1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim
;
68 /* This context's GFP mask */
71 /* Allocation order */
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
84 struct mem_cgroup
*target_mem_cgroup
;
86 /* Scan (total_size >> priority) pages at once */
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx
;
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage
:1;
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap
:1;
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap
:1;
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
106 unsigned int memcg_low_reclaim
:1;
107 unsigned int memcg_low_skipped
:1;
109 unsigned int hibernation_mode
:1;
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready
:1;
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned
;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed
;
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
124 if ((_page)->lru.prev != _base) { \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
138 if ((_page)->lru.prev != _base) { \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
150 * From 0 .. 100. Higher means more swappy.
152 int vm_swappiness
= 60;
154 * The total number of pages which are beyond the high watermark within all
157 unsigned long vm_total_pages
;
159 static LIST_HEAD(shrinker_list
);
160 static DECLARE_RWSEM(shrinker_rwsem
);
163 static bool global_reclaim(struct scan_control
*sc
)
165 return !sc
->target_mem_cgroup
;
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
181 static bool sane_reclaim(struct scan_control
*sc
)
183 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
194 static bool global_reclaim(struct scan_control
*sc
)
199 static bool sane_reclaim(struct scan_control
*sc
)
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
210 unsigned long zone_reclaimable_pages(struct zone
*zone
)
214 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
215 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
216 if (get_nr_swap_pages() > 0)
217 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
218 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
224 * lruvec_lru_size - Returns the number of pages on the given LRU list.
225 * @lruvec: lru vector
227 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
229 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
231 unsigned long lru_size
;
234 if (!mem_cgroup_disabled())
235 lru_size
= mem_cgroup_get_lru_size(lruvec
, lru
);
237 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
239 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
240 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
243 if (!managed_zone(zone
))
246 if (!mem_cgroup_disabled())
247 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
249 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
250 NR_ZONE_LRU_BASE
+ lru
);
251 lru_size
-= min(size
, lru_size
);
259 * Add a shrinker callback to be called from the vm.
261 int register_shrinker(struct shrinker
*shrinker
)
263 size_t size
= sizeof(*shrinker
->nr_deferred
);
265 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
268 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
269 if (!shrinker
->nr_deferred
)
272 down_write(&shrinker_rwsem
);
273 list_add_tail(&shrinker
->list
, &shrinker_list
);
274 up_write(&shrinker_rwsem
);
277 EXPORT_SYMBOL(register_shrinker
);
282 void unregister_shrinker(struct shrinker
*shrinker
)
284 if (!shrinker
->nr_deferred
)
286 down_write(&shrinker_rwsem
);
287 list_del(&shrinker
->list
);
288 up_write(&shrinker_rwsem
);
289 kfree(shrinker
->nr_deferred
);
290 shrinker
->nr_deferred
= NULL
;
292 EXPORT_SYMBOL(unregister_shrinker
);
294 #define SHRINK_BATCH 128
296 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
297 struct shrinker
*shrinker
, int priority
)
299 unsigned long freed
= 0;
300 unsigned long long delta
;
305 int nid
= shrinkctl
->nid
;
306 long batch_size
= shrinker
->batch
? shrinker
->batch
308 long scanned
= 0, next_deferred
;
310 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
315 * copy the current shrinker scan count into a local variable
316 * and zero it so that other concurrent shrinker invocations
317 * don't also do this scanning work.
319 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
322 delta
= freeable
>> priority
;
324 do_div(delta
, shrinker
->seeks
);
326 if (total_scan
< 0) {
327 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
328 shrinker
->scan_objects
, total_scan
);
329 total_scan
= freeable
;
332 next_deferred
= total_scan
;
335 * We need to avoid excessive windup on filesystem shrinkers
336 * due to large numbers of GFP_NOFS allocations causing the
337 * shrinkers to return -1 all the time. This results in a large
338 * nr being built up so when a shrink that can do some work
339 * comes along it empties the entire cache due to nr >>>
340 * freeable. This is bad for sustaining a working set in
343 * Hence only allow the shrinker to scan the entire cache when
344 * a large delta change is calculated directly.
346 if (delta
< freeable
/ 4)
347 total_scan
= min(total_scan
, freeable
/ 2);
350 * Avoid risking looping forever due to too large nr value:
351 * never try to free more than twice the estimate number of
354 if (total_scan
> freeable
* 2)
355 total_scan
= freeable
* 2;
357 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
358 freeable
, delta
, total_scan
, priority
);
361 * Normally, we should not scan less than batch_size objects in one
362 * pass to avoid too frequent shrinker calls, but if the slab has less
363 * than batch_size objects in total and we are really tight on memory,
364 * we will try to reclaim all available objects, otherwise we can end
365 * up failing allocations although there are plenty of reclaimable
366 * objects spread over several slabs with usage less than the
369 * We detect the "tight on memory" situations by looking at the total
370 * number of objects we want to scan (total_scan). If it is greater
371 * than the total number of objects on slab (freeable), we must be
372 * scanning at high prio and therefore should try to reclaim as much as
375 while (total_scan
>= batch_size
||
376 total_scan
>= freeable
) {
378 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
380 shrinkctl
->nr_to_scan
= nr_to_scan
;
381 shrinkctl
->nr_scanned
= nr_to_scan
;
382 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
383 if (ret
== SHRINK_STOP
)
387 count_vm_events(SLABS_SCANNED
, shrinkctl
->nr_scanned
);
388 total_scan
-= shrinkctl
->nr_scanned
;
389 scanned
+= shrinkctl
->nr_scanned
;
394 if (next_deferred
>= scanned
)
395 next_deferred
-= scanned
;
399 * move the unused scan count back into the shrinker in a
400 * manner that handles concurrent updates. If we exhausted the
401 * scan, there is no need to do an update.
403 if (next_deferred
> 0)
404 new_nr
= atomic_long_add_return(next_deferred
,
405 &shrinker
->nr_deferred
[nid
]);
407 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
409 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
414 * shrink_slab - shrink slab caches
415 * @gfp_mask: allocation context
416 * @nid: node whose slab caches to target
417 * @memcg: memory cgroup whose slab caches to target
418 * @priority: the reclaim priority
420 * Call the shrink functions to age shrinkable caches.
422 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
423 * unaware shrinkers will receive a node id of 0 instead.
425 * @memcg specifies the memory cgroup to target. If it is not NULL,
426 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
427 * objects from the memory cgroup specified. Otherwise, only unaware
428 * shrinkers are called.
430 * @priority is sc->priority, we take the number of objects and >> by priority
431 * in order to get the scan target.
433 * Returns the number of reclaimed slab objects.
435 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
436 struct mem_cgroup
*memcg
,
439 struct shrinker
*shrinker
;
440 unsigned long freed
= 0;
442 if (memcg
&& (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
)))
445 if (!down_read_trylock(&shrinker_rwsem
)) {
447 * If we would return 0, our callers would understand that we
448 * have nothing else to shrink and give up trying. By returning
449 * 1 we keep it going and assume we'll be able to shrink next
456 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
457 struct shrink_control sc
= {
458 .gfp_mask
= gfp_mask
,
464 * If kernel memory accounting is disabled, we ignore
465 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
466 * passing NULL for memcg.
468 if (memcg_kmem_enabled() &&
469 !!memcg
!= !!(shrinker
->flags
& SHRINKER_MEMCG_AWARE
))
472 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
475 freed
+= do_shrink_slab(&sc
, shrinker
, priority
);
477 * Bail out if someone want to register a new shrinker to
478 * prevent the regsitration from being stalled for long periods
479 * by parallel ongoing shrinking.
481 if (rwsem_is_contended(&shrinker_rwsem
)) {
487 up_read(&shrinker_rwsem
);
493 void drop_slab_node(int nid
)
498 struct mem_cgroup
*memcg
= NULL
;
502 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
, 0);
503 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
504 } while (freed
> 10);
511 for_each_online_node(nid
)
515 static inline int is_page_cache_freeable(struct page
*page
)
518 * A freeable page cache page is referenced only by the caller
519 * that isolated the page, the page cache radix tree and
520 * optional buffer heads at page->private.
522 int radix_pins
= PageTransHuge(page
) && PageSwapCache(page
) ?
524 return page_count(page
) - page_has_private(page
) == 1 + radix_pins
;
527 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
529 if (current
->flags
& PF_SWAPWRITE
)
531 if (!inode_write_congested(inode
))
533 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
539 * We detected a synchronous write error writing a page out. Probably
540 * -ENOSPC. We need to propagate that into the address_space for a subsequent
541 * fsync(), msync() or close().
543 * The tricky part is that after writepage we cannot touch the mapping: nothing
544 * prevents it from being freed up. But we have a ref on the page and once
545 * that page is locked, the mapping is pinned.
547 * We're allowed to run sleeping lock_page() here because we know the caller has
550 static void handle_write_error(struct address_space
*mapping
,
551 struct page
*page
, int error
)
554 if (page_mapping(page
) == mapping
)
555 mapping_set_error(mapping
, error
);
559 /* possible outcome of pageout() */
561 /* failed to write page out, page is locked */
563 /* move page to the active list, page is locked */
565 /* page has been sent to the disk successfully, page is unlocked */
567 /* page is clean and locked */
572 * pageout is called by shrink_page_list() for each dirty page.
573 * Calls ->writepage().
575 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
576 struct scan_control
*sc
)
579 * If the page is dirty, only perform writeback if that write
580 * will be non-blocking. To prevent this allocation from being
581 * stalled by pagecache activity. But note that there may be
582 * stalls if we need to run get_block(). We could test
583 * PagePrivate for that.
585 * If this process is currently in __generic_file_write_iter() against
586 * this page's queue, we can perform writeback even if that
589 * If the page is swapcache, write it back even if that would
590 * block, for some throttling. This happens by accident, because
591 * swap_backing_dev_info is bust: it doesn't reflect the
592 * congestion state of the swapdevs. Easy to fix, if needed.
594 if (!is_page_cache_freeable(page
))
598 * Some data journaling orphaned pages can have
599 * page->mapping == NULL while being dirty with clean buffers.
601 if (page_has_private(page
)) {
602 if (try_to_free_buffers(page
)) {
603 ClearPageDirty(page
);
604 pr_info("%s: orphaned page\n", __func__
);
610 if (mapping
->a_ops
->writepage
== NULL
)
611 return PAGE_ACTIVATE
;
612 if (!may_write_to_inode(mapping
->host
, sc
))
615 if (clear_page_dirty_for_io(page
)) {
617 struct writeback_control wbc
= {
618 .sync_mode
= WB_SYNC_NONE
,
619 .nr_to_write
= SWAP_CLUSTER_MAX
,
621 .range_end
= LLONG_MAX
,
625 SetPageReclaim(page
);
626 res
= mapping
->a_ops
->writepage(page
, &wbc
);
628 handle_write_error(mapping
, page
, res
);
629 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
630 ClearPageReclaim(page
);
631 return PAGE_ACTIVATE
;
634 if (!PageWriteback(page
)) {
635 /* synchronous write or broken a_ops? */
636 ClearPageReclaim(page
);
638 trace_mm_vmscan_writepage(page
);
639 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
647 * Same as remove_mapping, but if the page is removed from the mapping, it
648 * gets returned with a refcount of 0.
650 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
656 BUG_ON(!PageLocked(page
));
657 BUG_ON(mapping
!= page_mapping(page
));
659 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
661 * The non racy check for a busy page.
663 * Must be careful with the order of the tests. When someone has
664 * a ref to the page, it may be possible that they dirty it then
665 * drop the reference. So if PageDirty is tested before page_count
666 * here, then the following race may occur:
668 * get_user_pages(&page);
669 * [user mapping goes away]
671 * !PageDirty(page) [good]
672 * SetPageDirty(page);
674 * !page_count(page) [good, discard it]
676 * [oops, our write_to data is lost]
678 * Reversing the order of the tests ensures such a situation cannot
679 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
680 * load is not satisfied before that of page->_refcount.
