_spinlocks(tbl->locks);
108 kvfree(tbl);
111 static void bucket_table_free_rcu(struct rcu_head *head)
113 bucket_table_free(container_of(head, struct bucket_table, rcu));
116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117 union nested_table __rcu **prev,
118 unsigned int shifted,
119 unsigned int nhash)
121 union nested_table *ntbl;
122 int i;
124 ntbl = rcu_dereference(*prev);
125 if (ntbl)
126 return ntbl;
128 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
130 if (ntbl && shifted) {
131 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
132 INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
133 (i << shifted) | nhash);
136 rcu_assign_pointer(*prev, ntbl);
138 return ntbl;
141 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
142 size_t nbuckets,
143 gfp_t gfp)
145 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
146 struct bucket_table *tbl;
147 size_t size;
149 if (nbuckets < (1 << (shift + 1)))
150 return NULL;
152 size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
154 tbl = kzalloc(size, gfp);
155 if (!tbl)
156 return NULL;
158 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
159 0, 0)) {
160 kfree(tbl);
161 return NULL;
164 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
166 return tbl;
169 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
170 size_t nbuckets,
171 gfp_t gfp)
173 struct bucket_table *tbl = NULL;
174 size_t size, max_locks;
175 int i;
177 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
178 if (gfp != GFP_KERNEL)
179 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
180 else
181 tbl = kvzalloc(size, gfp);
183 size = nbuckets;
185 if (tbl == NULL && gfp != GFP_KERNEL) {
186 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
187 nbuckets = 0;
189 if (tbl == NULL)
190 return NULL;
192 tbl->size = size;
194 max_locks = size >> 1;
195 if (tbl->nest)
196 max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
198 if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
199 ht->p.locks_mul, gfp) < 0) {
200 bucket_table_free(tbl);
201 return NULL;
204 INIT_LIST_HEAD(&tbl->walkers);
206 tbl->hash_rnd = get_random_u32();
208 for (i = 0; i < nbuckets; i++)
209 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
211 return tbl;
214 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
215 struct bucket_table *tbl)
217 struct bucket_table *new_tbl;
219 do {
220 new_tbl = tbl;
221 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
222 } while (tbl);
224 return new_tbl;
227 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
229 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
230 struct bucket_table *new_tbl = rhashtable_last_table(ht,
231 rht_dereference_rcu(old_tbl->future_tbl, ht));
232 struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
233 int err = -EAGAIN;
234 struct rhash_head *head, *next, *entry;
235 spinlock_t *new_bucket_lock;
236 unsigned int new_hash;
238 if (new_tbl->nest)
239 goto out;
241 err = -ENOENT;
243 rht_for_each(entry, old_tbl, old_hash) {
244 err = 0;
245 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
247 if (rht_is_a_nulls(next))
248 break;
250 pprev = &entry->next;
253 if (err)
254 goto out;
256 new_hash = head_hashfn(ht, new_tbl, entry);
258 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
260 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
261 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
262 new_tbl, new_hash);
264 RCU_INIT_POINTER(entry->next, head);
266 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
267 spin_unlock(new_bucket_lock);
269 rcu_assign_pointer(*pprev, next);
271 out:
272 return err;
275 static int rhashtable_rehash_chain(struct rhashtable *ht,
276 unsigned int old_hash)
278 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
279 spinlock_t *old_bucket_lock;
280 int err;
282 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
284 spin_lock_bh(old_bucket_lock);
285 while (!(err = rhashtable_rehash_one(ht, old_hash)))
288 if (err == -ENOENT) {
289 old_tbl->rehash++;
290 err = 0;
292 spin_unlock_bh(old_bucket_lock);
294 return err;
297 static int rhashtable_rehash_attach(struct rhashtable *ht,
298 struct bucket_table *old_tbl,
299 struct bucket_table *new_tbl)
301 /* Protect future_tbl using the first bucket lock. */
302 spin_lock_bh(old_tbl->locks);
304 /* Did somebody beat us to it? */
305 if (rcu_access_pointer(old_tbl->future_tbl)) {
306 spin_unlock_bh(old_tbl->locks);
307 return -EEXIST;
310 /* Make insertions go into the new, empty table right away. Deletions
311 * and lookups will be attempted in both tables until we synchronize.
