powerpc/mm/slice: create header files dedicated to slices
[linux-2.6/btrfs-unstable.git] / mm / vmscan.c
blobbee53495a829299f766d11ffd316acdb54cfffdf
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
59 #include "internal.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
71 /* Allocation order */
72 int order;
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
78 nodemask_t *nodemask;
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
84 struct mem_cgroup *target_mem_cgroup;
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
109 unsigned int hibernation_mode:1;
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
130 } while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
144 } while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
150 * From 0 .. 100. Higher means more swappy.
152 int vm_swappiness = 60;
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
157 unsigned long vm_total_pages;
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
165 return !sc->target_mem_cgroup;
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
181 static bool sane_reclaim(struct scan_control *sc)
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
185 if (!memcg)
186 return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 return true;
190 #endif
191 return false;
193 #else
194 static bool global_reclaim(struct scan_control *sc)
196 return true;
199 static bool sane_reclaim(struct scan_control *sc)
201 return true;
203 #endif
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
210 unsigned long zone_reclaimable_pages(struct zone *zone)
212 unsigned long nr;
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
220 return nr;
224 * lruvec_lru_size - Returns the number of pages on the given LRU list.
225 * @lruvec: lru vector
226 * @lru: lru to use
227 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
229 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
231 unsigned long lru_size;
232 int zid;
234 if (!mem_cgroup_disabled())
235 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
236 else
237 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
239 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
240 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
241 unsigned long size;
243 if (!managed_zone(zone))
244 continue;
246 if (!mem_cgroup_disabled())
247 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
248 else
249 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
250 NR_ZONE_LRU_BASE + lru);
251 lru_size -= min(size, lru_size);
254 return lru_size;
259 * Add a shrinker callback to be called from the vm.
261 int register_shrinker(struct shrinker *shrinker)
263 size_t size = sizeof(*shrinker->nr_deferred);
265 if (shrinker->flags & SHRINKER_NUMA_AWARE)
266 size *= nr_node_ids;
268 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
269 if (!shrinker->nr_deferred)
270 return -ENOMEM;
272 down_write(&shrinker_rwsem);
273 list_add_tail(&shrinker->list, &shrinker_list);
274 up_write(&shrinker_rwsem);
275 return 0;
277 EXPORT_SYMBOL(register_shrinker);
280 * Remove one
282 void unregister_shrinker(struct shrinker *shrinker)
284 if (!shrinker->nr_deferred)
285 return;
286 down_write(&shrinker_rwsem);
287 list_del(&shrinker->list);
288 up_write(&shrinker_rwsem);
289 kfree(shrinker->nr_deferred);
290 shrinker->nr_deferred = NULL;
292 EXPORT_SYMBOL(unregister_shrinker);
294 #define SHRINK_BATCH 128
296 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
297 struct shrinker *shrinker, int priority)
299 unsigned long freed = 0;
300 unsigned long long delta;
301 long total_scan;
302 long freeable;
303 long nr;
304 long new_nr;
305 int nid = shrinkctl->nid;
306 long batch_size = shrinker->batch ? shrinker->batch
307 : SHRINK_BATCH;
308 long scanned = 0, next_deferred;
310 freeable = shrinker->count_objects(shrinker, shrinkctl);
311 if (freeable == 0)
312 return 0;
315 * copy the current shrinker scan count into a local variable
316 * and zero it so that other concurrent shrinker invocations
317 * don't also do this scanning work.
319 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
321 total_scan = nr;
322 delta = freeable >> priority;
323 delta *= 4;
324 do_div(delta, shrinker->seeks);
325 total_scan += delta;
326 if (total_scan < 0) {
327 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
328 shrinker->scan_objects, total_scan);
329 total_scan = freeable;
330 next_deferred = nr;
331 } else
332 next_deferred = total_scan;
335 * We need to avoid excessive windup on filesystem shrinkers
336 * due to large numbers of GFP_NOFS allocations causing the
337 * shrinkers to return -1 all the time. This results in a large
338 * nr being built up so when a shrink that can do some work
339 * comes along it empties the entire cache due to nr >>>
340 * freeable. This is bad for sustaining a working set in
341 * memory.
343 * Hence only allow the shrinker to scan the entire cache when
344 * a large delta change is calculated directly.
346 if (delta < freeable / 4)
347 total_scan = min(total_scan, freeable / 2);
350 * Avoid risking looping forever due to too large nr value:
351 * never try to free more than twice the estimate number of
352 * freeable entries.
354 if (total_scan > freeable * 2)
355 total_scan = freeable * 2;
357 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
358 freeable, delta, total_scan, priority);
361 * Normally, we should not scan less than batch_size objects in one
362 * pass to avoid too frequent shrinker calls, but if the slab has less
363 * than batch_size objects in total and we are really tight on memory,
364 * we will try to reclaim all available objects, otherwise we can end
365 * up failing allocations although there are plenty of reclaimable
366 * objects spread over several slabs with usage less than the
367 * batch_size.
369 * We detect the "tight on memory" situations by looking at the total
370 * number of objects we want to scan (total_scan). If it is greater
371 * than the total number of objects on slab (freeable), we must be
372 * scanning at high prio and therefore should try to reclaim as much as
373 * possible.
375 while (total_scan >= batch_size ||
376 total_scan >= freeable) {
377 unsigned long ret;
378 unsigned long nr_to_scan = min(batch_size, total_scan);
380 shrinkctl->nr_to_scan = nr_to_scan;
381 shrinkctl->nr_scanned = nr_to_scan;
382 ret = shrinker->scan_objects(shrinker, shrinkctl);
383 if (ret == SHRINK_STOP)
384 break;
385 freed += ret;
387 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
388 total_scan -= shrinkctl->nr_scanned;
389 scanned += shrinkctl->nr_scanned;
391 cond_resched();
394 if (next_deferred >= scanned)
395 next_deferred -= scanned;
396 else
397 next_deferred = 0;
399 * move the unused scan count back into the shrinker in a
400 * manner that handles concurrent updates. If we exhausted the
401 * scan, there is no need to do an update.
403 if (next_deferred > 0)
404 new_nr = atomic_long_add_return(next_deferred,
405 &shrinker->nr_deferred[nid]);
406 else
407 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
409 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
410 return freed;
414 * shrink_slab - shrink slab caches
415 * @gfp_mask: allocation context
416 * @nid: node whose slab caches to target
417 * @memcg: memory cgroup whose slab caches to target
418 * @priority: the reclaim priority
420 * Call the shrink functions to age shrinkable caches.
422 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
423 * unaware shrinkers will receive a node id of 0 instead.
425 * @memcg specifies the memory cgroup to target. If it is not NULL,
426 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
427 * objects from the memory cgroup specified. Otherwise, only unaware
428 * shrinkers are called.
430 * @priority is sc->priority, we take the number of objects and >> by priority
431 * in order to get the scan target.
433 * Returns the number of reclaimed slab objects.
435 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
436 struct mem_cgroup *memcg,
437 int priority)
439 struct shrinker *shrinker;
440 unsigned long freed = 0;
442 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
443 return 0;
445 if (!down_read_trylock(&shrinker_rwsem)) {
447 * If we would return 0, our callers would understand that we
448 * have nothing else to shrink and give up trying. By returning
449 * 1 we keep it going and assume we'll be able to shrink next
450 * time.
452 freed = 1;
453 goto out;
456 list_for_each_entry(shrinker, &shrinker_list, list) {
457 struct shrink_control sc = {
458 .gfp_mask = gfp_mask,
459 .nid = nid,
460 .memcg = memcg,
464 * If kernel memory accounting is disabled, we ignore
465 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
466 * passing NULL for memcg.
468 if (memcg_kmem_enabled() &&
469 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
470 continue;
472 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
473 sc.nid = 0;
475 freed += do_shrink_slab(&sc, shrinker, priority);
477 * Bail out if someone want to register a new shrinker to
478 * prevent the regsitration from being stalled for long periods
479 * by parallel ongoing shrinking.
481 if (rwsem_is_contended(&shrinker_rwsem)) {
482 freed = freed ? : 1;
483 break;
487 up_read(&shrinker_rwsem);
488 out:
489 cond_resched();
490 return freed;
493 void drop_slab_node(int nid)
495 unsigned long freed;
497 do {
498 struct mem_cgroup *memcg = NULL;
500 freed = 0;
501 do {
502 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
503 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
504 } while (freed > 10);
507 void drop_slab(void)
509 int nid;
511 for_each_online_node(nid)
512 drop_slab_node(nid);
515 static inline int is_page_cache_freeable(struct page *page)
518 * A freeable page cache page is referenced only by the caller
519 * that isolated the page, the page cache radix tree and
520 * optional buffer heads at page->private.
522 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
523 HPAGE_PMD_NR : 1;
524 return page_count(page) - page_has_private(page) == 1 + radix_pins;
527 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
529 if (current->flags & PF_SWAPWRITE)
530 return 1;
531 if (!inode_write_congested(inode))
532 return 1;
533 if (inode_to_bdi(inode) == current->backing_dev_info)
534 return 1;
535 return 0;
539 * We detected a synchronous write error writing a page out. Probably
540 * -ENOSPC. We need to propagate that into the address_space for a subsequent
541 * fsync(), msync() or close().
543 * The tricky part is that after writepage we cannot touch the mapping: nothing
544 * prevents it from being freed up. But we have a ref on the page and once
545 * that page is locked, the mapping is pinned.
547 * We're allowed to run sleeping lock_page() here because we know the caller has
548 * __GFP_FS.
550 static void handle_write_error(struct address_space *mapping,
551 struct page *page, int error)
553 lock_page(page);
554 if (page_mapping(page) == mapping)
555 mapping_set_error(mapping, error);
556 unlock_page(page);
559 /* possible outcome of pageout() */
560 typedef enum {
561 /* failed to write page out, page is locked */
562 PAGE_KEEP,
563 /* move page to the active list, page is locked */
564 PAGE_ACTIVATE,
565 /* page has been sent to the disk successfully, page is unlocked */
566 PAGE_SUCCESS,
567 /* page is clean and locked */
568 PAGE_CLEAN,
569 } pageout_t;
572 * pageout is called by shrink_page_list() for each dirty page.
573 * Calls ->writepage().
575 static pageout_t pageout(struct page *page, struct address_space *mapping,
576 struct scan_control *sc)
579 * If the page is dirty, only perform writeback if that write
580 * will be non-blocking. To prevent this allocation from being
581 * stalled by pagecache activity. But note that there may be
582 * stalls if we need to run get_block(). We could test
583 * PagePrivate for that.
585 * If this process is currently in __generic_file_write_iter() against
586 * this page's queue, we can perform writeback even if that
587 * will block.
589 * If the page is swapcache, write it back even if that would
590 * block, for some throttling. This happens by accident, because
591 * swap_backing_dev_info is bust: it doesn't reflect the
592 * congestion state of the swapdevs. Easy to fix, if needed.
594 if (!is_page_cache_freeable(page))
595 return PAGE_KEEP;
596 if (!mapping) {
598 * Some data journaling orphaned pages can have
599 * page->mapping == NULL while being dirty with clean buffers.
601 if (page_has_private(page)) {
602 if (try_to_free_buffers(page)) {
603 ClearPageDirty(page);
604 pr_info("%s: orphaned page\n", __func__);
605 return PAGE_CLEAN;
608 return PAGE_KEEP;
610 if (mapping->a_ops->writepage == NULL)
611 return PAGE_ACTIVATE;
612 if (!may_write_to_inode(mapping->host, sc))
613 return PAGE_KEEP;
615 if (clear_page_dirty_for_io(page)) {
616 int res;
617 struct writeback_control wbc = {
618 .sync_mode = WB_SYNC_NONE,
619 .nr_to_write = SWAP_CLUSTER_MAX,
620 .range_start = 0,
621 .range_end = LLONG_MAX,
622 .for_reclaim = 1,
625 SetPageReclaim(page);
626 res = mapping->a_ops->writepage(page, &wbc);
627 if (res < 0)
628 handle_write_error(mapping, page, res);
629 if (res == AOP_WRITEPAGE_ACTIVATE) {
630 ClearPageReclaim(page);
631 return PAGE_ACTIVATE;
634 if (!PageWriteback(page)) {
635 /* synchronous write or broken a_ops? */
636 ClearPageReclaim(page);
638 trace_mm_vmscan_writepage(page);
639 inc_node_page_state(page, NR_VMSCAN_WRITE);
640 return PAGE_SUCCESS;
643 return PAGE_CLEAN;
647 * Same as remove_mapping, but if the page is removed from the mapping, it
648 * gets returned with a refcount of 0.
650 static int __remove_mapping(struct address_space *mapping, struct page *page,
651 bool reclaimed)
653 unsigned long flags;
654 int refcount;
656 BUG_ON(!PageLocked(page));
657 BUG_ON(mapping != page_mapping(page));
659 spin_lock_irqsave(&mapping->tree_lock, flags);
661 * The non racy check for a busy page.