682 * Note that if SetPageDirty is always performed via set_page_dirty,
683 * and thus under tree_lock, then this ordering is not required.
685 if (unlikely(PageTransHuge(page
)) && PageSwapCache(page
))
686 refcount
= 1 + HPAGE_PMD_NR
;
689 if (!page_ref_freeze(page
, refcount
))
691 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
692 if (unlikely(PageDirty(page
))) {
693 page_ref_unfreeze(page
, refcount
);
697 if (PageSwapCache(page
)) {
698 swp_entry_t swap
= { .val
= page_private(page
) };
699 mem_cgroup_swapout(page
, swap
);
700 __delete_from_swap_cache(page
);
701 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
702 put_swap_page(page
, swap
);
704 void (*freepage
)(struct page
*);
707 freepage
= mapping
->a_ops
->freepage
;
709 * Remember a shadow entry for reclaimed file cache in
710 * order to detect refaults, thus thrashing, later on.
712 * But don't store shadows in an address space that is
713 * already exiting. This is not just an optizimation,
714 * inode reclaim needs to empty out the radix tree or
715 * the nodes are lost. Don't plant shadows behind its
718 * We also don't store shadows for DAX mappings because the
719 * only page cache pages found in these are zero pages
720 * covering holes, and because we don't want to mix DAX
721 * exceptional entries and shadow exceptional entries in the
724 if (reclaimed
&& page_is_file_cache(page
) &&
725 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
726 shadow
= workingset_eviction(mapping
, page
);
727 __delete_from_page_cache(page
, shadow
);
728 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
730 if (freepage
!= NULL
)
737 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
742 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
743 * someone else has a ref on the page, abort and return 0. If it was
744 * successfully detached, return 1. Assumes the caller has a single ref on
747 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
749 if (__remove_mapping(mapping
, page
, false)) {
751 * Unfreezing the refcount with 1 rather than 2 effectively
752 * drops the pagecache ref for us without requiring another
755 page_ref_unfreeze(page
, 1);
762 * putback_lru_page - put previously isolated page onto appropriate LRU list
763 * @page: page to be put back to appropriate lru list
765 * Add previously isolated @page to appropriate LRU list.
766 * Page may still be unevictable for other reasons.
768 * lru_lock must not be held, interrupts must be enabled.
770 void putback_lru_page(struct page
*page
)
773 put_page(page
); /* drop ref from isolate */
776 enum page_references
{
778 PAGEREF_RECLAIM_CLEAN
,
783 static enum page_references
page_check_references(struct page
*page
,
784 struct scan_control
*sc
)
786 int referenced_ptes
, referenced_page
;
787 unsigned long vm_flags
;
789 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
791 referenced_page
= TestClearPageReferenced(page
);
794 * Mlock lost the isolation race with us. Let try_to_unmap()
795 * move the page to the unevictable list.
797 if (vm_flags
& VM_LOCKED
)
798 return PAGEREF_RECLAIM
;
800 if (referenced_ptes
) {
801 if (PageSwapBacked(page
))
802 return PAGEREF_ACTIVATE
;
804 * All mapped pages start out with page table
805 * references from the instantiating fault, so we need
806 * to look twice if a mapped file page is used more
809 * Mark it and spare it for another trip around the
810 * inactive list. Another page table reference will
811 * lead to its activation.
813 * Note: the mark is set for activated pages as well
814 * so that recently deactivated but used pages are
817 SetPageReferenced(page
);
819 if (referenced_page
|| referenced_ptes
> 1)
820 return PAGEREF_ACTIVATE
;
823 * Activate file-backed executable pages after first usage.
825 if (vm_flags
& VM_EXEC
)
826 return PAGEREF_ACTIVATE
;
831 /* Reclaim if clean, defer dirty pages to writeback */
832 if (referenced_page
&& !PageSwapBacked(page
))
833 return PAGEREF_RECLAIM_CLEAN
;
835 return PAGEREF_RECLAIM
;
838 /* Check if a page is dirty or under writeback */
839 static void page_check_dirty_writeback(struct page
*page
,
840 bool *dirty
, bool *writeback
)
842 struct address_space
*mapping
;
845 * Anonymous pages are not handled by flushers and must be written
846 * from reclaim context. Do not stall reclaim based on them
848 if (!page_is_file_cache(page
) ||
849 (PageAnon(page
) && !PageSwapBacked(page
))) {
855 /* By default assume that the page flags are accurate */
856 *dirty
= PageDirty(page
);
857 *writeback
= PageWriteback(page
);
859 /* Verify dirty/writeback state if the filesystem supports it */
860 if (!page_has_private(page
))
863 mapping
= page_mapping(page
);
864 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
865 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
868 struct reclaim_stat
{
870 unsigned nr_unqueued_dirty
;
871 unsigned nr_congested
;
872 unsigned nr_writeback
;
873 unsigned nr_immediate
;
874 unsigned nr_activate
;
875 unsigned nr_ref_keep
;
876 unsigned nr_unmap_fail
;
880 * shrink_page_list() returns the number of reclaimed pages
882 static unsigned long shrink_page_list(struct list_head
*page_list
,
883 struct pglist_data
*pgdat
,
884 struct scan_control
*sc
,
885 enum ttu_flags ttu_flags
,
886 struct reclaim_stat
*stat
,
889 LIST_HEAD(ret_pages
);
890 LIST_HEAD(free_pages
);
892 unsigned nr_unqueued_dirty
= 0;
893 unsigned nr_dirty
= 0;
894 unsigned nr_congested
= 0;
895 unsigned nr_reclaimed
= 0;
896 unsigned nr_writeback
= 0;
897 unsigned nr_immediate
= 0;
898 unsigned nr_ref_keep
= 0;
899 unsigned nr_unmap_fail
= 0;
903 while (!list_empty(page_list
)) {
904 struct address_space
*mapping
;
907 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
908 bool dirty
, writeback
;
912 page
= lru_to_page(page_list
);
913 list_del(&page
->lru
);
915 if (!trylock_page(page
))
918 VM_BUG_ON_PAGE(PageActive(page
), page
);
922 if (unlikely(!page_evictable(page
)))
923 goto activate_locked
;
925 if (!sc
->may_unmap
&& page_mapped(page
))
928 /* Double the slab pressure for mapped and swapcache pages */
929 if ((page_mapped(page
) || PageSwapCache(page
)) &&
930 !(PageAnon(page
) && !PageSwapBacked(page
)))
933 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
934 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
942 page_check_dirty_writeback(page
, &dirty
, &writeback
);
943 if (dirty
|| writeback
)
946 if (dirty
&& !writeback
)
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
955 mapping
= page_mapping(page
);
956 if (((dirty
|| writeback
) && mapping
&&
957 inode_write_congested(mapping
->host
)) ||
958 (writeback
&& PageReclaim(page
)))
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
975 * 2) Global or new memcg reclaim encounters a page that is
976 * not marked for immediate reclaim, or the caller does not
977 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 * not to fs). In this case mark the page for immediate
979 * reclaim and continue scanning.
981 * Require may_enter_fs because we would wait on fs, which
982 * may not have submitted IO yet. And the loop driver might
983 * enter reclaim, and deadlock if it waits on a page for
984 * which it is needed to do the write (loop masks off
985 * __GFP_IO|__GFP_FS for this reason); but more thought
986 * would probably show more reasons.
988 * 3) Legacy memcg encounters a page that is already marked
989 * PageReclaim. memcg does not have any dirty pages
990 * throttling so we could easily OOM just because too many
991 * pages are in writeback and there is nothing else to
992 * reclaim. Wait for the writeback to complete.
994 * In cases 1) and 2) we activate the pages to get them out of
995 * the way while we continue scanning for clean pages on the
996 * inactive list and refilling from the active list. The
997 * observation here is that waiting for disk writes is more
998 * expensive than potentially causing reloads down the line.
999 * Since they're marked for immediate reclaim, they won't put
1000 * memory pressure on the cache working set any longer than it
1001 * takes to write them to disk.
1003 if (PageWriteback(page
)) {
1005 if (current_is_kswapd() &&
1006 PageReclaim(page
) &&
1007 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1009 goto activate_locked
;
1012 } else if (sane_reclaim(sc
) ||
1013 !PageReclaim(page
) || !may_enter_fs
) {
1015 * This is slightly racy - end_page_writeback()
1016 * might have just cleared PageReclaim, then
1017 * setting PageReclaim here end up interpreted
1018 * as PageReadahead - but that does not matter
1019 * enough to care. What we do want is for this
1020 * page to have PageReclaim set next time memcg
1021 * reclaim reaches the tests above, so it will
1022 * then wait_on_page_writeback() to avoid OOM;
1023 * and it's also appropriate in global reclaim.
1025 SetPageReclaim(page
);
1027 goto activate_locked
;
1032 wait_on_page_writeback(page
);
1033 /* then go back and try same page again */
1034 list_add_tail(&page
->lru
, page_list
);
1040 references
= page_check_references(page
, sc
);
1042 switch (references
) {
1043 case PAGEREF_ACTIVATE
:
1044 goto activate_locked
;
1048 case PAGEREF_RECLAIM
:
1049 case PAGEREF_RECLAIM_CLEAN
:
1050 ; /* try to reclaim the page below */
1054 * Anonymous process memory has backing store?
1055 * Try to allocate it some swap space here.
1056 * Lazyfree page could be freed directly
1058 if (PageAnon(page
) && PageSwapBacked(page
)) {
1059 if (!PageSwapCache(page
)) {
1060 if (!(sc
->gfp_mask
& __GFP_IO
))
1062 if (PageTransHuge(page
)) {
1063 /* cannot split THP, skip it */
1064 if (!can_split_huge_page(page
, NULL
))
1065 goto activate_locked
;
1067 * Split pages without a PMD map right
1068 * away. Chances are some or all of the
1069 * tail pages can be freed without IO.
1071 if (!compound_mapcount(page
) &&
1072 split_huge_page_to_list(page
,
1074 goto activate_locked
;
1076 if (!add_to_swap(page
)) {
1077 if (!PageTransHuge(page
))
1078 goto activate_locked
;
1079 /* Fallback to swap normal pages */
1080 if (split_huge_page_to_list(page
,
1082 goto activate_locked
;
1083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1084 count_vm_event(THP_SWPOUT_FALLBACK
);
1086 if (!add_to_swap(page
))
1087 goto activate_locked
;
1092 /* Adding to swap updated mapping */
1093 mapping
= page_mapping(page
);
1095 } else if (unlikely(PageTransHuge(page
))) {
1096 /* Split file THP */
1097 if (split_huge_page_to_list(page
, page_list
))
1102 * The page is mapped into the page tables of one or more
1103 * processes. Try to unmap it here.
1105 if (page_mapped(page
)) {
1106 enum ttu_flags flags
= ttu_flags
| TTU_BATCH_FLUSH
;
1108 if (unlikely(PageTransHuge(page
)))
1109 flags
|= TTU_SPLIT_HUGE_PMD
;
1110 if (!try_to_unmap(page
, flags
)) {
1112 goto activate_locked
;
1116 if (PageDirty(page
)) {
1118 * Only kswapd can writeback filesystem pages
1119 * to avoid risk of stack overflow. But avoid
1120 * injecting inefficient single-page IO into
1121 * flusher writeback as much as possible: only
1122 * write pages when we've encountered many
1123 * dirty pages, and when we've already scanned
1124 * the rest of the LRU for clean pages and see
1125 * the same dirty pages again (PageReclaim).