313 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
315 spin_unlock_bh(old_tbl->locks);
317 return 0;
320 static int rhashtable_rehash_table(struct rhashtable *ht)
322 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
323 struct bucket_table *new_tbl;
324 struct rhashtable_walker *walker;
325 unsigned int old_hash;
326 int err;
328 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
329 if (!new_tbl)
330 return 0;
332 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
333 err = rhashtable_rehash_chain(ht, old_hash);
334 if (err)
335 return err;
336 cond_resched();
339 /* Publish the new table pointer. */
340 rcu_assign_pointer(ht->tbl, new_tbl);
342 spin_lock(&ht->lock);
343 list_for_each_entry(walker, &old_tbl->walkers, list)
344 walker->tbl = NULL;
345 spin_unlock(&ht->lock);
347 /* Wait for readers. All new readers will see the new
348 * table, and thus no references to the old table will
349 * remain.
351 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
353 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
356 static int rhashtable_rehash_alloc(struct rhashtable *ht,
357 struct bucket_table *old_tbl,
358 unsigned int size)
360 struct bucket_table *new_tbl;
361 int err;
363 ASSERT_RHT_MUTEX(ht);
365 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
366 if (new_tbl == NULL)
367 return -ENOMEM;
369 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
370 if (err)
371 bucket_table_free(new_tbl);
373 return err;
377 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
378 * @ht: the hash table to shrink
380 * This function shrinks the hash table to fit, i.e., the smallest
381 * size would not cause it to expand right away automatically.
383 * The caller must ensure that no concurrent resizing occurs by holding
384 * ht->mutex.
386 * The caller must ensure that no concurrent table mutations take place.
387 * It is however valid to have concurrent lookups if they are RCU protected.
389 * It is valid to have concurrent insertions and deletions protected by per
390 * bucket locks or concurrent RCU protected lookups and traversals.
392 static int rhashtable_shrink(struct rhashtable *ht)
394 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
395 unsigned int nelems = atomic_read(&ht->nelems);
396 unsigned int size = 0;
398 if (nelems)
399 size = roundup_pow_of_two(nelems * 3 / 2);
400 if (size < ht->p.min_size)
401 size = ht->p.min_size;
403 if (old_tbl->size <= size)
404 return 0;
406 if (rht_dereference(old_tbl->future_tbl, ht))
407 return -EEXIST;
409 return rhashtable_rehash_alloc(ht, old_tbl, size);
412 static void rht_deferred_worker(struct work_struct *work)
414 struct rhashtable *ht;
415 struct bucket_table *tbl;
416 int err = 0;
418 ht = container_of(work, struct rhashtable, run_work);
419 mutex_lock(&ht->mutex);
421 tbl = rht_dereference(ht->tbl, ht);
422 tbl = rhashtable_last_table(ht, tbl);
424 if (rht_grow_above_75(ht, tbl))
425 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
426 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
427 err = rhashtable_shrink(ht);
428 else if (tbl->nest)
429 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
431 if (!err)
432 err = rhashtable_rehash_table(ht);
434 mutex_unlock(&ht->mutex);
436 if (err)
437 schedule_work(&ht->run_work);
440 static int rhashtable_insert_rehash(struct rhashtable *ht,
441 struct bucket_table *tbl)
443 struct bucket_table *old_tbl;
444 struct bucket_table *new_tbl;
445 unsigned int size;
446 int err;
448 old_tbl = rht_dereference_rcu(ht->tbl, ht);