663 * Must be careful with the order of the tests. When someone has
664 * a ref to the page, it may be possible that they dirty it then
665 * drop the reference. So if PageDirty is tested before page_count
666 * here, then the following race may occur:
668 * get_user_pages(&page);
669 * [user mapping goes away]
670 * write_to(page);
671 * !PageDirty(page) [good]
672 * SetPageDirty(page);
673 * put_page(page);
674 * !page_count(page) [good, discard it]
676 * [oops, our write_to data is lost]
678 * Reversing the order of the tests ensures such a situation cannot
679 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
680 * load is not satisfied before that of page->_refcount.
682 * Note that if SetPageDirty is always performed via set_page_dirty,
683 * and thus under tree_lock, then this ordering is not required.
685 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
686 refcount = 1 + HPAGE_PMD_NR;
687 else
688 refcount = 2;
689 if (!page_ref_freeze(page, refcount))
690 goto cannot_free;
691 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
692 if (unlikely(PageDirty(page))) {
693 page_ref_unfreeze(page, refcount);
694 goto cannot_free;
697 if (PageSwapCache(page)) {
698 swp_entry_t swap = { .val = page_private(page) };
699 mem_cgroup_swapout(page, swap);
700 __delete_from_swap_cache(page);
701 spin_unlock_irqrestore(&mapping->tree_lock, flags);
702 put_swap_page(page, swap);
703 } else {
704 void (*freepage)(struct page *);
705 void *shadow = NULL;
707 freepage = mapping->a_ops->freepage;
709 * Remember a shadow entry for reclaimed file cache in
710 * order to detect refaults, thus thrashing, later on.
712 * But don't store shadows in an address space that is
713 * already exiting. This is not just an optizimation,
714 * inode reclaim needs to empty out the radix tree or
715 * the nodes are lost. Don't plant shadows behind its
716 * back.
718 * We also don't store shadows for DAX mappings because the
719 * only page cache pages found in these are zero pages
720 * covering holes, and because we don't want to mix DAX
721 * exceptional entries and shadow exceptional entries in the
722 * same page_tree.
724 if (reclaimed && page_is_file_cache(page) &&
725 !mapping_exiting(mapping) && !dax_mapping(mapping))
726 shadow = workingset_eviction(mapping, page);
727 __delete_from_page_cache(page, shadow);
728 spin_unlock_irqrestore(&mapping->tree_lock, flags);
730 if (freepage != NULL)
731 freepage(page);
734 return 1;
736 cannot_free:
737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 return 0;
742 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
743 * someone else has a ref on the page, abort and return 0. If it was
744 * successfully detached, return 1. Assumes the caller has a single ref on
745 * this page.
747 int remove_mapping(struct address_space *mapping, struct page *page)
749 if (__remove_mapping(mapping, page, false)) {
751 * Unfreezing the refcount with 1 rather than 2 effectively
752 * drops the pagecache ref for us without requiring another
753 * atomic operation.
755 page_ref_unfreeze(page, 1);
756 return 1;
758 return 0;
762 * putback_lru_page - put previously isolated page onto appropriate LRU list
763 * @page: page to be put back to appropriate lru list
765 * Add previously isolated @page to appropriate LRU list.
766 * Page may still be unevictable for other reasons.
768 * lru_lock must not be held, interrupts must be enabled.
770 void putback_lru_page(struct page *page)
772 lru_cache_add(page);
773 put_page(page); /* drop ref from isolate */
776 enum page_references {
777 PAGEREF_RECLAIM,
778 PAGEREF_RECLAIM_CLEAN,
779 PAGEREF_KEEP,
780 PAGEREF_ACTIVATE,
783 static enum page_references page_check_references(struct page *page,
784 struct scan_control *sc)
786 int referenced_ptes, referenced_page;
787 unsigned long vm_flags;
789 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
790 &vm_flags);
791 referenced_page = TestClearPageReferenced(page);
794 * Mlock lost the isolation race with us. Let try_to_unmap()
795 * move the page to the unevictable list.
797 if (vm_flags & VM_LOCKED)
798 return PAGEREF_RECLAIM;
800 if (referenced_ptes) {
801 if (PageSwapBacked(page))
802 return PAGEREF_ACTIVATE;
804 * All mapped pages start out with page table
805 * references from the instantiating fault, so we need
806 * to look twice if a mapped file page is used more
807 * than once.
809 * Mark it and spare it for another trip around the
810 * inactive list. Another page table reference will
811 * lead to its activation.
813 * Note: the mark is set for activated pages as well
814 * so that recently deactivated but used pages are
815 * quickly recovered.
817 SetPageReferenced(page);
819 if (referenced_page || referenced_ptes > 1)
820 return PAGEREF_ACTIVATE;
823 * Activate file-backed executable pages after first usage.
825 if (vm_flags & VM_EXEC)
826 return PAGEREF_ACTIVATE;
828 return PAGEREF_KEEP;
831 /* Reclaim if clean, defer dirty pages to writeback */
832 if (referenced_page && !PageSwapBacked(page))
833 return PAGEREF_RECLAIM_CLEAN;
835 return PAGEREF_RECLAIM;
838 /* Check if a page is dirty or under writeback */
839 static void page_check_dirty_writeback(struct page *page,
840 bool *dirty, bool *writeback)
842 struct address_space *mapping;
845 * Anonymous pages are not handled by flushers and must be written
846 * from reclaim context. Do not stall reclaim based on them
848 if (!page_is_file_cache(page) ||
849 (PageAnon(page) && !PageSwapBacked(page))) {
850 *dirty = false;
851 *writeback = false;
852 return;
855 /* By default assume that the page flags are accurate */
856 *dirty = PageDirty(page);
857 *writeback = PageWriteback(page);
859 /* Verify dirty/writeback state if the filesystem supports it */
860 if (!page_has_private(page))
861 return;
863 mapping = page_mapping(page);
864 if (mapping && mapping->a_ops->is_dirty_writeback)
865 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
868 struct reclaim_stat {
869 unsigned nr_dirty;
870 unsigned nr_unqueued_dirty;
871 unsigned nr_congested;
872 unsigned nr_writeback;
873 unsigned nr_immediate;
874 unsigned nr_activate;
875 unsigned nr_ref_keep;
876 unsigned nr_unmap_fail;
880 * shrink_page_list() returns the number of reclaimed pages
882 static unsigned long shrink_page_list(struct list_head *page_list,
883 struct pglist_data *pgdat,
884 struct scan_control *sc,
885 enum ttu_flags ttu_flags,
886 struct reclaim_stat *stat,
887 bool force_reclaim)
889 LIST_HEAD(ret_pages);
890 LIST_HEAD(free_pages);
891 int pgactivate = 0;
892 unsigned nr_unqueued_dirty = 0;
893 unsigned nr_dirty = 0;
894 unsigned nr_congested = 0;
895 unsigned nr_reclaimed = 0;
896 unsigned nr_writeback = 0;
897 unsigned nr_immediate = 0;
898 unsigned nr_ref_keep = 0;
899 unsigned nr_unmap_fail = 0;
901 cond_resched();
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
908 bool dirty, writeback;
910 cond_resched();
912 page = lru_to_page(page_list);
913 list_del(&page->lru);
915 if (!trylock_page(page))
916 goto keep;
918 VM_BUG_ON_PAGE(PageActive(page), page);
920 sc->nr_scanned++;
922 if (unlikely(!page_evictable(page)))
923 goto activate_locked;
925 if (!sc->may_unmap && page_mapped(page))
926 goto keep_locked;
928 /* Double the slab pressure for mapped and swapcache pages */
929 if ((page_mapped(page) || PageSwapCache(page)) &&
930 !(PageAnon(page) && !PageSwapBacked(page)))
931 sc->nr_scanned++;
933 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
942 page_check_dirty_writeback(page, &dirty, &writeback);
943 if (dirty || writeback)
944 nr_dirty++;
946 if (dirty && !writeback)
947 nr_unqueued_dirty++;
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
955 mapping = page_mapping(page);
956 if (((dirty || writeback) && mapping &&
957 inode_write_congested(mapping->host)) ||
958 (writeback && PageReclaim(page)))
959 nr_congested++;
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
975 * 2) Global or new memcg reclaim encounters a page that is
976 * not marked for immediate reclaim, or the caller does not
977 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 * not to fs). In this case mark the page for immediate
979 * reclaim and continue scanning.
981 * Require may_enter_fs because we would wait on fs, which
982 * may not have submitted IO yet. And the loop driver might
983 * enter reclaim, and deadlock if it waits on a page for
984 * which it is needed to do the write (loop masks off
985 * __GFP_IO|__GFP_FS for this reason); but more thought
986 * would probably show more reasons.
988 * 3) Legacy memcg encounters a page that is already marked
989 * PageReclaim. memcg does not have any dirty pages
990 * throttling so we could easily OOM just because too many
991 * pages are in writeback and there is nothing else to
992 * reclaim. Wait for the writeback to complete.
994 * In cases 1) and 2) we activate the pages to get them out of
995 * the way while we continue scanning for clean pages on the
996 * inactive list and refilling from the active list. The
997 * observation here is that waiting for disk writes is more
998 * expensive than potentially causing reloads down the line.
999 * Since they're marked for immediate reclaim, they won't put
1000 * memory pressure on the cache working set any longer than it
1001 * takes to write them to disk.
1003 if (PageWriteback(page)) {
1004 /* Case 1 above */
1005 if (current_is_kswapd() &&
1006 PageReclaim(page) &&
1007 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1008 nr_immediate++;
1009 goto activate_locked;
1011 /* Case 2 above */
1012 } else if (sane_reclaim(sc) ||
1013 !PageReclaim(page) || !may_enter_fs) {
1015 * This is slightly racy - end_page_writeback()
1016 * might have just cleared PageReclaim, then
1017 * setting PageReclaim here end up interpreted
1018 * as PageReadahead - but that does not matter
1019 * enough to care. What we do want is for this
1020 * page to have PageReclaim set next time memcg
1021 * reclaim reaches the tests above, so it will
1022 * then wait_on_page_writeback() to avoid OOM;
1023 * and it's also appropriate in global reclaim.
1025 SetPageReclaim(page);
1026 nr_writeback++;
1027 goto activate_locked;
1029 /* Case 3 above */
1030 } else {
1031 unlock_page(page);
1032 wait_on_page_writeback(page);
1033 /* then go back and try same page again */
1034 list_add_tail(&page->lru, page_list);
1035 continue;
1039 if (!force_reclaim)
1040 references = page_check_references(page, sc);
1042 switch (references) {
1043 case PAGEREF_ACTIVATE:
1044 goto activate_locked;
1045 case PAGEREF_KEEP:
1046 nr_ref_keep++;
1047 goto keep_locked;
1048 case PAGEREF_RECLAIM:
1049 case PAGEREF_RECLAIM_CLEAN:
1050 ; /* try to reclaim the page below */
1054 * Anonymous process memory has backing store?
1055 * Try to allocate it some swap space here.
1056 * Lazyfree page could be freed directly
1058 if (PageAnon(page) && PageSwapBacked(page)) {
1059 if (!PageSwapCache(page)) {
1060 if (!(sc->gfp_mask & __GFP_IO))
1061 goto keep_locked;
1062 if (PageTransHuge(page)) {
1063 /* cannot split THP, skip it */
1064 if (!can_split_huge_page(page, NULL))
1065 goto activate_locked;
1067 * Split pages without a PMD map right
1068 * away. Chances are some or all of the
1069 * tail pages can be freed without IO.
1071 if (!compound_mapcount(page) &&
1072 split_huge_page_to_list(page,
1073 page_list))
1074 goto activate_locked;
1076 if (!add_to_swap(page)) {
1077 if (!PageTransHuge(page))
1078 goto activate_locked;
1079 /* Fallback to swap normal pages */
1080 if (split_huge_page_to_list(page,
1081 page_list))
1082 goto activate_locked;
1083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1084 count_vm_event(THP_SWPOUT_FALLBACK);
1085 #endif
1086 if (!add_to_swap(page))
1087 goto activate_locked;
1090 may_enter_fs = 1;
1092 /* Adding to swap updated mapping */
1093 mapping = page_mapping(page);
1095 } else if (unlikely(PageTransHuge(page))) {
1096 /* Split file THP */
1097 if (split_huge_page_to_list(page, page_list))
1098 goto keep_locked;
1102 * The page is mapped into the page tables of one or more
1103 * processes. Try to unmap it here.
1105 if (page_mapped(page)) {
1106 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1108 if (unlikely(PageTransHuge(page)))
1109 flags |= TTU_SPLIT_HUGE_PMD;
1110 if (!try_to_unmap(page, flags)) {
1111 nr_unmap_fail++;
1112 goto activate_locked;
1116 if (PageDirty(page)) {
1118 * Only kswapd can writeback filesystem pages
1119 * to avoid risk of stack overflow. But avoid
1120 * injecting inefficient single-page IO into
1121 * flusher writeback as much as possible: only
1122 * write pages when we've encountered many
1123 * dirty pages, and when we've already scanned
1124 * the rest of the LRU for clean pages and see
1125 * the same dirty pages again (PageReclaim).
