tile PCI RC: gentler warning for missing plug-in PCI
[linux-2.6/btrfs-unstable.git] / arch / tile / kernel / setup.c
blob676e155a0d635fbe8bb9475a18c9fa8e2346126c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mmzone.h>
18 #include <linux/bootmem.h>
19 #include <linux/module.h>
20 #include <linux/node.h>
21 #include <linux/cpu.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/kexec.h>
25 #include <linux/pci.h>
26 #include <linux/swiotlb.h>
27 #include <linux/initrd.h>
28 #include <linux/io.h>
29 #include <linux/highmem.h>
30 #include <linux/smp.h>
31 #include <linux/timex.h>
32 #include <linux/hugetlb.h>
33 #include <linux/start_kernel.h>
34 #include <linux/screen_info.h>
35 #include <asm/setup.h>
36 #include <asm/sections.h>
37 #include <asm/cacheflush.h>
38 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <hv/hypervisor.h>
41 #include <arch/interrupts.h>
43 /* <linux/smp.h> doesn't provide this definition. */
44 #ifndef CONFIG_SMP
45 #define setup_max_cpus 1
46 #endif
48 static inline int ABS(int x) { return x >= 0 ? x : -x; }
50 /* Chip information */
51 char chip_model[64] __write_once;
53 #ifdef CONFIG_VT
54 struct screen_info screen_info;
55 #endif
57 struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
58 EXPORT_SYMBOL(node_data);
60 /* Information on the NUMA nodes that we compute early */
61 unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
62 unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
63 unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
64 unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
65 unsigned long __initdata node_free_pfn[MAX_NUMNODES];
67 static unsigned long __initdata node_percpu[MAX_NUMNODES];
70 * per-CPU stack and boot info.
72 DEFINE_PER_CPU(unsigned long, boot_sp) =
73 (unsigned long)init_stack + THREAD_SIZE;
75 #ifdef CONFIG_SMP
76 DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
77 #else
79 * The variable must be __initdata since it references __init code.
80 * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
82 unsigned long __initdata boot_pc = (unsigned long)start_kernel;
83 #endif
85 #ifdef CONFIG_HIGHMEM
86 /* Page frame index of end of lowmem on each controller. */
87 unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
89 /* Number of pages that can be mapped into lowmem. */
90 static unsigned long __initdata mappable_physpages;
91 #endif
93 /* Data on which physical memory controller corresponds to which NUMA node */
94 int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
96 #ifdef CONFIG_HIGHMEM
97 /* Map information from VAs to PAs */
98 unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
99 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
100 EXPORT_SYMBOL(pbase_map);
102 /* Map information from PAs to VAs */
103 void *vbase_map[NR_PA_HIGHBIT_VALUES]
104 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
105 EXPORT_SYMBOL(vbase_map);
106 #endif
108 /* Node number as a function of the high PA bits */
109 int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
110 EXPORT_SYMBOL(highbits_to_node);
112 static unsigned int __initdata maxmem_pfn = -1U;
113 static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
114 [0 ... MAX_NUMNODES-1] = -1U
116 static nodemask_t __initdata isolnodes;
118 #if defined(CONFIG_PCI) && !defined(__tilegx__)
119 enum { DEFAULT_PCI_RESERVE_MB = 64 };
120 static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
121 unsigned long __initdata pci_reserve_start_pfn = -1U;
122 unsigned long __initdata pci_reserve_end_pfn = -1U;
123 #endif
125 static int __init setup_maxmem(char *str)
127 unsigned long long maxmem;
128 if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
129 return -EINVAL;
131 maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
132 pr_info("Forcing RAM used to no more than %dMB\n",
133 maxmem_pfn >> (20 - PAGE_SHIFT));
134 return 0;
136 early_param("maxmem", setup_maxmem);
138 static int __init setup_maxnodemem(char *str)
140 char *endp;
141 unsigned long long maxnodemem;
142 long node;
144 node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
145 if (node >= MAX_NUMNODES || *endp != ':')
146 return -EINVAL;
148 maxnodemem = memparse(endp+1, NULL);
149 maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
150 (HPAGE_SHIFT - PAGE_SHIFT);
151 pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
152 node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
153 return 0;
155 early_param("maxnodemem", setup_maxnodemem);
157 static int __init setup_isolnodes(char *str)
159 char buf[MAX_NUMNODES * 5];
160 if (str == NULL || nodelist_parse(str, isolnodes) != 0)
161 return -EINVAL;
163 nodelist_scnprintf(buf, sizeof(buf), isolnodes);
164 pr_info("Set isolnodes value to '%s'\n", buf);
165 return 0;
167 early_param("isolnodes", setup_isolnodes);
169 #if defined(CONFIG_PCI) && !defined(__tilegx__)
170 static int __init setup_pci_reserve(char* str)
172 unsigned long mb;
174 if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
175 mb > 3 * 1024)
176 return -EINVAL;
178 pci_reserve_mb = mb;
179 pr_info("Reserving %dMB for PCIE root complex mappings\n",
180 pci_reserve_mb);
181 return 0;
183 early_param("pci_reserve", setup_pci_reserve);
184 #endif
186 #ifndef __tilegx__
188 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
189 * This can be used to increase (or decrease) the vmalloc area.
191 static int __init parse_vmalloc(char *arg)
193 if (!arg)
194 return -EINVAL;
196 VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
198 /* See validate_va() for more on this test. */
199 if ((long)_VMALLOC_START >= 0)
200 early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
201 VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
203 return 0;
205 early_param("vmalloc", parse_vmalloc);
206 #endif
208 #ifdef CONFIG_HIGHMEM
210 * Determine for each controller where its lowmem is mapped and how much of
211 * it is mapped there. On controller zero, the first few megabytes are
212 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
213 * start our data mappings higher up, but for now we don't bother, to avoid
214 * additional confusion.
216 * One question is whether, on systems with more than 768 Mb and
217 * controllers of different sizes, to map in a proportionate amount of
218 * each one, or to try to map the same amount from each controller.
219 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
220 * respectively, do we map 256MB from each, or do we map 128 MB, 512
221 * MB, and 128 MB respectively?) For now we use a proportionate
222 * solution like the latter.
224 * The VA/PA mapping demands that we align our decisions at 16 MB
225 * boundaries so that we can rapidly convert VA to PA.