450 size = tbl->size;
452 err = -EBUSY;
454 if (rht_grow_above_75(ht, tbl))
455 size *= 2;
456 /* Do not schedule more than one rehash */
457 else if (old_tbl != tbl)
458 goto fail;
460 err = -ENOMEM;
462 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
463 if (new_tbl == NULL)
464 goto fail;
466 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
467 if (err) {
468 bucket_table_free(new_tbl);
469 if (err == -EEXIST)
470 err = 0;
471 } else
472 schedule_work(&ht->run_work);
474 return err;
476 fail:
477 /* Do not fail the insert if someone else did a rehash. */
478 if (likely(rcu_dereference_raw(tbl->future_tbl)))
479 return 0;
481 /* Schedule async rehash to retry allocation in process context. */
482 if (err == -ENOMEM)
483 schedule_work(&ht->run_work);
485 return err;
488 static void *rhashtable_lookup_one(struct rhashtable *ht,
489 struct bucket_table *tbl, unsigned int hash,
490 const void *key, struct rhash_head *obj)
492 struct rhashtable_compare_arg arg = {
493 .ht = ht,
494 .key = key,
496 struct rhash_head __rcu **pprev;
497 struct rhash_head *head;
498 int elasticity;
500 elasticity = RHT_ELASTICITY;
501 pprev = rht_bucket_var(tbl, hash);
502 rht_for_each_continue(head, *pprev, tbl, hash) {
503 struct rhlist_head *list;
504 struct rhlist_head *plist;
506 elasticity--;
507 if (!key ||
508 (ht->p.obj_cmpfn ?
509 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
510 rhashtable_compare(&arg, rht_obj(ht, head)))) {
511 pprev = &head->next;
512 continue;
515 if (!ht->rhlist)
516 return rht_obj(ht, head);
518 list = container_of(obj, struct rhlist_head, rhead);
519 plist = container_of(head, struct rhlist_head, rhead);
521 RCU_INIT_POINTER(list->next, plist);
522 head = rht_dereference_bucket(head->next, tbl, hash);
523 RCU_INIT_POINTER(list->rhead.next, head);
524 rcu_assign_pointer(*pprev, obj);
526 return NULL;
529 if (elasticity <= 0)
530 return ERR_PTR(-EAGAIN);
532 return ERR_PTR(-ENOENT);
535 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
536 struct bucket_table *tbl,
537 unsigned int hash,
538 struct rhash_head *obj,
539 void *data)
541 struct rhash_head __rcu **pprev;
542 struct bucket_table *new_tbl;
543 struct rhash_head *head;
545 if (!IS_ERR_OR_NULL(data))
546 return ERR_PTR(-EEXIST);
548 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
549 return ERR_CAST(data);
551 new_tbl = rcu_dereference(tbl->future_tbl);
552 if (new_tbl)
553 return new_tbl;
555 if (PTR_ERR(data) != -ENOENT)
556 return ERR_CAST(data);
558 if (unlikely(rht_grow_above_max(ht, tbl)))
559 return ERR_PTR(-E2BIG);
561 if (unlikely(rht_grow_above_100(ht, tbl)))
562 return ERR_PTR(-EAGAIN);
564 pprev = rht_bucket_insert(ht, tbl, hash);
565 if (!pprev)
566 return ERR_PTR(-ENOMEM);
568 head = rht_dereference_bucket(*pprev, tbl, hash);
570 RCU_INIT_POINTER(obj->next, head);
571 if (ht->rhlist) {
572 struct rhlist_head *list;
574 list = container_of(obj, struct rhlist_head, rhead);
575 RCU_INIT_POINTER(list->next, NULL);
578 rcu_assign_pointer(*pprev, obj);
580 atomic_inc(&ht->nelems);
581 if (rht_grow_above_75(ht, tbl))
582 schedule_work(&ht->run_work);
584 return NULL;
587 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
588 struct rhash_head *obj)
590 struct bucket_table *new_tbl;
591 struct bucket_table *tbl;
592 unsigned int hash;
593 spinlock_t *lock;
594 void *data;
596 tbl = rcu_dereference(ht->tbl);
598 /* All insertions must grab the oldest table containing
599 * the hashed bucket that is yet to be rehashed.