1127 if (page_is_file_cache(page
) &&
1128 (!current_is_kswapd() || !PageReclaim(page
) ||
1129 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1131 * Immediately reclaim when written back.
1132 * Similar in principal to deactivate_page()
1133 * except we already have the page isolated
1134 * and know it's dirty
1136 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1137 SetPageReclaim(page
);
1139 goto activate_locked
;
1142 if (references
== PAGEREF_RECLAIM_CLEAN
)
1146 if (!sc
->may_writepage
)
1150 * Page is dirty. Flush the TLB if a writable entry
1151 * potentially exists to avoid CPU writes after IO
1152 * starts and then write it out here.
1154 try_to_unmap_flush_dirty();
1155 switch (pageout(page
, mapping
, sc
)) {
1159 goto activate_locked
;
1161 if (PageWriteback(page
))
1163 if (PageDirty(page
))
1167 * A synchronous write - probably a ramdisk. Go
1168 * ahead and try to reclaim the page.
1170 if (!trylock_page(page
))
1172 if (PageDirty(page
) || PageWriteback(page
))
1174 mapping
= page_mapping(page
);
1176 ; /* try to free the page below */
1181 * If the page has buffers, try to free the buffer mappings
1182 * associated with this page. If we succeed we try to free
1185 * We do this even if the page is PageDirty().
1186 * try_to_release_page() does not perform I/O, but it is
1187 * possible for a page to have PageDirty set, but it is actually
1188 * clean (all its buffers are clean). This happens if the
1189 * buffers were written out directly, with submit_bh(). ext3
1190 * will do this, as well as the blockdev mapping.
1191 * try_to_release_page() will discover that cleanness and will
1192 * drop the buffers and mark the page clean - it can be freed.
1194 * Rarely, pages can have buffers and no ->mapping. These are
1195 * the pages which were not successfully invalidated in
1196 * truncate_complete_page(). We try to drop those buffers here
1197 * and if that worked, and the page is no longer mapped into
1198 * process address space (page_count == 1) it can be freed.
1199 * Otherwise, leave the page on the LRU so it is swappable.
1201 if (page_has_private(page
)) {
1202 if (!try_to_release_page(page
, sc
->gfp_mask
))
1203 goto activate_locked
;
1204 if (!mapping
&& page_count(page
) == 1) {
1206 if (put_page_testzero(page
))
1210 * rare race with speculative reference.
1211 * the speculative reference will free
1212 * this page shortly, so we may
1213 * increment nr_reclaimed here (and
1214 * leave it off the LRU).
1222 if (PageAnon(page
) && !PageSwapBacked(page
)) {
1223 /* follow __remove_mapping for reference */
1224 if (!page_ref_freeze(page
, 1))
1226 if (PageDirty(page
)) {
1227 page_ref_unfreeze(page
, 1);
1231 count_vm_event(PGLAZYFREED
);
1232 count_memcg_page_event(page
, PGLAZYFREED
);
1233 } else if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1236 * At this point, we have no other references and there is
1237 * no way to pick any more up (removed from LRU, removed
1238 * from pagecache). Can use non-atomic bitops now (and
1239 * we obviously don't have to worry about waking up a process
1240 * waiting on the page lock, because there are no references.
1242 __ClearPageLocked(page
);
1247 * Is there need to periodically free_page_list? It would
1248 * appear not as the counts should be low
1250 if (unlikely(PageTransHuge(page
))) {
1251 mem_cgroup_uncharge(page
);
1252 (*get_compound_page_dtor(page
))(page
);
1254 list_add(&page
->lru
, &free_pages
);
1258 /* Not a candidate for swapping, so reclaim swap space. */
1259 if (PageSwapCache(page
) && (mem_cgroup_swap_full(page
) ||
1261 try_to_free_swap(page
);
1262 VM_BUG_ON_PAGE(PageActive(page
), page
);
1263 if (!PageMlocked(page
)) {
1264 SetPageActive(page
);
1266 count_memcg_page_event(page
, PGACTIVATE
);
1271 list_add(&page
->lru
, &ret_pages
);
1272 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1275 mem_cgroup_uncharge_list(&free_pages
);
1276 try_to_unmap_flush();
1277 free_unref_page_list(&free_pages
);
1279 list_splice(&ret_pages
, page_list
);
1280 count_vm_events(PGACTIVATE
, pgactivate
);
1283 stat
->nr_dirty
= nr_dirty
;
1284 stat
->nr_congested
= nr_congested
;
1285 stat
->nr_unqueued_dirty
= nr_unqueued_dirty
;
1286 stat
->nr_writeback
= nr_writeback
;
1287 stat
->nr_immediate
= nr_immediate
;
1288 stat
->nr_activate
= pgactivate
;
1289 stat
->nr_ref_keep
= nr_ref_keep
;
1290 stat
->nr_unmap_fail
= nr_unmap_fail
;
1292 return nr_reclaimed
;
1295 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1296 struct list_head
*page_list
)
1298 struct scan_control sc
= {
1299 .gfp_mask
= GFP_KERNEL
,
1300 .priority
= DEF_PRIORITY
,
1304 struct page
*page
, *next
;
1305 LIST_HEAD(clean_pages
);
1307 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1308 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1309 !__PageMovable(page
)) {
1310 ClearPageActive(page
);
1311 list_move(&page
->lru
, &clean_pages
);
1315 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1316 TTU_IGNORE_ACCESS
, NULL
, true);
1317 list_splice(&clean_pages
, page_list
);
1318 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1323 * Attempt to remove the specified page from its LRU. Only take this page
1324 * if it is of the appropriate PageActive status. Pages which are being
1325 * freed elsewhere are also ignored.
1327 * page: page to consider
1328 * mode: one of the LRU isolation modes defined above
1330 * returns 0 on success, -ve errno on failure.
1332 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1336 /* Only take pages on the LRU. */
1340 /* Compaction should not handle unevictable pages but CMA can do so */
1341 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1347 * To minimise LRU disruption, the caller can indicate that it only
1348 * wants to isolate pages it will be able to operate on without
1349 * blocking - clean pages for the most part.
1351 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1352 * that it is possible to migrate without blocking
1354 if (mode
& ISOLATE_ASYNC_MIGRATE
) {
1355 /* All the caller can do on PageWriteback is block */
1356 if (PageWriteback(page
))
1359 if (PageDirty(page
)) {
1360 struct address_space
*mapping
;
1364 * Only pages without mappings or that have a
1365 * ->migratepage callback are possible to migrate
1366 * without blocking. However, we can be racing with
1367 * truncation so it's necessary to lock the page
1368 * to stabilise the mapping as truncation holds
1369 * the page lock until after the page is removed
1370 * from the page cache.
1372 if (!trylock_page(page
))
1375 mapping
= page_mapping(page
);
1376 migrate_dirty
= mapping
&& mapping
->a_ops
->migratepage
;
1383 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1386 if (likely(get_page_unless_zero(page
))) {
1388 * Be careful not to clear PageLRU until after we're
1389 * sure the page is not being freed elsewhere -- the
1390 * page release code relies on it.
1401 * Update LRU sizes after isolating pages. The LRU size updates must
1402 * be complete before mem_cgroup_update_lru_size due to a santity check.
1404 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1405 enum lru_list lru
, unsigned long *nr_zone_taken
)
1409 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1410 if (!nr_zone_taken
[zid
])
1413 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1415 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1422 * zone_lru_lock is heavily contended. Some of the functions that
1423 * shrink the lists perform better by taking out a batch of pages
1424 * and working on them outside the LRU lock.
1426 * For pagecache intensive workloads, this function is the hottest
1427 * spot in the kernel (apart from copy_*_user functions).
1429 * Appropriate locks must be held before calling this function.
1431 * @nr_to_scan: The number of eligible pages to look through on the list.
1432 * @lruvec: The LRU vector to pull pages from.
1433 * @dst: The temp list to put pages on to.
1434 * @nr_scanned: The number of pages that were scanned.
1435 * @sc: The scan_control struct for this reclaim session
1436 * @mode: One of the LRU isolation modes
1437 * @lru: LRU list id for isolating
1439 * returns how many pages were moved onto *@dst.
1441 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1442 struct lruvec
*lruvec
, struct list_head
*dst
,
1443 unsigned long *nr_scanned
, struct scan_control
*sc
,
1444 isolate_mode_t mode
, enum lru_list lru
)
1446 struct list_head
*src
= &lruvec
->lists
[lru
];
1447 unsigned long nr_taken
= 0;
1448 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1449 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1450 unsigned long skipped
= 0;
1451 unsigned long scan
, total_scan
, nr_pages
;
1452 LIST_HEAD(pages_skipped
);
1455 for (total_scan
= 0;
1456 scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&& !list_empty(src
);
1460 page
= lru_to_page(src
);
1461 prefetchw_prev_lru_page(page
, src
, flags
);
1463 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1465 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1466 list_move(&page
->lru
, &pages_skipped
);
1467 nr_skipped
[page_zonenum(page
)]++;
1472 * Do not count skipped pages because that makes the function
1473 * return with no isolated pages if the LRU mostly contains
1474 * ineligible pages. This causes the VM to not reclaim any
1475 * pages, triggering a premature OOM.
1478 switch (__isolate_lru_page(page
, mode
)) {
1480 nr_pages
= hpage_nr_pages(page
);
1481 nr_taken
+= nr_pages
;
1482 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1483 list_move(&page
->lru
, dst
);
1487 /* else it is being freed elsewhere */
1488 list_move(&page
->lru
, src
);
1497 * Splice any skipped pages to the start of the LRU list. Note that
1498 * this disrupts the LRU order when reclaiming for lower zones but
1499 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1500 * scanning would soon rescan the same pages to skip and put the
1501 * system at risk of premature OOM.
1503 if (!list_empty(&pages_skipped
)) {
1506 list_splice(&pages_skipped
, src
);
1507 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1508 if (!nr_skipped
[zid
])
1511 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1512 skipped
+= nr_skipped
[zid
];
1515 *nr_scanned
= total_scan
;
1516 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1517 total_scan
, skipped
, nr_taken
, mode
, lru
);
1518 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1523 * isolate_lru_page - tries to isolate a page from its LRU list
1524 * @page: page to isolate from its LRU list
1526 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1527 * vmstat statistic corresponding to whatever LRU list the page was on.
1529 * Returns 0 if the page was removed from an LRU list.
1530 * Returns -EBUSY if the page was not on an LRU list.
1532 * The returned page will have PageLRU() cleared. If it was found on
1533 * the active list, it will have PageActive set. If it was found on
1534 * the unevictable list, it will have the PageUnevictable bit set. That flag
1535 * may need to be cleared by the caller before letting the page go.
1537 * The vmstat statistic corresponding to the list on which the page was
1538 * found will be decremented.
1542 * (1) Must be called with an elevated refcount on the page. This is a
1543 * fundamentnal difference from isolate_lru_pages (which is called
1544 * without a stable reference).
1545 * (2) the lru_lock must not be held.
1546 * (3) interrupts must be enabled.
1548 int isolate_lru_page(struct page
*page
)
1552 VM_BUG_ON_PAGE(!page_count(page
), page
);
1553 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1555 if (PageLRU(page
)) {
1556 struct zone
*zone
= page_zone(page
);
1557 struct lruvec
*lruvec
;
1559 spin_lock_irq(zone_lru_lock(zone
));
1560 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1561 if (PageLRU(page
)) {
1562 int lru
= page_lru(page
);
1565 del_page_from_lru_list(page
, lruvec
, lru
);
1568 spin_unlock_irq(zone_lru_lock(zone
));
1574 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1575 * then get resheduled. When there are massive number of tasks doing page
1576 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1577 * the LRU list will go small and be scanned faster than necessary, leading to
1578 * unnecessary swapping, thrashing and OOM.
