powerpc/mm/slice: create header files dedicated to slices
[linux-2.6/btrfs-unstable.git] / drivers / scsi / hpsa.c
blob5293e6827ce557043943415523ff1cbb0c49d977
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 "Use 'simple mode' rather than 'performant mode'");
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
147 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
149 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 {0,}
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 /* board_id = Subsystem Device ID & Vendor ID
156 * product = Marketing Name for the board
157 * access = Address of the struct of function pointers
159 static struct board_type products[] = {
160 {0x40700E11, "Smart Array 5300", &SA5A_access},
161 {0x40800E11, "Smart Array 5i", &SA5B_access},
162 {0x40820E11, "Smart Array 532", &SA5B_access},
163 {0x40830E11, "Smart Array 5312", &SA5B_access},
164 {0x409A0E11, "Smart Array 641", &SA5A_access},
165 {0x409B0E11, "Smart Array 642", &SA5A_access},
166 {0x409C0E11, "Smart Array 6400", &SA5A_access},
167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 {0x40910E11, "Smart Array 6i", &SA5A_access},
169 {0x3225103C, "Smart Array P600", &SA5A_access},
170 {0x3223103C, "Smart Array P800", &SA5A_access},
171 {0x3234103C, "Smart Array P400", &SA5A_access},
172 {0x3235103C, "Smart Array P400i", &SA5A_access},
173 {0x3211103C, "Smart Array E200i", &SA5A_access},
174 {0x3212103C, "Smart Array E200", &SA5A_access},
175 {0x3213103C, "Smart Array E200i", &SA5A_access},
176 {0x3214103C, "Smart Array E200i", &SA5A_access},
177 {0x3215103C, "Smart Array E200i", &SA5A_access},
178 {0x3237103C, "Smart Array E500", &SA5A_access},
179 {0x323D103C, "Smart Array P700m", &SA5A_access},
180 {0x3241103C, "Smart Array P212", &SA5_access},
181 {0x3243103C, "Smart Array P410", &SA5_access},
182 {0x3245103C, "Smart Array P410i", &SA5_access},
183 {0x3247103C, "Smart Array P411", &SA5_access},
184 {0x3249103C, "Smart Array P812", &SA5_access},
185 {0x324A103C, "Smart Array P712m", &SA5_access},
186 {0x324B103C, "Smart Array P711m", &SA5_access},
187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 {0x3350103C, "Smart Array P222", &SA5_access},
189 {0x3351103C, "Smart Array P420", &SA5_access},
190 {0x3352103C, "Smart Array P421", &SA5_access},
191 {0x3353103C, "Smart Array P822", &SA5_access},
192 {0x3354103C, "Smart Array P420i", &SA5_access},
193 {0x3355103C, "Smart Array P220i", &SA5_access},
194 {0x3356103C, "Smart Array P721m", &SA5_access},
195 {0x1920103C, "Smart Array P430i", &SA5_access},
196 {0x1921103C, "Smart Array P830i", &SA5_access},
197 {0x1922103C, "Smart Array P430", &SA5_access},
198 {0x1923103C, "Smart Array P431", &SA5_access},
199 {0x1924103C, "Smart Array P830", &SA5_access},
200 {0x1925103C, "Smart Array P831", &SA5_access},
201 {0x1926103C, "Smart Array P731m", &SA5_access},
202 {0x1928103C, "Smart Array P230i", &SA5_access},
203 {0x1929103C, "Smart Array P530", &SA5_access},
204 {0x21BD103C, "Smart Array P244br", &SA5_access},
205 {0x21BE103C, "Smart Array P741m", &SA5_access},
206 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 {0x21C0103C, "Smart Array P440ar", &SA5_access},
208 {0x21C1103C, "Smart Array P840ar", &SA5_access},
209 {0x21C2103C, "Smart Array P440", &SA5_access},
210 {0x21C3103C, "Smart Array P441", &SA5_access},
211 {0x21C4103C, "Smart Array", &SA5_access},
212 {0x21C5103C, "Smart Array P841", &SA5_access},
213 {0x21C6103C, "Smart HBA H244br", &SA5_access},
214 {0x21C7103C, "Smart HBA H240", &SA5_access},
215 {0x21C8103C, "Smart HBA H241", &SA5_access},
216 {0x21C9103C, "Smart Array", &SA5_access},
217 {0x21CA103C, "Smart Array P246br", &SA5_access},
218 {0x21CB103C, "Smart Array P840", &SA5_access},
219 {0x21CC103C, "Smart Array", &SA5_access},
220 {0x21CD103C, "Smart Array", &SA5_access},
221 {0x21CE103C, "Smart HBA", &SA5_access},
222 {0x05809005, "SmartHBA-SA", &SA5_access},
223 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 struct sas_rphy *rphy);
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 void __user *arg);
259 #endif
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 unsigned char lunaddr[],
304 int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 struct hpsa_scsi_dev_t *dev,
327 unsigned char *scsi3addr);
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
331 unsigned long *priv = shost_priv(sdev->host);
332 return (struct ctlr_info *) *priv;
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
337 unsigned long *priv = shost_priv(sh);
338 return (struct ctlr_info *) *priv;
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
343 return c->scsi_cmd == SCSI_CMD_IDLE;
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
348 return c->reset_pending;
351 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 u8 *sense_key, u8 *asc, u8 *ascq)
355 struct scsi_sense_hdr sshdr;
356 bool rc;
358 *sense_key = -1;
359 *asc = -1;
360 *ascq = -1;
362 if (sense_data_len < 1)
363 return;
365 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 if (rc) {
367 *sense_key = sshdr.sense_key;
368 *asc = sshdr.asc;
369 *ascq = sshdr.ascq;
373 static int check_for_unit_attention(struct ctlr_info *h,
374 struct CommandList *c)
376 u8 sense_key, asc, ascq;
377 int sense_len;
379 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 sense_len = sizeof(c->err_info->SenseInfo);
381 else
382 sense_len = c->err_info->SenseLen;
384 decode_sense_data(c->err_info->SenseInfo, sense_len,
385 &sense_key, &asc, &ascq);
386 if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 return 0;
389 switch (asc) {
390 case STATE_CHANGED:
391 dev_warn(&h->pdev->dev,
392 "%s: a state change detected, command retried\n",
393 h->devname);
394 break;
395 case LUN_FAILED:
396 dev_warn(&h->pdev->dev,
397 "%s: LUN failure detected\n", h->devname);
398 break;
399 case REPORT_LUNS_CHANGED:
400 dev_warn(&h->pdev->dev,
401 "%s: report LUN data changed\n", h->devname);
403 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 * target (array) devices.
406 break;
407 case POWER_OR_RESET:
408 dev_warn(&h->pdev->dev,
409 "%s: a power on or device reset detected\n",
410 h->devname);
411 break;
412 case UNIT_ATTENTION_CLEARED:
413 dev_warn(&h->pdev->dev,
414 "%s: unit attention cleared by another initiator\n",
415 h->devname);
416 break;
417 default:
418 dev_warn(&h->pdev->dev,
419 "%s: unknown unit attention detected\n",
420 h->devname);
421 break;
423 return 1;
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 return 0;
432 dev_warn(&h->pdev->dev, HPSA "device busy");
433 return 1;
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 struct device_attribute *attr, char *buf)
440 int ld;
441 struct ctlr_info *h;
442 struct Scsi_Host *shost = class_to_shost(dev);
444 h = shost_to_hba(shost);
445 ld = lockup_detected(h);
447 return sprintf(buf, "ld=%d\n", ld);
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 struct device_attribute *attr,
452 const char *buf, size_t count)
454 int status, len;
455 struct ctlr_info *h;
456 struct Scsi_Host *shost = class_to_shost(dev);
457 char tmpbuf[10];
459 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 return -EACCES;
461 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 strncpy(tmpbuf, buf, len);
463 tmpbuf[len] = '\0';
464 if (sscanf(tmpbuf, "%d", &status) != 1)
465 return -EINVAL;
466 h = shost_to_hba(shost);
467 h->acciopath_status = !!status;
468 dev_warn(&h->pdev->dev,
469 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 h->acciopath_status ? "enabled" : "disabled");
471 return count;
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 struct device_attribute *attr,
476 const char *buf, size_t count)
478 int debug_level, len;
479 struct ctlr_info *h;
480 struct Scsi_Host *shost = class_to_shost(dev);
481 char tmpbuf[10];
483 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 return -EACCES;
485 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 strncpy(tmpbuf, buf, len);
487 tmpbuf[len] = '\0';
488 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 return -EINVAL;
490 if (debug_level < 0)
491 debug_level = 0;
492 h = shost_to_hba(shost);
493 h->raid_offload_debug = debug_level;
494 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 h->raid_offload_debug);
496 return count;
499 static ssize_t host_store_rescan(struct device *dev,
500 struct device_attribute *attr,
501 const char *buf, size_t count)
503 struct ctlr_info *h;
504 struct Scsi_Host *shost = class_to_shost(dev);
505 h = shost_to_hba(shost);
506 hpsa_scan_start(h->scsi_host);
507 return count;
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 struct device_attribute *attr, char *buf)
513 struct ctlr_info *h;
514 struct Scsi_Host *shost = class_to_shost(dev);
515 unsigned char *fwrev;
517 h = shost_to_hba(shost);
518 if (!h->hba_inquiry_data)
519 return 0;
520 fwrev = &h->hba_inquiry_data[32];
521 return snprintf(buf, 20, "%c%c%c%c\n",
522 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 struct device_attribute *attr, char *buf)
528 struct Scsi_Host *shost = class_to_shost(dev);
529 struct ctlr_info *h = shost_to_hba(shost);
531 return snprintf(buf, 20, "%d\n",
532 atomic_read(&h->commands_outstanding));
535 static ssize_t host_show_transport_mode(struct device *dev,
536 struct device_attribute *attr, char *buf)
538 struct ctlr_info *h;
539 struct Scsi_Host *shost = class_to_shost(dev);
541 h = shost_to_hba(shost);
542 return snprintf(buf, 20, "%s\n",
543 h->transMethod & CFGTBL_Trans_Performant ?
544 "performant" : "simple");
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 struct device_attribute *attr, char *buf)
550 struct ctlr_info *h;
551 struct Scsi_Host *shost = class_to_shost(dev);
553 h = shost_to_hba(shost);
554 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 (h->acciopath_status == 1) ? "enabled" : "disabled");
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 0x324a103C, /* Smart Array P712m */
561 0x324b103C, /* Smart Array P711m */
562 0x3223103C, /* Smart Array P800 */
563 0x3234103C, /* Smart Array P400 */
564 0x3235103C, /* Smart Array P400i */
565 0x3211103C, /* Smart Array E200i */
566 0x3212103C, /* Smart Array E200 */
567 0x3213103C, /* Smart Array E200i */
568 0x3214103C, /* Smart Array E200i */
569 0x3215103C, /* Smart Array E200i */
570 0x3237103C, /* Smart Array E500 */
571 0x323D103C, /* Smart Array P700m */
572 0x40800E11, /* Smart Array 5i */
573 0x409C0E11, /* Smart Array 6400 */
574 0x409D0E11, /* Smart Array 6400 EM */
575 0x40700E11, /* Smart Array 5300 */
576 0x40820E11, /* Smart Array 532 */
577 0x40830E11, /* Smart Array 5312 */
578 0x409A0E11, /* Smart Array 641 */
579 0x409B0E11, /* Smart Array 642 */
580 0x40910E11, /* Smart Array 6i */
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 0x40800E11, /* Smart Array 5i */
586 0x40700E11, /* Smart Array 5300 */
587 0x40820E11, /* Smart Array 532 */
588 0x40830E11, /* Smart Array 5312 */
589 0x409A0E11, /* Smart Array 641 */
590 0x409B0E11, /* Smart Array 642 */
591 0x40910E11, /* Smart Array 6i */
592 /* Exclude 640x boards. These are two pci devices in one slot
593 * which share a battery backed cache module. One controls the
594 * cache, the other accesses the cache through the one that controls
595 * it. If we reset the one controlling the cache, the other will
596 * likely not be happy. Just forbid resetting this conjoined mess.
597 * The 640x isn't really supported by hpsa anyway.