601 for (;;) {
602 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
603 lock = rht_bucket_lock(tbl, hash);
604 spin_lock_bh(lock);
606 if (tbl->rehash <= hash)
607 break;
609 spin_unlock_bh(lock);
610 tbl = rcu_dereference(tbl->future_tbl);
613 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
614 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
615 if (PTR_ERR(new_tbl) != -EEXIST)
616 data = ERR_CAST(new_tbl);
618 while (!IS_ERR_OR_NULL(new_tbl)) {
619 tbl = new_tbl;
620 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
621 spin_lock_nested(rht_bucket_lock(tbl, hash),
622 SINGLE_DEPTH_NESTING);
624 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
625 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
626 if (PTR_ERR(new_tbl) != -EEXIST)
627 data = ERR_CAST(new_tbl);
629 spin_unlock(rht_bucket_lock(tbl, hash));
632 spin_unlock_bh(lock);
634 if (PTR_ERR(data) == -EAGAIN)
635 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
636 -EAGAIN);
638 return data;
641 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
642 struct rhash_head *obj)
644 void *data;
646 do {
647 rcu_read_lock();
648 data = rhashtable_try_insert(ht, key, obj);
649 rcu_read_unlock();
650 } while (PTR_ERR(data) == -EAGAIN);
652 return data;
654 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
657 * rhashtable_walk_enter - Initialise an iterator
658 * @ht: Table to walk over
659 * @iter: Hash table Iterator
661 * This function prepares a hash table walk.
663 * Note that if you restart a walk after rhashtable_walk_stop you
664 * may see the same object twice. Also, you may miss objects if
665 * there are removals in between rhashtable_walk_stop and the next
666 * call to rhashtable_walk_start.
668 * For a completely stable walk you should construct your own data
669 * structure outside the hash table.
671 * This function may sleep so you must not call it from interrupt
672 * context or with spin locks held.
674 * You must call rhashtable_walk_exit after this function returns.
676 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
678 iter->ht = ht;
679 iter->p = NULL;
680 iter->slot = 0;
681 iter->skip = 0;
682 iter->end_of_table = 0;
684 spin_lock(&ht->lock);
685 iter->walker.tbl =
686 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
687 list_add(&iter->walker.list, &iter->walker.tbl->walkers);
688 spin_unlock(&ht->lock);
690 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
693 * rhashtable_walk_exit - Free an iterator
694 * @iter: Hash table Iterator
696 * This function frees resources allocated by rhashtable_walk_init.
698 void rhashtable_walk_exit(struct rhashtable_iter *iter)
700 spin_lock(&iter->ht->lock);
701 if (iter->walker.tbl)
702 list_del(&iter->walker.list);
703 spin_unlock(&iter->ht->lock);
705 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
708 * rhashtable_walk_start_check - Start a hash table walk
709 * @iter: Hash table iterator
711 * Start a hash table walk at the current iterator position. Note that we take
712 * the RCU lock in all cases including when we return an error. So you must
713 * always call rhashtable_walk_stop to clean up.
715 * Returns zero if successful.
717 * Returns -EAGAIN if resize event occured. Note that the iterator
718 * will rewind back to the beginning and you may use it immediately
719 * by calling rhashtable_walk_next.
721 * rhashtable_walk_start is defined as an inline variant that returns
722 * void. This is preferred in cases where the caller would ignore
723 * resize events and always continue.
725 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
726 __acquires(RCU)
728 struct rhashtable *ht = iter->ht;
730 rcu_read_lock();
732 spin_lock(&ht->lock);
733 if (iter->walker.tbl)
734 list_del(&iter->walker.list);
735 spin_unlock(&ht->lock);
737 if (!iter->walker.tbl && !iter->end_of_table) {
738 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
739 return -EAGAIN;
742 return 0;
744 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
747 * __rhashtable_walk_find_next - Find the next element in a table (or the first
748 * one in case of a new walk).
750 * @iter: Hash table iterator
752 * Returns the found object or NULL when the end of the table is reached.
754 * Returns -EAGAIN if resize event occurred.