1580 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1581 struct scan_control
*sc
)
1583 unsigned long inactive
, isolated
;
1585 if (current_is_kswapd())
1588 if (!sane_reclaim(sc
))
1592 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1593 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1595 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1596 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1600 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1601 * won't get blocked by normal direct-reclaimers, forming a circular
1604 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1607 return isolated
> inactive
;
1610 static noinline_for_stack
void
1611 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1613 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1614 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1615 LIST_HEAD(pages_to_free
);
1618 * Put back any unfreeable pages.
1620 while (!list_empty(page_list
)) {
1621 struct page
*page
= lru_to_page(page_list
);
1624 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1625 list_del(&page
->lru
);
1626 if (unlikely(!page_evictable(page
))) {
1627 spin_unlock_irq(&pgdat
->lru_lock
);
1628 putback_lru_page(page
);
1629 spin_lock_irq(&pgdat
->lru_lock
);
1633 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1636 lru
= page_lru(page
);
1637 add_page_to_lru_list(page
, lruvec
, lru
);
1639 if (is_active_lru(lru
)) {
1640 int file
= is_file_lru(lru
);
1641 int numpages
= hpage_nr_pages(page
);
1642 reclaim_stat
->recent_rotated
[file
] += numpages
;
1644 if (put_page_testzero(page
)) {
1645 __ClearPageLRU(page
);
1646 __ClearPageActive(page
);
1647 del_page_from_lru_list(page
, lruvec
, lru
);
1649 if (unlikely(PageCompound(page
))) {
1650 spin_unlock_irq(&pgdat
->lru_lock
);
1651 mem_cgroup_uncharge(page
);
1652 (*get_compound_page_dtor(page
))(page
);
1653 spin_lock_irq(&pgdat
->lru_lock
);
1655 list_add(&page
->lru
, &pages_to_free
);
1660 * To save our caller's stack, now use input list for pages to free.
1662 list_splice(&pages_to_free
, page_list
);
1666 * If a kernel thread (such as nfsd for loop-back mounts) services
1667 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1668 * In that case we should only throttle if the backing device it is
1669 * writing to is congested. In other cases it is safe to throttle.
1671 static int current_may_throttle(void)
1673 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1674 current
->backing_dev_info
== NULL
||
1675 bdi_write_congested(current
->backing_dev_info
);
1679 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1680 * of reclaimed pages
1682 static noinline_for_stack
unsigned long
1683 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1684 struct scan_control
*sc
, enum lru_list lru
)
1686 LIST_HEAD(page_list
);
1687 unsigned long nr_scanned
;
1688 unsigned long nr_reclaimed
= 0;
1689 unsigned long nr_taken
;
1690 struct reclaim_stat stat
= {};
1691 isolate_mode_t isolate_mode
= 0;
1692 int file
= is_file_lru(lru
);
1693 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1694 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1695 bool stalled
= false;
1697 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1701 /* wait a bit for the reclaimer. */
1705 /* We are about to die and free our memory. Return now. */
1706 if (fatal_signal_pending(current
))
1707 return SWAP_CLUSTER_MAX
;
1713 isolate_mode
|= ISOLATE_UNMAPPED
;
1715 spin_lock_irq(&pgdat
->lru_lock
);
1717 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1718 &nr_scanned
, sc
, isolate_mode
, lru
);
1720 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1721 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1723 if (current_is_kswapd()) {
1724 if (global_reclaim(sc
))
1725 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1726 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_KSWAPD
,
1729 if (global_reclaim(sc
))
1730 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1731 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_DIRECT
,
1734 spin_unlock_irq(&pgdat
->lru_lock
);
1739 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, 0,
1742 spin_lock_irq(&pgdat
->lru_lock
);
1744 if (current_is_kswapd()) {
1745 if (global_reclaim(sc
))
1746 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1747 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_KSWAPD
,
1750 if (global_reclaim(sc
))
1751 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1752 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_DIRECT
,
1756 putback_inactive_pages(lruvec
, &page_list
);
1758 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1760 spin_unlock_irq(&pgdat
->lru_lock
);
1762 mem_cgroup_uncharge_list(&page_list
);
1763 free_unref_page_list(&page_list
);
1766 * If reclaim is isolating dirty pages under writeback, it implies
1767 * that the long-lived page allocation rate is exceeding the page
1768 * laundering rate. Either the global limits are not being effective
1769 * at throttling processes due to the page distribution throughout
1770 * zones or there is heavy usage of a slow backing device. The
1771 * only option is to throttle from reclaim context which is not ideal
1772 * as there is no guarantee the dirtying process is throttled in the
1773 * same way balance_dirty_pages() manages.
1775 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1776 * of pages under pages flagged for immediate reclaim and stall if any
1777 * are encountered in the nr_immediate check below.
1779 if (stat
.nr_writeback
&& stat
.nr_writeback
== nr_taken
)
1780 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
1783 * Legacy memcg will stall in page writeback so avoid forcibly
1786 if (sane_reclaim(sc
)) {
1788 * Tag a zone as congested if all the dirty pages scanned were
1789 * backed by a congested BDI and wait_iff_congested will stall.
1791 if (stat
.nr_dirty
&& stat
.nr_dirty
== stat
.nr_congested
)
1792 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
1795 * If dirty pages are scanned that are not queued for IO, it
1796 * implies that flushers are not doing their job. This can
1797 * happen when memory pressure pushes dirty pages to the end of
1798 * the LRU before the dirty limits are breached and the dirty
1799 * data has expired. It can also happen when the proportion of
1800 * dirty pages grows not through writes but through memory
1801 * pressure reclaiming all the clean cache. And in some cases,
1802 * the flushers simply cannot keep up with the allocation
1803 * rate. Nudge the flusher threads in case they are asleep, but
1804 * also allow kswapd to start writing pages during reclaim.
1806 if (stat
.nr_unqueued_dirty
== nr_taken
) {
1807 wakeup_flusher_threads(WB_REASON_VMSCAN
);
1808 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
1812 * If kswapd scans pages marked marked for immediate
1813 * reclaim and under writeback (nr_immediate), it implies
1814 * that pages are cycling through the LRU faster than
1815 * they are written so also forcibly stall.
1817 if (stat
.nr_immediate
&& current_may_throttle())
1818 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1822 * Stall direct reclaim for IO completions if underlying BDIs or zone
1823 * is congested. Allow kswapd to continue until it starts encountering
1824 * unqueued dirty pages or cycling through the LRU too quickly.
1826 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1827 current_may_throttle())
1828 wait_iff_congested(pgdat
, BLK_RW_ASYNC
, HZ
/10);
1830 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
1831 nr_scanned
, nr_reclaimed
,
1832 stat
.nr_dirty
, stat
.nr_writeback
,
1833 stat
.nr_congested
, stat
.nr_immediate
,
1834 stat
.nr_activate
, stat
.nr_ref_keep
,
1836 sc
->priority
, file
);
1837 return nr_reclaimed
;
1841 * This moves pages from the active list to the inactive list.
1843 * We move them the other way if the page is referenced by one or more
1844 * processes, from rmap.
1846 * If the pages are mostly unmapped, the processing is fast and it is
1847 * appropriate to hold zone_lru_lock across the whole operation. But if
1848 * the pages are mapped, the processing is slow (page_referenced()) so we
1849 * should drop zone_lru_lock around each page. It's impossible to balance
1850 * this, so instead we remove the pages from the LRU while processing them.
1851 * It is safe to rely on PG_active against the non-LRU pages in here because
1852 * nobody will play with that bit on a non-LRU page.
1854 * The downside is that we have to touch page->_refcount against each page.
1855 * But we had to alter page->flags anyway.
1857 * Returns the number of pages moved to the given lru.
1860 static unsigned move_active_pages_to_lru(struct lruvec
*lruvec
,
1861 struct list_head
*list
,
1862 struct list_head
*pages_to_free
,
1865 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1870 while (!list_empty(list
)) {
1871 page
= lru_to_page(list
);
1872 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1874 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1877 nr_pages
= hpage_nr_pages(page
);
1878 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
1879 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1881 if (put_page_testzero(page
)) {
1882 __ClearPageLRU(page
);
1883 __ClearPageActive(page
);
1884 del_page_from_lru_list(page
, lruvec
, lru
);
1886 if (unlikely(PageCompound(page
))) {
1887 spin_unlock_irq(&pgdat
->lru_lock
);
1888 mem_cgroup_uncharge(page
);
1889 (*get_compound_page_dtor(page
))(page
);
1890 spin_lock_irq(&pgdat
->lru_lock
);
1892 list_add(&page
->lru
, pages_to_free
);
1894 nr_moved
+= nr_pages
;
1898 if (!is_active_lru(lru
)) {
1899 __count_vm_events(PGDEACTIVATE
, nr_moved
);
1900 count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
1907 static void shrink_active_list(unsigned long nr_to_scan
,
1908 struct lruvec
*lruvec
,
1909 struct scan_control
*sc
,
1912 unsigned long nr_taken
;
1913 unsigned long nr_scanned
;
1914 unsigned long vm_flags
;
1915 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1916 LIST_HEAD(l_active
);
1917 LIST_HEAD(l_inactive
);
1919 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1920 unsigned nr_deactivate
, nr_activate
;
1921 unsigned nr_rotated
= 0;
1922 isolate_mode_t isolate_mode
= 0;
1923 int file
= is_file_lru(lru
);
1924 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1929 isolate_mode
|= ISOLATE_UNMAPPED
;
1931 spin_lock_irq(&pgdat
->lru_lock
);
1933 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1934 &nr_scanned
, sc
, isolate_mode
, lru
);
1936 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1937 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1939 __count_vm_events(PGREFILL
, nr_scanned
);
1940 count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
1942 spin_unlock_irq(&pgdat
->lru_lock
);
1944 while (!list_empty(&l_hold
)) {
1946 page
= lru_to_page(&l_hold
);
1947 list_del(&page
->lru
);
1949 if (unlikely(!page_evictable(page
))) {
1950 putback_lru_page(page
);
1954 if (unlikely(buffer_heads_over_limit
)) {
1955 if (page_has_private(page
) && trylock_page(page
)) {
1956 if (page_has_private(page
))
1957 try_to_release_page(page
, 0);
1962 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1964 nr_rotated
+= hpage_nr_pages(page
);
1966 * Identify referenced, file-backed active pages and
1967 * give them one more trip around the active list. So
1968 * that executable code get better chances to stay in
1969 * memory under moderate memory pressure. Anon pages
1970 * are not likely to be evicted by use-once streaming
1971 * IO, plus JVM can create lots of anon VM_EXEC pages,
1972 * so we ignore them here.
1974 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1975 list_add(&page
->lru
, &l_active
);
1980 ClearPageActive(page
); /* we are de-activating */
1981 list_add(&page
->lru
, &l_inactive
);
1985 * Move pages back to the lru list.
1987 spin_lock_irq(&pgdat
->lru_lock
);
1989 * Count referenced pages from currently used mappings as rotated,
1990 * even though only some of them are actually re-activated. This
1991 * helps balance scan pressure between file and anonymous pages in
1994 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1996 nr_activate
= move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
1997 nr_deactivate
= move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
1998 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1999 spin_unlock_irq(&pgdat
->lru_lock
);
2001 mem_cgroup_uncharge_list(&l_hold
);
2002 free_unref_page_list(&l_hold
);
2003 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2004 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2008 * The inactive anon list should be small enough that the VM never has
2009 * to do too much work.
2011 * The inactive file list should be small enough to leave most memory
2012 * to the established workingset on the scan-resistant active list,
2013 * but large enough to avoid thrashing the aggregate readahead window.