599 0x409C0E11, /* Smart Array 6400 */
600 0x409D0E11, /* Smart Array 6400 EM */
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
605 int i;
607 for (i = 0; i < nelems; i++)
608 if (a[i] == board_id)
609 return 1;
610 return 0;
613 static int ctlr_is_hard_resettable(u32 board_id)
615 return !board_id_in_array(unresettable_controller,
616 ARRAY_SIZE(unresettable_controller), board_id);
619 static int ctlr_is_soft_resettable(u32 board_id)
621 return !board_id_in_array(soft_unresettable_controller,
622 ARRAY_SIZE(soft_unresettable_controller), board_id);
625 static int ctlr_is_resettable(u32 board_id)
627 return ctlr_is_hard_resettable(board_id) ||
628 ctlr_is_soft_resettable(board_id);
631 static ssize_t host_show_resettable(struct device *dev,
632 struct device_attribute *attr, char *buf)
634 struct ctlr_info *h;
635 struct Scsi_Host *shost = class_to_shost(dev);
637 h = shost_to_hba(shost);
638 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
643 return (scsi3addr[3] & 0xC0) == 0x40;
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
649 #define HPSA_RAID_0 0
650 #define HPSA_RAID_4 1
651 #define HPSA_RAID_1 2 /* also used for RAID 10 */
652 #define HPSA_RAID_5 3 /* also used for RAID 50 */
653 #define HPSA_RAID_51 4
654 #define HPSA_RAID_6 5 /* also used for RAID 60 */
655 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
661 return !device->physical_device;
664 static ssize_t raid_level_show(struct device *dev,
665 struct device_attribute *attr, char *buf)
667 ssize_t l = 0;
668 unsigned char rlevel;
669 struct ctlr_info *h;
670 struct scsi_device *sdev;
671 struct hpsa_scsi_dev_t *hdev;
672 unsigned long flags;
674 sdev = to_scsi_device(dev);
675 h = sdev_to_hba(sdev);
676 spin_lock_irqsave(&h->lock, flags);
677 hdev = sdev->hostdata;
678 if (!hdev) {
679 spin_unlock_irqrestore(&h->lock, flags);
680 return -ENODEV;
683 /* Is this even a logical drive? */
684 if (!is_logical_device(hdev)) {
685 spin_unlock_irqrestore(&h->lock, flags);
686 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 return l;
690 rlevel = hdev->raid_level;
691 spin_unlock_irqrestore(&h->lock, flags);
692 if (rlevel > RAID_UNKNOWN)
693 rlevel = RAID_UNKNOWN;
694 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 return l;
698 static ssize_t lunid_show(struct device *dev,
699 struct device_attribute *attr, char *buf)
701 struct ctlr_info *h;
702 struct scsi_device *sdev;
703 struct hpsa_scsi_dev_t *hdev;
704 unsigned long flags;
705 unsigned char lunid[8];
707 sdev = to_scsi_device(dev);
708 h = sdev_to_hba(sdev);
709 spin_lock_irqsave(&h->lock, flags);
710 hdev = sdev->hostdata;
711 if (!hdev) {
712 spin_unlock_irqrestore(&h->lock, flags);
713 return -ENODEV;
715 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 spin_unlock_irqrestore(&h->lock, flags);
717 return snprintf(buf, 20, "0x%8phN\n", lunid);
720 static ssize_t unique_id_show(struct device *dev,
721 struct device_attribute *attr, char *buf)
723 struct ctlr_info *h;
724 struct scsi_device *sdev;
725 struct hpsa_scsi_dev_t *hdev;
726 unsigned long flags;
727 unsigned char sn[16];
729 sdev = to_scsi_device(dev);
730 h = sdev_to_hba(sdev);
731 spin_lock_irqsave(&h->lock, flags);
732 hdev = sdev->hostdata;
733 if (!hdev) {
734 spin_unlock_irqrestore(&h->lock, flags);
735 return -ENODEV;
737 memcpy(sn, hdev->device_id, sizeof(sn));
738 spin_unlock_irqrestore(&h->lock, flags);
739 return snprintf(buf, 16 * 2 + 2,
740 "%02X%02X%02X%02X%02X%02X%02X%02X"
741 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 sn[0], sn[1], sn[2], sn[3],
743 sn[4], sn[5], sn[6], sn[7],
744 sn[8], sn[9], sn[10], sn[11],
745 sn[12], sn[13], sn[14], sn[15]);
748 static ssize_t sas_address_show(struct device *dev,
749 struct device_attribute *attr, char *buf)
751 struct ctlr_info *h;
752 struct scsi_device *sdev;
753 struct hpsa_scsi_dev_t *hdev;
754 unsigned long flags;
755 u64 sas_address;
757 sdev = to_scsi_device(dev);
758 h = sdev_to_hba(sdev);
759 spin_lock_irqsave(&h->lock, flags);
760 hdev = sdev->hostdata;
761 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 spin_unlock_irqrestore(&h->lock, flags);
763 return -ENODEV;
765 sas_address = hdev->sas_address;
766 spin_unlock_irqrestore(&h->lock, flags);
768 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 struct device_attribute *attr, char *buf)
774 struct ctlr_info *h;
775 struct scsi_device *sdev;
776 struct hpsa_scsi_dev_t *hdev;
777 unsigned long flags;
778 int offload_enabled;
780 sdev = to_scsi_device(dev);
781 h = sdev_to_hba(sdev);
782 spin_lock_irqsave(&h->lock, flags);
783 hdev = sdev->hostdata;
784 if (!hdev) {
785 spin_unlock_irqrestore(&h->lock, flags);
786 return -ENODEV;
788 offload_enabled = hdev->offload_enabled;
789 spin_unlock_irqrestore(&h->lock, flags);
791 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792 return snprintf(buf, 20, "%d\n", offload_enabled);
793 else
794 return snprintf(buf, 40, "%s\n",
795 "Not applicable for a controller");
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
802 struct ctlr_info *h;
803 struct scsi_device *sdev;
804 struct hpsa_scsi_dev_t *hdev;
805 unsigned long flags;
806 int i;
807 int output_len = 0;
808 u8 box;
809 u8 bay;
810 u8 path_map_index = 0;
811 char *active;
812 unsigned char phys_connector[2];
814 sdev = to_scsi_device(dev);
815 h = sdev_to_hba(sdev);
816 spin_lock_irqsave(&h->devlock, flags);
817 hdev = sdev->hostdata;
818 if (!hdev) {
819 spin_unlock_irqrestore(&h->devlock, flags);
820 return -ENODEV;
823 bay = hdev->bay;
824 for (i = 0; i < MAX_PATHS; i++) {
825 path_map_index = 1<<i;
826 if (i == hdev->active_path_index)
827 active = "Active";
828 else if (hdev->path_map & path_map_index)
829 active = "Inactive";
830 else
831 continue;
833 output_len += scnprintf(buf + output_len,
834 PAGE_SIZE - output_len,
835 "[%d:%d:%d:%d] %20.20s ",
836 h->scsi_host->host_no,
837 hdev->bus, hdev->target, hdev->lun,
838 scsi_device_type(hdev->devtype));
840 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841 output_len += scnprintf(buf + output_len,
842 PAGE_SIZE - output_len,
843 "%s\n", active);
844 continue;
847 box = hdev->box[i];
848 memcpy(&phys_connector, &hdev->phys_connector[i],
849 sizeof(phys_connector));
850 if (phys_connector[0] < '0')
851 phys_connector[0] = '0';
852 if (phys_connector[1] < '0')
853 phys_connector[1] = '0';
854 output_len += scnprintf(buf + output_len,
855 PAGE_SIZE - output_len,
856 "PORT: %.2s ",
857 phys_connector);
858 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859 hdev->expose_device) {
860 if (box == 0 || box == 0xFF) {
861 output_len += scnprintf(buf + output_len,
862 PAGE_SIZE - output_len,
863 "BAY: %hhu %s\n",
864 bay, active);
865 } else {
866 output_len += scnprintf(buf + output_len,
867 PAGE_SIZE - output_len,
868 "BOX: %hhu BAY: %hhu %s\n",
869 box, bay, active);
871 } else if (box != 0 && box != 0xFF) {
872 output_len += scnprintf(buf + output_len,
873 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 box, active);
875 } else
876 output_len += scnprintf(buf + output_len,
877 PAGE_SIZE - output_len, "%s\n", active);
880 spin_unlock_irqrestore(&h->devlock, flags);
881 return output_len;
884 static ssize_t host_show_ctlr_num(struct device *dev,
885 struct device_attribute *attr, char *buf)
887 struct ctlr_info *h;
888 struct Scsi_Host *shost = class_to_shost(dev);
890 h = shost_to_hba(shost);
891 return snprintf(buf, 20, "%d\n", h->ctlr);
894 static ssize_t host_show_legacy_board(struct device *dev,
895 struct device_attribute *attr, char *buf)
897 struct ctlr_info *h;
898 struct Scsi_Host *shost = class_to_shost(dev);
900 h = shost_to_hba(shost);
901 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910 host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913 host_show_hp_ssd_smart_path_status,
914 host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916 host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918 host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920 host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922 host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924 host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926 host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928 host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930 host_show_legacy_board, NULL);
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933 &dev_attr_raid_level,
934 &dev_attr_lunid,
935 &dev_attr_unique_id,
936 &dev_attr_hp_ssd_smart_path_enabled,
937 &dev_attr_path_info,
938 &dev_attr_sas_address,
939 NULL,
942 static struct device_attribute *hpsa_shost_attrs[] = {
943 &dev_attr_rescan,
944 &dev_attr_firmware_revision,
945 &dev_attr_commands_outstanding,
946 &dev_attr_transport_mode,
947 &dev_attr_resettable,
948 &dev_attr_hp_ssd_smart_path_status,
949 &dev_attr_raid_offload_debug,
950 &dev_attr_lockup_detected,
951 &dev_attr_ctlr_num,
952 &dev_attr_legacy_board,
953 NULL,
956 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
957 HPSA_MAX_CONCURRENT_PASSTHRUS)
959 static struct scsi_host_template hpsa_driver_template = {
960 .module = THIS_MODULE,
961 .name = HPSA,
962 .proc_name = HPSA,
963 .queuecommand = hpsa_scsi_queue_command,
964 .scan_start = hpsa_scan_start,
965 .scan_finished = hpsa_scan_finished,
966 .change_queue_depth = hpsa_change_queue_depth,
967 .this_id = -1,
968 .use_clustering = ENABLE_CLUSTERING,
969 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 .ioctl = hpsa_ioctl,
971 .slave_alloc = hpsa_slave_alloc,
972 .slave_configure = hpsa_slave_configure,
973 .slave_destroy = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 .compat_ioctl = hpsa_compat_ioctl,
976 #endif
977 .sdev_attrs = hpsa_sdev_attrs,
978 .shost_attrs = hpsa_shost_attrs,
979 .max_sectors = 1024,
980 .no_write_same = 1,
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
985 u32 a;
986 struct reply_queue_buffer *rq = &h->reply_queue[q];
988 if (h->transMethod & CFGTBL_Trans_io_accel1)
989 return h->access.command_completed(h, q);
991 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 return h->access.command_completed(h, q);
994 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 a = rq->head[rq->current_entry];
996 rq->current_entry++;
997 atomic_dec(&h->commands_outstanding);
998 } else {
999 a = FIFO_EMPTY;
1001 /* Check for wraparound */
1002 if (rq->current_entry == h->max_commands) {
1003 rq->current_entry = 0;
1004 rq->wraparound ^= 1;
1006 return a;
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1019 * ioaccel1 mode:
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1028 * ioaccel2 mode:
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1038 * register number
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 int reply_queue)
1044 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 if (unlikely(!h->msix_vectors))
1047 return;
1048 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1049 c->Header.ReplyQueue =
1050 raw_smp_processor_id() % h->nreply_queues;
1051 else
1052 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1056 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1057 struct CommandList *c,
1058 int reply_queue)
1060 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1063 * Tell the controller to post the reply to the queue for this
1064 * processor. This seems to give the best I/O throughput.
1066 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1068 else
1069 cp->ReplyQueue = reply_queue % h->nreply_queues;
1071 * Set the bits in the address sent down to include:
1072 * - performant mode bit (bit 0)
1073 * - pull count (bits 1-3)
1074 * - command type (bits 4-6)
1076 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077 IOACCEL1_BUSADDR_CMDTYPE;
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081 struct CommandList *c,
1082 int reply_queue)
1084 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085 &h->ioaccel2_cmd_pool[c->cmdindex];
1087 /* Tell the controller to post the reply to the queue for this
1088 * processor. This seems to give the best I/O throughput.
1090 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1091 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1092 else
1093 cp->reply_queue = reply_queue % h->nreply_queues;
1094 /* Set the bits in the address sent down to include:
1095 * - performant mode bit not used in ioaccel mode 2
1096 * - pull count (bits 0-3)
1097 * - command type isn't needed for ioaccel2
1099 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103 struct CommandList *c,
1104 int reply_queue)
1106 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1109 * Tell the controller to post the reply to the queue for this
1110 * processor. This seems to give the best I/O throughput.
1112 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1113 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1114 else
1115 cp->reply_queue = reply_queue % h->nreply_queues;
1117 * Set the bits in the address sent down to include:
1118 * - performant mode bit not used in ioaccel mode 2
1119 * - pull count (bits 0-3)
1120 * - command type isn't needed for ioaccel2
1122 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1125 static int is_firmware_flash_cmd(u8 *cdb)
1127 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1131 * During firmware flash, the heartbeat register may not update as frequently
1132 * as it should. So we dial down lockup detection during firmware flash. and
1133 * dial it back up when firmware flash completes.