756 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
758 struct bucket_table *tbl = iter->walker.tbl;
759 struct rhlist_head *list = iter->list;
760 struct rhashtable *ht = iter->ht;
761 struct rhash_head *p = iter->p;
762 bool rhlist = ht->rhlist;
764 if (!tbl)
765 return NULL;
767 for (; iter->slot < tbl->size; iter->slot++) {
768 int skip = iter->skip;
770 rht_for_each_rcu(p, tbl, iter->slot) {
771 if (rhlist) {
772 list = container_of(p, struct rhlist_head,
773 rhead);
774 do {
775 if (!skip)
776 goto next;
777 skip--;
778 list = rcu_dereference(list->next);
779 } while (list);
781 continue;
783 if (!skip)
784 break;
785 skip--;
788 next:
789 if (!rht_is_a_nulls(p)) {
790 iter->skip++;
791 iter->p = p;
792 iter->list = list;
793 return rht_obj(ht, rhlist ? &list->rhead : p);
796 iter->skip = 0;
799 iter->p = NULL;
801 /* Ensure we see any new tables. */
802 smp_rmb();
804 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
805 if (iter->walker.tbl) {
806 iter->slot = 0;
807 iter->skip = 0;
808 return ERR_PTR(-EAGAIN);
809 } else {
810 iter->end_of_table = true;
813 return NULL;
817 * rhashtable_walk_next - Return the next object and advance the iterator
818 * @iter: Hash table iterator
820 * Note that you must call rhashtable_walk_stop when you are finished
821 * with the walk.
823 * Returns the next object or NULL when the end of the table is reached.
825 * Returns -EAGAIN if resize event occurred. Note that the iterator
826 * will rewind back to the beginning and you may continue to use it.
828 void *rhashtable_walk_next(struct rhashtable_iter *iter)
830 struct rhlist_head *list = iter->list;
831 struct rhashtable *ht = iter->ht;
832 struct rhash_head *p = iter->p;
833 bool rhlist = ht->rhlist;
835 if (p) {
836 if (!rhlist || !(list = rcu_dereference(list->next))) {
837 p = rcu_dereference(p->next);
838 list = container_of(p, struct rhlist_head, rhead);
840 if (!rht_is_a_nulls(p)) {
841 iter->skip++;
842 iter->p = p;
843 iter->list = list;
844 return rht_obj(ht, rhlist ? &list->rhead : p);
847 /* At the end of this slot, switch to next one and then find
848 * next entry from that point.
850 iter->skip = 0;
851 iter->slot++;
854 return __rhashtable_walk_find_next(iter);
856 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
859 * rhashtable_walk_peek - Return the next object but don't advance the iterator
860 * @iter: Hash table iterator
862 * Returns the next object or NULL when the end of the table is reached.
864 * Returns -EAGAIN if resize event occurred. Note that the iterator
865 * will rewind back to the beginning and you may continue to use it.
867 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
869 struct rhlist_head *list = iter->list;
870 struct rhashtable *ht = iter->ht;
871 struct rhash_head *p = iter->p;
873 if (p)
874 return rht_obj(ht, ht->rhlist ? &list->rhead : p);
876 /* No object found in current iter, find next one in the table. */
878 if (iter->skip) {
879 /* A nonzero skip value points to the next entry in the table
880 * beyond that last one that was found. Decrement skip so
881 * we find the current value. __rhashtable_walk_find_next
882 * will restore the original value of skip assuming that
883 * the table hasn't changed.
885 iter->skip--;
888 return __rhashtable_walk_find_next(iter);
890 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
893 * rhashtable_walk_stop - Finish a hash table walk
894 * @iter: Hash table iterator
896 * Finish a hash table walk. Does not reset the iterator to the start of the
897 * hash table.