227 static void *__init setup_pa_va_mapping(void)
229 unsigned long curr_pages = 0;
230 unsigned long vaddr = PAGE_OFFSET;
231 nodemask_t highonlynodes = isolnodes;
232 int i, j;
234 memset(pbase_map, -1, sizeof(pbase_map));
235 memset(vbase_map, -1, sizeof(vbase_map));
237 /* Node zero cannot be isolated for LOWMEM purposes. */
238 node_clear(0, highonlynodes);
240 /* Count up the number of pages on non-highonlynodes controllers. */
241 mappable_physpages = 0;
242 for_each_online_node(i) {
243 if (!node_isset(i, highonlynodes))
244 mappable_physpages +=
245 node_end_pfn[i] - node_start_pfn[i];
248 for_each_online_node(i) {
249 unsigned long start = node_start_pfn[i];
250 unsigned long end = node_end_pfn[i];
251 unsigned long size = end - start;
252 unsigned long vaddr_end;
254 if (node_isset(i, highonlynodes)) {
255 /* Mark this controller as having no lowmem. */
256 node_lowmem_end_pfn[i] = start;
257 continue;
260 curr_pages += size;
261 if (mappable_physpages > MAXMEM_PFN) {
262 vaddr_end = PAGE_OFFSET +
263 (((u64)curr_pages * MAXMEM_PFN /
264 mappable_physpages)
265 << PAGE_SHIFT);
266 } else {
267 vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
269 for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
270 unsigned long this_pfn =
271 start + (j << HUGETLB_PAGE_ORDER);
272 pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
273 if (vbase_map[__pfn_to_highbits(this_pfn)] ==
274 (void *)-1)
275 vbase_map[__pfn_to_highbits(this_pfn)] =
276 (void *)(vaddr & HPAGE_MASK);
278 node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
279 BUG_ON(node_lowmem_end_pfn[i] > end);
282 /* Return highest address of any mapped memory. */
283 return (void *)vaddr;
285 #endif /* CONFIG_HIGHMEM */
288 * Register our most important memory mappings with the debug stub.
290 * This is up to 4 mappings for lowmem, one mapping per memory
291 * controller, plus one for our text segment.
293 static void __cpuinit store_permanent_mappings(void)
295 int i;
297 for_each_online_node(i) {
298 HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
299 #ifdef CONFIG_HIGHMEM
300 HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
301 #else
302 HV_PhysAddr high_mapped_pa = node_end_pfn[i];
303 #endif
305 unsigned long pages = high_mapped_pa - node_start_pfn[i];
306 HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
307 hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
310 hv_store_mapping((HV_VirtAddr)_text,
311 (uint32_t)(_einittext - _text), 0);
315 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
316 * and node_online_map, doing suitable sanity-checking.
317 * Also set min_low_pfn, max_low_pfn, and max_pfn.
319 static void __init setup_memory(void)
321 int i, j;
322 int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
323 #ifdef CONFIG_HIGHMEM
324 long highmem_pages;
325 #endif
326 #ifndef __tilegx__
327 int cap;
328 #endif
329 #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
330 long lowmem_pages;
331 #endif
332 unsigned long physpages = 0;
334 /* We are using a char to hold the cpu_2_node[] mapping */
335 BUILD_BUG_ON(MAX_NUMNODES > 127);
337 /* Discover the ranges of memory available to us */
338 for (i = 0; ; ++i) {
339 unsigned long start, size, end, highbits;
340 HV_PhysAddrRange range = hv_inquire_physical(i);
341 if (range.size == 0)
342 break;
343 #ifdef CONFIG_FLATMEM
344 if (i > 0) {
345 pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
346 range.size, range.start + range.size);
347 continue;
349 #endif
350 #ifndef __tilegx__
351 if ((unsigned long)range.start) {
352 pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
353 range.start, range.start + range.size);
354 continue;
356 #endif
357 if ((range.start & (HPAGE_SIZE-1)) != 0 ||
358 (range.size & (HPAGE_SIZE-1)) != 0) {
359 unsigned long long start_pa = range.start;
360 unsigned long long orig_size = range.size;
361 range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
362 range.size -= (range.start - start_pa);
363 range.size &= HPAGE_MASK;
364 pr_err("Range not hugepage-aligned: %#llx..%#llx:"
365 " now %#llx-%#llx\n",
366 start_pa, start_pa + orig_size,
367 range.start, range.start + range.size);
369 highbits = __pa_to_highbits(range.start);
370 if (highbits >= NR_PA_HIGHBIT_VALUES) {
371 pr_err("PA high bits too high: %#llx..%#llx\n",
372 range.start, range.start + range.size);
373 continue;
375 if (highbits_seen[highbits]) {
376 pr_err("Range overlaps in high bits: %#llx..%#llx\n",
377 range.start, range.start + range.size);
378 continue;
380 highbits_seen[highbits] = 1;
381 if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
382 int max_size = maxnodemem_pfn[i];
383 if (max_size > 0) {
384 pr_err("Maxnodemem reduced node %d to"
385 " %d pages\n", i, max_size);
386 range.size = PFN_PHYS(max_size);
387 } else {
388 pr_err("Maxnodemem disabled node %d\n", i);
389 continue;
392 if (physpages + PFN_DOWN(range.size) > maxmem_pfn) {
393 int max_size = maxmem_pfn - physpages;
394 if (max_size > 0) {
395 pr_err("Maxmem reduced node %d to %d pages\n",
396 i, max_size);
397 range.size = PFN_PHYS(max_size);
398 } else {
399 pr_err("Maxmem disabled node %d\n", i);
400 continue;
403 if (i >= MAX_NUMNODES) {
404 pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
405 i, range.size, range.size + range.start);
406 continue;
409 start = range.start >> PAGE_SHIFT;
410 size = range.size >> PAGE_SHIFT;
411 end = start + size;
413 #ifndef __tilegx__
414 if (((HV_PhysAddr)end << PAGE_SHIFT) !=
415 (range.start + range.size)) {
416 pr_err("PAs too high to represent: %#llx..%#llx\n",
417 range.start, range.start + range.size);
418 continue;
420 #endif
421 #if defined(CONFIG_PCI) && !defined(__tilegx__)
423 * Blocks that overlap the pci reserved region must
424 * have enough space to hold the maximum percpu data
425 * region at the top of the range. If there isn't
426 * enough space above the reserved region, just
427 * truncate the node.