1135 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1136 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1137 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1138 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1139 struct CommandList *c)
1141 if (!is_firmware_flash_cmd(c->Request.CDB))
1142 return;
1143 atomic_inc(&h->firmware_flash_in_progress);
1144 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1147 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1148 struct CommandList *c)
1150 if (is_firmware_flash_cmd(c->Request.CDB) &&
1151 atomic_dec_and_test(&h->firmware_flash_in_progress))
1152 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1155 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1156 struct CommandList *c, int reply_queue)
1158 dial_down_lockup_detection_during_fw_flash(h, c);
1159 atomic_inc(&h->commands_outstanding);
1160 switch (c->cmd_type) {
1161 case CMD_IOACCEL1:
1162 set_ioaccel1_performant_mode(h, c, reply_queue);
1163 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1164 break;
1165 case CMD_IOACCEL2:
1166 set_ioaccel2_performant_mode(h, c, reply_queue);
1167 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1168 break;
1169 case IOACCEL2_TMF:
1170 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1171 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172 break;
1173 default:
1174 set_performant_mode(h, c, reply_queue);
1175 h->access.submit_command(h, c);
1179 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1181 if (unlikely(hpsa_is_pending_event(c)))
1182 return finish_cmd(c);
1184 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1187 static inline int is_hba_lunid(unsigned char scsi3addr[])
1189 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1192 static inline int is_scsi_rev_5(struct ctlr_info *h)
1194 if (!h->hba_inquiry_data)
1195 return 0;
1196 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1197 return 1;
1198 return 0;
1201 static int hpsa_find_target_lun(struct ctlr_info *h,
1202 unsigned char scsi3addr[], int bus, int *target, int *lun)
1204 /* finds an unused bus, target, lun for a new physical device
1205 * assumes h->devlock is held
1207 int i, found = 0;
1208 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1210 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1212 for (i = 0; i < h->ndevices; i++) {
1213 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1214 __set_bit(h->dev[i]->target, lun_taken);
1217 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1218 if (i < HPSA_MAX_DEVICES) {
1219 /* *bus = 1; */
1220 *target = i;
1221 *lun = 0;
1222 found = 1;
1224 return !found;
1227 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1228 struct hpsa_scsi_dev_t *dev, char *description)
1230 #define LABEL_SIZE 25
1231 char label[LABEL_SIZE];
1233 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1234 return;
1236 switch (dev->devtype) {
1237 case TYPE_RAID:
1238 snprintf(label, LABEL_SIZE, "controller");
1239 break;
1240 case TYPE_ENCLOSURE:
1241 snprintf(label, LABEL_SIZE, "enclosure");
1242 break;
1243 case TYPE_DISK:
1244 case TYPE_ZBC:
1245 if (dev->external)
1246 snprintf(label, LABEL_SIZE, "external");
1247 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1248 snprintf(label, LABEL_SIZE, "%s",
1249 raid_label[PHYSICAL_DRIVE]);
1250 else
1251 snprintf(label, LABEL_SIZE, "RAID-%s",
1252 dev->raid_level > RAID_UNKNOWN ? "?" :
1253 raid_label[dev->raid_level]);
1254 break;
1255 case TYPE_ROM:
1256 snprintf(label, LABEL_SIZE, "rom");
1257 break;
1258 case TYPE_TAPE:
1259 snprintf(label, LABEL_SIZE, "tape");
1260 break;
1261 case TYPE_MEDIUM_CHANGER:
1262 snprintf(label, LABEL_SIZE, "changer");
1263 break;
1264 default:
1265 snprintf(label, LABEL_SIZE, "UNKNOWN");
1266 break;
1269 dev_printk(level, &h->pdev->dev,
1270 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1271 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1272 description,
1273 scsi_device_type(dev->devtype),
1274 dev->vendor,
1275 dev->model,
1276 label,
1277 dev->offload_config ? '+' : '-',
1278 dev->offload_to_be_enabled ? '+' : '-',
1279 dev->expose_device);
1282 /* Add an entry into h->dev[] array. */
1283 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1284 struct hpsa_scsi_dev_t *device,
1285 struct hpsa_scsi_dev_t *added[], int *nadded)
1287 /* assumes h->devlock is held */
1288 int n = h->ndevices;
1289 int i;
1290 unsigned char addr1[8], addr2[8];
1291 struct hpsa_scsi_dev_t *sd;
1293 if (n >= HPSA_MAX_DEVICES) {
1294 dev_err(&h->pdev->dev, "too many devices, some will be "
1295 "inaccessible.\n");
1296 return -1;
1299 /* physical devices do not have lun or target assigned until now. */
1300 if (device->lun != -1)
1301 /* Logical device, lun is already assigned. */
1302 goto lun_assigned;
1304 /* If this device a non-zero lun of a multi-lun device
1305 * byte 4 of the 8-byte LUN addr will contain the logical
1306 * unit no, zero otherwise.
1308 if (device->scsi3addr[4] == 0) {
1309 /* This is not a non-zero lun of a multi-lun device */
1310 if (hpsa_find_target_lun(h, device->scsi3addr,
1311 device->bus, &device->target, &device->lun) != 0)
1312 return -1;
1313 goto lun_assigned;
1316 /* This is a non-zero lun of a multi-lun device.
1317 * Search through our list and find the device which
1318 * has the same 8 byte LUN address, excepting byte 4 and 5.
1319 * Assign the same bus and target for this new LUN.
1320 * Use the logical unit number from the firmware.
1322 memcpy(addr1, device->scsi3addr, 8);
1323 addr1[4] = 0;
1324 addr1[5] = 0;
1325 for (i = 0; i < n; i++) {
1326 sd = h->dev[i];
1327 memcpy(addr2, sd->scsi3addr, 8);
1328 addr2[4] = 0;
1329 addr2[5] = 0;
1330 /* differ only in byte 4 and 5? */
1331 if (memcmp(addr1, addr2, 8) == 0) {
1332 device->bus = sd->bus;
1333 device->target = sd->target;
1334 device->lun = device->scsi3addr[4];
1335 break;
1338 if (device->lun == -1) {
1339 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1340 " suspect firmware bug or unsupported hardware "
1341 "configuration.\n");
1342 return -1;
1345 lun_assigned:
1347 h->dev[n] = device;
1348 h->ndevices++;
1349 added[*nadded] = device;
1350 (*nadded)++;
1351 hpsa_show_dev_msg(KERN_INFO, h, device,
1352 device->expose_device ? "added" : "masked");
1353 return 0;
1357 * Called during a scan operation.
1359 * Update an entry in h->dev[] array.
1361 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1362 int entry, struct hpsa_scsi_dev_t *new_entry)
1364 /* assumes h->devlock is held */
1365 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1367 /* Raid level changed. */
1368 h->dev[entry]->raid_level = new_entry->raid_level;
1371 * ioacccel_handle may have changed for a dual domain disk
1373 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375 /* Raid offload parameters changed. Careful about the ordering. */
1376 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1378 * if drive is newly offload_enabled, we want to copy the
1379 * raid map data first. If previously offload_enabled and
1380 * offload_config were set, raid map data had better be
1381 * the same as it was before. If raid map data has changed
1382 * then it had better be the case that
1383 * h->dev[entry]->offload_enabled is currently 0.
1385 h->dev[entry]->raid_map = new_entry->raid_map;
1386 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1388 if (new_entry->offload_to_be_enabled) {
1389 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1390 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1392 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1393 h->dev[entry]->offload_config = new_entry->offload_config;
1394 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1395 h->dev[entry]->queue_depth = new_entry->queue_depth;
1398 * We can turn off ioaccel offload now, but need to delay turning
1399 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1400 * can't do that until all the devices are updated.
1402 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1405 * turn ioaccel off immediately if told to do so.
1407 if (!new_entry->offload_to_be_enabled)
1408 h->dev[entry]->offload_enabled = 0;
1410 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1413 /* Replace an entry from h->dev[] array. */
1414 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1415 int entry, struct hpsa_scsi_dev_t *new_entry,
1416 struct hpsa_scsi_dev_t *added[], int *nadded,
1417 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1419 /* assumes h->devlock is held */
1420 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1421 removed[*nremoved] = h->dev[entry];
1422 (*nremoved)++;
1425 * New physical devices won't have target/lun assigned yet
1426 * so we need to preserve the values in the slot we are replacing.
1428 if (new_entry->target == -1) {
1429 new_entry->target = h->dev[entry]->target;
1430 new_entry->lun = h->dev[entry]->lun;
1433 h->dev[entry] = new_entry;
1434 added[*nadded] = new_entry;
1435 (*nadded)++;
1437 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1440 /* Remove an entry from h->dev[] array. */
1441 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1442 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1444 /* assumes h->devlock is held */
1445 int i;
1446 struct hpsa_scsi_dev_t *sd;
1448 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1450 sd = h->dev[entry];
1451 removed[*nremoved] = h->dev[entry];
1452 (*nremoved)++;
1454 for (i = entry; i < h->ndevices-1; i++)
1455 h->dev[i] = h->dev[i+1];
1456 h->ndevices--;
1457 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1460 #define SCSI3ADDR_EQ(a, b) ( \
1461 (a)[7] == (b)[7] && \
1462 (a)[6] == (b)[6] && \
1463 (a)[5] == (b)[5] && \
1464 (a)[4] == (b)[4] && \
1465 (a)[3] == (b)[3] && \
1466 (a)[2] == (b)[2] && \
1467 (a)[1] == (b)[1] && \
1468 (a)[0] == (b)[0])
1470 static void fixup_botched_add(struct ctlr_info *h,
1471 struct hpsa_scsi_dev_t *added)
1473 /* called when scsi_add_device fails in order to re-adjust
1474 * h->dev[] to match the mid layer's view.
1476 unsigned long flags;
1477 int i, j;
1479 spin_lock_irqsave(&h->lock, flags);
1480 for (i = 0; i < h->ndevices; i++) {
1481 if (h->dev[i] == added) {
1482 for (j = i; j < h->ndevices-1; j++)
1483 h->dev[j] = h->dev[j+1];
1484 h->ndevices--;
1485 break;
1488 spin_unlock_irqrestore(&h->lock, flags);
1489 kfree(added);
1492 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1493 struct hpsa_scsi_dev_t *dev2)
1495 /* we compare everything except lun and target as these
1496 * are not yet assigned. Compare parts likely
1497 * to differ first
1499 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1500 sizeof(dev1->scsi3addr)) != 0)
1501 return 0;
1502 if (memcmp(dev1->device_id, dev2->device_id,
1503 sizeof(dev1->device_id)) != 0)
1504 return 0;
1505 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1506 return 0;
1507 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1508 return 0;
1509 if (dev1->devtype != dev2->devtype)
1510 return 0;
1511 if (dev1->bus != dev2->bus)
1512 return 0;
1513 return 1;
1516 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1517 struct hpsa_scsi_dev_t *dev2)
1519 /* Device attributes that can change, but don't mean
1520 * that the device is a different device, nor that the OS
1521 * needs to be told anything about the change.
1523 if (dev1->raid_level != dev2->raid_level)
1524 return 1;
1525 if (dev1->offload_config != dev2->offload_config)
1526 return 1;
1527 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1528 return 1;
1529 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1530 if (dev1->queue_depth != dev2->queue_depth)
1531 return 1;
1533 * This can happen for dual domain devices. An active
1534 * path change causes the ioaccel handle to change
1536 * for example note the handle differences between p0 and p1
1537 * Device WWN ,WWN hash,Handle
1538 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1539 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1541 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1542 return 1;
1543 return 0;
1546 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1547 * and return needle location in *index. If scsi3addr matches, but not
1548 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1549 * location in *index.
1550 * In the case of a minor device attribute change, such as RAID level, just
1551 * return DEVICE_UPDATED, along with the updated device's location in index.
1552 * If needle not found, return DEVICE_NOT_FOUND.
1554 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1555 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1556 int *index)
1558 int i;
1559 #define DEVICE_NOT_FOUND 0
1560 #define DEVICE_CHANGED 1
1561 #define DEVICE_SAME 2
1562 #define DEVICE_UPDATED 3
1563 if (needle == NULL)
1564 return DEVICE_NOT_FOUND;
1566 for (i = 0; i < haystack_size; i++) {
1567 if (haystack[i] == NULL) /* previously removed. */
1568 continue;
1569 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1570 *index = i;
1571 if (device_is_the_same(needle, haystack[i])) {
1572 if (device_updated(needle, haystack[i]))
1573 return DEVICE_UPDATED;
1574 return DEVICE_SAME;
1575 } else {
1576 /* Keep offline devices offline */
1577 if (needle->volume_offline)
1578 return DEVICE_NOT_FOUND;
1579 return DEVICE_CHANGED;
1583 *index = -1;
1584 return DEVICE_NOT_FOUND;
1587 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1588 unsigned char scsi3addr[])
1590 struct offline_device_entry *device;
1591 unsigned long flags;
1593 /* Check to see if device is already on the list */
1594 spin_lock_irqsave(&h->offline_device_lock, flags);
1595 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1596 if (memcmp(device->scsi3addr, scsi3addr,
1597 sizeof(device->scsi3addr)) == 0) {
1598 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1599 return;
1602 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1604 /* Device is not on the list, add it. */
1605 device = kmalloc(sizeof(*device), GFP_KERNEL);
1606 if (!device)
1607 return;
1609 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1610 spin_lock_irqsave(&h->offline_device_lock, flags);
1611 list_add_tail(&device->offline_list, &h->offline_device_list);
1612 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1615 /* Print a message explaining various offline volume states */
1616 static void hpsa_show_volume_status(struct ctlr_info *h,
1617 struct hpsa_scsi_dev_t *sd)
1619 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1620 dev_info(&h->pdev->dev,
1621 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1622 h->scsi_host->host_no,
1623 sd->bus, sd->target, sd->lun);
1624 switch (sd->volume_offline) {
1625 case HPSA_LV_OK:
1626 break;
1627 case HPSA_LV_UNDERGOING_ERASE:
1628 dev_info(&h->pdev->dev,
1629 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1630 h->scsi_host->host_no,
1631 sd->bus, sd->target, sd->lun);
1632 break;
1633 case HPSA_LV_NOT_AVAILABLE:
1634 dev_info(&h->pdev->dev,
1635 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1636 h->scsi_host->host_no,
1637 sd->bus, sd->target, sd->lun);
1638 break;
1639 case HPSA_LV_UNDERGOING_RPI:
1640 dev_info(&h->pdev->dev,
1641 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1642 h->scsi_host->host_no,
1643 sd->bus, sd->target, sd->lun);
1644 break;
1645 case HPSA_LV_PENDING_RPI:
1646 dev_info(&h->pdev->dev,
1647 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1648 h->scsi_host->host_no,
1649 sd->bus, sd->target, sd->lun);
1650 break;
1651 case HPSA_LV_ENCRYPTED_NO_KEY:
1652 dev_info(&h->pdev->dev,
1653 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1654 h->scsi_host->host_no,
1655 sd->bus, sd->target, sd->lun);
1656 break;
1657 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1658 dev_info(&h->pdev->dev,
1659 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1660 h->scsi_host->host_no,
1661 sd->bus, sd->target, sd->lun);
1662 break;
1663 case HPSA_LV_UNDERGOING_ENCRYPTION:
1664 dev_info(&h->pdev->dev,
1665 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1666 h->scsi_host->host_no,
1667 sd->bus, sd->target, sd->lun);
1668 break;
1669 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1670 dev_info(&h->pdev->dev,
1671 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1672 h->scsi_host->host_no,
1673 sd->bus, sd->target, sd->lun);
1674 break;
1675 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1676 dev_info(&h->pdev->dev,
1677 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1678 h->scsi_host->host_no,
1679 sd->bus, sd->target, sd->lun);
1680 break;
1681 case HPSA_LV_PENDING_ENCRYPTION:
1682 dev_info(&h->pdev->dev,
1683 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1684 h->scsi_host->host_no,
1685 sd->bus, sd->target, sd->lun);
1686 break;
1687 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1688 dev_info(&h->pdev->dev,
1689 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1690 h->scsi_host->host_no,
1691 sd->bus, sd->target, sd->lun);
1692 break;
1697 * Figure the list of physical drive pointers for a logical drive with
1698 * raid offload configured.