899 void rhashtable_walk_stop(struct rhashtable_iter *iter)
900 __releases(RCU)
902 struct rhashtable *ht;
903 struct bucket_table *tbl = iter->walker.tbl;
905 if (!tbl)
906 goto out;
908 ht = iter->ht;
910 spin_lock(&ht->lock);
911 if (tbl->rehash < tbl->size)
912 list_add(&iter->walker.list, &tbl->walkers);
913 else
914 iter->walker.tbl = NULL;
915 spin_unlock(&ht->lock);
917 iter->p = NULL;
919 out:
920 rcu_read_unlock();
922 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
924 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
926 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
927 (unsigned long)params->min_size);
930 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
932 return jhash2(key, length, seed);
936 * rhashtable_init - initialize a new hash table
937 * @ht: hash table to be initialized
938 * @params: configuration parameters
940 * Initializes a new hash table based on the provided configuration
941 * parameters. A table can be configured either with a variable or
942 * fixed length key:
944 * Configuration Example 1: Fixed length keys
945 * struct test_obj {
946 * int key;
947 * void * my_member;
948 * struct rhash_head node;
949 * };
951 * struct rhashtable_params params = {
952 * .head_offset = offsetof(struct test_obj, node),
953 * .key_offset = offsetof(struct test_obj, key),
954 * .key_len = sizeof(int),
955 * .hashfn = jhash,
956 * .nulls_base = (1U << RHT_BASE_SHIFT),
957 * };
959 * Configuration Example 2: Variable length keys
960 * struct test_obj {
961 * [...]
962 * struct rhash_head node;
963 * };
965 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
967 * struct test_obj *obj = data;
969 * return [... hash ...];
972 * struct rhashtable_params params = {
973 * .head_offset = offsetof(struct test_obj, node),
974 * .hashfn = jhash,
975 * .obj_hashfn = my_hash_fn,
976 * };
978 int rhashtable_init(struct rhashtable *ht,
979 const struct rhashtable_params *params)
981 struct bucket_table *tbl;
982 size_t size;
984 size = HASH_DEFAULT_SIZE;
986 if ((!params->key_len && !params->obj_hashfn) ||
987 (params->obj_hashfn && !params->obj_cmpfn))
988 return -EINVAL;
990 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
991 return -EINVAL;
993 memset(ht, 0, sizeof(*ht));
994 mutex_init(&ht->mutex);
995 spin_lock_init(&ht->lock);
996 memcpy(&ht->p, params, sizeof(*params));
998 if (params->min_size)
999 ht->p.min_size = roundup_pow_of_two(params->min_size);
1001 /* Cap total entries at 2^31 to avoid nelems overflow. */
1002 ht->max_elems = 1u << 31;
1004 if (params->max_size) {
1005 ht->p.max_size = rounddown_pow_of_two(params->max_size);
1006 if (ht->p.max_size < ht->max_elems / 2)
1007 ht->max_elems = ht->p.max_size * 2;
1010 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1012 if (params->nelem_hint)
1013 size = rounded_hashtable_size(&ht->p);
1015 if (params->locks_mul)
1016 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1017 else
1018 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1020 ht->key_len = ht->p.key_len;
1021 if (!params->hashfn) {
1022 ht->p.hashfn = jhash;
1024 if (!(ht->key_len & (sizeof(u32) - 1))) {
1025 ht->key_len /= sizeof(u32);
1026 ht->p.hashfn = rhashtable_jhash2;
1030 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1031 if (tbl == NULL)
1032 return -ENOMEM;
1034 atomic_set(&ht->nelems, 0);
1036 RCU_INIT_POINTER(ht->tbl, tbl);
1038 INIT_WORK(&ht->run_work, rht_deferred_worker);
1040 return 0;
1042 EXPORT_SYMBOL_GPL(rhashtable_init);
1045 * rhltable_init - initialize a new hash list table
1046 * @hlt: hash list table to be initialized
1047 * @params: configuration parameters
1049 * Initializes a new hash list table.
1051 * See documentation for rhashtable_init.