429 if (start <= pci_reserve_start_pfn &&
430 end > pci_reserve_start_pfn) {
431 unsigned int per_cpu_size =
432 __per_cpu_end - __per_cpu_start;
433 unsigned int percpu_pages =
434 NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
435 if (end < pci_reserve_end_pfn + percpu_pages) {
436 end = pci_reserve_start_pfn;
437 pr_err("PCI mapping region reduced node %d to"
438 " %ld pages\n", i, end - start);
441 #endif
443 for (j = __pfn_to_highbits(start);
444 j <= __pfn_to_highbits(end - 1); j++)
445 highbits_to_node[j] = i;
447 node_start_pfn[i] = start;
448 node_end_pfn[i] = end;
449 node_controller[i] = range.controller;
450 physpages += size;
451 max_pfn = end;
453 /* Mark node as online */
454 node_set(i, node_online_map);
455 node_set(i, node_possible_map);
458 #ifndef __tilegx__
460 * For 4KB pages, mem_map "struct page" data is 1% of the size
461 * of the physical memory, so can be quite big (640 MB for
462 * four 16G zones). These structures must be mapped in
463 * lowmem, and since we currently cap out at about 768 MB,
464 * it's impractical to try to use this much address space.
465 * For now, arbitrarily cap the amount of physical memory
466 * we're willing to use at 8 million pages (32GB of 4KB pages).
468 cap = 8 * 1024 * 1024; /* 8 million pages */
469 if (physpages > cap) {
470 int num_nodes = num_online_nodes();
471 int cap_each = cap / num_nodes;
472 unsigned long dropped_pages = 0;
473 for (i = 0; i < num_nodes; ++i) {
474 int size = node_end_pfn[i] - node_start_pfn[i];
475 if (size > cap_each) {
476 dropped_pages += (size - cap_each);
477 node_end_pfn[i] = node_start_pfn[i] + cap_each;
480 physpages -= dropped_pages;
481 pr_warning("Only using %ldMB memory;"
482 " ignoring %ldMB.\n",
483 physpages >> (20 - PAGE_SHIFT),
484 dropped_pages >> (20 - PAGE_SHIFT));
485 pr_warning("Consider using a larger page size.\n");
487 #endif
489 /* Heap starts just above the last loaded address. */
490 min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
492 #ifdef CONFIG_HIGHMEM
493 /* Find where we map lowmem from each controller. */
494 high_memory = setup_pa_va_mapping();
496 /* Set max_low_pfn based on what node 0 can directly address. */
497 max_low_pfn = node_lowmem_end_pfn[0];
499 lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
500 MAXMEM_PFN : mappable_physpages;
501 highmem_pages = (long) (physpages - lowmem_pages);
503 pr_notice("%ldMB HIGHMEM available.\n",
504 pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
505 pr_notice("%ldMB LOWMEM available.\n",
506 pages_to_mb(lowmem_pages));
507 #else
508 /* Set max_low_pfn based on what node 0 can directly address. */
509 max_low_pfn = node_end_pfn[0];
511 #ifndef __tilegx__
512 if (node_end_pfn[0] > MAXMEM_PFN) {
513 pr_warning("Only using %ldMB LOWMEM.\n",
514 MAXMEM>>20);
515 pr_warning("Use a HIGHMEM enabled kernel.\n");
516 max_low_pfn = MAXMEM_PFN;
517 max_pfn = MAXMEM_PFN;
518 node_end_pfn[0] = MAXMEM_PFN;
519 } else {
520 pr_notice("%ldMB memory available.\n",
521 pages_to_mb(node_end_pfn[0]));
523 for (i = 1; i < MAX_NUMNODES; ++i) {
524 node_start_pfn[i] = 0;
525 node_end_pfn[i] = 0;
527 high_memory = __va(node_end_pfn[0]);
528 #else
529 lowmem_pages = 0;
530 for (i = 0; i < MAX_NUMNODES; ++i) {
531 int pages = node_end_pfn[i] - node_start_pfn[i];
532 lowmem_pages += pages;
533 if (pages)
534 high_memory = pfn_to_kaddr(node_end_pfn[i]);
536 pr_notice("%ldMB memory available.\n",
537 pages_to_mb(lowmem_pages));
538 #endif
539 #endif
543 * On 32-bit machines, we only put bootmem on the low controller,
544 * since PAs > 4GB can't be used in bootmem. In principle one could
545 * imagine, e.g., multiple 1 GB controllers all of which could support
546 * bootmem, but in practice using controllers this small isn't a
547 * particularly interesting scenario, so we just keep it simple and
548 * use only the first controller for bootmem on 32-bit machines.
550 static inline int node_has_bootmem(int nid)
552 #ifdef CONFIG_64BIT
553 return 1;
554 #else
555 return nid == 0;
556 #endif
559 static inline unsigned long alloc_bootmem_pfn(int nid,
560 unsigned long size,
561 unsigned long goal)
563 void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
564 PAGE_SIZE, goal);
565 unsigned long pfn = kaddr_to_pfn(kva);
566 BUG_ON(goal && PFN_PHYS(pfn) != goal);
567 return pfn;
570 static void __init setup_bootmem_allocator_node(int i)
572 unsigned long start, end, mapsize, mapstart;
574 if (node_has_bootmem(i)) {
575 NODE_DATA(i)->bdata = &bootmem_node_data[i];
576 } else {
577 /* Share controller zero's bdata for now. */
578 NODE_DATA(i)->bdata = &bootmem_node_data[0];
579 return;
582 /* Skip up to after the bss in node 0. */
583 start = (i == 0) ? min_low_pfn : node_start_pfn[i];
585 /* Only lowmem, if we're a HIGHMEM build. */
586 #ifdef CONFIG_HIGHMEM
587 end = node_lowmem_end_pfn[i];
588 #else
589 end = node_end_pfn[i];
590 #endif
592 /* No memory here. */
593 if (end == start)
594 return;
596 /* Figure out where the bootmem bitmap is located. */
597 mapsize = bootmem_bootmap_pages(end - start);
598 if (i == 0) {
599 /* Use some space right before the heap on node 0. */
600 mapstart = start;
601 start += mapsize;
602 } else {
603 /* Allocate bitmap on node 0 to avoid page table issues. */
604 mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
607 /* Initialize a node. */
608 init_bootmem_node(NODE_DATA(i), mapstart, start, end);
610 /* Free all the space back into the allocator. */
611 free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
613 #if defined(CONFIG_PCI) && !defined(__tilegx__)
615 * Throw away any memory aliased by the PCI region.