1700 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1701 struct hpsa_scsi_dev_t *dev[], int ndevices,
1702 struct hpsa_scsi_dev_t *logical_drive)
1704 struct raid_map_data *map = &logical_drive->raid_map;
1705 struct raid_map_disk_data *dd = &map->data[0];
1706 int i, j;
1707 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1708 le16_to_cpu(map->metadata_disks_per_row);
1709 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1710 le16_to_cpu(map->layout_map_count) *
1711 total_disks_per_row;
1712 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1713 total_disks_per_row;
1714 int qdepth;
1716 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1717 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1719 logical_drive->nphysical_disks = nraid_map_entries;
1721 qdepth = 0;
1722 for (i = 0; i < nraid_map_entries; i++) {
1723 logical_drive->phys_disk[i] = NULL;
1724 if (!logical_drive->offload_config)
1725 continue;
1726 for (j = 0; j < ndevices; j++) {
1727 if (dev[j] == NULL)
1728 continue;
1729 if (dev[j]->devtype != TYPE_DISK &&
1730 dev[j]->devtype != TYPE_ZBC)
1731 continue;
1732 if (is_logical_device(dev[j]))
1733 continue;
1734 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1735 continue;
1737 logical_drive->phys_disk[i] = dev[j];
1738 if (i < nphys_disk)
1739 qdepth = min(h->nr_cmds, qdepth +
1740 logical_drive->phys_disk[i]->queue_depth);
1741 break;
1745 * This can happen if a physical drive is removed and
1746 * the logical drive is degraded. In that case, the RAID
1747 * map data will refer to a physical disk which isn't actually
1748 * present. And in that case offload_enabled should already
1749 * be 0, but we'll turn it off here just in case
1751 if (!logical_drive->phys_disk[i]) {
1752 dev_warn(&h->pdev->dev,
1753 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1754 __func__,
1755 h->scsi_host->host_no, logical_drive->bus,
1756 logical_drive->target, logical_drive->lun);
1757 logical_drive->offload_enabled = 0;
1758 logical_drive->offload_to_be_enabled = 0;
1759 logical_drive->queue_depth = 8;
1762 if (nraid_map_entries)
1764 * This is correct for reads, too high for full stripe writes,
1765 * way too high for partial stripe writes
1767 logical_drive->queue_depth = qdepth;
1768 else {
1769 if (logical_drive->external)
1770 logical_drive->queue_depth = EXTERNAL_QD;
1771 else
1772 logical_drive->queue_depth = h->nr_cmds;
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777 struct hpsa_scsi_dev_t *dev[], int ndevices)
1779 int i;
1781 for (i = 0; i < ndevices; i++) {
1782 if (dev[i] == NULL)
1783 continue;
1784 if (dev[i]->devtype != TYPE_DISK &&
1785 dev[i]->devtype != TYPE_ZBC)
1786 continue;
1787 if (!is_logical_device(dev[i]))
1788 continue;
1791 * If offload is currently enabled, the RAID map and
1792 * phys_disk[] assignment *better* not be changing
1793 * because we would be changing ioaccel phsy_disk[] pointers
1794 * on a ioaccel volume processing I/O requests.
1796 * If an ioaccel volume status changed, initially because it was
1797 * re-configured and thus underwent a transformation, or
1798 * a drive failed, we would have received a state change
1799 * request and ioaccel should have been turned off. When the
1800 * transformation completes, we get another state change
1801 * request to turn ioaccel back on. In this case, we need
1802 * to update the ioaccel information.
1804 * Thus: If it is not currently enabled, but will be after
1805 * the scan completes, make sure the ioaccel pointers
1806 * are up to date.
1809 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1816 int rc = 0;
1818 if (!h->scsi_host)
1819 return 1;
1821 if (is_logical_device(device)) /* RAID */
1822 rc = scsi_add_device(h->scsi_host, device->bus,
1823 device->target, device->lun);
1824 else /* HBA */
1825 rc = hpsa_add_sas_device(h->sas_host, device);
1827 return rc;
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831 struct hpsa_scsi_dev_t *dev)
1833 int i;
1834 int count = 0;
1836 for (i = 0; i < h->nr_cmds; i++) {
1837 struct CommandList *c = h->cmd_pool + i;
1838 int refcount = atomic_inc_return(&c->refcount);
1840 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841 dev->scsi3addr)) {
1842 unsigned long flags;
1844 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1845 if (!hpsa_is_cmd_idle(c))
1846 ++count;
1847 spin_unlock_irqrestore(&h->lock, flags);
1850 cmd_free(h, c);
1853 return count;
1856 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1857 struct hpsa_scsi_dev_t *device)
1859 int cmds = 0;
1860 int waits = 0;
1862 while (1) {
1863 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1864 if (cmds == 0)
1865 break;
1866 if (++waits > 20)
1867 break;
1868 msleep(1000);
1871 if (waits > 20)
1872 dev_warn(&h->pdev->dev,
1873 "%s: removing device with %d outstanding commands!\n",
1874 __func__, cmds);
1877 static void hpsa_remove_device(struct ctlr_info *h,
1878 struct hpsa_scsi_dev_t *device)
1880 struct scsi_device *sdev = NULL;
1882 if (!h->scsi_host)
1883 return;
1886 * Allow for commands to drain
1888 device->removed = 1;
1889 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1891 if (is_logical_device(device)) { /* RAID */
1892 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1893 device->target, device->lun);
1894 if (sdev) {
1895 scsi_remove_device(sdev);
1896 scsi_device_put(sdev);
1897 } else {
1899 * We don't expect to get here. Future commands
1900 * to this device will get a selection timeout as
1901 * if the device were gone.
1903 hpsa_show_dev_msg(KERN_WARNING, h, device,
1904 "didn't find device for removal.");
1906 } else { /* HBA */
1908 hpsa_remove_sas_device(device);
1912 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1913 struct hpsa_scsi_dev_t *sd[], int nsds)
1915 /* sd contains scsi3 addresses and devtypes, and inquiry
1916 * data. This function takes what's in sd to be the current
1917 * reality and updates h->dev[] to reflect that reality.
1919 int i, entry, device_change, changes = 0;
1920 struct hpsa_scsi_dev_t *csd;
1921 unsigned long flags;
1922 struct hpsa_scsi_dev_t **added, **removed;
1923 int nadded, nremoved;
1926 * A reset can cause a device status to change
1927 * re-schedule the scan to see what happened.
1929 spin_lock_irqsave(&h->reset_lock, flags);
1930 if (h->reset_in_progress) {
1931 h->drv_req_rescan = 1;
1932 spin_unlock_irqrestore(&h->reset_lock, flags);
1933 return;
1935 spin_unlock_irqrestore(&h->reset_lock, flags);
1937 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1938 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1940 if (!added || !removed) {
1941 dev_warn(&h->pdev->dev, "out of memory in "
1942 "adjust_hpsa_scsi_table\n");
1943 goto free_and_out;
1946 spin_lock_irqsave(&h->devlock, flags);
1948 /* find any devices in h->dev[] that are not in
1949 * sd[] and remove them from h->dev[], and for any
1950 * devices which have changed, remove the old device
1951 * info and add the new device info.
1952 * If minor device attributes change, just update
1953 * the existing device structure.
1955 i = 0;
1956 nremoved = 0;
1957 nadded = 0;
1958 while (i < h->ndevices) {
1959 csd = h->dev[i];
1960 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1961 if (device_change == DEVICE_NOT_FOUND) {
1962 changes++;
1963 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1964 continue; /* remove ^^^, hence i not incremented */
1965 } else if (device_change == DEVICE_CHANGED) {
1966 changes++;
1967 hpsa_scsi_replace_entry(h, i, sd[entry],
1968 added, &nadded, removed, &nremoved);
1969 /* Set it to NULL to prevent it from being freed
1970 * at the bottom of hpsa_update_scsi_devices()
1972 sd[entry] = NULL;
1973 } else if (device_change == DEVICE_UPDATED) {
1974 hpsa_scsi_update_entry(h, i, sd[entry]);
1976 i++;
1979 /* Now, make sure every device listed in sd[] is also
1980 * listed in h->dev[], adding them if they aren't found
1983 for (i = 0; i < nsds; i++) {
1984 if (!sd[i]) /* if already added above. */
1985 continue;
1987 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1988 * as the SCSI mid-layer does not handle such devices well.
1989 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1990 * at 160Hz, and prevents the system from coming up.
1992 if (sd[i]->volume_offline) {
1993 hpsa_show_volume_status(h, sd[i]);
1994 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1995 continue;
1998 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1999 h->ndevices, &entry);
2000 if (device_change == DEVICE_NOT_FOUND) {
2001 changes++;
2002 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2003 break;
2004 sd[i] = NULL; /* prevent from being freed later. */
2005 } else if (device_change == DEVICE_CHANGED) {
2006 /* should never happen... */
2007 changes++;
2008 dev_warn(&h->pdev->dev,
2009 "device unexpectedly changed.\n");
2010 /* but if it does happen, we just ignore that device */
2013 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2016 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2017 * any logical drives that need it enabled.
2019 * The raid map should be current by now.
2021 * We are updating the device list used for I/O requests.
2023 for (i = 0; i < h->ndevices; i++) {
2024 if (h->dev[i] == NULL)
2025 continue;
2026 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2029 spin_unlock_irqrestore(&h->devlock, flags);
2031 /* Monitor devices which are in one of several NOT READY states to be
2032 * brought online later. This must be done without holding h->devlock,
2033 * so don't touch h->dev[]
2035 for (i = 0; i < nsds; i++) {
2036 if (!sd[i]) /* if already added above. */
2037 continue;
2038 if (sd[i]->volume_offline)
2039 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2042 /* Don't notify scsi mid layer of any changes the first time through
2043 * (or if there are no changes) scsi_scan_host will do it later the
2044 * first time through.
2046 if (!changes)
2047 goto free_and_out;
2049 /* Notify scsi mid layer of any removed devices */
2050 for (i = 0; i < nremoved; i++) {
2051 if (removed[i] == NULL)
2052 continue;
2053 if (removed[i]->expose_device)
2054 hpsa_remove_device(h, removed[i]);
2055 kfree(removed[i]);
2056 removed[i] = NULL;
2059 /* Notify scsi mid layer of any added devices */
2060 for (i = 0; i < nadded; i++) {
2061 int rc = 0;
2063 if (added[i] == NULL)
2064 continue;
2065 if (!(added[i]->expose_device))
2066 continue;
2067 rc = hpsa_add_device(h, added[i]);
2068 if (!rc)
2069 continue;
2070 dev_warn(&h->pdev->dev,
2071 "addition failed %d, device not added.", rc);
2072 /* now we have to remove it from h->dev,
2073 * since it didn't get added to scsi mid layer
2075 fixup_botched_add(h, added[i]);
2076 h->drv_req_rescan = 1;
2079 free_and_out:
2080 kfree(added);
2081 kfree(removed);
2085 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2086 * Assume's h->devlock is held.
2088 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2089 int bus, int target, int lun)
2091 int i;
2092 struct hpsa_scsi_dev_t *sd;
2094 for (i = 0; i < h->ndevices; i++) {
2095 sd = h->dev[i];
2096 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2097 return sd;
2099 return NULL;
2102 static int hpsa_slave_alloc(struct scsi_device *sdev)
2104 struct hpsa_scsi_dev_t *sd = NULL;
2105 unsigned long flags;
2106 struct ctlr_info *h;
2108 h = sdev_to_hba(sdev);
2109 spin_lock_irqsave(&h->devlock, flags);
2110 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2111 struct scsi_target *starget;
2112 struct sas_rphy *rphy;
2114 starget = scsi_target(sdev);
2115 rphy = target_to_rphy(starget);
2116 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2117 if (sd) {
2118 sd->target = sdev_id(sdev);
2119 sd->lun = sdev->lun;
2122 if (!sd)
2123 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2124 sdev_id(sdev), sdev->lun);
2126 if (sd && sd->expose_device) {
2127 atomic_set(&sd->ioaccel_cmds_out, 0);
2128 sdev->hostdata = sd;
2129 } else
2130 sdev->hostdata = NULL;
2131 spin_unlock_irqrestore(&h->devlock, flags);
2132 return 0;
2135 /* configure scsi device based on internal per-device structure */
2136 static int hpsa_slave_configure(struct scsi_device *sdev)
2138 struct hpsa_scsi_dev_t *sd;
2139 int queue_depth;
2141 sd = sdev->hostdata;
2142 sdev->no_uld_attach = !sd || !sd->expose_device;
2144 if (sd) {
2145 if (sd->external)
2146 queue_depth = EXTERNAL_QD;
2147 else
2148 queue_depth = sd->queue_depth != 0 ?