2015 * Both inactive lists should also be large enough that each inactive
2016 * page has a chance to be referenced again before it is reclaimed.
2018 * If that fails and refaulting is observed, the inactive list grows.
2020 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2021 * on this LRU, maintained by the pageout code. An inactive_ratio
2022 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2025 * memory ratio inactive
2026 * -------------------------------------
2035 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2036 struct mem_cgroup
*memcg
,
2037 struct scan_control
*sc
, bool actual_reclaim
)
2039 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2040 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2041 enum lru_list inactive_lru
= file
* LRU_FILE
;
2042 unsigned long inactive
, active
;
2043 unsigned long inactive_ratio
;
2044 unsigned long refaults
;
2048 * If we don't have swap space, anonymous page deactivation
2051 if (!file
&& !total_swap_pages
)
2054 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2055 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2058 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2060 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2063 * When refaults are being observed, it means a new workingset
2064 * is being established. Disable active list protection to get
2065 * rid of the stale workingset quickly.
2067 if (file
&& actual_reclaim
&& lruvec
->refaults
!= refaults
) {
2070 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2072 inactive_ratio
= int_sqrt(10 * gb
);
2078 trace_mm_vmscan_inactive_list_is_low(pgdat
->node_id
, sc
->reclaim_idx
,
2079 lruvec_lru_size(lruvec
, inactive_lru
, MAX_NR_ZONES
), inactive
,
2080 lruvec_lru_size(lruvec
, active_lru
, MAX_NR_ZONES
), active
,
2081 inactive_ratio
, file
);
2083 return inactive
* inactive_ratio
< active
;
2086 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2087 struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2088 struct scan_control
*sc
)
2090 if (is_active_lru(lru
)) {
2091 if (inactive_list_is_low(lruvec
, is_file_lru(lru
),
2093 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2097 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2108 * Determine how aggressively the anon and file LRU lists should be
2109 * scanned. The relative value of each set of LRU lists is determined
2110 * by looking at the fraction of the pages scanned we did rotate back
2111 * onto the active list instead of evict.
2113 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2114 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2116 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2117 struct scan_control
*sc
, unsigned long *nr
,
2118 unsigned long *lru_pages
)
2120 int swappiness
= mem_cgroup_swappiness(memcg
);
2121 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2123 u64 denominator
= 0; /* gcc */
2124 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2125 unsigned long anon_prio
, file_prio
;
2126 enum scan_balance scan_balance
;
2127 unsigned long anon
, file
;
2128 unsigned long ap
, fp
;
2131 /* If we have no swap space, do not bother scanning anon pages. */
2132 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2133 scan_balance
= SCAN_FILE
;
2138 * Global reclaim will swap to prevent OOM even with no
2139 * swappiness, but memcg users want to use this knob to
2140 * disable swapping for individual groups completely when
2141 * using the memory controller's swap limit feature would be
2144 if (!global_reclaim(sc
) && !swappiness
) {
2145 scan_balance
= SCAN_FILE
;
2150 * Do not apply any pressure balancing cleverness when the
2151 * system is close to OOM, scan both anon and file equally
2152 * (unless the swappiness setting disagrees with swapping).
2154 if (!sc
->priority
&& swappiness
) {
2155 scan_balance
= SCAN_EQUAL
;
2160 * Prevent the reclaimer from falling into the cache trap: as
2161 * cache pages start out inactive, every cache fault will tip
2162 * the scan balance towards the file LRU. And as the file LRU
2163 * shrinks, so does the window for rotation from references.
2164 * This means we have a runaway feedback loop where a tiny
2165 * thrashing file LRU becomes infinitely more attractive than
2166 * anon pages. Try to detect this based on file LRU size.
2168 if (global_reclaim(sc
)) {
2169 unsigned long pgdatfile
;
2170 unsigned long pgdatfree
;
2172 unsigned long total_high_wmark
= 0;
2174 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2175 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2176 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2178 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2179 struct zone
*zone
= &pgdat
->node_zones
[z
];
2180 if (!managed_zone(zone
))
2183 total_high_wmark
+= high_wmark_pages(zone
);
2186 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2188 * Force SCAN_ANON if there are enough inactive
2189 * anonymous pages on the LRU in eligible zones.
2190 * Otherwise, the small LRU gets thrashed.
2192 if (!inactive_list_is_low(lruvec
, false, memcg
, sc
, false) &&
2193 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, sc
->reclaim_idx
)
2195 scan_balance
= SCAN_ANON
;
2202 * If there is enough inactive page cache, i.e. if the size of the
2203 * inactive list is greater than that of the active list *and* the
2204 * inactive list actually has some pages to scan on this priority, we
2205 * do not reclaim anything from the anonymous working set right now.
2206 * Without the second condition we could end up never scanning an
2207 * lruvec even if it has plenty of old anonymous pages unless the
2208 * system is under heavy pressure.
2210 if (!inactive_list_is_low(lruvec
, true, memcg
, sc
, false) &&
2211 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2212 scan_balance
= SCAN_FILE
;
2216 scan_balance
= SCAN_FRACT
;
2219 * With swappiness at 100, anonymous and file have the same priority.
2220 * This scanning priority is essentially the inverse of IO cost.
2222 anon_prio
= swappiness
;
2223 file_prio
= 200 - anon_prio
;
2226 * OK, so we have swap space and a fair amount of page cache
2227 * pages. We use the recently rotated / recently scanned
2228 * ratios to determine how valuable each cache is.
2230 * Because workloads change over time (and to avoid overflow)
2231 * we keep these statistics as a floating average, which ends
2232 * up weighing recent references more than old ones.
2234 * anon in [0], file in [1]
2237 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2238 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2239 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2240 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2242 spin_lock_irq(&pgdat
->lru_lock
);
2243 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2244 reclaim_stat
->recent_scanned
[0] /= 2;
2245 reclaim_stat
->recent_rotated
[0] /= 2;
2248 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2249 reclaim_stat
->recent_scanned
[1] /= 2;
2250 reclaim_stat
->recent_rotated
[1] /= 2;
2254 * The amount of pressure on anon vs file pages is inversely
2255 * proportional to the fraction of recently scanned pages on
2256 * each list that were recently referenced and in active use.
2258 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2259 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2261 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2262 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2263 spin_unlock_irq(&pgdat
->lru_lock
);
2267 denominator
= ap
+ fp
+ 1;
2270 for_each_evictable_lru(lru
) {
2271 int file
= is_file_lru(lru
);
2275 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2276 scan
= size
>> sc
->priority
;
2278 * If the cgroup's already been deleted, make sure to
2279 * scrape out the remaining cache.
2281 if (!scan
&& !mem_cgroup_online(memcg
))
2282 scan
= min(size
, SWAP_CLUSTER_MAX
);
2284 switch (scan_balance
) {
2286 /* Scan lists relative to size */
2290 * Scan types proportional to swappiness and
2291 * their relative recent reclaim efficiency.
2293 scan
= div64_u64(scan
* fraction
[file
],
2298 /* Scan one type exclusively */
2299 if ((scan_balance
== SCAN_FILE
) != file
) {
2305 /* Look ma, no brain */
2315 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2317 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2318 struct scan_control
*sc
, unsigned long *lru_pages
)
2320 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2321 unsigned long nr
[NR_LRU_LISTS
];
2322 unsigned long targets
[NR_LRU_LISTS
];
2323 unsigned long nr_to_scan
;
2325 unsigned long nr_reclaimed
= 0;
2326 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2327 struct blk_plug plug
;
2330 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2332 /* Record the original scan target for proportional adjustments later */
2333 memcpy(targets
, nr
, sizeof(nr
));
2336 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2337 * event that can occur when there is little memory pressure e.g.
2338 * multiple streaming readers/writers. Hence, we do not abort scanning
2339 * when the requested number of pages are reclaimed when scanning at
2340 * DEF_PRIORITY on the assumption that the fact we are direct
2341 * reclaiming implies that kswapd is not keeping up and it is best to
2342 * do a batch of work at once. For memcg reclaim one check is made to
2343 * abort proportional reclaim if either the file or anon lru has already
2344 * dropped to zero at the first pass.
2346 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2347 sc
->priority
== DEF_PRIORITY
);
2349 blk_start_plug(&plug
);
2350 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2351 nr
[LRU_INACTIVE_FILE
]) {
2352 unsigned long nr_anon
, nr_file
, percentage
;
2353 unsigned long nr_scanned
;
2355 for_each_evictable_lru(lru
) {
2357 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2358 nr
[lru
] -= nr_to_scan
;
2360 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2367 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2371 * For kswapd and memcg, reclaim at least the number of pages
2372 * requested. Ensure that the anon and file LRUs are scanned
2373 * proportionally what was requested by get_scan_count(). We
2374 * stop reclaiming one LRU and reduce the amount scanning
2375 * proportional to the original scan target.
2377 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2378 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2381 * It's just vindictive to attack the larger once the smaller
2382 * has gone to zero. And given the way we stop scanning the
2383 * smaller below, this makes sure that we only make one nudge
2384 * towards proportionality once we've got nr_to_reclaim.
2386 if (!nr_file
|| !nr_anon
)
2389 if (nr_file
> nr_anon
) {
2390 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2391 targets
[LRU_ACTIVE_ANON
] + 1;
2393 percentage
= nr_anon
* 100 / scan_target
;
2395 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2396 targets
[LRU_ACTIVE_FILE
] + 1;
2398 percentage
= nr_file
* 100 / scan_target
;
2401 /* Stop scanning the smaller of the LRU */
2403 nr
[lru
+ LRU_ACTIVE
] = 0;
2406 * Recalculate the other LRU scan count based on its original
2407 * scan target and the percentage scanning already complete
2409 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2410 nr_scanned
= targets
[lru
] - nr
[lru
];
2411 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2412 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2415 nr_scanned
= targets
[lru
] - nr
[lru
];
2416 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2417 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2419 scan_adjusted
= true;
2421 blk_finish_plug(&plug
);
2422 sc
->nr_reclaimed
+= nr_reclaimed
;
2425 * Even if we did not try to evict anon pages at all, we want to
2426 * rebalance the anon lru active/inactive ratio.
2428 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
2429 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2430 sc
, LRU_ACTIVE_ANON
);
2433 /* Use reclaim/compaction for costly allocs or under memory pressure */
2434 static bool in_reclaim_compaction(struct scan_control
*sc
)
2436 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2437 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2438 sc
->priority
< DEF_PRIORITY
- 2))
2445 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2446 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2447 * true if more pages should be reclaimed such that when the page allocator
2448 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2449 * It will give up earlier than that if there is difficulty reclaiming pages.