617 if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start) {
618 start = max(pci_reserve_start_pfn, start);
619 end = min(pci_reserve_end_pfn, end);
620 reserve_bootmem(PFN_PHYS(start), PFN_PHYS(end - start),
621 BOOTMEM_EXCLUSIVE);
623 #endif
626 static void __init setup_bootmem_allocator(void)
628 int i;
629 for (i = 0; i < MAX_NUMNODES; ++i)
630 setup_bootmem_allocator_node(i);
632 #ifdef CONFIG_KEXEC
633 if (crashk_res.start != crashk_res.end)
634 reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
635 #endif
638 void *__init alloc_remap(int nid, unsigned long size)
640 int pages = node_end_pfn[nid] - node_start_pfn[nid];
641 void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
642 BUG_ON(size != pages * sizeof(struct page));
643 memset(map, 0, size);
644 return map;
647 static int __init percpu_size(void)
649 int size = __per_cpu_end - __per_cpu_start;
650 size += PERCPU_MODULE_RESERVE;
651 size += PERCPU_DYNAMIC_EARLY_SIZE;
652 if (size < PCPU_MIN_UNIT_SIZE)
653 size = PCPU_MIN_UNIT_SIZE;
654 size = roundup(size, PAGE_SIZE);
656 /* In several places we assume the per-cpu data fits on a huge page. */
657 BUG_ON(kdata_huge && size > HPAGE_SIZE);
658 return size;
661 static void __init zone_sizes_init(void)
663 unsigned long zones_size[MAX_NR_ZONES] = { 0 };
664 int size = percpu_size();
665 int num_cpus = smp_height * smp_width;
666 const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
668 int i;
670 for (i = 0; i < num_cpus; ++i)
671 node_percpu[cpu_to_node(i)] += size;
673 for_each_online_node(i) {
674 unsigned long start = node_start_pfn[i];
675 unsigned long end = node_end_pfn[i];
676 #ifdef CONFIG_HIGHMEM
677 unsigned long lowmem_end = node_lowmem_end_pfn[i];
678 #else
679 unsigned long lowmem_end = end;
680 #endif
681 int memmap_size = (end - start) * sizeof(struct page);
682 node_free_pfn[i] = start;
685 * Set aside pages for per-cpu data and the mem_map array.
687 * Since the per-cpu data requires special homecaching,
688 * if we are in kdata_huge mode, we put it at the end of
689 * the lowmem region. If we're not in kdata_huge mode,
690 * we take the per-cpu pages from the bottom of the
691 * controller, since that avoids fragmenting a huge page
692 * that users might want. We always take the memmap
693 * from the bottom of the controller, since with
694 * kdata_huge that lets it be under a huge TLB entry.
696 * If the user has requested isolnodes for a controller,
697 * though, there'll be no lowmem, so we just alloc_bootmem
698 * the memmap. There will be no percpu memory either.
700 if (i != 0 && cpu_isset(i, isolnodes)) {
701 node_memmap_pfn[i] =
702 alloc_bootmem_pfn(0, memmap_size, 0);
703 BUG_ON(node_percpu[i] != 0);
704 } else if (node_has_bootmem(start)) {
705 unsigned long goal = 0;
706 node_memmap_pfn[i] =
707 alloc_bootmem_pfn(i, memmap_size, 0);
708 if (kdata_huge)
709 goal = PFN_PHYS(lowmem_end) - node_percpu[i];
710 if (node_percpu[i])
711 node_percpu_pfn[i] =
712 alloc_bootmem_pfn(i, node_percpu[i],
713 goal);
714 } else {
715 /* In non-bootmem zones, just reserve some pages. */
716 node_memmap_pfn[i] = node_free_pfn[i];
717 node_free_pfn[i] += PFN_UP(memmap_size);
718 if (!kdata_huge) {
719 node_percpu_pfn[i] = node_free_pfn[i];
720 node_free_pfn[i] += PFN_UP(node_percpu[i]);
721 } else {
722 node_percpu_pfn[i] =
723 lowmem_end - PFN_UP(node_percpu[i]);
727 #ifdef CONFIG_HIGHMEM
728 if (start > lowmem_end) {
729 zones_size[ZONE_NORMAL] = 0;
730 zones_size[ZONE_HIGHMEM] = end - start;
731 } else {
732 zones_size[ZONE_NORMAL] = lowmem_end - start;
733 zones_size[ZONE_HIGHMEM] = end - lowmem_end;
735 #else
736 zones_size[ZONE_NORMAL] = end - start;
737 #endif
739 if (start < dma_end) {
740 zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
741 dma_end - start);
742 zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
743 } else {
744 zones_size[ZONE_DMA] = 0;
747 /* Take zone metadata from controller 0 if we're isolnode. */
748 if (node_isset(i, isolnodes))
749 NODE_DATA(i)->bdata = &bootmem_node_data[0];
751 free_area_init_node(i, zones_size, start, NULL);
752 printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n",
753 PFN_UP(node_percpu[i]));
755 /* Track the type of memory on each node */
756 if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
757 node_set_state(i, N_NORMAL_MEMORY);
758 #ifdef CONFIG_HIGHMEM
759 if (end != start)
760 node_set_state(i, N_HIGH_MEMORY);
761 #endif
763 node_set_online(i);
767 #ifdef CONFIG_NUMA
769 /* which logical CPUs are on which nodes */
770 struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
771 EXPORT_SYMBOL(node_2_cpu_mask);
773 /* which node each logical CPU is on */
774 char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
775 EXPORT_SYMBOL(cpu_2_node);
777 /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
778 static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
780 if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
781 return -1;
782 else
783 return cpu_to_node(cpu);
786 /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
787 static int __init node_neighbors(int node, int cpu,
788 struct cpumask *unbound_cpus)
790 int neighbors = 0;
791 int w = smp_width;
792 int h = smp_height;
793 int x = cpu % w;
794 int y = cpu / w;
795 if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
796 ++neighbors;
797 if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
798 ++neighbors;