2149 sd->queue_depth : sdev->host->can_queue;
2150 } else
2151 queue_depth = sdev->host->can_queue;
2153 scsi_change_queue_depth(sdev, queue_depth);
2155 return 0;
2158 static void hpsa_slave_destroy(struct scsi_device *sdev)
2160 /* nothing to do. */
2163 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2165 int i;
2167 if (!h->ioaccel2_cmd_sg_list)
2168 return;
2169 for (i = 0; i < h->nr_cmds; i++) {
2170 kfree(h->ioaccel2_cmd_sg_list[i]);
2171 h->ioaccel2_cmd_sg_list[i] = NULL;
2173 kfree(h->ioaccel2_cmd_sg_list);
2174 h->ioaccel2_cmd_sg_list = NULL;
2177 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2179 int i;
2181 if (h->chainsize <= 0)
2182 return 0;
2184 h->ioaccel2_cmd_sg_list =
2185 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2186 GFP_KERNEL);
2187 if (!h->ioaccel2_cmd_sg_list)
2188 return -ENOMEM;
2189 for (i = 0; i < h->nr_cmds; i++) {
2190 h->ioaccel2_cmd_sg_list[i] =
2191 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2192 h->maxsgentries, GFP_KERNEL);
2193 if (!h->ioaccel2_cmd_sg_list[i])
2194 goto clean;
2196 return 0;
2198 clean:
2199 hpsa_free_ioaccel2_sg_chain_blocks(h);
2200 return -ENOMEM;
2203 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2205 int i;
2207 if (!h->cmd_sg_list)
2208 return;
2209 for (i = 0; i < h->nr_cmds; i++) {
2210 kfree(h->cmd_sg_list[i]);
2211 h->cmd_sg_list[i] = NULL;
2213 kfree(h->cmd_sg_list);
2214 h->cmd_sg_list = NULL;
2217 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2219 int i;
2221 if (h->chainsize <= 0)
2222 return 0;
2224 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2225 GFP_KERNEL);
2226 if (!h->cmd_sg_list)
2227 return -ENOMEM;
2229 for (i = 0; i < h->nr_cmds; i++) {
2230 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2231 h->chainsize, GFP_KERNEL);
2232 if (!h->cmd_sg_list[i])
2233 goto clean;
2236 return 0;
2238 clean:
2239 hpsa_free_sg_chain_blocks(h);
2240 return -ENOMEM;
2243 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2244 struct io_accel2_cmd *cp, struct CommandList *c)
2246 struct ioaccel2_sg_element *chain_block;
2247 u64 temp64;
2248 u32 chain_size;
2250 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2251 chain_size = le32_to_cpu(cp->sg[0].length);
2252 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2253 PCI_DMA_TODEVICE);
2254 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2255 /* prevent subsequent unmapping */
2256 cp->sg->address = 0;
2257 return -1;
2259 cp->sg->address = cpu_to_le64(temp64);
2260 return 0;
2263 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2264 struct io_accel2_cmd *cp)
2266 struct ioaccel2_sg_element *chain_sg;
2267 u64 temp64;
2268 u32 chain_size;
2270 chain_sg = cp->sg;
2271 temp64 = le64_to_cpu(chain_sg->address);
2272 chain_size = le32_to_cpu(cp->sg[0].length);
2273 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2276 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2277 struct CommandList *c)
2279 struct SGDescriptor *chain_sg, *chain_block;
2280 u64 temp64;
2281 u32 chain_len;
2283 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2284 chain_block = h->cmd_sg_list[c->cmdindex];
2285 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2286 chain_len = sizeof(*chain_sg) *
2287 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2288 chain_sg->Len = cpu_to_le32(chain_len);
2289 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2290 PCI_DMA_TODEVICE);
2291 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2292 /* prevent subsequent unmapping */
2293 chain_sg->Addr = cpu_to_le64(0);
2294 return -1;
2296 chain_sg->Addr = cpu_to_le64(temp64);
2297 return 0;
2300 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2301 struct CommandList *c)
2303 struct SGDescriptor *chain_sg;
2305 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2306 return;
2308 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2310 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2314 /* Decode the various types of errors on ioaccel2 path.
2315 * Return 1 for any error that should generate a RAID path retry.
2316 * Return 0 for errors that don't require a RAID path retry.
2318 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2319 struct CommandList *c,
2320 struct scsi_cmnd *cmd,
2321 struct io_accel2_cmd *c2,
2322 struct hpsa_scsi_dev_t *dev)
2324 int data_len;
2325 int retry = 0;
2326 u32 ioaccel2_resid = 0;
2328 switch (c2->error_data.serv_response) {
2329 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2330 switch (c2->error_data.status) {
2331 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2332 break;
2333 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2334 cmd->result |= SAM_STAT_CHECK_CONDITION;
2335 if (c2->error_data.data_present !=
2336 IOACCEL2_SENSE_DATA_PRESENT) {
2337 memset(cmd->sense_buffer, 0,
2338 SCSI_SENSE_BUFFERSIZE);
2339 break;
2341 /* copy the sense data */
2342 data_len = c2->error_data.sense_data_len;
2343 if (data_len > SCSI_SENSE_BUFFERSIZE)
2344 data_len = SCSI_SENSE_BUFFERSIZE;
2345 if (data_len > sizeof(c2->error_data.sense_data_buff))
2346 data_len =
2347 sizeof(c2->error_data.sense_data_buff);
2348 memcpy(cmd->sense_buffer,
2349 c2->error_data.sense_data_buff, data_len);
2350 retry = 1;
2351 break;
2352 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2353 retry = 1;
2354 break;
2355 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2356 retry = 1;
2357 break;
2358 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2359 retry = 1;
2360 break;
2361 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2362 retry = 1;
2363 break;
2364 default:
2365 retry = 1;
2366 break;
2368 break;
2369 case IOACCEL2_SERV_RESPONSE_FAILURE:
2370 switch (c2->error_data.status) {
2371 case IOACCEL2_STATUS_SR_IO_ERROR:
2372 case IOACCEL2_STATUS_SR_IO_ABORTED:
2373 case IOACCEL2_STATUS_SR_OVERRUN:
2374 retry = 1;
2375 break;
2376 case IOACCEL2_STATUS_SR_UNDERRUN:
2377 cmd->result = (DID_OK << 16); /* host byte */
2378 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2379 ioaccel2_resid = get_unaligned_le32(
2380 &c2->error_data.resid_cnt[0]);
2381 scsi_set_resid(cmd, ioaccel2_resid);
2382 break;
2383 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2384 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2385 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2387 * Did an HBA disk disappear? We will eventually
2388 * get a state change event from the controller but
2389 * in the meantime, we need to tell the OS that the
2390 * HBA disk is no longer there and stop I/O
2391 * from going down. This allows the potential re-insert
2392 * of the disk to get the same device node.
2394 if (dev->physical_device && dev->expose_device) {
2395 cmd->result = DID_NO_CONNECT << 16;
2396 dev->removed = 1;
2397 h->drv_req_rescan = 1;
2398 dev_warn(&h->pdev->dev,
2399 "%s: device is gone!\n", __func__);
2400 } else
2402 * Retry by sending down the RAID path.
2403 * We will get an event from ctlr to
2404 * trigger rescan regardless.
2406 retry = 1;
2407 break;
2408 default:
2409 retry = 1;
2411 break;
2412 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2413 break;
2414 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2415 break;
2416 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2417 retry = 1;
2418 break;
2419 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2420 break;
2421 default:
2422 retry = 1;
2423 break;
2426 return retry; /* retry on raid path? */
2429 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2430 struct CommandList *c)
2432 bool do_wake = false;
2435 * Reset c->scsi_cmd here so that the reset handler will know
2436 * this command has completed. Then, check to see if the handler is
2437 * waiting for this command, and, if so, wake it.
2439 c->scsi_cmd = SCSI_CMD_IDLE;
2440 mb(); /* Declare command idle before checking for pending events. */
2441 if (c->reset_pending) {
2442 unsigned long flags;
2443 struct hpsa_scsi_dev_t *dev;
2446 * There appears to be a reset pending; lock the lock and
2447 * reconfirm. If so, then decrement the count of outstanding
2448 * commands and wake the reset command if this is the last one.
2450 spin_lock_irqsave(&h->lock, flags);
2451 dev = c->reset_pending; /* Re-fetch under the lock. */
2452 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2453 do_wake = true;
2454 c->reset_pending = NULL;
2455 spin_unlock_irqrestore(&h->lock, flags);
2458 if (do_wake)
2459 wake_up_all(&h->event_sync_wait_queue);
2462 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2463 struct CommandList *c)
2465 hpsa_cmd_resolve_events(h, c);
2466 cmd_tagged_free(h, c);
2469 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2470 struct CommandList *c, struct scsi_cmnd *cmd)
2472 hpsa_cmd_resolve_and_free(h, c);
2473 if (cmd && cmd->scsi_done)
2474 cmd->scsi_done(cmd);
2477 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2479 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2480 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2483 static void process_ioaccel2_completion(struct ctlr_info *h,
2484 struct CommandList *c, struct scsi_cmnd *cmd,
2485 struct hpsa_scsi_dev_t *dev)
2487 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2489 /* check for good status */
2490 if (likely(c2->error_data.serv_response == 0 &&
2491 c2->error_data.status == 0))
2492 return hpsa_cmd_free_and_done(h, c, cmd);
2495 * Any RAID offload error results in retry which will use
2496 * the normal I/O path so the controller can handle whatever is
2497 * wrong.
2499 if (is_logical_device(dev) &&
2500 c2->error_data.serv_response ==
2501 IOACCEL2_SERV_RESPONSE_FAILURE) {
2502 if (c2->error_data.status ==
2503 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2504 dev->offload_enabled = 0;
2505 dev->offload_to_be_enabled = 0;
2508 return hpsa_retry_cmd(h, c);
2511 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2512 return hpsa_retry_cmd(h, c);
2514 return hpsa_cmd_free_and_done(h, c, cmd);
2517 /* Returns 0 on success, < 0 otherwise. */
2518 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2519 struct CommandList *cp)
2521 u8 tmf_status = cp->err_info->ScsiStatus;
2523 switch (tmf_status) {
2524 case CISS_TMF_COMPLETE:
2526 * CISS_TMF_COMPLETE never happens, instead,
2527 * ei->CommandStatus == 0 for this case.
2529 case CISS_TMF_SUCCESS:
2530 return 0;
2531 case CISS_TMF_INVALID_FRAME:
2532 case CISS_TMF_NOT_SUPPORTED:
2533 case CISS_TMF_FAILED:
2534 case CISS_TMF_WRONG_LUN:
2535 case CISS_TMF_OVERLAPPED_TAG:
2536 break;
2537 default:
2538 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2539 tmf_status);
2540 break;
2542 return -tmf_status;
2545 static void complete_scsi_command(struct CommandList *cp)
2547 struct scsi_cmnd *cmd;
2548 struct ctlr_info *h;
2549 struct ErrorInfo *ei;
2550 struct hpsa_scsi_dev_t *dev;
2551 struct io_accel2_cmd *c2;
2553 u8 sense_key;
2554 u8 asc; /* additional sense code */
2555 u8 ascq; /* additional sense code qualifier */
2556 unsigned long sense_data_size;
2558 ei = cp->err_info;
2559 cmd = cp->scsi_cmd;
2560 h = cp->h;
2562 if (!cmd->device) {
2563 cmd->result = DID_NO_CONNECT << 16;
2564 return hpsa_cmd_free_and_done(h, cp, cmd);
2567 dev = cmd->device->hostdata;
2568 if (!dev) {
2569 cmd->result = DID_NO_CONNECT << 16;
2570 return hpsa_cmd_free_and_done(h, cp, cmd);
2572 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2574 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2575 if ((cp->cmd_type == CMD_SCSI) &&
2576 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2577 hpsa_unmap_sg_chain_block(h, cp);
2579 if ((cp->cmd_type == CMD_IOACCEL2) &&
2580 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2581 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2583 cmd->result = (DID_OK << 16); /* host byte */
2584 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2586 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2587 if (dev->physical_device && dev->expose_device &&
2588 dev->removed) {
2589 cmd->result = DID_NO_CONNECT << 16;
2590 return hpsa_cmd_free_and_done(h, cp, cmd);
2592 if (likely(cp->phys_disk != NULL))
2593 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2597 * We check for lockup status here as it may be set for
2598 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2599 * fail_all_oustanding_cmds()
2601 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2602 /* DID_NO_CONNECT will prevent a retry */
2603 cmd->result = DID_NO_CONNECT << 16;
2604 return hpsa_cmd_free_and_done(h, cp, cmd);
2607 if ((unlikely(hpsa_is_pending_event(cp))))
2608 if (cp->reset_pending)
2609 return hpsa_cmd_free_and_done(h, cp, cmd);
2611 if (cp->cmd_type == CMD_IOACCEL2)
2612 return process_ioaccel2_completion(h, cp, cmd, dev);
2614 scsi_set_resid(cmd, ei->ResidualCnt);
2615 if (ei->CommandStatus == 0)
2616 return hpsa_cmd_free_and_done(h, cp, cmd);
2618 /* For I/O accelerator commands, copy over some fields to the normal
2619 * CISS header used below for error handling.
2621 if (cp->cmd_type == CMD_IOACCEL1) {
2622 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2623 cp->Header.SGList = scsi_sg_count(cmd);
2624 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2625 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2626 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2627 cp->Header.tag = c->tag;
2628 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2629 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2631 /* Any RAID offload error results in retry which will use
2632 * the normal I/O path so the controller can handle whatever's
2633 * wrong.