2451 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2452 unsigned long nr_reclaimed
,
2453 unsigned long nr_scanned
,
2454 struct scan_control
*sc
)
2456 unsigned long pages_for_compaction
;
2457 unsigned long inactive_lru_pages
;
2460 /* If not in reclaim/compaction mode, stop */
2461 if (!in_reclaim_compaction(sc
))
2464 /* Consider stopping depending on scan and reclaim activity */
2465 if (sc
->gfp_mask
& __GFP_RETRY_MAYFAIL
) {
2467 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2468 * full LRU list has been scanned and we are still failing
2469 * to reclaim pages. This full LRU scan is potentially
2470 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2472 if (!nr_reclaimed
&& !nr_scanned
)
2476 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2477 * fail without consequence, stop if we failed to reclaim
2478 * any pages from the last SWAP_CLUSTER_MAX number of
2479 * pages that were scanned. This will return to the
2480 * caller faster at the risk reclaim/compaction and
2481 * the resulting allocation attempt fails
2488 * If we have not reclaimed enough pages for compaction and the
2489 * inactive lists are large enough, continue reclaiming
2491 pages_for_compaction
= compact_gap(sc
->order
);
2492 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2493 if (get_nr_swap_pages() > 0)
2494 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2495 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2496 inactive_lru_pages
> pages_for_compaction
)
2499 /* If compaction would go ahead or the allocation would succeed, stop */
2500 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2501 struct zone
*zone
= &pgdat
->node_zones
[z
];
2502 if (!managed_zone(zone
))
2505 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2506 case COMPACT_SUCCESS
:
2507 case COMPACT_CONTINUE
:
2510 /* check next zone */
2517 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2519 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2520 unsigned long nr_reclaimed
, nr_scanned
;
2521 bool reclaimable
= false;
2524 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2525 struct mem_cgroup_reclaim_cookie reclaim
= {
2527 .priority
= sc
->priority
,
2529 unsigned long node_lru_pages
= 0;
2530 struct mem_cgroup
*memcg
;
2532 nr_reclaimed
= sc
->nr_reclaimed
;
2533 nr_scanned
= sc
->nr_scanned
;
2535 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2537 unsigned long lru_pages
;
2538 unsigned long reclaimed
;
2539 unsigned long scanned
;
2541 if (mem_cgroup_low(root
, memcg
)) {
2542 if (!sc
->memcg_low_reclaim
) {
2543 sc
->memcg_low_skipped
= 1;
2546 mem_cgroup_event(memcg
, MEMCG_LOW
);
2549 reclaimed
= sc
->nr_reclaimed
;
2550 scanned
= sc
->nr_scanned
;
2551 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2552 node_lru_pages
+= lru_pages
;
2555 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2556 memcg
, sc
->priority
);
2558 /* Record the group's reclaim efficiency */
2559 vmpressure(sc
->gfp_mask
, memcg
, false,
2560 sc
->nr_scanned
- scanned
,
2561 sc
->nr_reclaimed
- reclaimed
);
2564 * Direct reclaim and kswapd have to scan all memory
2565 * cgroups to fulfill the overall scan target for the
2568 * Limit reclaim, on the other hand, only cares about
2569 * nr_to_reclaim pages to be reclaimed and it will
2570 * retry with decreasing priority if one round over the
2571 * whole hierarchy is not sufficient.
2573 if (!global_reclaim(sc
) &&
2574 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2575 mem_cgroup_iter_break(root
, memcg
);
2578 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2580 if (global_reclaim(sc
))
2581 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
, NULL
,
2584 if (reclaim_state
) {
2585 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2586 reclaim_state
->reclaimed_slab
= 0;
2589 /* Record the subtree's reclaim efficiency */
2590 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2591 sc
->nr_scanned
- nr_scanned
,
2592 sc
->nr_reclaimed
- nr_reclaimed
);
2594 if (sc
->nr_reclaimed
- nr_reclaimed
)
2597 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2598 sc
->nr_scanned
- nr_scanned
, sc
));
2601 * Kswapd gives up on balancing particular nodes after too
2602 * many failures to reclaim anything from them and goes to
2603 * sleep. On reclaim progress, reset the failure counter. A
2604 * successful direct reclaim run will revive a dormant kswapd.
2607 pgdat
->kswapd_failures
= 0;
2613 * Returns true if compaction should go ahead for a costly-order request, or
2614 * the allocation would already succeed without compaction. Return false if we
2615 * should reclaim first.
2617 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2619 unsigned long watermark
;
2620 enum compact_result suitable
;
2622 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2623 if (suitable
== COMPACT_SUCCESS
)
2624 /* Allocation should succeed already. Don't reclaim. */
2626 if (suitable
== COMPACT_SKIPPED
)
2627 /* Compaction cannot yet proceed. Do reclaim. */
2631 * Compaction is already possible, but it takes time to run and there
2632 * are potentially other callers using the pages just freed. So proceed
2633 * with reclaim to make a buffer of free pages available to give
2634 * compaction a reasonable chance of completing and allocating the page.
2635 * Note that we won't actually reclaim the whole buffer in one attempt
2636 * as the target watermark in should_continue_reclaim() is lower. But if
2637 * we are already above the high+gap watermark, don't reclaim at all.
2639 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2641 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2645 * This is the direct reclaim path, for page-allocating processes. We only
2646 * try to reclaim pages from zones which will satisfy the caller's allocation
2649 * If a zone is deemed to be full of pinned pages then just give it a light
2650 * scan then give up on it.
2652 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2656 unsigned long nr_soft_reclaimed
;
2657 unsigned long nr_soft_scanned
;
2659 pg_data_t
*last_pgdat
= NULL
;
2662 * If the number of buffer_heads in the machine exceeds the maximum
2663 * allowed level, force direct reclaim to scan the highmem zone as
2664 * highmem pages could be pinning lowmem pages storing buffer_heads
2666 orig_mask
= sc
->gfp_mask
;
2667 if (buffer_heads_over_limit
) {
2668 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2669 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2672 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2673 sc
->reclaim_idx
, sc
->nodemask
) {
2675 * Take care memory controller reclaiming has small influence
2678 if (global_reclaim(sc
)) {
2679 if (!cpuset_zone_allowed(zone
,
2680 GFP_KERNEL
| __GFP_HARDWALL
))
2684 * If we already have plenty of memory free for
2685 * compaction in this zone, don't free any more.
2686 * Even though compaction is invoked for any
2687 * non-zero order, only frequent costly order
2688 * reclamation is disruptive enough to become a
2689 * noticeable problem, like transparent huge
2692 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2693 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2694 compaction_ready(zone
, sc
)) {
2695 sc
->compaction_ready
= true;
2700 * Shrink each node in the zonelist once. If the
2701 * zonelist is ordered by zone (not the default) then a
2702 * node may be shrunk multiple times but in that case
2703 * the user prefers lower zones being preserved.
2705 if (zone
->zone_pgdat
== last_pgdat
)
2709 * This steals pages from memory cgroups over softlimit
2710 * and returns the number of reclaimed pages and
2711 * scanned pages. This works for global memory pressure
2712 * and balancing, not for a memcg's limit.
2714 nr_soft_scanned
= 0;
2715 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2716 sc
->order
, sc
->gfp_mask
,
2718 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2719 sc
->nr_scanned
+= nr_soft_scanned
;
2720 /* need some check for avoid more shrink_zone() */
2723 /* See comment about same check for global reclaim above */
2724 if (zone
->zone_pgdat
== last_pgdat
)
2726 last_pgdat
= zone
->zone_pgdat
;
2727 shrink_node(zone
->zone_pgdat
, sc
);
2731 * Restore to original mask to avoid the impact on the caller if we
2732 * promoted it to __GFP_HIGHMEM.
2734 sc
->gfp_mask
= orig_mask
;
2737 static void snapshot_refaults(struct mem_cgroup
*root_memcg
, pg_data_t
*pgdat
)
2739 struct mem_cgroup
*memcg
;
2741 memcg
= mem_cgroup_iter(root_memcg
, NULL
, NULL
);
2743 unsigned long refaults
;
2744 struct lruvec
*lruvec
;
2747 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2749 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2751 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2752 lruvec
->refaults
= refaults
;
2753 } while ((memcg
= mem_cgroup_iter(root_memcg
, memcg
, NULL
)));
2757 * This is the main entry point to direct page reclaim.
2759 * If a full scan of the inactive list fails to free enough memory then we
2760 * are "out of memory" and something needs to be killed.
2762 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2763 * high - the zone may be full of dirty or under-writeback pages, which this
2764 * caller can't do much about. We kick the writeback threads and take explicit
2765 * naps in the hope that some of these pages can be written. But if the
2766 * allocating task holds filesystem locks which prevent writeout this might not
2767 * work, and the allocation attempt will fail.
2769 * returns: 0, if no pages reclaimed
2770 * else, the number of pages reclaimed
2772 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2773 struct scan_control
*sc
)
2775 int initial_priority
= sc
->priority
;
2776 pg_data_t
*last_pgdat
;
2780 delayacct_freepages_start();
2782 if (global_reclaim(sc
))
2783 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
2786 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2789 shrink_zones(zonelist
, sc
);
2791 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2794 if (sc
->compaction_ready
)
2798 * If we're getting trouble reclaiming, start doing
2799 * writepage even in laptop mode.
2801 if (sc
->priority
< DEF_PRIORITY
- 2)
2802 sc
->may_writepage
= 1;
2803 } while (--sc
->priority
>= 0);
2806 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
2808 if (zone
->zone_pgdat
== last_pgdat
)
2810 last_pgdat
= zone
->zone_pgdat
;
2811 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
2814 delayacct_freepages_end();
2816 if (sc
->nr_reclaimed
)
2817 return sc
->nr_reclaimed
;
2819 /* Aborted reclaim to try compaction? don't OOM, then */
2820 if (sc
->compaction_ready
)
2823 /* Untapped cgroup reserves? Don't OOM, retry. */
2824 if (sc
->memcg_low_skipped
) {
2825 sc
->priority
= initial_priority
;
2826 sc
->memcg_low_reclaim
= 1;
2827 sc
->memcg_low_skipped
= 0;
2834 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
2837 unsigned long pfmemalloc_reserve
= 0;
2838 unsigned long free_pages
= 0;
2842 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
2845 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2846 zone
= &pgdat
->node_zones
[i
];
2847 if (!managed_zone(zone
))
2850 if (!zone_reclaimable_pages(zone
))
2853 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2854 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2857 /* If there are no reserves (unexpected config) then do not throttle */
2858 if (!pfmemalloc_reserve
)
2861 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2863 /* kswapd must be awake if processes are being throttled */
2864 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2865 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
2866 (enum zone_type
)ZONE_NORMAL
);
2867 wake_up_interruptible(&pgdat
->kswapd_wait
);
2874 * Throttle direct reclaimers if backing storage is backed by the network
2875 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2876 * depleted. kswapd will continue to make progress and wake the processes
2877 * when the low watermark is reached.
2879 * Returns true if a fatal signal was delivered during throttling. If this
2880 * happens, the page allocator should not consider triggering the OOM killer.
2882 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2883 nodemask_t
*nodemask
)
2887 pg_data_t
*pgdat
= NULL
;
2890 * Kernel threads should not be throttled as they may be indirectly
2891 * responsible for cleaning pages necessary for reclaim to make forward
2892 * progress. kjournald for example may enter direct reclaim while
2893 * committing a transaction where throttling it could forcing other
2894 * processes to block on log_wait_commit().
2896 if (current
->flags
& PF_KTHREAD
)
2900 * If a fatal signal is pending, this process should not throttle.
2901 * It should return quickly so it can exit and free its memory
2903 if (fatal_signal_pending(current
))
2907 * Check if the pfmemalloc reserves are ok by finding the first node
2908 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2909 * GFP_KERNEL will be required for allocating network buffers when
2910 * swapping over the network so ZONE_HIGHMEM is unusable.
2912 * Throttling is based on the first usable node and throttled processes
2913 * wait on a queue until kswapd makes progress and wakes them. There
2914 * is an affinity then between processes waking up and where reclaim
2915 * progress has been made assuming the process wakes on the same node.
2916 * More importantly, processes running on remote nodes will not compete
2917 * for remote pfmemalloc reserves and processes on different nodes
2918 * should make reasonable progress.
2920 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2921 gfp_zone(gfp_mask
), nodemask
) {
2922 if (zone_idx(zone
) > ZONE_NORMAL
)
2925 /* Throttle based on the first usable node */
2926 pgdat
= zone
->zone_pgdat
;
2927 if (allow_direct_reclaim(pgdat
))
2932 /* If no zone was usable by the allocation flags then do not throttle */
2936 /* Account for the throttling */
2937 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2940 * If the caller cannot enter the filesystem, it's possible that it
2941 * is due to the caller holding an FS lock or performing a journal
2942 * transaction in the case of a filesystem like ext[3|4]. In this case,
2943 * it is not safe to block on pfmemalloc_wait as kswapd could be
2944 * blocked waiting on the same lock. Instead, throttle for up to a
2945 * second before continuing.