799 if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
800 ++neighbors;
801 if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
802 ++neighbors;
803 return neighbors;
806 static void __init setup_numa_mapping(void)
808 int distance[MAX_NUMNODES][NR_CPUS];
809 HV_Coord coord;
810 int cpu, node, cpus, i, x, y;
811 int num_nodes = num_online_nodes();
812 struct cpumask unbound_cpus;
813 nodemask_t default_nodes;
815 cpumask_clear(&unbound_cpus);
817 /* Get set of nodes we will use for defaults */
818 nodes_andnot(default_nodes, node_online_map, isolnodes);
819 if (nodes_empty(default_nodes)) {
820 BUG_ON(!node_isset(0, node_online_map));
821 pr_err("Forcing NUMA node zero available as a default node\n");
822 node_set(0, default_nodes);
825 /* Populate the distance[] array */
826 memset(distance, -1, sizeof(distance));
827 cpu = 0;
828 for (coord.y = 0; coord.y < smp_height; ++coord.y) {
829 for (coord.x = 0; coord.x < smp_width;
830 ++coord.x, ++cpu) {
831 BUG_ON(cpu >= nr_cpu_ids);
832 if (!cpu_possible(cpu)) {
833 cpu_2_node[cpu] = -1;
834 continue;
836 for_each_node_mask(node, default_nodes) {
837 HV_MemoryControllerInfo info =
838 hv_inquire_memory_controller(
839 coord, node_controller[node]);
840 distance[node][cpu] =
841 ABS(info.coord.x) + ABS(info.coord.y);
843 cpumask_set_cpu(cpu, &unbound_cpus);
846 cpus = cpu;
849 * Round-robin through the NUMA nodes until all the cpus are
850 * assigned. We could be more clever here (e.g. create four
851 * sorted linked lists on the same set of cpu nodes, and pull
852 * off them in round-robin sequence, removing from all four
853 * lists each time) but given the relatively small numbers
854 * involved, O(n^2) seem OK for a one-time cost.
856 node = first_node(default_nodes);
857 while (!cpumask_empty(&unbound_cpus)) {
858 int best_cpu = -1;
859 int best_distance = INT_MAX;
860 for (cpu = 0; cpu < cpus; ++cpu) {
861 if (cpumask_test_cpu(cpu, &unbound_cpus)) {
863 * Compute metric, which is how much
864 * closer the cpu is to this memory
865 * controller than the others, shifted
866 * up, and then the number of
867 * neighbors already in the node as an
868 * epsilon adjustment to try to keep
869 * the nodes compact.
871 int d = distance[node][cpu] * num_nodes;
872 for_each_node_mask(i, default_nodes) {
873 if (i != node)
874 d -= distance[i][cpu];
876 d *= 8; /* allow space for epsilon */
877 d -= node_neighbors(node, cpu, &unbound_cpus);
878 if (d < best_distance) {
879 best_cpu = cpu;
880 best_distance = d;
884 BUG_ON(best_cpu < 0);
885 cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
886 cpu_2_node[best_cpu] = node;
887 cpumask_clear_cpu(best_cpu, &unbound_cpus);
888 node = next_node(node, default_nodes);
889 if (node == MAX_NUMNODES)
890 node = first_node(default_nodes);
893 /* Print out node assignments and set defaults for disabled cpus */
894 cpu = 0;
895 for (y = 0; y < smp_height; ++y) {
896 printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
897 for (x = 0; x < smp_width; ++x, ++cpu) {
898 if (cpu_to_node(cpu) < 0) {
899 pr_cont(" -");
900 cpu_2_node[cpu] = first_node(default_nodes);
901 } else {
902 pr_cont(" %d", cpu_to_node(cpu));
905 pr_cont("\n");
909 static struct cpu cpu_devices[NR_CPUS];
911 static int __init topology_init(void)
913 int i;
915 for_each_online_node(i)
916 register_one_node(i);
918 for (i = 0; i < smp_height * smp_width; ++i)
919 register_cpu(&cpu_devices[i], i);
921 return 0;
924 subsys_initcall(topology_init);
926 #else /* !CONFIG_NUMA */
928 #define setup_numa_mapping() do { } while (0)
930 #endif /* CONFIG_NUMA */
933 * Initialize hugepage support on this cpu. We do this on all cores
934 * early in boot: before argument parsing for the boot cpu, and after
935 * argument parsing but before the init functions run on the secondaries.
936 * So the values we set up here in the hypervisor may be overridden on
937 * the boot cpu as arguments are parsed.
939 static __cpuinit void init_super_pages(void)
941 #ifdef CONFIG_HUGETLB_SUPER_PAGES
942 int i;
943 for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
944 hv_set_pte_super_shift(i, huge_shift[i]);
945 #endif
949 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
950 * @boot: Is this the boot cpu?
952 * Called from setup_arch() on the boot cpu, or online_secondary().
954 void __cpuinit setup_cpu(int boot)
956 /* The boot cpu sets up its permanent mappings much earlier. */
957 if (!boot)
958 store_permanent_mappings();
960 /* Allow asynchronous TLB interrupts. */
961 #if CHIP_HAS_TILE_DMA()
962 arch_local_irq_unmask(INT_DMATLB_MISS);
963 arch_local_irq_unmask(INT_DMATLB_ACCESS);
964 #endif
965 #if CHIP_HAS_SN_PROC()
966 arch_local_irq_unmask(INT_SNITLB_MISS);
967 #endif
968 #ifdef __tilegx__
969 arch_local_irq_unmask(INT_SINGLE_STEP_K);
970 #endif
973 * Allow user access to many generic SPRs, like the cycle
974 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
976 __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
978 #if CHIP_HAS_SN()
979 /* Static network is not restricted. */
980 __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
981 #endif
982 #if CHIP_HAS_SN_PROC()
983 __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
984 __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
985 #endif
988 * Set the MPL for interrupt control 0 & 1 to the corresponding
989 * values. This includes access to the SYSTEM_SAVE and EX_CONTEXT
990 * SPRs, as well as the interrupt mask.