1127 if (page_is_file_cache(page) &&
1128 (!current_is_kswapd() || !PageReclaim(page) ||
1129 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1131 * Immediately reclaim when written back.
1132 * Similar in principal to deactivate_page()
1133 * except we already have the page isolated
1134 * and know it's dirty
1136 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1137 SetPageReclaim(page);
1139 goto activate_locked;
1142 if (references == PAGEREF_RECLAIM_CLEAN)
1143 goto keep_locked;
1144 if (!may_enter_fs)
1145 goto keep_locked;
1146 if (!sc->may_writepage)
1147 goto keep_locked;
1150 * Page is dirty. Flush the TLB if a writable entry
1151 * potentially exists to avoid CPU writes after IO
1152 * starts and then write it out here.
1154 try_to_unmap_flush_dirty();
1155 switch (pageout(page, mapping, sc)) {
1156 case PAGE_KEEP:
1157 goto keep_locked;
1158 case PAGE_ACTIVATE:
1159 goto activate_locked;
1160 case PAGE_SUCCESS:
1161 if (PageWriteback(page))
1162 goto keep;
1163 if (PageDirty(page))
1164 goto keep;
1167 * A synchronous write - probably a ramdisk. Go
1168 * ahead and try to reclaim the page.
1170 if (!trylock_page(page))
1171 goto keep;
1172 if (PageDirty(page) || PageWriteback(page))
1173 goto keep_locked;
1174 mapping = page_mapping(page);
1175 case PAGE_CLEAN:
1176 ; /* try to free the page below */
1181 * If the page has buffers, try to free the buffer mappings
1182 * associated with this page. If we succeed we try to free
1183 * the page as well.
1185 * We do this even if the page is PageDirty().
1186 * try_to_release_page() does not perform I/O, but it is
1187 * possible for a page to have PageDirty set, but it is actually
1188 * clean (all its buffers are clean). This happens if the
1189 * buffers were written out directly, with submit_bh(). ext3
1190 * will do this, as well as the blockdev mapping.
1191 * try_to_release_page() will discover that cleanness and will
1192 * drop the buffers and mark the page clean - it can be freed.
1194 * Rarely, pages can have buffers and no ->mapping. These are
1195 * the pages which were not successfully invalidated in
1196 * truncate_complete_page(). We try to drop those buffers here
1197 * and if that worked, and the page is no longer mapped into
1198 * process address space (page_count == 1) it can be freed.
1199 * Otherwise, leave the page on the LRU so it is swappable.
1201 if (page_has_private(page)) {
1202 if (!try_to_release_page(page, sc->gfp_mask))
1203 goto activate_locked;
1204 if (!mapping && page_count(page) == 1) {
1205 unlock_page(page);
1206 if (put_page_testzero(page))
1207 goto free_it;
1208 else {
1210 * rare race with speculative reference.
1211 * the speculative reference will free
1212 * this page shortly, so we may
1213 * increment nr_reclaimed here (and
1214 * leave it off the LRU).
1216 nr_reclaimed++;
1217 continue;
1222 if (PageAnon(page) && !PageSwapBacked(page)) {
1223 /* follow __remove_mapping for reference */
1224 if (!page_ref_freeze(page, 1))
1225 goto keep_locked;
1226 if (PageDirty(page)) {
1227 page_ref_unfreeze(page, 1);
1228 goto keep_locked;
1231 count_vm_event(PGLAZYFREED);
1232 count_memcg_page_event(page, PGLAZYFREED);
1233 } else if (!mapping || !__remove_mapping(mapping, page, true))
1234 goto keep_locked;
1236 * At this point, we have no other references and there is
1237 * no way to pick any more up (removed from LRU, removed
1238 * from pagecache). Can use non-atomic bitops now (and
1239 * we obviously don't have to worry about waking up a process
1240 * waiting on the page lock, because there are no references.
1242 __ClearPageLocked(page);
1243 free_it:
1244 nr_reclaimed++;
1247 * Is there need to periodically free_page_list? It would
1248 * appear not as the counts should be low
1250 if (unlikely(PageTransHuge(page))) {
1251 mem_cgroup_uncharge(page);
1252 (*get_compound_page_dtor(page))(page);
1253 } else
1254 list_add(&page->lru, &free_pages);
1255 continue;
1257 activate_locked:
1258 /* Not a candidate for swapping, so reclaim swap space. */
1259 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1260 PageMlocked(page)))
1261 try_to_free_swap(page);
1262 VM_BUG_ON_PAGE(PageActive(page), page);
1263 if (!PageMlocked(page)) {
1264 SetPageActive(page);
1265 pgactivate++;
1266 count_memcg_page_event(page, PGACTIVATE);
1268 keep_locked:
1269 unlock_page(page);
1270 keep:
1271 list_add(&page->lru, &ret_pages);
1272 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1275 mem_cgroup_uncharge_list(&free_pages);
1276 try_to_unmap_flush();
1277 free_unref_page_list(&free_pages);
1279 list_splice(&ret_pages, page_list);
1280 count_vm_events(PGACTIVATE, pgactivate);
1282 if (stat) {
1283 stat->nr_dirty = nr_dirty;
1284 stat->nr_congested = nr_congested;
1285 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1286 stat->nr_writeback = nr_writeback;
1287 stat->nr_immediate = nr_immediate;
1288 stat->nr_activate = pgactivate;
1289 stat->nr_ref_keep = nr_ref_keep;
1290 stat->nr_unmap_fail = nr_unmap_fail;
1292 return nr_reclaimed;
1295 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1296 struct list_head *page_list)
1298 struct scan_control sc = {
1299 .gfp_mask = GFP_KERNEL,
1300 .priority = DEF_PRIORITY,
1301 .may_unmap = 1,
1303 unsigned long ret;
1304 struct page *page, *next;
1305 LIST_HEAD(clean_pages);
1307 list_for_each_entry_safe(page, next, page_list, lru) {
1308 if (page_is_file_cache(page) && !PageDirty(page) &&
1309 !__PageMovable(page)) {
1310 ClearPageActive(page);
1311 list_move(&page->lru, &clean_pages);
1315 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1316 TTU_IGNORE_ACCESS, NULL, true);
1317 list_splice(&clean_pages, page_list);
1318 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1319 return ret;
1323 * Attempt to remove the specified page from its LRU. Only take this page
1324 * if it is of the appropriate PageActive status. Pages which are being
1325 * freed elsewhere are also ignored.
1327 * page: page to consider
1328 * mode: one of the LRU isolation modes defined above
1330 * returns 0 on success, -ve errno on failure.
1332 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1334 int ret = -EINVAL;
1336 /* Only take pages on the LRU. */
1337 if (!PageLRU(page))
1338 return ret;
1340 /* Compaction should not handle unevictable pages but CMA can do so */
1341 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1342 return ret;
1344 ret = -EBUSY;
1347 * To minimise LRU disruption, the caller can indicate that it only
1348 * wants to isolate pages it will be able to operate on without
1349 * blocking - clean pages for the most part.
1351 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1352 * that it is possible to migrate without blocking
1354 if (mode & ISOLATE_ASYNC_MIGRATE) {
1355 /* All the caller can do on PageWriteback is block */
1356 if (PageWriteback(page))
1357 return ret;
1359 if (PageDirty(page)) {
1360 struct address_space *mapping;
1361 bool migrate_dirty;
1364 * Only pages without mappings or that have a
1365 * ->migratepage callback are possible to migrate
1366 * without blocking. However, we can be racing with
1367 * truncation so it's necessary to lock the page
1368 * to stabilise the mapping as truncation holds
1369 * the page lock until after the page is removed
1370 * from the page cache.
1372 if (!trylock_page(page))
1373 return ret;
1375 mapping = page_mapping(page);
1376 migrate_dirty = mapping && mapping->a_ops->migratepage;
1377 unlock_page(page);
1378 if (!migrate_dirty)
1379 return ret;
1383 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1384 return ret;
1386 if (likely(get_page_unless_zero(page))) {
1388 * Be careful not to clear PageLRU until after we're
1389 * sure the page is not being freed elsewhere -- the
1390 * page release code relies on it.
1392 ClearPageLRU(page);
1393 ret = 0;
1396 return ret;
1401 * Update LRU sizes after isolating pages. The LRU size updates must
1402 * be complete before mem_cgroup_update_lru_size due to a santity check.
1404 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1405 enum lru_list lru, unsigned long *nr_zone_taken)
1407 int zid;
1409 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1410 if (!nr_zone_taken[zid])
1411 continue;
1413 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1414 #ifdef CONFIG_MEMCG
1415 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1416 #endif
1422 * zone_lru_lock is heavily contended. Some of the functions that
1423 * shrink the lists perform better by taking out a batch of pages
1424 * and working on them outside the LRU lock.
1426 * For pagecache intensive workloads, this function is the hottest
1427 * spot in the kernel (apart from copy_*_user functions).
1429 * Appropriate locks must be held before calling this function.
1431 * @nr_to_scan: The number of eligible pages to look through on the list.
1432 * @lruvec: The LRU vector to pull pages from.
1433 * @dst: The temp list to put pages on to.
1434 * @nr_scanned: The number of pages that were scanned.
1435 * @sc: The scan_control struct for this reclaim session
1436 * @mode: One of the LRU isolation modes
1437 * @lru: LRU list id for isolating
1439 * returns how many pages were moved onto *@dst.
1441 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1442 struct lruvec *lruvec, struct list_head *dst,
1443 unsigned long *nr_scanned, struct scan_control *sc,
1444 isolate_mode_t mode, enum lru_list lru)
1446 struct list_head *src = &lruvec->lists[lru];
1447 unsigned long nr_taken = 0;
1448 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1449 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1450 unsigned long skipped = 0;
1451 unsigned long scan, total_scan, nr_pages;
1452 LIST_HEAD(pages_skipped);
1454 scan = 0;
1455 for (total_scan = 0;
1456 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1457 total_scan++) {
1458 struct page *page;
1460 page = lru_to_page(src);
1461 prefetchw_prev_lru_page(page, src, flags);
1463 VM_BUG_ON_PAGE(!PageLRU(page), page);
1465 if (page_zonenum(page) > sc->reclaim_idx) {
1466 list_move(&page->lru, &pages_skipped);
1467 nr_skipped[page_zonenum(page)]++;
1468 continue;
1472 * Do not count skipped pages because that makes the function
1473 * return with no isolated pages if the LRU mostly contains
1474 * ineligible pages. This causes the VM to not reclaim any
1475 * pages, triggering a premature OOM.
1477 scan++;
1478 switch (__isolate_lru_page(page, mode)) {
1479 case 0:
1480 nr_pages = hpage_nr_pages(page);
1481 nr_taken += nr_pages;
1482 nr_zone_taken[page_zonenum(page)] += nr_pages;
1483 list_move(&page->lru, dst);
1484 break;
1486 case -EBUSY:
1487 /* else it is being freed elsewhere */
1488 list_move(&page->lru, src);
1489 continue;
1491 default:
1492 BUG();
1497 * Splice any skipped pages to the start of the LRU list. Note that
1498 * this disrupts the LRU order when reclaiming for lower zones but
1499 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1500 * scanning would soon rescan the same pages to skip and put the
1501 * system at risk of premature OOM.
1503 if (!list_empty(&pages_skipped)) {
1504 int zid;
1506 list_splice(&pages_skipped, src);
1507 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1508 if (!nr_skipped[zid])
1509 continue;
1511 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1512 skipped += nr_skipped[zid];
1515 *nr_scanned = total_scan;
1516 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1517 total_scan, skipped, nr_taken, mode, lru);
1518 update_lru_sizes(lruvec, lru, nr_zone_taken);
1519 return nr_taken;
1523 * isolate_lru_page - tries to isolate a page from its LRU list
1524 * @page: page to isolate from its LRU list
1526 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1527 * vmstat statistic corresponding to whatever LRU list the page was on.
1529 * Returns 0 if the page was removed from an LRU list.
1530 * Returns -EBUSY if the page was not on an LRU list.
1532 * The returned page will have PageLRU() cleared. If it was found on
1533 * the active list, it will have PageActive set. If it was found on
1534 * the unevictable list, it will have the PageUnevictable bit set. That flag
1535 * may need to be cleared by the caller before letting the page go.
1537 * The vmstat statistic corresponding to the list on which the page was
1538 * found will be decremented.
1540 * Restrictions:
1542 * (1) Must be called with an elevated refcount on the page. This is a
1543 * fundamentnal difference from isolate_lru_pages (which is called
1544 * without a stable reference).
1545 * (2) the lru_lock must not be held.
1546 * (3) interrupts must be enabled.
1548 int isolate_lru_page(struct page *page)
1550 int ret = -EBUSY;
1552 VM_BUG_ON_PAGE(!page_count(page), page);
1553 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1555 if (PageLRU(page)) {
1556 struct zone *zone = page_zone(page);
1557 struct lruvec *lruvec;
1559 spin_lock_irq(zone_lru_lock(zone));
1560 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1561 if (PageLRU(page)) {
1562 int lru = page_lru(page);
1563 get_page(page);
1564 ClearPageLRU(page);
1565 del_page_from_lru_list(page, lruvec, lru);
1566 ret = 0;
1568 spin_unlock_irq(zone_lru_lock(zone));
1570 return ret;
1574 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1575 * then get resheduled. When there are massive number of tasks doing page
1576 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1577 * the LRU list will go small and be scanned faster than necessary, leading to
1578 * unnecessary swapping, thrashing and OOM.