2947 if (!(gfp_mask
& __GFP_FS
)) {
2948 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2949 allow_direct_reclaim(pgdat
), HZ
);
2954 /* Throttle until kswapd wakes the process */
2955 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2956 allow_direct_reclaim(pgdat
));
2959 if (fatal_signal_pending(current
))
2966 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2967 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2969 unsigned long nr_reclaimed
;
2970 struct scan_control sc
= {
2971 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2972 .gfp_mask
= current_gfp_context(gfp_mask
),
2973 .reclaim_idx
= gfp_zone(gfp_mask
),
2975 .nodemask
= nodemask
,
2976 .priority
= DEF_PRIORITY
,
2977 .may_writepage
= !laptop_mode
,
2983 * Do not enter reclaim if fatal signal was delivered while throttled.
2984 * 1 is returned so that the page allocator does not OOM kill at this
2987 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
2990 trace_mm_vmscan_direct_reclaim_begin(order
,
2995 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2997 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2999 return nr_reclaimed
;
3004 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3005 gfp_t gfp_mask
, bool noswap
,
3007 unsigned long *nr_scanned
)
3009 struct scan_control sc
= {
3010 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3011 .target_mem_cgroup
= memcg
,
3012 .may_writepage
= !laptop_mode
,
3014 .reclaim_idx
= MAX_NR_ZONES
- 1,
3015 .may_swap
= !noswap
,
3017 unsigned long lru_pages
;
3019 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3020 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3022 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3028 * NOTE: Although we can get the priority field, using it
3029 * here is not a good idea, since it limits the pages we can scan.
3030 * if we don't reclaim here, the shrink_node from balance_pgdat
3031 * will pick up pages from other mem cgroup's as well. We hack
3032 * the priority and make it zero.
3034 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3036 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3038 *nr_scanned
= sc
.nr_scanned
;
3039 return sc
.nr_reclaimed
;
3042 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3043 unsigned long nr_pages
,
3047 struct zonelist
*zonelist
;
3048 unsigned long nr_reclaimed
;
3050 unsigned int noreclaim_flag
;
3051 struct scan_control sc
= {
3052 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3053 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
3054 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3055 .reclaim_idx
= MAX_NR_ZONES
- 1,
3056 .target_mem_cgroup
= memcg
,
3057 .priority
= DEF_PRIORITY
,
3058 .may_writepage
= !laptop_mode
,
3060 .may_swap
= may_swap
,
3064 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3065 * take care of from where we get pages. So the node where we start the
3066 * scan does not need to be the current node.
3068 nid
= mem_cgroup_select_victim_node(memcg
);
3070 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3072 trace_mm_vmscan_memcg_reclaim_begin(0,
3077 noreclaim_flag
= memalloc_noreclaim_save();
3078 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3079 memalloc_noreclaim_restore(noreclaim_flag
);
3081 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3083 return nr_reclaimed
;
3087 static void age_active_anon(struct pglist_data
*pgdat
,
3088 struct scan_control
*sc
)
3090 struct mem_cgroup
*memcg
;
3092 if (!total_swap_pages
)
3095 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3097 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3099 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
3100 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3101 sc
, LRU_ACTIVE_ANON
);
3103 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3108 * Returns true if there is an eligible zone balanced for the request order
3111 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3114 unsigned long mark
= -1;
3117 for (i
= 0; i
<= classzone_idx
; i
++) {
3118 zone
= pgdat
->node_zones
+ i
;
3120 if (!managed_zone(zone
))
3123 mark
= high_wmark_pages(zone
);
3124 if (zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3129 * If a node has no populated zone within classzone_idx, it does not
3130 * need balancing by definition. This can happen if a zone-restricted
3131 * allocation tries to wake a remote kswapd.
3139 /* Clear pgdat state for congested, dirty or under writeback. */
3140 static void clear_pgdat_congested(pg_data_t
*pgdat
)
3142 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3143 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3144 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
3148 * Prepare kswapd for sleeping. This verifies that there are no processes
3149 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3151 * Returns true if kswapd is ready to sleep
3153 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3156 * The throttled processes are normally woken up in balance_pgdat() as
3157 * soon as allow_direct_reclaim() is true. But there is a potential
3158 * race between when kswapd checks the watermarks and a process gets
3159 * throttled. There is also a potential race if processes get
3160 * throttled, kswapd wakes, a large process exits thereby balancing the
3161 * zones, which causes kswapd to exit balance_pgdat() before reaching
3162 * the wake up checks. If kswapd is going to sleep, no process should
3163 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3164 * the wake up is premature, processes will wake kswapd and get
3165 * throttled again. The difference from wake ups in balance_pgdat() is
3166 * that here we are under prepare_to_wait().
3168 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3169 wake_up_all(&pgdat
->pfmemalloc_wait
);
3171 /* Hopeless node, leave it to direct reclaim */
3172 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3175 if (pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3176 clear_pgdat_congested(pgdat
);
3184 * kswapd shrinks a node of pages that are at or below the highest usable
3185 * zone that is currently unbalanced.
3187 * Returns true if kswapd scanned at least the requested number of pages to
3188 * reclaim or if the lack of progress was due to pages under writeback.
3189 * This is used to determine if the scanning priority needs to be raised.
3191 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3192 struct scan_control
*sc
)
3197 /* Reclaim a number of pages proportional to the number of zones */
3198 sc
->nr_to_reclaim
= 0;
3199 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3200 zone
= pgdat
->node_zones
+ z
;
3201 if (!managed_zone(zone
))
3204 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3208 * Historically care was taken to put equal pressure on all zones but
3209 * now pressure is applied based on node LRU order.
3211 shrink_node(pgdat
, sc
);
3214 * Fragmentation may mean that the system cannot be rebalanced for
3215 * high-order allocations. If twice the allocation size has been
3216 * reclaimed then recheck watermarks only at order-0 to prevent
3217 * excessive reclaim. Assume that a process requested a high-order
3218 * can direct reclaim/compact.
3220 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3223 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3227 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3228 * that are eligible for use by the caller until at least one zone is
3231 * Returns the order kswapd finished reclaiming at.
3233 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3234 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3235 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3236 * or lower is eligible for reclaim until at least one usable zone is
3239 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3242 unsigned long nr_soft_reclaimed
;
3243 unsigned long nr_soft_scanned
;
3245 struct scan_control sc
= {
3246 .gfp_mask
= GFP_KERNEL
,
3248 .priority
= DEF_PRIORITY
,
3249 .may_writepage
= !laptop_mode
,
3253 count_vm_event(PAGEOUTRUN
);
3256 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3257 bool raise_priority
= true;
3259 sc
.reclaim_idx
= classzone_idx
;
3262 * If the number of buffer_heads exceeds the maximum allowed
3263 * then consider reclaiming from all zones. This has a dual
3264 * purpose -- on 64-bit systems it is expected that
3265 * buffer_heads are stripped during active rotation. On 32-bit
3266 * systems, highmem pages can pin lowmem memory and shrinking
3267 * buffers can relieve lowmem pressure. Reclaim may still not
3268 * go ahead if all eligible zones for the original allocation
3269 * request are balanced to avoid excessive reclaim from kswapd.
3271 if (buffer_heads_over_limit
) {
3272 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3273 zone
= pgdat
->node_zones
+ i
;
3274 if (!managed_zone(zone
))
3283 * Only reclaim if there are no eligible zones. Note that
3284 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3287 if (pgdat_balanced(pgdat
, sc
.order
, classzone_idx
))
3291 * Do some background aging of the anon list, to give
3292 * pages a chance to be referenced before reclaiming. All
3293 * pages are rotated regardless of classzone as this is
3294 * about consistent aging.
3296 age_active_anon(pgdat
, &sc
);
3299 * If we're getting trouble reclaiming, start doing writepage
3300 * even in laptop mode.
3302 if (sc
.priority
< DEF_PRIORITY
- 2)
3303 sc
.may_writepage
= 1;
3305 /* Call soft limit reclaim before calling shrink_node. */
3307 nr_soft_scanned
= 0;
3308 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3309 sc
.gfp_mask
, &nr_soft_scanned
);
3310 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3313 * There should be no need to raise the scanning priority if
3314 * enough pages are already being scanned that that high
3315 * watermark would be met at 100% efficiency.
3317 if (kswapd_shrink_node(pgdat
, &sc
))
3318 raise_priority
= false;
3321 * If the low watermark is met there is no need for processes
3322 * to be throttled on pfmemalloc_wait as they should not be
3323 * able to safely make forward progress. Wake them
3325 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3326 allow_direct_reclaim(pgdat
))
3327 wake_up_all(&pgdat
->pfmemalloc_wait
);
3329 /* Check if kswapd should be suspending */
3330 if (try_to_freeze() || kthread_should_stop())
3334 * Raise priority if scanning rate is too low or there was no
3335 * progress in reclaiming pages
3337 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3338 if (raise_priority
|| !nr_reclaimed
)
3340 } while (sc
.priority
>= 1);
3342 if (!sc
.nr_reclaimed
)
3343 pgdat
->kswapd_failures
++;
3346 snapshot_refaults(NULL
, pgdat
);
3348 * Return the order kswapd stopped reclaiming at as
3349 * prepare_kswapd_sleep() takes it into account. If another caller
3350 * entered the allocator slow path while kswapd was awake, order will
3351 * remain at the higher level.
3357 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3358 * allocation request woke kswapd for. When kswapd has not woken recently,
3359 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3360 * given classzone and returns it or the highest classzone index kswapd
3361 * was recently woke for.
3363 static enum zone_type
kswapd_classzone_idx(pg_data_t
*pgdat
,
3364 enum zone_type classzone_idx
)
3366 if (pgdat
->kswapd_classzone_idx
== MAX_NR_ZONES
)
3367 return classzone_idx
;
3369 return max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3372 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3373 unsigned int classzone_idx
)
3378 if (freezing(current
) || kthread_should_stop())
3381 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3384 * Try to sleep for a short interval. Note that kcompactd will only be
3385 * woken if it is possible to sleep for a short interval. This is
3386 * deliberate on the assumption that if reclaim cannot keep an
3387 * eligible zone balanced that it's also unlikely that compaction will
3390 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3392 * Compaction records what page blocks it recently failed to
3393 * isolate pages from and skips them in the future scanning.
3394 * When kswapd is going to sleep, it is reasonable to assume
3395 * that pages and compaction may succeed so reset the cache.
3397 reset_isolation_suitable(pgdat
);
3400 * We have freed the memory, now we should compact it to make
3401 * allocation of the requested order possible.
3403 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3405 remaining
= schedule_timeout(HZ
/10);
3408 * If woken prematurely then reset kswapd_classzone_idx and
3409 * order. The values will either be from a wakeup request or
3410 * the previous request that slept prematurely.
3413 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3414 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3417 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3418 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3422 * After a short sleep, check if it was a premature sleep. If not, then
3423 * go fully to sleep until explicitly woken up.
3426 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3427 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3430 * vmstat counters are not perfectly accurate and the estimated
3431 * value for counters such as NR_FREE_PAGES can deviate from the
3432 * true value by nr_online_cpus * threshold. To avoid the zone
3433 * watermarks being breached while under pressure, we reduce the
3434 * per-cpu vmstat threshold while kswapd is awake and restore
3435 * them before going back to sleep.
3437 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3439 if (!kthread_should_stop())
3442 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3445 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3447 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3449 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3453 * The background pageout daemon, started as a kernel thread
3454 * from the init process.