992 __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
993 __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
995 /* Initialize IRQ support for this cpu. */
996 setup_irq_regs();
998 #ifdef CONFIG_HARDWALL
999 /* Reset the network state on this cpu. */
1000 reset_network_state();
1001 #endif
1003 init_super_pages();
1006 #ifdef CONFIG_BLK_DEV_INITRD
1008 static int __initdata set_initramfs_file;
1009 static char __initdata initramfs_file[128] = "initramfs";
1011 static int __init setup_initramfs_file(char *str)
1013 if (str == NULL)
1014 return -EINVAL;
1015 strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
1016 set_initramfs_file = 1;
1018 return 0;
1020 early_param("initramfs_file", setup_initramfs_file);
1023 * We look for a file called "initramfs" in the hvfs. If there is one, we
1024 * allocate some memory for it and it will be unpacked to the initramfs.
1025 * If it's compressed, the initd code will uncompress it first.
1027 static void __init load_hv_initrd(void)
1029 HV_FS_StatInfo stat;
1030 int fd, rc;
1031 void *initrd;
1033 fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
1034 if (fd == HV_ENOENT) {
1035 if (set_initramfs_file) {
1036 pr_warning("No such hvfs initramfs file '%s'\n",
1037 initramfs_file);
1038 return;
1039 } else {
1040 /* Try old backwards-compatible name. */
1041 fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
1042 if (fd == HV_ENOENT)
1043 return;
1046 BUG_ON(fd < 0);
1047 stat = hv_fs_fstat(fd);
1048 BUG_ON(stat.size < 0);
1049 if (stat.flags & HV_FS_ISDIR) {
1050 pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
1051 initramfs_file);
1052 return;
1054 initrd = alloc_bootmem_pages(stat.size);
1055 rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
1056 if (rc != stat.size) {
1057 pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1058 stat.size, initramfs_file, rc);
1059 free_initrd_mem((unsigned long) initrd, stat.size);
1060 return;
1062 initrd_start = (unsigned long) initrd;
1063 initrd_end = initrd_start + stat.size;
1066 void __init free_initrd_mem(unsigned long begin, unsigned long end)
1068 free_bootmem(__pa(begin), end - begin);
1071 #else
1072 static inline void load_hv_initrd(void) {}
1073 #endif /* CONFIG_BLK_DEV_INITRD */
1075 static void __init validate_hv(void)
1078 * It may already be too late, but let's check our built-in
1079 * configuration against what the hypervisor is providing.
1081 unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
1082 int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
1083 int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
1084 HV_ASIDRange asid_range;
1086 #ifndef CONFIG_SMP
1087 HV_Topology topology = hv_inquire_topology();
1088 BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
1089 if (topology.width != 1 || topology.height != 1) {
1090 pr_warning("Warning: booting UP kernel on %dx%d grid;"
1091 " will ignore all but first tile.\n",
1092 topology.width, topology.height);
1094 #endif
1096 if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1097 early_panic("Hypervisor glue size %ld is too big!\n",
1098 glue_size);
1099 if (hv_page_size != PAGE_SIZE)
1100 early_panic("Hypervisor page size %#x != our %#lx\n",
1101 hv_page_size, PAGE_SIZE);
1102 if (hv_hpage_size != HPAGE_SIZE)
1103 early_panic("Hypervisor huge page size %#x != our %#lx\n",
1104 hv_hpage_size, HPAGE_SIZE);
1106 #ifdef CONFIG_SMP
1108 * Some hypervisor APIs take a pointer to a bitmap array
1109 * whose size is at least the number of cpus on the chip.
1110 * We use a struct cpumask for this, so it must be big enough.
1112 if ((smp_height * smp_width) > nr_cpu_ids)
1113 early_panic("Hypervisor %d x %d grid too big for Linux"
1114 " NR_CPUS %d\n", smp_height, smp_width,
1115 nr_cpu_ids);
1116 #endif
1119 * Check that we're using allowed ASIDs, and initialize the
1120 * various asid variables to their appropriate initial states.
1122 asid_range = hv_inquire_asid(0);
1123 __get_cpu_var(current_asid) = min_asid = asid_range.start;
1124 max_asid = asid_range.start + asid_range.size - 1;
1126 if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1127 sizeof(chip_model)) < 0) {
1128 pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1129 strlcpy(chip_model, "unknown", sizeof(chip_model));
1133 static void __init validate_va(void)
1135 #ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
1137 * Similarly, make sure we're only using allowed VAs.
1138 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1139 * and 0 .. KERNEL_HIGH_VADDR.
1140 * In addition, make sure we CAN'T use the end of memory, since
1141 * we use the last chunk of each pgd for the pgd_list.
1143 int i, user_kernel_ok = 0;
1144 unsigned long max_va = 0;
1145 unsigned long list_va =
1146 ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1148 for (i = 0; ; ++i) {
1149 HV_VirtAddrRange range = hv_inquire_virtual(i);
1150 if (range.size == 0)
1151 break;
1152 if (range.start <= MEM_USER_INTRPT &&
1153 range.start + range.size >= MEM_HV_INTRPT)
1154 user_kernel_ok = 1;
1155 if (range.start == 0)
1156 max_va = range.size;
1157 BUG_ON(range.start + range.size > list_va);
1159 if (!user_kernel_ok)
1160 early_panic("Hypervisor not configured for user/kernel VAs\n");
1161 if (max_va == 0)
1162 early_panic("Hypervisor not configured for low VAs\n");
1163 if (max_va < KERNEL_HIGH_VADDR)
1164 early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1165 max_va, KERNEL_HIGH_VADDR);
1167 /* Kernel PCs must have their high bit set; see intvec.S. */
1168 if ((long)VMALLOC_START >= 0)
1169 early_panic(
1170 "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1171 "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1172 "or smaller VMALLOC_RESERVE.\n",
1173 VMALLOC_START);
1174 #endif
1178 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1179 * to cache data on at a page level, i.e. what cpus can be placed in
1180 * the LOTAR field of a PTE. It is equivalent to the set of possible
1181 * cpus plus any other cpus that are willing to share their cache.
1182 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1184 struct cpumask __write_once cpu_lotar_map;
1185 EXPORT_SYMBOL(cpu_lotar_map);
1187 #if CHIP_HAS_CBOX_HOME_MAP()
1189 * hash_for_home_map lists all the tiles that hash-for-home data
1190 * will be cached on. Note that this may includes tiles that are not
1191 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1192 * device is being shared between multiple supervisors).