1580 static int too_many_isolated(struct pglist_data *pgdat, int file,
1581 struct scan_control *sc)
1583 unsigned long inactive, isolated;
1585 if (current_is_kswapd())
1586 return 0;
1588 if (!sane_reclaim(sc))
1589 return 0;
1591 if (file) {
1592 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1593 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1594 } else {
1595 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1596 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1600 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1601 * won't get blocked by normal direct-reclaimers, forming a circular
1602 * deadlock.
1604 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1605 inactive >>= 3;
1607 return isolated > inactive;
1610 static noinline_for_stack void
1611 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1613 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1614 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1615 LIST_HEAD(pages_to_free);
1618 * Put back any unfreeable pages.
1620 while (!list_empty(page_list)) {
1621 struct page *page = lru_to_page(page_list);
1622 int lru;
1624 VM_BUG_ON_PAGE(PageLRU(page), page);
1625 list_del(&page->lru);
1626 if (unlikely(!page_evictable(page))) {
1627 spin_unlock_irq(&pgdat->lru_lock);
1628 putback_lru_page(page);
1629 spin_lock_irq(&pgdat->lru_lock);
1630 continue;
1633 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1635 SetPageLRU(page);
1636 lru = page_lru(page);
1637 add_page_to_lru_list(page, lruvec, lru);
1639 if (is_active_lru(lru)) {
1640 int file = is_file_lru(lru);
1641 int numpages = hpage_nr_pages(page);
1642 reclaim_stat->recent_rotated[file] += numpages;
1644 if (put_page_testzero(page)) {
1645 __ClearPageLRU(page);
1646 __ClearPageActive(page);
1647 del_page_from_lru_list(page, lruvec, lru);
1649 if (unlikely(PageCompound(page))) {
1650 spin_unlock_irq(&pgdat->lru_lock);
1651 mem_cgroup_uncharge(page);
1652 (*get_compound_page_dtor(page))(page);
1653 spin_lock_irq(&pgdat->lru_lock);
1654 } else
1655 list_add(&page->lru, &pages_to_free);
1660 * To save our caller's stack, now use input list for pages to free.
1662 list_splice(&pages_to_free, page_list);
1666 * If a kernel thread (such as nfsd for loop-back mounts) services
1667 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1668 * In that case we should only throttle if the backing device it is
1669 * writing to is congested. In other cases it is safe to throttle.
1671 static int current_may_throttle(void)
1673 return !(current->flags & PF_LESS_THROTTLE) ||
1674 current->backing_dev_info == NULL ||
1675 bdi_write_congested(current->backing_dev_info);
1679 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1680 * of reclaimed pages
1682 static noinline_for_stack unsigned long
1683 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1684 struct scan_control *sc, enum lru_list lru)
1686 LIST_HEAD(page_list);
1687 unsigned long nr_scanned;
1688 unsigned long nr_reclaimed = 0;
1689 unsigned long nr_taken;
1690 struct reclaim_stat stat = {};
1691 isolate_mode_t isolate_mode = 0;
1692 int file = is_file_lru(lru);
1693 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1694 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1695 bool stalled = false;
1697 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1698 if (stalled)
1699 return 0;
1701 /* wait a bit for the reclaimer. */
1702 msleep(100);
1703 stalled = true;
1705 /* We are about to die and free our memory. Return now. */
1706 if (fatal_signal_pending(current))
1707 return SWAP_CLUSTER_MAX;
1710 lru_add_drain();
1712 if (!sc->may_unmap)
1713 isolate_mode |= ISOLATE_UNMAPPED;
1715 spin_lock_irq(&pgdat->lru_lock);
1717 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1718 &nr_scanned, sc, isolate_mode, lru);
1720 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1721 reclaim_stat->recent_scanned[file] += nr_taken;
1723 if (current_is_kswapd()) {
1724 if (global_reclaim(sc))
1725 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1726 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1727 nr_scanned);
1728 } else {
1729 if (global_reclaim(sc))
1730 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1731 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1732 nr_scanned);
1734 spin_unlock_irq(&pgdat->lru_lock);
1736 if (nr_taken == 0)
1737 return 0;
1739 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1740 &stat, false);
1742 spin_lock_irq(&pgdat->lru_lock);
1744 if (current_is_kswapd()) {
1745 if (global_reclaim(sc))
1746 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1747 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1748 nr_reclaimed);
1749 } else {
1750 if (global_reclaim(sc))
1751 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1752 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1753 nr_reclaimed);
1756 putback_inactive_pages(lruvec, &page_list);
1758 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1760 spin_unlock_irq(&pgdat->lru_lock);
1762 mem_cgroup_uncharge_list(&page_list);
1763 free_unref_page_list(&page_list);
1766 * If reclaim is isolating dirty pages under writeback, it implies
1767 * that the long-lived page allocation rate is exceeding the page
1768 * laundering rate. Either the global limits are not being effective
1769 * at throttling processes due to the page distribution throughout
1770 * zones or there is heavy usage of a slow backing device. The
1771 * only option is to throttle from reclaim context which is not ideal
1772 * as there is no guarantee the dirtying process is throttled in the
1773 * same way balance_dirty_pages() manages.
1775 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1776 * of pages under pages flagged for immediate reclaim and stall if any
1777 * are encountered in the nr_immediate check below.
1779 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1780 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1783 * Legacy memcg will stall in page writeback so avoid forcibly
1784 * stalling here.
1786 if (sane_reclaim(sc)) {
1788 * Tag a zone as congested if all the dirty pages scanned were
1789 * backed by a congested BDI and wait_iff_congested will stall.
1791 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1792 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1795 * If dirty pages are scanned that are not queued for IO, it
1796 * implies that flushers are not doing their job. This can
1797 * happen when memory pressure pushes dirty pages to the end of
1798 * the LRU before the dirty limits are breached and the dirty
1799 * data has expired. It can also happen when the proportion of
1800 * dirty pages grows not through writes but through memory
1801 * pressure reclaiming all the clean cache. And in some cases,
1802 * the flushers simply cannot keep up with the allocation
1803 * rate. Nudge the flusher threads in case they are asleep, but
1804 * also allow kswapd to start writing pages during reclaim.
1806 if (stat.nr_unqueued_dirty == nr_taken) {
1807 wakeup_flusher_threads(WB_REASON_VMSCAN);
1808 set_bit(PGDAT_DIRTY, &pgdat->flags);
1812 * If kswapd scans pages marked marked for immediate
1813 * reclaim and under writeback (nr_immediate), it implies
1814 * that pages are cycling through the LRU faster than
1815 * they are written so also forcibly stall.
1817 if (stat.nr_immediate && current_may_throttle())
1818 congestion_wait(BLK_RW_ASYNC, HZ/10);
1822 * Stall direct reclaim for IO completions if underlying BDIs or zone
1823 * is congested. Allow kswapd to continue until it starts encountering
1824 * unqueued dirty pages or cycling through the LRU too quickly.
1826 if (!sc->hibernation_mode && !current_is_kswapd() &&
1827 current_may_throttle())
1828 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1830 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1831 nr_scanned, nr_reclaimed,
1832 stat.nr_dirty, stat.nr_writeback,
1833 stat.nr_congested, stat.nr_immediate,
1834 stat.nr_activate, stat.nr_ref_keep,
1835 stat.nr_unmap_fail,
1836 sc->priority, file);
1837 return nr_reclaimed;
1841 * This moves pages from the active list to the inactive list.
1843 * We move them the other way if the page is referenced by one or more
1844 * processes, from rmap.
1846 * If the pages are mostly unmapped, the processing is fast and it is
1847 * appropriate to hold zone_lru_lock across the whole operation. But if
1848 * the pages are mapped, the processing is slow (page_referenced()) so we
1849 * should drop zone_lru_lock around each page. It's impossible to balance
1850 * this, so instead we remove the pages from the LRU while processing them.
1851 * It is safe to rely on PG_active against the non-LRU pages in here because
1852 * nobody will play with that bit on a non-LRU page.
1854 * The downside is that we have to touch page->_refcount against each page.
1855 * But we had to alter page->flags anyway.
1857 * Returns the number of pages moved to the given lru.
1860 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1861 struct list_head *list,
1862 struct list_head *pages_to_free,
1863 enum lru_list lru)
1865 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1866 struct page *page;
1867 int nr_pages;
1868 int nr_moved = 0;
1870 while (!list_empty(list)) {
1871 page = lru_to_page(list);
1872 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1874 VM_BUG_ON_PAGE(PageLRU(page), page);
1875 SetPageLRU(page);
1877 nr_pages = hpage_nr_pages(page);
1878 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1879 list_move(&page->lru, &lruvec->lists[lru]);
1881 if (put_page_testzero(page)) {
1882 __ClearPageLRU(page);
1883 __ClearPageActive(page);
1884 del_page_from_lru_list(page, lruvec, lru);
1886 if (unlikely(PageCompound(page))) {
1887 spin_unlock_irq(&pgdat->lru_lock);
1888 mem_cgroup_uncharge(page);
1889 (*get_compound_page_dtor(page))(page);
1890 spin_lock_irq(&pgdat->lru_lock);
1891 } else
1892 list_add(&page->lru, pages_to_free);
1893 } else {
1894 nr_moved += nr_pages;
1898 if (!is_active_lru(lru)) {
1899 __count_vm_events(PGDEACTIVATE, nr_moved);
1900 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1901 nr_moved);
1904 return nr_moved;
1907 static void shrink_active_list(unsigned long nr_to_scan,
1908 struct lruvec *lruvec,
1909 struct scan_control *sc,
1910 enum lru_list lru)
1912 unsigned long nr_taken;
1913 unsigned long nr_scanned;
1914 unsigned long vm_flags;
1915 LIST_HEAD(l_hold); /* The pages which were snipped off */
1916 LIST_HEAD(l_active);
1917 LIST_HEAD(l_inactive);
1918 struct page *page;
1919 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1920 unsigned nr_deactivate, nr_activate;
1921 unsigned nr_rotated = 0;
1922 isolate_mode_t isolate_mode = 0;
1923 int file = is_file_lru(lru);
1924 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1926 lru_add_drain();
1928 if (!sc->may_unmap)
1929 isolate_mode |= ISOLATE_UNMAPPED;
1931 spin_lock_irq(&pgdat->lru_lock);
1933 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1934 &nr_scanned, sc, isolate_mode, lru);
1936 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1937 reclaim_stat->recent_scanned[file] += nr_taken;
1939 __count_vm_events(PGREFILL, nr_scanned);
1940 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1942 spin_unlock_irq(&pgdat->lru_lock);
1944 while (!list_empty(&l_hold)) {
1945 cond_resched();
1946 page = lru_to_page(&l_hold);
1947 list_del(&page->lru);
1949 if (unlikely(!page_evictable(page))) {
1950 putback_lru_page(page);
1951 continue;
1954 if (unlikely(buffer_heads_over_limit)) {
1955 if (page_has_private(page) && trylock_page(page)) {
1956 if (page_has_private(page))
1957 try_to_release_page(page, 0);
1958 unlock_page(page);
1962 if (page_referenced(page, 0, sc->target_mem_cgroup,
1963 &vm_flags)) {
1964 nr_rotated += hpage_nr_pages(page);
1966 * Identify referenced, file-backed active pages and
1967 * give them one more trip around the active list. So
1968 * that executable code get better chances to stay in
1969 * memory under moderate memory pressure. Anon pages
1970 * are not likely to be evicted by use-once streaming
1971 * IO, plus JVM can create lots of anon VM_EXEC pages,
1972 * so we ignore them here.
1974 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1975 list_add(&page->lru, &l_active);
1976 continue;
1980 ClearPageActive(page); /* we are de-activating */
1981 list_add(&page->lru, &l_inactive);
1985 * Move pages back to the lru list.
1987 spin_lock_irq(&pgdat->lru_lock);
1989 * Count referenced pages from currently used mappings as rotated,
1990 * even though only some of them are actually re-activated. This
1991 * helps balance scan pressure between file and anonymous pages in
1992 * get_scan_count.
1994 reclaim_stat->recent_rotated[file] += nr_rotated;
1996 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1997 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1998 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1999 spin_unlock_irq(&pgdat->lru_lock);
2001 mem_cgroup_uncharge_list(&l_hold);
2002 free_unref_page_list(&l_hold);
2003 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2004 nr_deactivate, nr_rotated, sc->priority, file);
2008 * The inactive anon list should be small enough that the VM never has
2009 * to do too much work.
2011 * The inactive file list should be small enough to leave most memory
2012 * to the established workingset on the scan-resistant active list,
2013 * but large enough to avoid thrashing the aggregate readahead window.