2635 if (is_logical_device(dev)) {
2636 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2637 dev->offload_enabled = 0;
2638 return hpsa_retry_cmd(h, cp);
2642 /* an error has occurred */
2643 switch (ei->CommandStatus) {
2645 case CMD_TARGET_STATUS:
2646 cmd->result |= ei->ScsiStatus;
2647 /* copy the sense data */
2648 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2649 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2650 else
2651 sense_data_size = sizeof(ei->SenseInfo);
2652 if (ei->SenseLen < sense_data_size)
2653 sense_data_size = ei->SenseLen;
2654 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2655 if (ei->ScsiStatus)
2656 decode_sense_data(ei->SenseInfo, sense_data_size,
2657 &sense_key, &asc, &ascq);
2658 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2659 if (sense_key == ABORTED_COMMAND) {
2660 cmd->result |= DID_SOFT_ERROR << 16;
2661 break;
2663 break;
2665 /* Problem was not a check condition
2666 * Pass it up to the upper layers...
2668 if (ei->ScsiStatus) {
2669 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2670 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2671 "Returning result: 0x%x\n",
2672 cp, ei->ScsiStatus,
2673 sense_key, asc, ascq,
2674 cmd->result);
2675 } else { /* scsi status is zero??? How??? */
2676 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2677 "Returning no connection.\n", cp),
2679 /* Ordinarily, this case should never happen,
2680 * but there is a bug in some released firmware
2681 * revisions that allows it to happen if, for
2682 * example, a 4100 backplane loses power and
2683 * the tape drive is in it. We assume that
2684 * it's a fatal error of some kind because we
2685 * can't show that it wasn't. We will make it
2686 * look like selection timeout since that is
2687 * the most common reason for this to occur,
2688 * and it's severe enough.
2691 cmd->result = DID_NO_CONNECT << 16;
2693 break;
2695 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2696 break;
2697 case CMD_DATA_OVERRUN:
2698 dev_warn(&h->pdev->dev,
2699 "CDB %16phN data overrun\n", cp->Request.CDB);
2700 break;
2701 case CMD_INVALID: {
2702 /* print_bytes(cp, sizeof(*cp), 1, 0);
2703 print_cmd(cp); */
2704 /* We get CMD_INVALID if you address a non-existent device
2705 * instead of a selection timeout (no response). You will
2706 * see this if you yank out a drive, then try to access it.
2707 * This is kind of a shame because it means that any other
2708 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2709 * missing target. */
2710 cmd->result = DID_NO_CONNECT << 16;
2712 break;
2713 case CMD_PROTOCOL_ERR:
2714 cmd->result = DID_ERROR << 16;
2715 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2716 cp->Request.CDB);
2717 break;
2718 case CMD_HARDWARE_ERR:
2719 cmd->result = DID_ERROR << 16;
2720 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2721 cp->Request.CDB);
2722 break;
2723 case CMD_CONNECTION_LOST:
2724 cmd->result = DID_ERROR << 16;
2725 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2726 cp->Request.CDB);
2727 break;
2728 case CMD_ABORTED:
2729 cmd->result = DID_ABORT << 16;
2730 break;
2731 case CMD_ABORT_FAILED:
2732 cmd->result = DID_ERROR << 16;
2733 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2734 cp->Request.CDB);
2735 break;
2736 case CMD_UNSOLICITED_ABORT:
2737 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2738 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2739 cp->Request.CDB);
2740 break;
2741 case CMD_TIMEOUT:
2742 cmd->result = DID_TIME_OUT << 16;
2743 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2744 cp->Request.CDB);
2745 break;
2746 case CMD_UNABORTABLE:
2747 cmd->result = DID_ERROR << 16;
2748 dev_warn(&h->pdev->dev, "Command unabortable\n");
2749 break;
2750 case CMD_TMF_STATUS:
2751 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2752 cmd->result = DID_ERROR << 16;
2753 break;
2754 case CMD_IOACCEL_DISABLED:
2755 /* This only handles the direct pass-through case since RAID
2756 * offload is handled above. Just attempt a retry.
2758 cmd->result = DID_SOFT_ERROR << 16;
2759 dev_warn(&h->pdev->dev,
2760 "cp %p had HP SSD Smart Path error\n", cp);
2761 break;
2762 default:
2763 cmd->result = DID_ERROR << 16;
2764 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2765 cp, ei->CommandStatus);
2768 return hpsa_cmd_free_and_done(h, cp, cmd);
2771 static void hpsa_pci_unmap(struct pci_dev *pdev,
2772 struct CommandList *c, int sg_used, int data_direction)
2774 int i;
2776 for (i = 0; i < sg_used; i++)
2777 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2778 le32_to_cpu(c->SG[i].Len),
2779 data_direction);
2782 static int hpsa_map_one(struct pci_dev *pdev,
2783 struct CommandList *cp,
2784 unsigned char *buf,
2785 size_t buflen,
2786 int data_direction)
2788 u64 addr64;
2790 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2791 cp->Header.SGList = 0;
2792 cp->Header.SGTotal = cpu_to_le16(0);
2793 return 0;
2796 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2797 if (dma_mapping_error(&pdev->dev, addr64)) {
2798 /* Prevent subsequent unmap of something never mapped */
2799 cp->Header.SGList = 0;
2800 cp->Header.SGTotal = cpu_to_le16(0);
2801 return -1;
2803 cp->SG[0].Addr = cpu_to_le64(addr64);
2804 cp->SG[0].Len = cpu_to_le32(buflen);
2805 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2806 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2807 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2808 return 0;
2811 #define NO_TIMEOUT ((unsigned long) -1)
2812 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2813 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2814 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2816 DECLARE_COMPLETION_ONSTACK(wait);
2818 c->waiting = &wait;
2819 __enqueue_cmd_and_start_io(h, c, reply_queue);
2820 if (timeout_msecs == NO_TIMEOUT) {
2821 /* TODO: get rid of this no-timeout thing */
2822 wait_for_completion_io(&wait);
2823 return IO_OK;
2825 if (!wait_for_completion_io_timeout(&wait,
2826 msecs_to_jiffies(timeout_msecs))) {
2827 dev_warn(&h->pdev->dev, "Command timed out.\n");
2828 return -ETIMEDOUT;
2830 return IO_OK;
2833 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2834 int reply_queue, unsigned long timeout_msecs)
2836 if (unlikely(lockup_detected(h))) {
2837 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2838 return IO_OK;
2840 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2843 static u32 lockup_detected(struct ctlr_info *h)
2845 int cpu;
2846 u32 rc, *lockup_detected;
2848 cpu = get_cpu();
2849 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2850 rc = *lockup_detected;
2851 put_cpu();
2852 return rc;
2855 #define MAX_DRIVER_CMD_RETRIES 25
2856 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2857 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2859 int backoff_time = 10, retry_count = 0;
2860 int rc;
2862 do {
2863 memset(c->err_info, 0, sizeof(*c->err_info));
2864 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2865 timeout_msecs);
2866 if (rc)
2867 break;
2868 retry_count++;
2869 if (retry_count > 3) {
2870 msleep(backoff_time);
2871 if (backoff_time < 1000)
2872 backoff_time *= 2;
2874 } while ((check_for_unit_attention(h, c) ||
2875 check_for_busy(h, c)) &&
2876 retry_count <= MAX_DRIVER_CMD_RETRIES);
2877 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2878 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2879 rc = -EIO;
2880 return rc;
2883 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2884 struct CommandList *c)
2886 const u8 *cdb = c->Request.CDB;
2887 const u8 *lun = c->Header.LUN.LunAddrBytes;
2889 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2890 txt, lun, cdb);
2893 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2894 struct CommandList *cp)
2896 const struct ErrorInfo *ei = cp->err_info;
2897 struct device *d = &cp->h->pdev->dev;
2898 u8 sense_key, asc, ascq;
2899 int sense_len;
2901 switch (ei->CommandStatus) {
2902 case CMD_TARGET_STATUS:
2903 if (ei->SenseLen > sizeof(ei->SenseInfo))
2904 sense_len = sizeof(ei->SenseInfo);
2905 else
2906 sense_len = ei->SenseLen;
2907 decode_sense_data(ei->SenseInfo, sense_len,
2908 &sense_key, &asc, &ascq);
2909 hpsa_print_cmd(h, "SCSI status", cp);
2910 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2911 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2912 sense_key, asc, ascq);
2913 else
2914 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2915 if (ei->ScsiStatus == 0)
2916 dev_warn(d, "SCSI status is abnormally zero. "
2917 "(probably indicates selection timeout "
2918 "reported incorrectly due to a known "
2919 "firmware bug, circa July, 2001.)\n");
2920 break;
2921 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2922 break;
2923 case CMD_DATA_OVERRUN:
2924 hpsa_print_cmd(h, "overrun condition", cp);
2925 break;
2926 case CMD_INVALID: {
2927 /* controller unfortunately reports SCSI passthru's
2928 * to non-existent targets as invalid commands.
2930 hpsa_print_cmd(h, "invalid command", cp);
2931 dev_warn(d, "probably means device no longer present\n");
2933 break;
2934 case CMD_PROTOCOL_ERR:
2935 hpsa_print_cmd(h, "protocol error", cp);
2936 break;
2937 case CMD_HARDWARE_ERR:
2938 hpsa_print_cmd(h, "hardware error", cp);
2939 break;
2940 case CMD_CONNECTION_LOST:
2941 hpsa_print_cmd(h, "connection lost", cp);
2942 break;
2943 case CMD_ABORTED:
2944 hpsa_print_cmd(h, "aborted", cp);
2945 break;
2946 case CMD_ABORT_FAILED:
2947 hpsa_print_cmd(h, "abort failed", cp);
2948 break;
2949 case CMD_UNSOLICITED_ABORT:
2950 hpsa_print_cmd(h, "unsolicited abort", cp);
2951 break;
2952 case CMD_TIMEOUT:
2953 hpsa_print_cmd(h, "timed out", cp);
2954 break;
2955 case CMD_UNABORTABLE:
2956 hpsa_print_cmd(h, "unabortable", cp);
2957 break;
2958 case CMD_CTLR_LOCKUP:
2959 hpsa_print_cmd(h, "controller lockup detected", cp);
2960 break;
2961 default:
2962 hpsa_print_cmd(h, "unknown status", cp);
2963 dev_warn(d, "Unknown command status %x\n",
2964 ei->CommandStatus);
2968 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2969 u8 page, u8 *buf, size_t bufsize)
2971 int rc = IO_OK;
2972 struct CommandList *c;
2973 struct ErrorInfo *ei;
2975 c = cmd_alloc(h);
2976 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2977 page, scsi3addr, TYPE_CMD)) {
2978 rc = -1;
2979 goto out;
2981 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2982 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2983 if (rc)
2984 goto out;
2985 ei = c->err_info;
2986 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2987 hpsa_scsi_interpret_error(h, c);
2988 rc = -1;
2990 out:
2991 cmd_free(h, c);
2992 return rc;
2995 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2996 u8 *scsi3addr)
2998 u8 *buf;
2999 u64 sa = 0;
3000 int rc = 0;
3002 buf = kzalloc(1024, GFP_KERNEL);
3003 if (!buf)
3004 return 0;
3006 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3007 buf, 1024);
3009 if (rc)
3010 goto out;
3012 sa = get_unaligned_be64(buf+12);
3014 out:
3015 kfree(buf);
3016 return sa;
3019 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3020 u16 page, unsigned char *buf,
3021 unsigned char bufsize)
3023 int rc = IO_OK;
3024 struct CommandList *c;
3025 struct ErrorInfo *ei;
3027 c = cmd_alloc(h);
3029 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3030 page, scsi3addr, TYPE_CMD)) {
3031 rc = -1;
3032 goto out;
3034 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3035 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3036 if (rc)
3037 goto out;
3038 ei = c->err_info;
3039 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3040 hpsa_scsi_interpret_error(h, c);
3041 rc = -1;
3043 out:
3044 cmd_free(h, c);
3045 return rc;
3048 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3049 u8 reset_type, int reply_queue)
3051 int rc = IO_OK;
3052 struct CommandList *c;
3053 struct ErrorInfo *ei;
3055 c = cmd_alloc(h);
3058 /* fill_cmd can't fail here, no data buffer to map. */
3059 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3060 scsi3addr, TYPE_MSG);
3061 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3062 if (rc) {
3063 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3064 goto out;
3066 /* no unmap needed here because no data xfer. */
3068 ei = c->err_info;
3069 if (ei->CommandStatus != 0) {
3070 hpsa_scsi_interpret_error(h, c);
3071 rc = -1;
3073 out:
3074 cmd_free(h, c);
3075 return rc;
3078 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3079 struct hpsa_scsi_dev_t *dev,
3080 unsigned char *scsi3addr)
3082 int i;
3083 bool match = false;
3084 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3085 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3087 if (hpsa_is_cmd_idle(c))
3088 return false;
3090 switch (c->cmd_type) {
3091 case CMD_SCSI:
3092 case CMD_IOCTL_PEND:
3093 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3094 sizeof(c->Header.LUN.LunAddrBytes));
3095 break;
3097 case CMD_IOACCEL1:
3098 case CMD_IOACCEL2:
3099 if (c->phys_disk == dev) {
3100 /* HBA mode match */
3101 match = true;
3102 } else {
3103 /* Possible RAID mode -- check each phys dev. */
3104 /* FIXME: Do we need to take out a lock here? If
3105 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3106 * instead. */
3107 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108 /* FIXME: an alternate test might be
3110 * match = dev->phys_disk[i]->ioaccel_handle
3111 * == c2->scsi_nexus; */
3112 match = dev->phys_disk[i] == c->phys_disk;
3115 break;
3117 case IOACCEL2_TMF:
3118 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3119 match = dev->phys_disk[i]->ioaccel_handle ==
3120 le32_to_cpu(ac->it_nexus);
3122 break;
3124 case 0: /* The command is in the middle of being initialized. */
3125 match = false;
3126 break;
3128 default:
3129 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3130 c->cmd_type);
3131 BUG();
3134 return match;
3137 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3138 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3140 int i;
3141 int rc = 0;
3143 /* We can really only handle one reset at a time */
3144 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3145 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3146 return -EINTR;
3149 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3151 for (i = 0; i < h->nr_cmds; i++) {
3152 struct CommandList *c = h->cmd_pool + i;
3153 int refcount = atomic_inc_return(&c->refcount);
3155 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3156 unsigned long flags;
3159 * Mark the target command as having a reset pending,
3160 * then lock a lock so that the command cannot complete
3161 * while we're considering it. If the command is not
3162 * idle then count it; otherwise revoke the event.