1193 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1195 struct cpumask hash_for_home_map;
1196 EXPORT_SYMBOL(hash_for_home_map);
1197 #endif
1200 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1201 * flush on our behalf. It is set to cpu_possible_mask OR'ed with
1202 * hash_for_home_map, and it is what should be passed to
1203 * hv_flush_remote() to flush all caches. Note that if there are
1204 * dedicated hypervisor driver tiles that have authorized use of their
1205 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1206 * cpu_cacheable_map, as they are a special case.
1208 struct cpumask __write_once cpu_cacheable_map;
1209 EXPORT_SYMBOL(cpu_cacheable_map);
1211 static __initdata struct cpumask disabled_map;
1213 static int __init disabled_cpus(char *str)
1215 int boot_cpu = smp_processor_id();
1217 if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1218 return -EINVAL;
1219 if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1220 pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1221 cpumask_clear_cpu(boot_cpu, &disabled_map);
1223 return 0;
1226 early_param("disabled_cpus", disabled_cpus);
1228 void __init print_disabled_cpus(void)
1230 if (!cpumask_empty(&disabled_map)) {
1231 char buf[100];
1232 cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1233 pr_info("CPUs not available for Linux: %s\n", buf);
1237 static void __init setup_cpu_maps(void)
1239 struct cpumask hv_disabled_map, cpu_possible_init;
1240 int boot_cpu = smp_processor_id();
1241 int cpus, i, rc;
1243 /* Learn which cpus are allowed by the hypervisor. */
1244 rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1245 (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1246 sizeof(cpu_cacheable_map));
1247 if (rc < 0)
1248 early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1249 if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1250 early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1252 /* Compute the cpus disabled by the hvconfig file. */
1253 cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1255 /* Include them with the cpus disabled by "disabled_cpus". */
1256 cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1259 * Disable every cpu after "setup_max_cpus". But don't mark
1260 * as disabled the cpus that are outside of our initial rectangle,
1261 * since that turns out to be confusing.
1263 cpus = 1; /* this cpu */
1264 cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
1265 for (i = 0; cpus < setup_max_cpus; ++i)
1266 if (!cpumask_test_cpu(i, &disabled_map))
1267 ++cpus;
1268 for (; i < smp_height * smp_width; ++i)
1269 cpumask_set_cpu(i, &disabled_map);
1270 cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1271 for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1272 cpumask_clear_cpu(i, &disabled_map);
1275 * Setup cpu_possible map as every cpu allocated to us, minus
1276 * the results of any "disabled_cpus" settings.
1278 cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1279 init_cpu_possible(&cpu_possible_init);
1281 /* Learn which cpus are valid for LOTAR caching. */
1282 rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1283 (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1284 sizeof(cpu_lotar_map));
1285 if (rc < 0) {
1286 pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1287 cpu_lotar_map = *cpu_possible_mask;
1290 #if CHIP_HAS_CBOX_HOME_MAP()
1291 /* Retrieve set of CPUs used for hash-for-home caching */
1292 rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1293 (HV_VirtAddr) hash_for_home_map.bits,
1294 sizeof(hash_for_home_map));
1295 if (rc < 0)
1296 early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1297 cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1298 #else
1299 cpu_cacheable_map = *cpu_possible_mask;
1300 #endif
1304 static int __init dataplane(char *str)
1306 pr_warning("WARNING: dataplane support disabled in this kernel\n");
1307 return 0;
1310 early_param("dataplane", dataplane);
1312 #ifdef CONFIG_CMDLINE_BOOL
1313 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1314 #endif
1316 void __init setup_arch(char **cmdline_p)
1318 int len;
1320 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1321 len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1322 COMMAND_LINE_SIZE);
1323 if (boot_command_line[0])
1324 pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1325 boot_command_line);
1326 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1327 #else
1328 char *hv_cmdline;
1329 #if defined(CONFIG_CMDLINE_BOOL)
1330 if (builtin_cmdline[0]) {
1331 int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1332 COMMAND_LINE_SIZE);
1333 if (builtin_len < COMMAND_LINE_SIZE-1)
1334 boot_command_line[builtin_len++] = ' ';
1335 hv_cmdline = &boot_command_line[builtin_len];
1336 len = COMMAND_LINE_SIZE - builtin_len;
1337 } else
1338 #endif
1340 hv_cmdline = boot_command_line;
1341 len = COMMAND_LINE_SIZE;
1343 len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1344 if (len < 0 || len > COMMAND_LINE_SIZE)
1345 early_panic("hv_get_command_line failed: %d\n", len);
1346 #endif
1348 *cmdline_p = boot_command_line;
1350 /* Set disabled_map and setup_max_cpus very early */
1351 parse_early_param();
1353 /* Make sure the kernel is compatible with the hypervisor. */
1354 validate_hv();
1355 validate_va();
1357 setup_cpu_maps();
1360 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1362 * Initialize the PCI structures. This is done before memory
1363 * setup so that we know whether or not a pci_reserve region
1364 * is necessary.
1366 if (tile_pci_init() == 0)
1367 pci_reserve_mb = 0;
1369 /* PCI systems reserve a region just below 4GB for mapping iomem. */
1370 pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
1371 pci_reserve_start_pfn = pci_reserve_end_pfn -
1372 (pci_reserve_mb << (20 - PAGE_SHIFT));
1373 #endif
1375 init_mm.start_code = (unsigned long) _text;
1376 init_mm.end_code = (unsigned long) _etext;
1377 init_mm.end_data = (unsigned long) _edata;
1378 init_mm.brk = (unsigned long) _end;
1380 setup_memory();
1381 store_permanent_mappings();
1382 setup_bootmem_allocator();
1385 * NOTE: before this point _nobody_ is allowed to allocate
1386 * any memory using the bootmem allocator.
1389 #ifdef CONFIG_SWIOTLB
1390 swiotlb_init(0);
1391 #endif
1393 paging_init();
1394 setup_numa_mapping();
1395 zone_sizes_init();
1396 set_page_homes();
1397 setup_cpu(1);
1398 setup_clock();
1399 load_hv_initrd();
1404 * Set up per-cpu memory.
1407 unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1408 EXPORT_SYMBOL(__per_cpu_offset);
1410 static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1411 static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1414 * As the percpu code allocates pages, we return the pages from the
1415 * end of the node for the specified cpu.