2015 * Both inactive lists should also be large enough that each inactive
2016 * page has a chance to be referenced again before it is reclaimed.
2018 * If that fails and refaulting is observed, the inactive list grows.
2020 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2021 * on this LRU, maintained by the pageout code. An inactive_ratio
2022 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2024 * total target max
2025 * memory ratio inactive
2026 * -------------------------------------
2027 * 10MB 1 5MB
2028 * 100MB 1 50MB
2029 * 1GB 3 250MB
2030 * 10GB 10 0.9GB
2031 * 100GB 31 3GB
2032 * 1TB 101 10GB
2033 * 10TB 320 32GB
2035 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2036 struct mem_cgroup *memcg,
2037 struct scan_control *sc, bool actual_reclaim)
2039 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2040 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2041 enum lru_list inactive_lru = file * LRU_FILE;
2042 unsigned long inactive, active;
2043 unsigned long inactive_ratio;
2044 unsigned long refaults;
2045 unsigned long gb;
2048 * If we don't have swap space, anonymous page deactivation
2049 * is pointless.
2051 if (!file && !total_swap_pages)
2052 return false;
2054 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2055 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2057 if (memcg)
2058 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2059 else
2060 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2063 * When refaults are being observed, it means a new workingset
2064 * is being established. Disable active list protection to get
2065 * rid of the stale workingset quickly.
2067 if (file && actual_reclaim && lruvec->refaults != refaults) {
2068 inactive_ratio = 0;
2069 } else {
2070 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2071 if (gb)
2072 inactive_ratio = int_sqrt(10 * gb);
2073 else
2074 inactive_ratio = 1;
2077 if (actual_reclaim)
2078 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2079 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2080 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2081 inactive_ratio, file);
2083 return inactive * inactive_ratio < active;
2086 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2087 struct lruvec *lruvec, struct mem_cgroup *memcg,
2088 struct scan_control *sc)
2090 if (is_active_lru(lru)) {
2091 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2092 memcg, sc, true))
2093 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2094 return 0;
2097 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2100 enum scan_balance {
2101 SCAN_EQUAL,
2102 SCAN_FRACT,
2103 SCAN_ANON,
2104 SCAN_FILE,
2108 * Determine how aggressively the anon and file LRU lists should be
2109 * scanned. The relative value of each set of LRU lists is determined
2110 * by looking at the fraction of the pages scanned we did rotate back
2111 * onto the active list instead of evict.
2113 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2114 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2116 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2117 struct scan_control *sc, unsigned long *nr,
2118 unsigned long *lru_pages)
2120 int swappiness = mem_cgroup_swappiness(memcg);
2121 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2122 u64 fraction[2];
2123 u64 denominator = 0; /* gcc */
2124 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2125 unsigned long anon_prio, file_prio;
2126 enum scan_balance scan_balance;
2127 unsigned long anon, file;
2128 unsigned long ap, fp;
2129 enum lru_list lru;
2131 /* If we have no swap space, do not bother scanning anon pages. */
2132 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2133 scan_balance = SCAN_FILE;
2134 goto out;
2138 * Global reclaim will swap to prevent OOM even with no
2139 * swappiness, but memcg users want to use this knob to
2140 * disable swapping for individual groups completely when
2141 * using the memory controller's swap limit feature would be
2142 * too expensive.
2144 if (!global_reclaim(sc) && !swappiness) {
2145 scan_balance = SCAN_FILE;
2146 goto out;
2150 * Do not apply any pressure balancing cleverness when the
2151 * system is close to OOM, scan both anon and file equally
2152 * (unless the swappiness setting disagrees with swapping).
2154 if (!sc->priority && swappiness) {
2155 scan_balance = SCAN_EQUAL;
2156 goto out;
2160 * Prevent the reclaimer from falling into the cache trap: as
2161 * cache pages start out inactive, every cache fault will tip
2162 * the scan balance towards the file LRU. And as the file LRU
2163 * shrinks, so does the window for rotation from references.
2164 * This means we have a runaway feedback loop where a tiny
2165 * thrashing file LRU becomes infinitely more attractive than
2166 * anon pages. Try to detect this based on file LRU size.
2168 if (global_reclaim(sc)) {
2169 unsigned long pgdatfile;
2170 unsigned long pgdatfree;
2171 int z;
2172 unsigned long total_high_wmark = 0;
2174 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2175 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2176 node_page_state(pgdat, NR_INACTIVE_FILE);
2178 for (z = 0; z < MAX_NR_ZONES; z++) {
2179 struct zone *zone = &pgdat->node_zones[z];
2180 if (!managed_zone(zone))
2181 continue;
2183 total_high_wmark += high_wmark_pages(zone);
2186 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2188 * Force SCAN_ANON if there are enough inactive
2189 * anonymous pages on the LRU in eligible zones.
2190 * Otherwise, the small LRU gets thrashed.
2192 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2193 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2194 >> sc->priority) {
2195 scan_balance = SCAN_ANON;
2196 goto out;
2202 * If there is enough inactive page cache, i.e. if the size of the
2203 * inactive list is greater than that of the active list *and* the
2204 * inactive list actually has some pages to scan on this priority, we
2205 * do not reclaim anything from the anonymous working set right now.
2206 * Without the second condition we could end up never scanning an
2207 * lruvec even if it has plenty of old anonymous pages unless the
2208 * system is under heavy pressure.
2210 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2211 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2212 scan_balance = SCAN_FILE;
2213 goto out;
2216 scan_balance = SCAN_FRACT;
2219 * With swappiness at 100, anonymous and file have the same priority.
2220 * This scanning priority is essentially the inverse of IO cost.
2222 anon_prio = swappiness;
2223 file_prio = 200 - anon_prio;
2226 * OK, so we have swap space and a fair amount of page cache
2227 * pages. We use the recently rotated / recently scanned
2228 * ratios to determine how valuable each cache is.
2230 * Because workloads change over time (and to avoid overflow)
2231 * we keep these statistics as a floating average, which ends
2232 * up weighing recent references more than old ones.
2234 * anon in [0], file in [1]
2237 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2238 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2239 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2240 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2242 spin_lock_irq(&pgdat->lru_lock);
2243 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2244 reclaim_stat->recent_scanned[0] /= 2;
2245 reclaim_stat->recent_rotated[0] /= 2;
2248 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2249 reclaim_stat->recent_scanned[1] /= 2;
2250 reclaim_stat->recent_rotated[1] /= 2;
2254 * The amount of pressure on anon vs file pages is inversely
2255 * proportional to the fraction of recently scanned pages on
2256 * each list that were recently referenced and in active use.
2258 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2259 ap /= reclaim_stat->recent_rotated[0] + 1;
2261 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2262 fp /= reclaim_stat->recent_rotated[1] + 1;
2263 spin_unlock_irq(&pgdat->lru_lock);
2265 fraction[0] = ap;
2266 fraction[1] = fp;
2267 denominator = ap + fp + 1;
2268 out:
2269 *lru_pages = 0;
2270 for_each_evictable_lru(lru) {
2271 int file = is_file_lru(lru);
2272 unsigned long size;
2273 unsigned long scan;
2275 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2276 scan = size >> sc->priority;
2278 * If the cgroup's already been deleted, make sure to
2279 * scrape out the remaining cache.
2281 if (!scan && !mem_cgroup_online(memcg))
2282 scan = min(size, SWAP_CLUSTER_MAX);
2284 switch (scan_balance) {
2285 case SCAN_EQUAL:
2286 /* Scan lists relative to size */
2287 break;
2288 case SCAN_FRACT:
2290 * Scan types proportional to swappiness and
2291 * their relative recent reclaim efficiency.
2293 scan = div64_u64(scan * fraction[file],
2294 denominator);
2295 break;
2296 case SCAN_FILE:
2297 case SCAN_ANON:
2298 /* Scan one type exclusively */
2299 if ((scan_balance == SCAN_FILE) != file) {
2300 size = 0;
2301 scan = 0;
2303 break;
2304 default:
2305 /* Look ma, no brain */
2306 BUG();
2309 *lru_pages += size;
2310 nr[lru] = scan;
2315 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2317 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2318 struct scan_control *sc, unsigned long *lru_pages)
2320 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2321 unsigned long nr[NR_LRU_LISTS];
2322 unsigned long targets[NR_LRU_LISTS];
2323 unsigned long nr_to_scan;
2324 enum lru_list lru;
2325 unsigned long nr_reclaimed = 0;
2326 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2327 struct blk_plug plug;
2328 bool scan_adjusted;
2330 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2332 /* Record the original scan target for proportional adjustments later */
2333 memcpy(targets, nr, sizeof(nr));
2336 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2337 * event that can occur when there is little memory pressure e.g.
2338 * multiple streaming readers/writers. Hence, we do not abort scanning
2339 * when the requested number of pages are reclaimed when scanning at
2340 * DEF_PRIORITY on the assumption that the fact we are direct
2341 * reclaiming implies that kswapd is not keeping up and it is best to
2342 * do a batch of work at once. For memcg reclaim one check is made to
2343 * abort proportional reclaim if either the file or anon lru has already
2344 * dropped to zero at the first pass.
2346 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2347 sc->priority == DEF_PRIORITY);
2349 blk_start_plug(&plug);
2350 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2351 nr[LRU_INACTIVE_FILE]) {
2352 unsigned long nr_anon, nr_file, percentage;
2353 unsigned long nr_scanned;
2355 for_each_evictable_lru(lru) {
2356 if (nr[lru]) {
2357 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2358 nr[lru] -= nr_to_scan;
2360 nr_reclaimed += shrink_list(lru, nr_to_scan,
2361 lruvec, memcg, sc);
2365 cond_resched();
2367 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2368 continue;
2371 * For kswapd and memcg, reclaim at least the number of pages
2372 * requested. Ensure that the anon and file LRUs are scanned
2373 * proportionally what was requested by get_scan_count(). We
2374 * stop reclaiming one LRU and reduce the amount scanning
2375 * proportional to the original scan target.
2377 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2378 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2381 * It's just vindictive to attack the larger once the smaller
2382 * has gone to zero. And given the way we stop scanning the
2383 * smaller below, this makes sure that we only make one nudge
2384 * towards proportionality once we've got nr_to_reclaim.
2386 if (!nr_file || !nr_anon)
2387 break;
2389 if (nr_file > nr_anon) {
2390 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2391 targets[LRU_ACTIVE_ANON] + 1;
2392 lru = LRU_BASE;
2393 percentage = nr_anon * 100 / scan_target;
2394 } else {
2395 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2396 targets[LRU_ACTIVE_FILE] + 1;
2397 lru = LRU_FILE;
2398 percentage = nr_file * 100 / scan_target;
2401 /* Stop scanning the smaller of the LRU */
2402 nr[lru] = 0;
2403 nr[lru + LRU_ACTIVE] = 0;
2406 * Recalculate the other LRU scan count based on its original
2407 * scan target and the percentage scanning already complete
2409 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2410 nr_scanned = targets[lru] - nr[lru];
2411 nr[lru] = targets[lru] * (100 - percentage) / 100;
2412 nr[lru] -= min(nr[lru], nr_scanned);
2414 lru += LRU_ACTIVE;
2415 nr_scanned = targets[lru] - nr[lru];
2416 nr[lru] = targets[lru] * (100 - percentage) / 100;
2417 nr[lru] -= min(nr[lru], nr_scanned);
2419 scan_adjusted = true;
2421 blk_finish_plug(&plug);
2422 sc->nr_reclaimed += nr_reclaimed;
2425 * Even if we did not try to evict anon pages at all, we want to
2426 * rebalance the anon lru active/inactive ratio.
2428 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2429 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2430 sc, LRU_ACTIVE_ANON);
2433 /* Use reclaim/compaction for costly allocs or under memory pressure */
2434 static bool in_reclaim_compaction(struct scan_control *sc)
2436 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2437 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2438 sc->priority < DEF_PRIORITY - 2))
2439 return true;
2441 return false;
2445 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2446 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2447 * true if more pages should be reclaimed such that when the page allocator
2448 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2449 * It will give up earlier than that if there is difficulty reclaiming pages.