3164 c->reset_pending = dev;
3165 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3166 if (!hpsa_is_cmd_idle(c))
3167 atomic_inc(&dev->reset_cmds_out);
3168 else
3169 c->reset_pending = NULL;
3170 spin_unlock_irqrestore(&h->lock, flags);
3173 cmd_free(h, c);
3176 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3177 if (!rc)
3178 wait_event(h->event_sync_wait_queue,
3179 atomic_read(&dev->reset_cmds_out) == 0 ||
3180 lockup_detected(h));
3182 if (unlikely(lockup_detected(h))) {
3183 dev_warn(&h->pdev->dev,
3184 "Controller lockup detected during reset wait\n");
3185 rc = -ENODEV;
3188 if (unlikely(rc))
3189 atomic_set(&dev->reset_cmds_out, 0);
3190 else
3191 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3193 mutex_unlock(&h->reset_mutex);
3194 return rc;
3197 static void hpsa_get_raid_level(struct ctlr_info *h,
3198 unsigned char *scsi3addr, unsigned char *raid_level)
3200 int rc;
3201 unsigned char *buf;
3203 *raid_level = RAID_UNKNOWN;
3204 buf = kzalloc(64, GFP_KERNEL);
3205 if (!buf)
3206 return;
3208 if (!hpsa_vpd_page_supported(h, scsi3addr,
3209 HPSA_VPD_LV_DEVICE_GEOMETRY))
3210 goto exit;
3212 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3213 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3215 if (rc == 0)
3216 *raid_level = buf[8];
3217 if (*raid_level > RAID_UNKNOWN)
3218 *raid_level = RAID_UNKNOWN;
3219 exit:
3220 kfree(buf);
3221 return;
3224 #define HPSA_MAP_DEBUG
3225 #ifdef HPSA_MAP_DEBUG
3226 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3227 struct raid_map_data *map_buff)
3229 struct raid_map_disk_data *dd = &map_buff->data[0];
3230 int map, row, col;
3231 u16 map_cnt, row_cnt, disks_per_row;
3233 if (rc != 0)
3234 return;
3236 /* Show details only if debugging has been activated. */
3237 if (h->raid_offload_debug < 2)
3238 return;
3240 dev_info(&h->pdev->dev, "structure_size = %u\n",
3241 le32_to_cpu(map_buff->structure_size));
3242 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3243 le32_to_cpu(map_buff->volume_blk_size));
3244 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3245 le64_to_cpu(map_buff->volume_blk_cnt));
3246 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3247 map_buff->phys_blk_shift);
3248 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3249 map_buff->parity_rotation_shift);
3250 dev_info(&h->pdev->dev, "strip_size = %u\n",
3251 le16_to_cpu(map_buff->strip_size));
3252 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3253 le64_to_cpu(map_buff->disk_starting_blk));
3254 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3255 le64_to_cpu(map_buff->disk_blk_cnt));
3256 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3257 le16_to_cpu(map_buff->data_disks_per_row));
3258 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3259 le16_to_cpu(map_buff->metadata_disks_per_row));
3260 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3261 le16_to_cpu(map_buff->row_cnt));
3262 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3263 le16_to_cpu(map_buff->layout_map_count));
3264 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3265 le16_to_cpu(map_buff->flags));
3266 dev_info(&h->pdev->dev, "encryption = %s\n",
3267 le16_to_cpu(map_buff->flags) &
3268 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3269 dev_info(&h->pdev->dev, "dekindex = %u\n",
3270 le16_to_cpu(map_buff->dekindex));
3271 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3272 for (map = 0; map < map_cnt; map++) {
3273 dev_info(&h->pdev->dev, "Map%u:\n", map);
3274 row_cnt = le16_to_cpu(map_buff->row_cnt);
3275 for (row = 0; row < row_cnt; row++) {
3276 dev_info(&h->pdev->dev, " Row%u:\n", row);
3277 disks_per_row =
3278 le16_to_cpu(map_buff->data_disks_per_row);
3279 for (col = 0; col < disks_per_row; col++, dd++)
3280 dev_info(&h->pdev->dev,
3281 " D%02u: h=0x%04x xor=%u,%u\n",
3282 col, dd->ioaccel_handle,
3283 dd->xor_mult[0], dd->xor_mult[1]);
3284 disks_per_row =
3285 le16_to_cpu(map_buff->metadata_disks_per_row);
3286 for (col = 0; col < disks_per_row; col++, dd++)
3287 dev_info(&h->pdev->dev,
3288 " M%02u: h=0x%04x xor=%u,%u\n",
3289 col, dd->ioaccel_handle,
3290 dd->xor_mult[0], dd->xor_mult[1]);
3294 #else
3295 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3296 __attribute__((unused)) int rc,
3297 __attribute__((unused)) struct raid_map_data *map_buff)
3300 #endif
3302 static int hpsa_get_raid_map(struct ctlr_info *h,
3303 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3305 int rc = 0;
3306 struct CommandList *c;
3307 struct ErrorInfo *ei;
3309 c = cmd_alloc(h);
3311 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3312 sizeof(this_device->raid_map), 0,
3313 scsi3addr, TYPE_CMD)) {
3314 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3315 cmd_free(h, c);
3316 return -1;
3318 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3319 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3320 if (rc)
3321 goto out;
3322 ei = c->err_info;
3323 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3324 hpsa_scsi_interpret_error(h, c);
3325 rc = -1;
3326 goto out;
3328 cmd_free(h, c);
3330 /* @todo in the future, dynamically allocate RAID map memory */
3331 if (le32_to_cpu(this_device->raid_map.structure_size) >
3332 sizeof(this_device->raid_map)) {
3333 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3334 rc = -1;
3336 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3337 return rc;
3338 out:
3339 cmd_free(h, c);
3340 return rc;
3343 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3344 unsigned char scsi3addr[], u16 bmic_device_index,
3345 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3347 int rc = IO_OK;
3348 struct CommandList *c;
3349 struct ErrorInfo *ei;
3351 c = cmd_alloc(h);
3353 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3354 0, RAID_CTLR_LUNID, TYPE_CMD);
3355 if (rc)
3356 goto out;
3358 c->Request.CDB[2] = bmic_device_index & 0xff;
3359 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3361 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3362 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3363 if (rc)
3364 goto out;
3365 ei = c->err_info;
3366 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3367 hpsa_scsi_interpret_error(h, c);
3368 rc = -1;
3370 out:
3371 cmd_free(h, c);
3372 return rc;
3375 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3376 struct bmic_identify_controller *buf, size_t bufsize)
3378 int rc = IO_OK;
3379 struct CommandList *c;
3380 struct ErrorInfo *ei;
3382 c = cmd_alloc(h);
3384 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3385 0, RAID_CTLR_LUNID, TYPE_CMD);
3386 if (rc)
3387 goto out;
3389 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3390 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3391 if (rc)
3392 goto out;
3393 ei = c->err_info;
3394 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3395 hpsa_scsi_interpret_error(h, c);
3396 rc = -1;
3398 out:
3399 cmd_free(h, c);
3400 return rc;
3403 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3404 unsigned char scsi3addr[], u16 bmic_device_index,
3405 struct bmic_identify_physical_device *buf, size_t bufsize)
3407 int rc = IO_OK;
3408 struct CommandList *c;
3409 struct ErrorInfo *ei;
3411 c = cmd_alloc(h);
3412 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3413 0, RAID_CTLR_LUNID, TYPE_CMD);
3414 if (rc)
3415 goto out;
3417 c->Request.CDB[2] = bmic_device_index & 0xff;
3418 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3420 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3421 NO_TIMEOUT);
3422 ei = c->err_info;
3423 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3424 hpsa_scsi_interpret_error(h, c);
3425 rc = -1;
3427 out:
3428 cmd_free(h, c);
3430 return rc;
3434 * get enclosure information
3435 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3436 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3437 * Uses id_physical_device to determine the box_index.
3439 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3440 unsigned char *scsi3addr,
3441 struct ReportExtendedLUNdata *rlep, int rle_index,
3442 struct hpsa_scsi_dev_t *encl_dev)
3444 int rc = -1;
3445 struct CommandList *c = NULL;
3446 struct ErrorInfo *ei = NULL;
3447 struct bmic_sense_storage_box_params *bssbp = NULL;
3448 struct bmic_identify_physical_device *id_phys = NULL;
3449 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3450 u16 bmic_device_index = 0;
3452 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3454 encl_dev->sas_address =
3455 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3457 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3458 rc = IO_OK;
3459 goto out;
3462 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3463 rc = IO_OK;
3464 goto out;
3467 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3468 if (!bssbp)
3469 goto out;
3471 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3472 if (!id_phys)
3473 goto out;
3475 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3476 id_phys, sizeof(*id_phys));
3477 if (rc) {
3478 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3479 __func__, encl_dev->external, bmic_device_index);
3480 goto out;
3483 c = cmd_alloc(h);
3485 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3486 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3488 if (rc)
3489 goto out;
3491 if (id_phys->phys_connector[1] == 'E')
3492 c->Request.CDB[5] = id_phys->box_index;
3493 else
3494 c->Request.CDB[5] = 0;
3496 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3497 NO_TIMEOUT);
3498 if (rc)
3499 goto out;
3501 ei = c->err_info;
3502 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3503 rc = -1;
3504 goto out;
3507 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3508 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3509 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3511 rc = IO_OK;
3512 out:
3513 kfree(bssbp);
3514 kfree(id_phys);
3516 if (c)
3517 cmd_free(h, c);
3519 if (rc != IO_OK)
3520 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3521 "Error, could not get enclosure information");
3524 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3525 unsigned char *scsi3addr)
3527 struct ReportExtendedLUNdata *physdev;
3528 u32 nphysicals;
3529 u64 sa = 0;
3530 int i;
3532 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3533 if (!physdev)
3534 return 0;
3536 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3537 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3538 kfree(physdev);
3539 return 0;
3541 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3543 for (i = 0; i < nphysicals; i++)
3544 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3545 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3546 break;
3549 kfree(physdev);
3551 return sa;
3554 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3555 struct hpsa_scsi_dev_t *dev)
3557 int rc;
3558 u64 sa = 0;
3560 if (is_hba_lunid(scsi3addr)) {
3561 struct bmic_sense_subsystem_info *ssi;
3563 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3564 if (!ssi)
3565 return;
3567 rc = hpsa_bmic_sense_subsystem_information(h,
3568 scsi3addr, 0, ssi, sizeof(*ssi));
3569 if (rc == 0) {
3570 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3571 h->sas_address = sa;
3574 kfree(ssi);
3575 } else
3576 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3578 dev->sas_address = sa;
3581 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3582 struct ReportExtendedLUNdata *physdev)
3584 u32 nphysicals;
3585 int i;
3587 if (h->discovery_polling)
3588 return;
3590 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3592 for (i = 0; i < nphysicals; i++) {
3593 if (physdev->LUN[i].device_type ==
3594 BMIC_DEVICE_TYPE_CONTROLLER
3595 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3596 dev_info(&h->pdev->dev,
3597 "External controller present, activate discovery polling and disable rld caching\n");
3598 hpsa_disable_rld_caching(h);
3599 h->discovery_polling = 1;
3600 break;
3605 /* Get a device id from inquiry page 0x83 */
3606 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3607 unsigned char scsi3addr[], u8 page)
3609 int rc;
3610 int i;
3611 int pages;
3612 unsigned char *buf, bufsize;
3614 buf = kzalloc(256, GFP_KERNEL);
3615 if (!buf)
3616 return false;
3618 /* Get the size of the page list first */
3619 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3620 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3621 buf, HPSA_VPD_HEADER_SZ);
3622 if (rc != 0)
3623 goto exit_unsupported;
3624 pages = buf[3];
3625 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3626 bufsize = pages + HPSA_VPD_HEADER_SZ;
3627 else
3628 bufsize = 255;
3630 /* Get the whole VPD page list */
3631 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633 buf, bufsize);
3634 if (rc != 0)
3635 goto exit_unsupported;
3637 pages = buf[3];
3638 for (i = 1; i <= pages; i++)
3639 if (buf[3 + i] == page)
3640 goto exit_supported;
3641 exit_unsupported:
3642 kfree(buf);
3643 return false;
3644 exit_supported:
3645 kfree(buf);
3646 return true;
3650 * Called during a scan operation.
3651 * Sets ioaccel status on the new device list, not the existing device list
3653 * The device list used during I/O will be updated later in
3654 * adjust_hpsa_scsi_table.