1417 static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1419 int nid = cpu_to_node(cpu);
1420 unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1422 BUG_ON(size % PAGE_SIZE != 0);
1423 pfn_offset[nid] += size / PAGE_SIZE;
1424 BUG_ON(node_percpu[nid] < size);
1425 node_percpu[nid] -= size;
1426 if (percpu_pfn[cpu] == 0)
1427 percpu_pfn[cpu] = pfn;
1428 return pfn_to_kaddr(pfn);
1432 * Pages reserved for percpu memory are not freeable, and in any case we are
1433 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1435 static void __init pcpu_fc_free(void *ptr, size_t size)
1440 * Set up vmalloc page tables using bootmem for the percpu code.
1442 static void __init pcpu_fc_populate_pte(unsigned long addr)
1444 pgd_t *pgd;
1445 pud_t *pud;
1446 pmd_t *pmd;
1447 pte_t *pte;
1449 BUG_ON(pgd_addr_invalid(addr));
1450 if (addr < VMALLOC_START || addr >= VMALLOC_END)
1451 panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1452 " try increasing CONFIG_VMALLOC_RESERVE\n",
1453 addr, VMALLOC_START, VMALLOC_END);
1455 pgd = swapper_pg_dir + pgd_index(addr);
1456 pud = pud_offset(pgd, addr);
1457 BUG_ON(!pud_present(*pud));
1458 pmd = pmd_offset(pud, addr);
1459 if (pmd_present(*pmd)) {
1460 BUG_ON(pmd_huge_page(*pmd));
1461 } else {
1462 pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1463 HV_PAGE_TABLE_ALIGN, 0);
1464 pmd_populate_kernel(&init_mm, pmd, pte);
1468 void __init setup_per_cpu_areas(void)
1470 struct page *pg;
1471 unsigned long delta, pfn, lowmem_va;
1472 unsigned long size = percpu_size();
1473 char *ptr;
1474 int rc, cpu, i;
1476 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1477 pcpu_fc_free, pcpu_fc_populate_pte);
1478 if (rc < 0)
1479 panic("Cannot initialize percpu area (err=%d)", rc);
1481 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1482 for_each_possible_cpu(cpu) {
1483 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1485 /* finv the copy out of cache so we can change homecache */
1486 ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1487 __finv_buffer(ptr, size);
1488 pfn = percpu_pfn[cpu];
1490 /* Rewrite the page tables to cache on that cpu */
1491 pg = pfn_to_page(pfn);
1492 for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1494 /* Update the vmalloc mapping and page home. */
1495 unsigned long addr = (unsigned long)ptr + i;
1496 pte_t *ptep = virt_to_pte(NULL, addr);
1497 pte_t pte = *ptep;
1498 BUG_ON(pfn != pte_pfn(pte));
1499 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1500 pte = set_remote_cache_cpu(pte, cpu);
1501 set_pte_at(&init_mm, addr, ptep, pte);
1503 /* Update the lowmem mapping for consistency. */
1504 lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1505 ptep = virt_to_pte(NULL, lowmem_va);
1506 if (pte_huge(*ptep)) {
1507 printk(KERN_DEBUG "early shatter of huge page"
1508 " at %#lx\n", lowmem_va);
1509 shatter_pmd((pmd_t *)ptep);
1510 ptep = virt_to_pte(NULL, lowmem_va);
1511 BUG_ON(pte_huge(*ptep));
1513 BUG_ON(pfn != pte_pfn(*ptep));
1514 set_pte_at(&init_mm, lowmem_va, ptep, pte);
1518 /* Set our thread pointer appropriately. */
1519 set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1521 /* Make sure the finv's have completed. */
1522 mb_incoherent();
1524 /* Flush the TLB so we reference it properly from here on out. */
1525 local_flush_tlb_all();
1528 static struct resource data_resource = {
1529 .name = "Kernel data",
1530 .start = 0,
1531 .end = 0,
1532 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1535 static struct resource code_resource = {
1536 .name = "Kernel code",
1537 .start = 0,
1538 .end = 0,
1539 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1543 * On Pro, we reserve all resources above 4GB so that PCI won't try to put
1544 * mappings above 4GB.
1546 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1547 static struct resource* __init
1548 insert_non_bus_resource(void)
1550 struct resource *res =
1551 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1552 res->name = "Non-Bus Physical Address Space";
1553 res->start = (1ULL << 32);
1554 res->end = -1LL;
1555 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1556 if (insert_resource(&iomem_resource, res)) {
1557 kfree(res);
1558 return NULL;
1560 return res;
1562 #endif
1564 static struct resource* __init
1565 insert_ram_resource(u64 start_pfn, u64 end_pfn)
1567 struct resource *res =
1568 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1569 res->name = "System RAM";
1570 res->start = start_pfn << PAGE_SHIFT;
1571 res->end = (end_pfn << PAGE_SHIFT) - 1;
1572 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1573 if (insert_resource(&iomem_resource, res)) {
1574 kfree(res);
1575 return NULL;
1577 return res;
1581 * Request address space for all standard resources
1583 * If the system includes PCI root complex drivers, we need to create
1584 * a window just below 4GB where PCI BARs can be mapped.
1586 static int __init request_standard_resources(void)
1588 int i;
1589 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1591 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1592 insert_non_bus_resource();
1593 #endif
1595 for_each_online_node(i) {
1596 u64 start_pfn = node_start_pfn[i];
1597 u64 end_pfn = node_end_pfn[i];
1599 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1600 if (start_pfn <= pci_reserve_start_pfn &&
1601 end_pfn > pci_reserve_start_pfn) {
1602 if (end_pfn > pci_reserve_end_pfn)
1603 insert_ram_resource(pci_reserve_end_pfn,
1604 end_pfn);
1605 end_pfn = pci_reserve_start_pfn;
1607 #endif
1608 insert_ram_resource(start_pfn, end_pfn);
1611 code_resource.start = __pa(_text - CODE_DELTA);
1612 code_resource.end = __pa(_etext - CODE_DELTA)-1;
1613 data_resource.start = __pa(_sdata);
1614 data_resource.end = __pa(_end)-1;
1616 insert_resource(&iomem_resource, &code_resource);
1617 insert_resource(&iomem_resource, &data_resource);
1619 #ifdef CONFIG_KEXEC
1620 insert_resource(&iomem_resource, &crashk_res);
1621 #endif
1623 return 0;
1626 subsys_initcall(request_standard_resources);