2451 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2452 unsigned long nr_reclaimed,
2453 unsigned long nr_scanned,
2454 struct scan_control *sc)
2456 unsigned long pages_for_compaction;
2457 unsigned long inactive_lru_pages;
2458 int z;
2460 /* If not in reclaim/compaction mode, stop */
2461 if (!in_reclaim_compaction(sc))
2462 return false;
2464 /* Consider stopping depending on scan and reclaim activity */
2465 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2467 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2468 * full LRU list has been scanned and we are still failing
2469 * to reclaim pages. This full LRU scan is potentially
2470 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2472 if (!nr_reclaimed && !nr_scanned)
2473 return false;
2474 } else {
2476 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2477 * fail without consequence, stop if we failed to reclaim
2478 * any pages from the last SWAP_CLUSTER_MAX number of
2479 * pages that were scanned. This will return to the
2480 * caller faster at the risk reclaim/compaction and
2481 * the resulting allocation attempt fails
2483 if (!nr_reclaimed)
2484 return false;
2488 * If we have not reclaimed enough pages for compaction and the
2489 * inactive lists are large enough, continue reclaiming
2491 pages_for_compaction = compact_gap(sc->order);
2492 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2493 if (get_nr_swap_pages() > 0)
2494 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2495 if (sc->nr_reclaimed < pages_for_compaction &&
2496 inactive_lru_pages > pages_for_compaction)
2497 return true;
2499 /* If compaction would go ahead or the allocation would succeed, stop */
2500 for (z = 0; z <= sc->reclaim_idx; z++) {
2501 struct zone *zone = &pgdat->node_zones[z];
2502 if (!managed_zone(zone))
2503 continue;
2505 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2506 case COMPACT_SUCCESS:
2507 case COMPACT_CONTINUE:
2508 return false;
2509 default:
2510 /* check next zone */
2514 return true;
2517 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2519 struct reclaim_state *reclaim_state = current->reclaim_state;
2520 unsigned long nr_reclaimed, nr_scanned;
2521 bool reclaimable = false;
2523 do {
2524 struct mem_cgroup *root = sc->target_mem_cgroup;
2525 struct mem_cgroup_reclaim_cookie reclaim = {
2526 .pgdat = pgdat,
2527 .priority = sc->priority,
2529 unsigned long node_lru_pages = 0;
2530 struct mem_cgroup *memcg;
2532 nr_reclaimed = sc->nr_reclaimed;
2533 nr_scanned = sc->nr_scanned;
2535 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2536 do {
2537 unsigned long lru_pages;
2538 unsigned long reclaimed;
2539 unsigned long scanned;
2541 if (mem_cgroup_low(root, memcg)) {
2542 if (!sc->memcg_low_reclaim) {
2543 sc->memcg_low_skipped = 1;
2544 continue;
2546 mem_cgroup_event(memcg, MEMCG_LOW);
2549 reclaimed = sc->nr_reclaimed;
2550 scanned = sc->nr_scanned;
2551 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2552 node_lru_pages += lru_pages;
2554 if (memcg)
2555 shrink_slab(sc->gfp_mask, pgdat->node_id,
2556 memcg, sc->priority);
2558 /* Record the group's reclaim efficiency */
2559 vmpressure(sc->gfp_mask, memcg, false,
2560 sc->nr_scanned - scanned,
2561 sc->nr_reclaimed - reclaimed);
2564 * Direct reclaim and kswapd have to scan all memory
2565 * cgroups to fulfill the overall scan target for the
2566 * node.
2568 * Limit reclaim, on the other hand, only cares about
2569 * nr_to_reclaim pages to be reclaimed and it will
2570 * retry with decreasing priority if one round over the
2571 * whole hierarchy is not sufficient.
2573 if (!global_reclaim(sc) &&
2574 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2575 mem_cgroup_iter_break(root, memcg);
2576 break;
2578 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2580 if (global_reclaim(sc))
2581 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2582 sc->priority);
2584 if (reclaim_state) {
2585 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2586 reclaim_state->reclaimed_slab = 0;
2589 /* Record the subtree's reclaim efficiency */
2590 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2591 sc->nr_scanned - nr_scanned,
2592 sc->nr_reclaimed - nr_reclaimed);
2594 if (sc->nr_reclaimed - nr_reclaimed)
2595 reclaimable = true;
2597 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2598 sc->nr_scanned - nr_scanned, sc));
2601 * Kswapd gives up on balancing particular nodes after too
2602 * many failures to reclaim anything from them and goes to
2603 * sleep. On reclaim progress, reset the failure counter. A
2604 * successful direct reclaim run will revive a dormant kswapd.
2606 if (reclaimable)
2607 pgdat->kswapd_failures = 0;
2609 return reclaimable;
2613 * Returns true if compaction should go ahead for a costly-order request, or
2614 * the allocation would already succeed without compaction. Return false if we
2615 * should reclaim first.
2617 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2619 unsigned long watermark;
2620 enum compact_result suitable;
2622 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2623 if (suitable == COMPACT_SUCCESS)
2624 /* Allocation should succeed already. Don't reclaim. */
2625 return true;
2626 if (suitable == COMPACT_SKIPPED)
2627 /* Compaction cannot yet proceed. Do reclaim. */
2628 return false;
2631 * Compaction is already possible, but it takes time to run and there
2632 * are potentially other callers using the pages just freed. So proceed
2633 * with reclaim to make a buffer of free pages available to give
2634 * compaction a reasonable chance of completing and allocating the page.
2635 * Note that we won't actually reclaim the whole buffer in one attempt
2636 * as the target watermark in should_continue_reclaim() is lower. But if
2637 * we are already above the high+gap watermark, don't reclaim at all.
2639 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2641 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2645 * This is the direct reclaim path, for page-allocating processes. We only
2646 * try to reclaim pages from zones which will satisfy the caller's allocation
2647 * request.
2649 * If a zone is deemed to be full of pinned pages then just give it a light
2650 * scan then give up on it.
2652 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2654 struct zoneref *z;
2655 struct zone *zone;
2656 unsigned long nr_soft_reclaimed;
2657 unsigned long nr_soft_scanned;
2658 gfp_t orig_mask;
2659 pg_data_t *last_pgdat = NULL;
2662 * If the number of buffer_heads in the machine exceeds the maximum
2663 * allowed level, force direct reclaim to scan the highmem zone as
2664 * highmem pages could be pinning lowmem pages storing buffer_heads
2666 orig_mask = sc->gfp_mask;
2667 if (buffer_heads_over_limit) {
2668 sc->gfp_mask |= __GFP_HIGHMEM;
2669 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2672 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2673 sc->reclaim_idx, sc->nodemask) {
2675 * Take care memory controller reclaiming has small influence
2676 * to global LRU.
2678 if (global_reclaim(sc)) {
2679 if (!cpuset_zone_allowed(zone,
2680 GFP_KERNEL | __GFP_HARDWALL))
2681 continue;
2684 * If we already have plenty of memory free for
2685 * compaction in this zone, don't free any more.
2686 * Even though compaction is invoked for any
2687 * non-zero order, only frequent costly order
2688 * reclamation is disruptive enough to become a
2689 * noticeable problem, like transparent huge
2690 * page allocations.
2692 if (IS_ENABLED(CONFIG_COMPACTION) &&
2693 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2694 compaction_ready(zone, sc)) {
2695 sc->compaction_ready = true;
2696 continue;
2700 * Shrink each node in the zonelist once. If the
2701 * zonelist is ordered by zone (not the default) then a
2702 * node may be shrunk multiple times but in that case
2703 * the user prefers lower zones being preserved.
2705 if (zone->zone_pgdat == last_pgdat)
2706 continue;
2709 * This steals pages from memory cgroups over softlimit
2710 * and returns the number of reclaimed pages and
2711 * scanned pages. This works for global memory pressure
2712 * and balancing, not for a memcg's limit.
2714 nr_soft_scanned = 0;
2715 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2716 sc->order, sc->gfp_mask,
2717 &nr_soft_scanned);
2718 sc->nr_reclaimed += nr_soft_reclaimed;
2719 sc->nr_scanned += nr_soft_scanned;
2720 /* need some check for avoid more shrink_zone() */
2723 /* See comment about same check for global reclaim above */
2724 if (zone->zone_pgdat == last_pgdat)
2725 continue;
2726 last_pgdat = zone->zone_pgdat;
2727 shrink_node(zone->zone_pgdat, sc);
2731 * Restore to original mask to avoid the impact on the caller if we
2732 * promoted it to __GFP_HIGHMEM.
2734 sc->gfp_mask = orig_mask;
2737 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2739 struct mem_cgroup *memcg;
2741 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2742 do {
2743 unsigned long refaults;
2744 struct lruvec *lruvec;
2746 if (memcg)
2747 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2748 else
2749 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2751 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2752 lruvec->refaults = refaults;
2753 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2757 * This is the main entry point to direct page reclaim.
2759 * If a full scan of the inactive list fails to free enough memory then we
2760 * are "out of memory" and something needs to be killed.
2762 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2763 * high - the zone may be full of dirty or under-writeback pages, which this
2764 * caller can't do much about. We kick the writeback threads and take explicit
2765 * naps in the hope that some of these pages can be written. But if the
2766 * allocating task holds filesystem locks which prevent writeout this might not
2767 * work, and the allocation attempt will fail.
2769 * returns: 0, if no pages reclaimed
2770 * else, the number of pages reclaimed
2772 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2773 struct scan_control *sc)
2775 int initial_priority = sc->priority;
2776 pg_data_t *last_pgdat;
2777 struct zoneref *z;
2778 struct zone *zone;
2779 retry:
2780 delayacct_freepages_start();
2782 if (global_reclaim(sc))
2783 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2785 do {
2786 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2787 sc->priority);
2788 sc->nr_scanned = 0;
2789 shrink_zones(zonelist, sc);
2791 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2792 break;
2794 if (sc->compaction_ready)
2795 break;
2798 * If we're getting trouble reclaiming, start doing
2799 * writepage even in laptop mode.
2801 if (sc->priority < DEF_PRIORITY - 2)
2802 sc->may_writepage = 1;
2803 } while (--sc->priority >= 0);
2805 last_pgdat = NULL;
2806 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2807 sc->nodemask) {
2808 if (zone->zone_pgdat == last_pgdat)
2809 continue;
2810 last_pgdat = zone->zone_pgdat;
2811 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2814 delayacct_freepages_end();
2816 if (sc->nr_reclaimed)
2817 return sc->nr_reclaimed;
2819 /* Aborted reclaim to try compaction? don't OOM, then */
2820 if (sc->compaction_ready)
2821 return 1;
2823 /* Untapped cgroup reserves? Don't OOM, retry. */
2824 if (sc->memcg_low_skipped) {
2825 sc->priority = initial_priority;
2826 sc->memcg_low_reclaim = 1;
2827 sc->memcg_low_skipped = 0;
2828 goto retry;
2831 return 0;
2834 static bool allow_direct_reclaim(pg_data_t *pgdat)
2836 struct zone *zone;
2837 unsigned long pfmemalloc_reserve = 0;
2838 unsigned long free_pages = 0;
2839 int i;
2840 bool wmark_ok;
2842 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2843 return true;
2845 for (i = 0; i <= ZONE_NORMAL; i++) {
2846 zone = &pgdat->node_zones[i];
2847 if (!managed_zone(zone))
2848 continue;
2850 if (!zone_reclaimable_pages(zone))
2851 continue;
2853 pfmemalloc_reserve += min_wmark_pages(zone);
2854 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2857 /* If there are no reserves (unexpected config) then do not throttle */
2858 if (!pfmemalloc_reserve)
2859 return true;
2861 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2863 /* kswapd must be awake if processes are being throttled */
2864 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2865 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2866 (enum zone_type)ZONE_NORMAL);
2867 wake_up_interruptible(&pgdat->kswapd_wait);
2870 return wmark_ok;
2874 * Throttle direct reclaimers if backing storage is backed by the network
2875 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2876 * depleted. kswapd will continue to make progress and wake the processes
2877 * when the low watermark is reached.
2879 * Returns true if a fatal signal was delivered during throttling. If this
2880 * happens, the page allocator should not consider triggering the OOM killer.
2882 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2883 nodemask_t *nodemask)
2885 struct zoneref *z;
2886 struct zone *zone;
2887 pg_data_t *pgdat = NULL;
2890 * Kernel threads should not be throttled as they may be indirectly
2891 * responsible for cleaning pages necessary for reclaim to make forward
2892 * progress. kjournald for example may enter direct reclaim while
2893 * committing a transaction where throttling it could forcing other
2894 * processes to block on log_wait_commit().
2896 if (current->flags & PF_KTHREAD)
2897 goto out;
2900 * If a fatal signal is pending, this process should not throttle.
2901 * It should return quickly so it can exit and free its memory
2903 if (fatal_signal_pending(current))
2904 goto out;
2907 * Check if the pfmemalloc reserves are ok by finding the first node
2908 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2909 * GFP_KERNEL will be required for allocating network buffers when
2910 * swapping over the network so ZONE_HIGHMEM is unusable.
2912 * Throttling is based on the first usable node and throttled processes
2913 * wait on a queue until kswapd makes progress and wakes them. There
2914 * is an affinity then between processes waking up and where reclaim
2915 * progress has been made assuming the process wakes on the same node.
2916 * More importantly, processes running on remote nodes will not compete
2917 * for remote pfmemalloc reserves and processes on different nodes
2918 * should make reasonable progress.
2920 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2921 gfp_zone(gfp_mask), nodemask) {
2922 if (zone_idx(zone) > ZONE_NORMAL)
2923 continue;
2925 /* Throttle based on the first usable node */
2926 pgdat = zone->zone_pgdat;
2927 if (allow_direct_reclaim(pgdat))
2928 goto out;
2929 break;
2932 /* If no zone was usable by the allocation flags then do not throttle */
2933 if (!pgdat)
2934 goto out;
2936 /* Account for the throttling */
2937 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2940 * If the caller cannot enter the filesystem, it's possible that it
2941 * is due to the caller holding an FS lock or performing a journal
2942 * transaction in the case of a filesystem like ext[3|4]. In this case,
2943 * it is not safe to block on pfmemalloc_wait as kswapd could be
2944 * blocked waiting on the same lock. Instead, throttle for up to a
2945 * second before continuing.