3456 * This basically trickles out pages so that we have _some_
3457 * free memory available even if there is no other activity
3458 * that frees anything up. This is needed for things like routing
3459 * etc, where we otherwise might have all activity going on in
3460 * asynchronous contexts that cannot page things out.
3462 * If there are applications that are active memory-allocators
3463 * (most normal use), this basically shouldn't matter.
3465 static int kswapd(void *p
)
3467 unsigned int alloc_order
, reclaim_order
;
3468 unsigned int classzone_idx
= MAX_NR_ZONES
- 1;
3469 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3470 struct task_struct
*tsk
= current
;
3472 struct reclaim_state reclaim_state
= {
3473 .reclaimed_slab
= 0,
3475 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3477 if (!cpumask_empty(cpumask
))
3478 set_cpus_allowed_ptr(tsk
, cpumask
);
3479 current
->reclaim_state
= &reclaim_state
;
3482 * Tell the memory management that we're a "memory allocator",
3483 * and that if we need more memory we should get access to it
3484 * regardless (see "__alloc_pages()"). "kswapd" should
3485 * never get caught in the normal page freeing logic.
3487 * (Kswapd normally doesn't need memory anyway, but sometimes
3488 * you need a small amount of memory in order to be able to
3489 * page out something else, and this flag essentially protects
3490 * us from recursively trying to free more memory as we're
3491 * trying to free the first piece of memory in the first place).
3493 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3496 pgdat
->kswapd_order
= 0;
3497 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3501 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3502 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3505 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3508 /* Read the new order and classzone_idx */
3509 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3510 classzone_idx
= kswapd_classzone_idx(pgdat
, 0);
3511 pgdat
->kswapd_order
= 0;
3512 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3514 ret
= try_to_freeze();
3515 if (kthread_should_stop())
3519 * We can speed up thawing tasks if we don't call balance_pgdat
3520 * after returning from the refrigerator
3526 * Reclaim begins at the requested order but if a high-order
3527 * reclaim fails then kswapd falls back to reclaiming for
3528 * order-0. If that happens, kswapd will consider sleeping
3529 * for the order it finished reclaiming at (reclaim_order)
3530 * but kcompactd is woken to compact for the original
3531 * request (alloc_order).
3533 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3535 fs_reclaim_acquire(GFP_KERNEL
);
3536 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3537 fs_reclaim_release(GFP_KERNEL
);
3538 if (reclaim_order
< alloc_order
)
3539 goto kswapd_try_sleep
;
3542 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3543 current
->reclaim_state
= NULL
;
3549 * A zone is low on free memory, so wake its kswapd task to service it.
3551 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3555 if (!managed_zone(zone
))
3558 if (!cpuset_zone_allowed(zone
, GFP_KERNEL
| __GFP_HARDWALL
))
3560 pgdat
= zone
->zone_pgdat
;
3561 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
,
3563 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3564 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3567 /* Hopeless node, leave it to direct reclaim */
3568 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3571 if (pgdat_balanced(pgdat
, order
, classzone_idx
))
3574 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, classzone_idx
, order
);
3575 wake_up_interruptible(&pgdat
->kswapd_wait
);
3578 #ifdef CONFIG_HIBERNATION
3580 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3583 * Rather than trying to age LRUs the aim is to preserve the overall
3584 * LRU order by reclaiming preferentially
3585 * inactive > active > active referenced > active mapped
3587 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3589 struct reclaim_state reclaim_state
;
3590 struct scan_control sc
= {
3591 .nr_to_reclaim
= nr_to_reclaim
,
3592 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3593 .reclaim_idx
= MAX_NR_ZONES
- 1,
3594 .priority
= DEF_PRIORITY
,
3598 .hibernation_mode
= 1,
3600 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3601 struct task_struct
*p
= current
;
3602 unsigned long nr_reclaimed
;
3603 unsigned int noreclaim_flag
;
3605 noreclaim_flag
= memalloc_noreclaim_save();
3606 fs_reclaim_acquire(sc
.gfp_mask
);
3607 reclaim_state
.reclaimed_slab
= 0;
3608 p
->reclaim_state
= &reclaim_state
;
3610 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3612 p
->reclaim_state
= NULL
;
3613 fs_reclaim_release(sc
.gfp_mask
);
3614 memalloc_noreclaim_restore(noreclaim_flag
);
3616 return nr_reclaimed
;
3618 #endif /* CONFIG_HIBERNATION */
3620 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3621 not required for correctness. So if the last cpu in a node goes
3622 away, we get changed to run anywhere: as the first one comes back,
3623 restore their cpu bindings. */
3624 static int kswapd_cpu_online(unsigned int cpu
)
3628 for_each_node_state(nid
, N_MEMORY
) {
3629 pg_data_t
*pgdat
= NODE_DATA(nid
);
3630 const struct cpumask
*mask
;
3632 mask
= cpumask_of_node(pgdat
->node_id
);
3634 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3635 /* One of our CPUs online: restore mask */
3636 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3642 * This kswapd start function will be called by init and node-hot-add.
3643 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3645 int kswapd_run(int nid
)
3647 pg_data_t
*pgdat
= NODE_DATA(nid
);
3653 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3654 if (IS_ERR(pgdat
->kswapd
)) {
3655 /* failure at boot is fatal */
3656 BUG_ON(system_state
< SYSTEM_RUNNING
);
3657 pr_err("Failed to start kswapd on node %d\n", nid
);
3658 ret
= PTR_ERR(pgdat
->kswapd
);
3659 pgdat
->kswapd
= NULL
;
3665 * Called by memory hotplug when all memory in a node is offlined. Caller must
3666 * hold mem_hotplug_begin/end().
3668 void kswapd_stop(int nid
)
3670 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3673 kthread_stop(kswapd
);
3674 NODE_DATA(nid
)->kswapd
= NULL
;
3678 static int __init
kswapd_init(void)
3683 for_each_node_state(nid
, N_MEMORY
)
3685 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
3686 "mm/vmscan:online", kswapd_cpu_online
,
3692 module_init(kswapd_init
)
3698 * If non-zero call node_reclaim when the number of free pages falls below
3701 int node_reclaim_mode __read_mostly
;
3703 #define RECLAIM_OFF 0
3704 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3705 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3706 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3709 * Priority for NODE_RECLAIM. This determines the fraction of pages
3710 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3713 #define NODE_RECLAIM_PRIORITY 4
3716 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3719 int sysctl_min_unmapped_ratio
= 1;
3722 * If the number of slab pages in a zone grows beyond this percentage then
3723 * slab reclaim needs to occur.
3725 int sysctl_min_slab_ratio
= 5;
3727 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
3729 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
3730 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
3731 node_page_state(pgdat
, NR_ACTIVE_FILE
);
3734 * It's possible for there to be more file mapped pages than
3735 * accounted for by the pages on the file LRU lists because
3736 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3738 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3741 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3742 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
3744 unsigned long nr_pagecache_reclaimable
;
3745 unsigned long delta
= 0;
3748 * If RECLAIM_UNMAP is set, then all file pages are considered
3749 * potentially reclaimable. Otherwise, we have to worry about
3750 * pages like swapcache and node_unmapped_file_pages() provides
3753 if (node_reclaim_mode
& RECLAIM_UNMAP
)
3754 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
3756 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
3758 /* If we can't clean pages, remove dirty pages from consideration */
3759 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
3760 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
3762 /* Watch for any possible underflows due to delta */
3763 if (unlikely(delta
> nr_pagecache_reclaimable
))
3764 delta
= nr_pagecache_reclaimable
;
3766 return nr_pagecache_reclaimable
- delta
;
3770 * Try to free up some pages from this node through reclaim.
3772 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3774 /* Minimum pages needed in order to stay on node */
3775 const unsigned long nr_pages
= 1 << order
;
3776 struct task_struct
*p
= current
;
3777 struct reclaim_state reclaim_state
;
3778 unsigned int noreclaim_flag
;
3779 struct scan_control sc
= {
3780 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3781 .gfp_mask
= current_gfp_context(gfp_mask
),
3783 .priority
= NODE_RECLAIM_PRIORITY
,
3784 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
3785 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
3787 .reclaim_idx
= gfp_zone(gfp_mask
),
3792 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3793 * and we also need to be able to write out pages for RECLAIM_WRITE
3794 * and RECLAIM_UNMAP.
3796 noreclaim_flag
= memalloc_noreclaim_save();
3797 p
->flags
|= PF_SWAPWRITE
;
3798 fs_reclaim_acquire(sc
.gfp_mask
);
3799 reclaim_state
.reclaimed_slab
= 0;
3800 p
->reclaim_state
= &reclaim_state
;
3802 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
3804 * Free memory by calling shrink zone with increasing
3805 * priorities until we have enough memory freed.
3808 shrink_node(pgdat
, &sc
);
3809 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3812 p
->reclaim_state
= NULL
;
3813 fs_reclaim_release(gfp_mask
);
3814 current
->flags
&= ~PF_SWAPWRITE
;
3815 memalloc_noreclaim_restore(noreclaim_flag
);
3816 return sc
.nr_reclaimed
>= nr_pages
;
3819 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3824 * Node reclaim reclaims unmapped file backed pages and
3825 * slab pages if we are over the defined limits.
3827 * A small portion of unmapped file backed pages is needed for
3828 * file I/O otherwise pages read by file I/O will be immediately
3829 * thrown out if the node is overallocated. So we do not reclaim
3830 * if less than a specified percentage of the node is used by
3831 * unmapped file backed pages.
3833 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
3834 node_page_state(pgdat
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
3835 return NODE_RECLAIM_FULL
;
3838 * Do not scan if the allocation should not be delayed.
3840 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
3841 return NODE_RECLAIM_NOSCAN
;
3844 * Only run node reclaim on the local node or on nodes that do not
3845 * have associated processors. This will favor the local processor
3846 * over remote processors and spread off node memory allocations
3847 * as wide as possible.
3849 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
3850 return NODE_RECLAIM_NOSCAN
;
3852 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
3853 return NODE_RECLAIM_NOSCAN
;
3855 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
3856 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
3859 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3866 * page_evictable - test whether a page is evictable
3867 * @page: the page to test
3869 * Test whether page is evictable--i.e., should be placed on active/inactive
3870 * lists vs unevictable list.
3872 * Reasons page might not be evictable:
3873 * (1) page's mapping marked unevictable
3874 * (2) page is part of an mlocked VMA
3877 int page_evictable(struct page
*page
)
3879 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3884 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3885 * @pages: array of pages to check
3886 * @nr_pages: number of pages to check
3888 * Checks pages for evictability and moves them to the appropriate lru list.
3890 * This function is only used for SysV IPC SHM_UNLOCK.
3892 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3894 struct lruvec
*lruvec
;
3895 struct pglist_data
*pgdat
= NULL
;
3900 for (i
= 0; i
< nr_pages
; i
++) {
3901 struct page
*page
= pages
[i
];
3902 struct pglist_data
*pagepgdat
= page_pgdat(page
);
3905 if (pagepgdat
!= pgdat
) {
3907 spin_unlock_irq(&pgdat
->lru_lock
);
3909 spin_lock_irq(&pgdat
->lru_lock
);
3911 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
3913 if (!PageLRU(page
) || !PageUnevictable(page
))
3916 if (page_evictable(page
)) {
3917 enum lru_list lru
= page_lru_base_type(page
);
3919 VM_BUG_ON_PAGE(PageActive(page
), page
);
3920 ClearPageUnevictable(page
);
3921 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3922 add_page_to_lru_list(page
, lruvec
, lru
);
3928 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3929 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3930 spin_unlock_irq(&pgdat
->lru_lock
);
3933 #endif /* CONFIG_SHMEM */