1053 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1055 int err;
1057 /* No rhlist NULLs marking for now. */
1058 if (params->nulls_base)
1059 return -EINVAL;
1061 err = rhashtable_init(&hlt->ht, params);
1062 hlt->ht.rhlist = true;
1063 return err;
1065 EXPORT_SYMBOL_GPL(rhltable_init);
1067 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1068 void (*free_fn)(void *ptr, void *arg),
1069 void *arg)
1071 struct rhlist_head *list;
1073 if (!ht->rhlist) {
1074 free_fn(rht_obj(ht, obj), arg);
1075 return;
1078 list = container_of(obj, struct rhlist_head, rhead);
1079 do {
1080 obj = &list->rhead;
1081 list = rht_dereference(list->next, ht);
1082 free_fn(rht_obj(ht, obj), arg);
1083 } while (list);
1087 * rhashtable_free_and_destroy - free elements and destroy hash table
1088 * @ht: the hash table to destroy
1089 * @free_fn: callback to release resources of element
1090 * @arg: pointer passed to free_fn
1092 * Stops an eventual async resize. If defined, invokes free_fn for each
1093 * element to releasal resources. Please note that RCU protected
1094 * readers may still be accessing the elements. Releasing of resources
1095 * must occur in a compatible manner. Then frees the bucket array.
1097 * This function will eventually sleep to wait for an async resize
1098 * to complete. The caller is responsible that no further write operations
1099 * occurs in parallel.
1101 void rhashtable_free_and_destroy(struct rhashtable *ht,
1102 void (*free_fn)(void *ptr, void *arg),
1103 void *arg)
1105 struct bucket_table *tbl;
1106 unsigned int i;
1108 cancel_work_sync(&ht->run_work);
1110 mutex_lock(&ht->mutex);
1111 tbl = rht_dereference(ht->tbl, ht);
1112 if (free_fn) {
1113 for (i = 0; i < tbl->size; i++) {
1114 struct rhash_head *pos, *next;
1116 cond_resched();
1117 for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1118 next = !rht_is_a_nulls(pos) ?
1119 rht_dereference(pos->next, ht) : NULL;
1120 !rht_is_a_nulls(pos);
1121 pos = next,
1122 next = !rht_is_a_nulls(pos) ?
1123 rht_dereference(pos->next, ht) : NULL)
1124 rhashtable_free_one(ht, pos, free_fn, arg);
1128 bucket_table_free(tbl);
1129 mutex_unlock(&ht->mutex);
1131 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1133 void rhashtable_destroy(struct rhashtable *ht)
1135 return rhashtable_free_and_destroy(ht, NULL, NULL);
1137 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1139 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1140 unsigned int hash)
1142 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1143 static struct rhash_head __rcu *rhnull =
1144 (struct rhash_head __rcu *)NULLS_MARKER(0);
1145 unsigned int index = hash & ((1 << tbl->nest) - 1);
1146 unsigned int size = tbl->size >> tbl->nest;
1147 unsigned int subhash = hash;
1148 union nested_table *ntbl;
1150 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1151 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1152 subhash >>= tbl->nest;
1154 while (ntbl && size > (1 << shift)) {
1155 index = subhash & ((1 << shift) - 1);
1156 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1157 tbl, hash);
1158 size >>= shift;
1159 subhash >>= shift;
1162 if (!ntbl)
1163 return &rhnull;
1165 return &ntbl[subhash].bucket;
1168 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1170 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1171 struct bucket_table *tbl,
1172 unsigned int hash)
1174 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1175 unsigned int index = hash & ((1 << tbl->nest) - 1);
1176 unsigned int size = tbl->size >> tbl->nest;
1177 union nested_table *ntbl;
1178 unsigned int shifted;
1179 unsigned int nhash;
1181 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1182 hash >>= tbl->nest;
1183 nhash = index;
1184 shifted = tbl->nest;
1185 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1186 size <= (1 << shift) ? shifted : 0, nhash);
1188 while (ntbl && size > (1 << shift)) {
1189 index = hash & ((1 << shift) - 1);
1190 size >>= shift;
1191 hash >>= shift;
1192 nhash |= index << shifted;
1193 shifted += shift;
1194 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1195 size <= (1 << shift) ? shifted : 0,
1196 nhash);
1199 if (!ntbl)
1200 return NULL;
1202 return &ntbl[hash].bucket;
1205 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);