2947 if (!(gfp_mask & __GFP_FS)) {
2948 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2949 allow_direct_reclaim(pgdat), HZ);
2951 goto check_pending;
2954 /* Throttle until kswapd wakes the process */
2955 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2956 allow_direct_reclaim(pgdat));
2958 check_pending:
2959 if (fatal_signal_pending(current))
2960 return true;
2962 out:
2963 return false;
2966 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2967 gfp_t gfp_mask, nodemask_t *nodemask)
2969 unsigned long nr_reclaimed;
2970 struct scan_control sc = {
2971 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2972 .gfp_mask = current_gfp_context(gfp_mask),
2973 .reclaim_idx = gfp_zone(gfp_mask),
2974 .order = order,
2975 .nodemask = nodemask,
2976 .priority = DEF_PRIORITY,
2977 .may_writepage = !laptop_mode,
2978 .may_unmap = 1,
2979 .may_swap = 1,
2983 * Do not enter reclaim if fatal signal was delivered while throttled.
2984 * 1 is returned so that the page allocator does not OOM kill at this
2985 * point.
2987 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
2988 return 1;
2990 trace_mm_vmscan_direct_reclaim_begin(order,
2991 sc.may_writepage,
2992 sc.gfp_mask,
2993 sc.reclaim_idx);
2995 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2997 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2999 return nr_reclaimed;
3002 #ifdef CONFIG_MEMCG
3004 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3005 gfp_t gfp_mask, bool noswap,
3006 pg_data_t *pgdat,
3007 unsigned long *nr_scanned)
3009 struct scan_control sc = {
3010 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3011 .target_mem_cgroup = memcg,
3012 .may_writepage = !laptop_mode,
3013 .may_unmap = 1,
3014 .reclaim_idx = MAX_NR_ZONES - 1,
3015 .may_swap = !noswap,
3017 unsigned long lru_pages;
3019 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3020 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3022 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3023 sc.may_writepage,
3024 sc.gfp_mask,
3025 sc.reclaim_idx);
3028 * NOTE: Although we can get the priority field, using it
3029 * here is not a good idea, since it limits the pages we can scan.
3030 * if we don't reclaim here, the shrink_node from balance_pgdat
3031 * will pick up pages from other mem cgroup's as well. We hack
3032 * the priority and make it zero.
3034 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3036 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3038 *nr_scanned = sc.nr_scanned;
3039 return sc.nr_reclaimed;
3042 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3043 unsigned long nr_pages,
3044 gfp_t gfp_mask,
3045 bool may_swap)
3047 struct zonelist *zonelist;
3048 unsigned long nr_reclaimed;
3049 int nid;
3050 unsigned int noreclaim_flag;
3051 struct scan_control sc = {
3052 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3053 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3054 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3055 .reclaim_idx = MAX_NR_ZONES - 1,
3056 .target_mem_cgroup = memcg,
3057 .priority = DEF_PRIORITY,
3058 .may_writepage = !laptop_mode,
3059 .may_unmap = 1,
3060 .may_swap = may_swap,
3064 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3065 * take care of from where we get pages. So the node where we start the
3066 * scan does not need to be the current node.
3068 nid = mem_cgroup_select_victim_node(memcg);
3070 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3072 trace_mm_vmscan_memcg_reclaim_begin(0,
3073 sc.may_writepage,
3074 sc.gfp_mask,
3075 sc.reclaim_idx);
3077 noreclaim_flag = memalloc_noreclaim_save();
3078 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3079 memalloc_noreclaim_restore(noreclaim_flag);
3081 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3083 return nr_reclaimed;
3085 #endif
3087 static void age_active_anon(struct pglist_data *pgdat,
3088 struct scan_control *sc)
3090 struct mem_cgroup *memcg;
3092 if (!total_swap_pages)
3093 return;
3095 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3096 do {
3097 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3099 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3100 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3101 sc, LRU_ACTIVE_ANON);
3103 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3104 } while (memcg);
3108 * Returns true if there is an eligible zone balanced for the request order
3109 * and classzone_idx
3111 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3113 int i;
3114 unsigned long mark = -1;
3115 struct zone *zone;
3117 for (i = 0; i <= classzone_idx; i++) {
3118 zone = pgdat->node_zones + i;
3120 if (!managed_zone(zone))
3121 continue;
3123 mark = high_wmark_pages(zone);
3124 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3125 return true;
3129 * If a node has no populated zone within classzone_idx, it does not
3130 * need balancing by definition. This can happen if a zone-restricted
3131 * allocation tries to wake a remote kswapd.
3133 if (mark == -1)
3134 return true;
3136 return false;
3139 /* Clear pgdat state for congested, dirty or under writeback. */
3140 static void clear_pgdat_congested(pg_data_t *pgdat)
3142 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3143 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3144 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3148 * Prepare kswapd for sleeping. This verifies that there are no processes
3149 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3151 * Returns true if kswapd is ready to sleep
3153 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3156 * The throttled processes are normally woken up in balance_pgdat() as
3157 * soon as allow_direct_reclaim() is true. But there is a potential
3158 * race between when kswapd checks the watermarks and a process gets
3159 * throttled. There is also a potential race if processes get
3160 * throttled, kswapd wakes, a large process exits thereby balancing the
3161 * zones, which causes kswapd to exit balance_pgdat() before reaching
3162 * the wake up checks. If kswapd is going to sleep, no process should
3163 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3164 * the wake up is premature, processes will wake kswapd and get
3165 * throttled again. The difference from wake ups in balance_pgdat() is
3166 * that here we are under prepare_to_wait().
3168 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3169 wake_up_all(&pgdat->pfmemalloc_wait);
3171 /* Hopeless node, leave it to direct reclaim */
3172 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3173 return true;
3175 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3176 clear_pgdat_congested(pgdat);
3177 return true;
3180 return false;
3184 * kswapd shrinks a node of pages that are at or below the highest usable
3185 * zone that is currently unbalanced.
3187 * Returns true if kswapd scanned at least the requested number of pages to
3188 * reclaim or if the lack of progress was due to pages under writeback.
3189 * This is used to determine if the scanning priority needs to be raised.
3191 static bool kswapd_shrink_node(pg_data_t *pgdat,
3192 struct scan_control *sc)
3194 struct zone *zone;
3195 int z;
3197 /* Reclaim a number of pages proportional to the number of zones */
3198 sc->nr_to_reclaim = 0;
3199 for (z = 0; z <= sc->reclaim_idx; z++) {
3200 zone = pgdat->node_zones + z;
3201 if (!managed_zone(zone))
3202 continue;
3204 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3208 * Historically care was taken to put equal pressure on all zones but
3209 * now pressure is applied based on node LRU order.
3211 shrink_node(pgdat, sc);
3214 * Fragmentation may mean that the system cannot be rebalanced for
3215 * high-order allocations. If twice the allocation size has been
3216 * reclaimed then recheck watermarks only at order-0 to prevent
3217 * excessive reclaim. Assume that a process requested a high-order
3218 * can direct reclaim/compact.
3220 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3221 sc->order = 0;
3223 return sc->nr_scanned >= sc->nr_to_reclaim;
3227 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3228 * that are eligible for use by the caller until at least one zone is
3229 * balanced.
3231 * Returns the order kswapd finished reclaiming at.
3233 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3234 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3235 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3236 * or lower is eligible for reclaim until at least one usable zone is
3237 * balanced.
3239 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3241 int i;
3242 unsigned long nr_soft_reclaimed;
3243 unsigned long nr_soft_scanned;
3244 struct zone *zone;
3245 struct scan_control sc = {
3246 .gfp_mask = GFP_KERNEL,
3247 .order = order,
3248 .priority = DEF_PRIORITY,
3249 .may_writepage = !laptop_mode,
3250 .may_unmap = 1,
3251 .may_swap = 1,
3253 count_vm_event(PAGEOUTRUN);
3255 do {
3256 unsigned long nr_reclaimed = sc.nr_reclaimed;
3257 bool raise_priority = true;
3259 sc.reclaim_idx = classzone_idx;
3262 * If the number of buffer_heads exceeds the maximum allowed
3263 * then consider reclaiming from all zones. This has a dual
3264 * purpose -- on 64-bit systems it is expected that
3265 * buffer_heads are stripped during active rotation. On 32-bit
3266 * systems, highmem pages can pin lowmem memory and shrinking
3267 * buffers can relieve lowmem pressure. Reclaim may still not
3268 * go ahead if all eligible zones for the original allocation
3269 * request are balanced to avoid excessive reclaim from kswapd.
3271 if (buffer_heads_over_limit) {
3272 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3273 zone = pgdat->node_zones + i;
3274 if (!managed_zone(zone))
3275 continue;
3277 sc.reclaim_idx = i;
3278 break;
3283 * Only reclaim if there are no eligible zones. Note that
3284 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3285 * have adjusted it.
3287 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3288 goto out;
3291 * Do some background aging of the anon list, to give
3292 * pages a chance to be referenced before reclaiming. All
3293 * pages are rotated regardless of classzone as this is
3294 * about consistent aging.
3296 age_active_anon(pgdat, &sc);
3299 * If we're getting trouble reclaiming, start doing writepage
3300 * even in laptop mode.
3302 if (sc.priority < DEF_PRIORITY - 2)
3303 sc.may_writepage = 1;
3305 /* Call soft limit reclaim before calling shrink_node. */
3306 sc.nr_scanned = 0;
3307 nr_soft_scanned = 0;
3308 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3309 sc.gfp_mask, &nr_soft_scanned);
3310 sc.nr_reclaimed += nr_soft_reclaimed;
3313 * There should be no need to raise the scanning priority if
3314 * enough pages are already being scanned that that high
3315 * watermark would be met at 100% efficiency.
3317 if (kswapd_shrink_node(pgdat, &sc))
3318 raise_priority = false;
3321 * If the low watermark is met there is no need for processes
3322 * to be throttled on pfmemalloc_wait as they should not be
3323 * able to safely make forward progress. Wake them
3325 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3326 allow_direct_reclaim(pgdat))
3327 wake_up_all(&pgdat->pfmemalloc_wait);
3329 /* Check if kswapd should be suspending */
3330 if (try_to_freeze() || kthread_should_stop())
3331 break;
3334 * Raise priority if scanning rate is too low or there was no
3335 * progress in reclaiming pages
3337 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3338 if (raise_priority || !nr_reclaimed)
3339 sc.priority--;
3340 } while (sc.priority >= 1);
3342 if (!sc.nr_reclaimed)
3343 pgdat->kswapd_failures++;
3345 out:
3346 snapshot_refaults(NULL, pgdat);
3348 * Return the order kswapd stopped reclaiming at as
3349 * prepare_kswapd_sleep() takes it into account. If another caller
3350 * entered the allocator slow path while kswapd was awake, order will
3351 * remain at the higher level.
3353 return sc.order;
3357 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3358 * allocation request woke kswapd for. When kswapd has not woken recently,
3359 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3360 * given classzone and returns it or the highest classzone index kswapd
3361 * was recently woke for.
3363 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3364 enum zone_type classzone_idx)
3366 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3367 return classzone_idx;
3369 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3372 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3373 unsigned int classzone_idx)
3375 long remaining = 0;
3376 DEFINE_WAIT(wait);
3378 if (freezing(current) || kthread_should_stop())
3379 return;
3381 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3384 * Try to sleep for a short interval. Note that kcompactd will only be
3385 * woken if it is possible to sleep for a short interval. This is
3386 * deliberate on the assumption that if reclaim cannot keep an
3387 * eligible zone balanced that it's also unlikely that compaction will
3388 * succeed.
3390 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3392 * Compaction records what page blocks it recently failed to
3393 * isolate pages from and skips them in the future scanning.
3394 * When kswapd is going to sleep, it is reasonable to assume
3395 * that pages and compaction may succeed so reset the cache.
3397 reset_isolation_suitable(pgdat);
3400 * We have freed the memory, now we should compact it to make
3401 * allocation of the requested order possible.
3403 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3405 remaining = schedule_timeout(HZ/10);
3408 * If woken prematurely then reset kswapd_classzone_idx and
3409 * order. The values will either be from a wakeup request or
3410 * the previous request that slept prematurely.
3412 if (remaining) {
3413 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3414 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3417 finish_wait(&pgdat->kswapd_wait, &wait);
3418 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3422 * After a short sleep, check if it was a premature sleep. If not, then
3423 * go fully to sleep until explicitly woken up.
3425 if (!remaining &&
3426 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3427 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3430 * vmstat counters are not perfectly accurate and the estimated
3431 * value for counters such as NR_FREE_PAGES can deviate from the
3432 * true value by nr_online_cpus * threshold. To avoid the zone
3433 * watermarks being breached while under pressure, we reduce the
3434 * per-cpu vmstat threshold while kswapd is awake and restore
3435 * them before going back to sleep.
3437 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3439 if (!kthread_should_stop())
3440 schedule();
3442 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3443 } else {
3444 if (remaining)
3445 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3446 else
3447 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3449 finish_wait(&pgdat->kswapd_wait, &wait);
3453 * The background pageout daemon, started as a kernel thread
3454 * from the init process.
3456 * This basically trickles out pages so that we have _some_
3457 * free memory available even if there is no other activity
3458 * that frees anything up. This is needed for things like routing
3459 * etc, where we otherwise might have all activity going on in
3460 * asynchronous contexts that cannot page things out.
3462 * If there are applications that are active memory-allocators
3463 * (most normal use), this basically shouldn't matter.
3465 static int kswapd(void *p)
3467 unsigned int alloc_order, reclaim_order;
3468 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3469 pg_data_t *pgdat = (pg_data_t*)p;
3470 struct task_struct *tsk = current;
3472 struct reclaim_state reclaim_state = {
3473 .reclaimed_slab = 0,
3475 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3477 if (!cpumask_empty(cpumask))
3478 set_cpus_allowed_ptr(tsk, cpumask);
3479 current->reclaim_state = &reclaim_state;
3482 * Tell the memory management that we're a "memory allocator",
3483 * and that if we need more memory we should get access to it
3484 * regardless (see "__alloc_pages()"). "kswapd" should
3485 * never get caught in the normal page freeing logic.
3487 * (Kswapd normally doesn't need memory anyway, but sometimes
3488 * you need a small amount of memory in order to be able to
3489 * page out something else, and this flag essentially protects
3490 * us from recursively trying to free more memory as we're
3491 * trying to free the first piece of memory in the first place).
3493 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3494 set_freezable();
3496 pgdat->kswapd_order = 0;
3497 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3498 for ( ; ; ) {
3499 bool ret;
3501 alloc_order = reclaim_order = pgdat->kswapd_order;
3502 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3504 kswapd_try_sleep:
3505 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3506 classzone_idx);
3508 /* Read the new order and classzone_idx */
3509 alloc_order = reclaim_order = pgdat->kswapd_order;
3510 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3511 pgdat->kswapd_order = 0;
3512 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3514 ret = try_to_freeze();
3515 if (kthread_should_stop())
3516 break;
3519 * We can speed up thawing tasks if we don't call balance_pgdat
3520 * after returning from the refrigerator
3522 if (ret)
3523 continue;
3526 * Reclaim begins at the requested order but if a high-order
3527 * reclaim fails then kswapd falls back to reclaiming for
3528 * order-0. If that happens, kswapd will consider sleeping
3529 * for the order it finished reclaiming at (reclaim_order)
3530 * but kcompactd is woken to compact for the original
3531 * request (alloc_order).
3533 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3534 alloc_order);
3535 fs_reclaim_acquire(GFP_KERNEL);
3536 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3537 fs_reclaim_release(GFP_KERNEL);
3538 if (reclaim_order < alloc_order)
3539 goto kswapd_try_sleep;
3542 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3543 current->reclaim_state = NULL;
3545 return 0;
3549 * A zone is low on free memory, so wake its kswapd task to service it.
3551 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3553 pg_data_t *pgdat;
3555 if (!managed_zone(zone))
3556 return;
3558 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3559 return;
3560 pgdat = zone->zone_pgdat;
3561 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3562 classzone_idx);
3563 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3564 if (!waitqueue_active(&pgdat->kswapd_wait))
3565 return;
3567 /* Hopeless node, leave it to direct reclaim */
3568 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3569 return;
3571 if (pgdat_balanced(pgdat, order, classzone_idx))
3572 return;
3574 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3575 wake_up_interruptible(&pgdat->kswapd_wait);
3578 #ifdef CONFIG_HIBERNATION
3580 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3581 * freed pages.
3583 * Rather than trying to age LRUs the aim is to preserve the overall
3584 * LRU order by reclaiming preferentially
3585 * inactive > active > active referenced > active mapped
3587 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3589 struct reclaim_state reclaim_state;
3590 struct scan_control sc = {
3591 .nr_to_reclaim = nr_to_reclaim,
3592 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3593 .reclaim_idx = MAX_NR_ZONES - 1,
3594 .priority = DEF_PRIORITY,
3595 .may_writepage = 1,
3596 .may_unmap = 1,
3597 .may_swap = 1,
3598 .hibernation_mode = 1,
3600 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3601 struct task_struct *p = current;
3602 unsigned long nr_reclaimed;
3603 unsigned int noreclaim_flag;
3605 noreclaim_flag = memalloc_noreclaim_save();
3606 fs_reclaim_acquire(sc.gfp_mask);
3607 reclaim_state.reclaimed_slab = 0;
3608 p->reclaim_state = &reclaim_state;
3610 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3612 p->reclaim_state = NULL;
3613 fs_reclaim_release(sc.gfp_mask);
3614 memalloc_noreclaim_restore(noreclaim_flag);
3616 return nr_reclaimed;
3618 #endif /* CONFIG_HIBERNATION */
3620 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3621 not required for correctness. So if the last cpu in a node goes
3622 away, we get changed to run anywhere: as the first one comes back,
3623 restore their cpu bindings. */
3624 static int kswapd_cpu_online(unsigned int cpu)
3626 int nid;
3628 for_each_node_state(nid, N_MEMORY) {
3629 pg_data_t *pgdat = NODE_DATA(nid);
3630 const struct cpumask *mask;
3632 mask = cpumask_of_node(pgdat->node_id);
3634 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3635 /* One of our CPUs online: restore mask */
3636 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3638 return 0;
3642 * This kswapd start function will be called by init and node-hot-add.
3643 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3645 int kswapd_run(int nid)
3647 pg_data_t *pgdat = NODE_DATA(nid);
3648 int ret = 0;
3650 if (pgdat->kswapd)
3651 return 0;
3653 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3654 if (IS_ERR(pgdat->kswapd)) {
3655 /* failure at boot is fatal */
3656 BUG_ON(system_state < SYSTEM_RUNNING);
3657 pr_err("Failed to start kswapd on node %d\n", nid);
3658 ret = PTR_ERR(pgdat->kswapd);
3659 pgdat->kswapd = NULL;
3661 return ret;
3665 * Called by memory hotplug when all memory in a node is offlined. Caller must
3666 * hold mem_hotplug_begin/end().
3668 void kswapd_stop(int nid)
3670 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3672 if (kswapd) {
3673 kthread_stop(kswapd);
3674 NODE_DATA(nid)->kswapd = NULL;
3678 static int __init kswapd_init(void)
3680 int nid, ret;
3682 swap_setup();
3683 for_each_node_state(nid, N_MEMORY)
3684 kswapd_run(nid);
3685 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3686 "mm/vmscan:online", kswapd_cpu_online,
3687 NULL);
3688 WARN_ON(ret < 0);
3689 return 0;
3692 module_init(kswapd_init)
3694 #ifdef CONFIG_NUMA
3696 * Node reclaim mode
3698 * If non-zero call node_reclaim when the number of free pages falls below
3699 * the watermarks.
3701 int node_reclaim_mode __read_mostly;
3703 #define RECLAIM_OFF 0
3704 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3705 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3706 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3709 * Priority for NODE_RECLAIM. This determines the fraction of pages
3710 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3711 * a zone.
3713 #define NODE_RECLAIM_PRIORITY 4
3716 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3717 * occur.
3719 int sysctl_min_unmapped_ratio = 1;
3722 * If the number of slab pages in a zone grows beyond this percentage then
3723 * slab reclaim needs to occur.
3725 int sysctl_min_slab_ratio = 5;
3727 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3729 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3730 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3731 node_page_state(pgdat, NR_ACTIVE_FILE);
3734 * It's possible for there to be more file mapped pages than
3735 * accounted for by the pages on the file LRU lists because
3736 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3738 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3741 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3742 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3744 unsigned long nr_pagecache_reclaimable;
3745 unsigned long delta = 0;
3748 * If RECLAIM_UNMAP is set, then all file pages are considered
3749 * potentially reclaimable. Otherwise, we have to worry about
3750 * pages like swapcache and node_unmapped_file_pages() provides
3751 * a better estimate
3753 if (node_reclaim_mode & RECLAIM_UNMAP)
3754 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3755 else
3756 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3758 /* If we can't clean pages, remove dirty pages from consideration */
3759 if (!(node_reclaim_mode & RECLAIM_WRITE))
3760 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3762 /* Watch for any possible underflows due to delta */
3763 if (unlikely(delta > nr_pagecache_reclaimable))
3764 delta = nr_pagecache_reclaimable;
3766 return nr_pagecache_reclaimable - delta;
3770 * Try to free up some pages from this node through reclaim.
3772 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3774 /* Minimum pages needed in order to stay on node */
3775 const unsigned long nr_pages = 1 << order;
3776 struct task_struct *p = current;
3777 struct reclaim_state reclaim_state;
3778 unsigned int noreclaim_flag;
3779 struct scan_control sc = {
3780 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3781 .gfp_mask = current_gfp_context(gfp_mask),
3782 .order = order,
3783 .priority = NODE_RECLAIM_PRIORITY,
3784 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3785 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3786 .may_swap = 1,
3787 .reclaim_idx = gfp_zone(gfp_mask),
3790 cond_resched();
3792 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3793 * and we also need to be able to write out pages for RECLAIM_WRITE
3794 * and RECLAIM_UNMAP.
3796 noreclaim_flag = memalloc_noreclaim_save();
3797 p->flags |= PF_SWAPWRITE;
3798 fs_reclaim_acquire(sc.gfp_mask);
3799 reclaim_state.reclaimed_slab = 0;
3800 p->reclaim_state = &reclaim_state;
3802 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3804 * Free memory by calling shrink zone with increasing
3805 * priorities until we have enough memory freed.
3807 do {
3808 shrink_node(pgdat, &sc);
3809 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3812 p->reclaim_state = NULL;
3813 fs_reclaim_release(gfp_mask);
3814 current->flags &= ~PF_SWAPWRITE;
3815 memalloc_noreclaim_restore(noreclaim_flag);
3816 return sc.nr_reclaimed >= nr_pages;
3819 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3821 int ret;
3824 * Node reclaim reclaims unmapped file backed pages and
3825 * slab pages if we are over the defined limits.
3827 * A small portion of unmapped file backed pages is needed for
3828 * file I/O otherwise pages read by file I/O will be immediately
3829 * thrown out if the node is overallocated. So we do not reclaim
3830 * if less than a specified percentage of the node is used by
3831 * unmapped file backed pages.
3833 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3834 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3835 return NODE_RECLAIM_FULL;
3838 * Do not scan if the allocation should not be delayed.
3840 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3841 return NODE_RECLAIM_NOSCAN;
3844 * Only run node reclaim on the local node or on nodes that do not
3845 * have associated processors. This will favor the local processor
3846 * over remote processors and spread off node memory allocations
3847 * as wide as possible.
3849 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3850 return NODE_RECLAIM_NOSCAN;
3852 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3853 return NODE_RECLAIM_NOSCAN;
3855 ret = __node_reclaim(pgdat, gfp_mask, order);
3856 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3858 if (!ret)
3859 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3861 return ret;
3863 #endif
3866 * page_evictable - test whether a page is evictable
3867 * @page: the page to test
3869 * Test whether page is evictable--i.e., should be placed on active/inactive
3870 * lists vs unevictable list.
3872 * Reasons page might not be evictable:
3873 * (1) page's mapping marked unevictable
3874 * (2) page is part of an mlocked VMA
3877 int page_evictable(struct page *page)
3879 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3882 #ifdef CONFIG_SHMEM
3884 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3885 * @pages: array of pages to check
3886 * @nr_pages: number of pages to check
3888 * Checks pages for evictability and moves them to the appropriate lru list.
3890 * This function is only used for SysV IPC SHM_UNLOCK.
3892 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3894 struct lruvec *lruvec;
3895 struct pglist_data *pgdat = NULL;
3896 int pgscanned = 0;
3897 int pgrescued = 0;
3898 int i;
3900 for (i = 0; i < nr_pages; i++) {
3901 struct page *page = pages[i];
3902 struct pglist_data *pagepgdat = page_pgdat(page);
3904 pgscanned++;
3905 if (pagepgdat != pgdat) {
3906 if (pgdat)
3907 spin_unlock_irq(&pgdat->lru_lock);
3908 pgdat = pagepgdat;
3909 spin_lock_irq(&pgdat->lru_lock);
3911 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3913 if (!PageLRU(page) || !PageUnevictable(page))
3914 continue;
3916 if (page_evictable(page)) {
3917 enum lru_list lru = page_lru_base_type(page);
3919 VM_BUG_ON_PAGE(PageActive(page), page);
3920 ClearPageUnevictable(page);
3921 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3922 add_page_to_lru_list(page, lruvec, lru);
3923 pgrescued++;
3927 if (pgdat) {
3928 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3929 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3930 spin_unlock_irq(&pgdat->lru_lock);
3933 #endif /* CONFIG_SHMEM */