3656 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3657 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3659 int rc;
3660 unsigned char *buf;
3661 u8 ioaccel_status;
3663 this_device->offload_config = 0;
3664 this_device->offload_enabled = 0;
3665 this_device->offload_to_be_enabled = 0;
3667 buf = kzalloc(64, GFP_KERNEL);
3668 if (!buf)
3669 return;
3670 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3671 goto out;
3672 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3673 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3674 if (rc != 0)
3675 goto out;
3677 #define IOACCEL_STATUS_BYTE 4
3678 #define OFFLOAD_CONFIGURED_BIT 0x01
3679 #define OFFLOAD_ENABLED_BIT 0x02
3680 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3681 this_device->offload_config =
3682 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3683 if (this_device->offload_config) {
3684 this_device->offload_to_be_enabled =
3685 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3686 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3687 this_device->offload_to_be_enabled = 0;
3690 out:
3691 kfree(buf);
3692 return;
3695 /* Get the device id from inquiry page 0x83 */
3696 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3697 unsigned char *device_id, int index, int buflen)
3699 int rc;
3700 unsigned char *buf;
3702 /* Does controller have VPD for device id? */
3703 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3704 return 1; /* not supported */
3706 buf = kzalloc(64, GFP_KERNEL);
3707 if (!buf)
3708 return -ENOMEM;
3710 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3711 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3712 if (rc == 0) {
3713 if (buflen > 16)
3714 buflen = 16;
3715 memcpy(device_id, &buf[8], buflen);
3718 kfree(buf);
3720 return rc; /*0 - got id, otherwise, didn't */
3723 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3724 void *buf, int bufsize,
3725 int extended_response)
3727 int rc = IO_OK;
3728 struct CommandList *c;
3729 unsigned char scsi3addr[8];
3730 struct ErrorInfo *ei;
3732 c = cmd_alloc(h);
3734 /* address the controller */
3735 memset(scsi3addr, 0, sizeof(scsi3addr));
3736 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3737 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3738 rc = -EAGAIN;
3739 goto out;
3741 if (extended_response)
3742 c->Request.CDB[1] = extended_response;
3743 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3744 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3745 if (rc)
3746 goto out;
3747 ei = c->err_info;
3748 if (ei->CommandStatus != 0 &&
3749 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3750 hpsa_scsi_interpret_error(h, c);
3751 rc = -EIO;
3752 } else {
3753 struct ReportLUNdata *rld = buf;
3755 if (rld->extended_response_flag != extended_response) {
3756 if (!h->legacy_board) {
3757 dev_err(&h->pdev->dev,
3758 "report luns requested format %u, got %u\n",
3759 extended_response,
3760 rld->extended_response_flag);
3761 rc = -EINVAL;
3762 } else
3763 rc = -EOPNOTSUPP;
3766 out:
3767 cmd_free(h, c);
3768 return rc;
3771 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3772 struct ReportExtendedLUNdata *buf, int bufsize)
3774 int rc;
3775 struct ReportLUNdata *lbuf;
3777 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3778 HPSA_REPORT_PHYS_EXTENDED);
3779 if (!rc || rc != -EOPNOTSUPP)
3780 return rc;
3782 /* REPORT PHYS EXTENDED is not supported */
3783 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3784 if (!lbuf)
3785 return -ENOMEM;
3787 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3788 if (!rc) {
3789 int i;
3790 u32 nphys;
3792 /* Copy ReportLUNdata header */
3793 memcpy(buf, lbuf, 8);
3794 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3795 for (i = 0; i < nphys; i++)
3796 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3798 kfree(lbuf);
3799 return rc;
3802 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3803 struct ReportLUNdata *buf, int bufsize)
3805 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3808 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3809 int bus, int target, int lun)
3811 device->bus = bus;
3812 device->target = target;
3813 device->lun = lun;
3816 /* Use VPD inquiry to get details of volume status */
3817 static int hpsa_get_volume_status(struct ctlr_info *h,
3818 unsigned char scsi3addr[])
3820 int rc;
3821 int status;
3822 int size;
3823 unsigned char *buf;
3825 buf = kzalloc(64, GFP_KERNEL);
3826 if (!buf)
3827 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3829 /* Does controller have VPD for logical volume status? */
3830 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3831 goto exit_failed;
3833 /* Get the size of the VPD return buffer */
3834 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3835 buf, HPSA_VPD_HEADER_SZ);
3836 if (rc != 0)
3837 goto exit_failed;
3838 size = buf[3];
3840 /* Now get the whole VPD buffer */
3841 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3842 buf, size + HPSA_VPD_HEADER_SZ);
3843 if (rc != 0)
3844 goto exit_failed;
3845 status = buf[4]; /* status byte */
3847 kfree(buf);
3848 return status;
3849 exit_failed:
3850 kfree(buf);
3851 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3854 /* Determine offline status of a volume.
3855 * Return either:
3856 * 0 (not offline)
3857 * 0xff (offline for unknown reasons)
3858 * # (integer code indicating one of several NOT READY states
3859 * describing why a volume is to be kept offline)
3861 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3862 unsigned char scsi3addr[])
3864 struct CommandList *c;
3865 unsigned char *sense;
3866 u8 sense_key, asc, ascq;
3867 int sense_len;
3868 int rc, ldstat = 0;
3869 u16 cmd_status;
3870 u8 scsi_status;
3871 #define ASC_LUN_NOT_READY 0x04
3872 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3873 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3875 c = cmd_alloc(h);
3877 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3878 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3879 NO_TIMEOUT);
3880 if (rc) {
3881 cmd_free(h, c);
3882 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3884 sense = c->err_info->SenseInfo;
3885 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3886 sense_len = sizeof(c->err_info->SenseInfo);
3887 else
3888 sense_len = c->err_info->SenseLen;
3889 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3890 cmd_status = c->err_info->CommandStatus;
3891 scsi_status = c->err_info->ScsiStatus;
3892 cmd_free(h, c);
3894 /* Determine the reason for not ready state */
3895 ldstat = hpsa_get_volume_status(h, scsi3addr);
3897 /* Keep volume offline in certain cases: */
3898 switch (ldstat) {
3899 case HPSA_LV_FAILED:
3900 case HPSA_LV_UNDERGOING_ERASE:
3901 case HPSA_LV_NOT_AVAILABLE:
3902 case HPSA_LV_UNDERGOING_RPI:
3903 case HPSA_LV_PENDING_RPI:
3904 case HPSA_LV_ENCRYPTED_NO_KEY:
3905 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3906 case HPSA_LV_UNDERGOING_ENCRYPTION:
3907 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3908 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3909 return ldstat;
3910 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3911 /* If VPD status page isn't available,
3912 * use ASC/ASCQ to determine state
3914 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3915 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3916 return ldstat;
3917 break;
3918 default:
3919 break;
3921 return HPSA_LV_OK;
3924 static int hpsa_update_device_info(struct ctlr_info *h,
3925 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3926 unsigned char *is_OBDR_device)
3929 #define OBDR_SIG_OFFSET 43
3930 #define OBDR_TAPE_SIG "$DR-10"
3931 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3932 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3934 unsigned char *inq_buff;
3935 unsigned char *obdr_sig;
3936 int rc = 0;
3938 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3939 if (!inq_buff) {
3940 rc = -ENOMEM;
3941 goto bail_out;
3944 /* Do an inquiry to the device to see what it is. */
3945 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3946 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3947 dev_err(&h->pdev->dev,
3948 "%s: inquiry failed, device will be skipped.\n",
3949 __func__);
3950 rc = HPSA_INQUIRY_FAILED;
3951 goto bail_out;
3954 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3955 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3957 this_device->devtype = (inq_buff[0] & 0x1f);
3958 memcpy(this_device->scsi3addr, scsi3addr, 8);
3959 memcpy(this_device->vendor, &inq_buff[8],
3960 sizeof(this_device->vendor));
3961 memcpy(this_device->model, &inq_buff[16],
3962 sizeof(this_device->model));
3963 this_device->rev = inq_buff[2];
3964 memset(this_device->device_id, 0,
3965 sizeof(this_device->device_id));
3966 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3967 sizeof(this_device->device_id)) < 0)
3968 dev_err(&h->pdev->dev,
3969 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3970 h->ctlr, __func__,
3971 h->scsi_host->host_no,
3972 this_device->target, this_device->lun,
3973 scsi_device_type(this_device->devtype),
3974 this_device->model);
3976 if ((this_device->devtype == TYPE_DISK ||
3977 this_device->devtype == TYPE_ZBC) &&
3978 is_logical_dev_addr_mode(scsi3addr)) {
3979 unsigned char volume_offline;
3981 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3982 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3983 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3984 volume_offline = hpsa_volume_offline(h, scsi3addr);
3985 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3986 h->legacy_board) {
3988 * Legacy boards might not support volume status
3990 dev_info(&h->pdev->dev,
3991 "C0:T%d:L%d Volume status not available, assuming online.\n",
3992 this_device->target, this_device->lun);
3993 volume_offline = 0;
3995 this_device->volume_offline = volume_offline;
3996 if (volume_offline == HPSA_LV_FAILED) {
3997 rc = HPSA_LV_FAILED;
3998 dev_err(&h->pdev->dev,
3999 "%s: LV failed, device will be skipped.\n",
4000 __func__);
4001 goto bail_out;
4003 } else {
4004 this_device->raid_level = RAID_UNKNOWN;
4005 this_device->offload_config = 0;
4006 this_device->offload_enabled = 0;
4007 this_device->offload_to_be_enabled = 0;
4008 this_device->hba_ioaccel_enabled = 0;
4009 this_device->volume_offline = 0;
4010 this_device->queue_depth = h->nr_cmds;
4013 if (this_device->external)
4014 this_device->queue_depth = EXTERNAL_QD;
4016 if (is_OBDR_device) {
4017 /* See if this is a One-Button-Disaster-Recovery device
4018 * by looking for "$DR-10" at offset 43 in inquiry data.
4020 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4021 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4022 strncmp(obdr_sig, OBDR_TAPE_SIG,
4023 OBDR_SIG_LEN) == 0);
4025 kfree(inq_buff);
4026 return 0;
4028 bail_out:
4029 kfree(inq_buff);
4030 return rc;
4034 * Helper function to assign bus, target, lun mapping of devices.
4035 * Logical drive target and lun are assigned at this time, but
4036 * physical device lun and target assignment are deferred (assigned
4037 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4039 static void figure_bus_target_lun(struct ctlr_info *h,
4040 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4042 u32 lunid = get_unaligned_le32(lunaddrbytes);
4044 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4045 /* physical device, target and lun filled in later */
4046 if (is_hba_lunid(lunaddrbytes)) {
4047 int bus = HPSA_HBA_BUS;
4049 if (!device->rev)
4050 bus = HPSA_LEGACY_HBA_BUS;
4051 hpsa_set_bus_target_lun(device,
4052 bus, 0, lunid & 0x3fff);
4053 } else
4054 /* defer target, lun assignment for physical devices */
4055 hpsa_set_bus_target_lun(device,
4056 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4057 return;
4059 /* It's a logical device */
4060 if (device->external) {
4061 hpsa_set_bus_target_lun(device,
4062 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4063 lunid & 0x00ff);
4064 return;
4066 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4067 0, lunid & 0x3fff);
4070 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4071 int i, int nphysicals, int nlocal_logicals)
4073 /* In report logicals, local logicals are listed first,
4074 * then any externals.
4076 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4078 if (i == raid_ctlr_position)
4079 return 0;
4081 if (i < logicals_start)
4082 return 0;
4084 /* i is in logicals range, but still within local logicals */
4085 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4086 return 0;
4088 return 1; /* it's an external lun */
4092 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4093 * logdev. The number of luns in physdev and logdev are returned in
4094 * *nphysicals and *nlogicals, respectively.
4095 * Returns 0 on success, -1 otherwise.
4097 static int hpsa_gather_lun_info(struct ctlr_info *h,
4098 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4099 struct ReportLUNdata *logdev, u32 *nlogicals)
4101 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4102 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4103 return -1;
4105 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4106 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4107 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4108 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4109 *nphysicals = HPSA_MAX_PHYS_LUN;
4111 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4112 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4113 return -1;
4115 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4116 /* Reject Logicals in excess of our max capability. */
4117 if (*nlogicals > HPSA_MAX_LUN) {
4118 dev_warn(&h->pdev->dev,
4119 "maximum logical LUNs (%d) exceeded. "
4120 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4121 *nlogicals - HPSA_MAX_LUN);
4122 *nlogicals = HPSA_MAX_LUN;
4124 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4125 dev_warn(&h->pdev->dev,
4126 "maximum logical + physical LUNs (%d) exceeded. "
4127 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4128 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4129 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4131 return 0;
4134 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4135 int i, int nphysicals, int nlogicals,
4136 struct ReportExtendedLUNdata *physdev_list,
4137 struct ReportLUNdata *logdev_list)
4139 /* Helper function, figure out where the LUN ID info is coming from
4140 * given index i, lists of physical and logical devices, where in
4141 * the list the raid controller is supposed to appear (first or last)
4144 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4145 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4147 if (i == raid_ctlr_position)
4148 return RAID_CTLR_LUNID;
4150 if (i < logicals_start)
4151 return &physdev_list->LUN[i -
4152 (raid_ctlr_position == 0)].lunid[0];
4154 if (i < last_device)
4155 return &logdev_list->LUN[i - nphysicals -
4156 (raid_ctlr_position == 0)][0];
4157 BUG();
4158 return NULL;
4161 /* get physical drive ioaccel handle and queue depth */
4162 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4163 struct hpsa_scsi_dev_t *dev,
4164 struct ReportExtendedLUNdata *rlep, int rle_index,
4165 struct bmic_identify_physical_device *id_phys)
4167 int rc;
4168 struct ext_report_lun_entry *rle;
4170 rle = &rlep->LUN[rle_index];
4172 dev->ioaccel_handle = rle->ioaccel_handle;
4173 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4174 dev->hba_ioaccel_enabled = 1;
4175 memset(id_phys, 0, sizeof(*id_phys));
4176 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4177 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4178 sizeof(*id_phys));
4179 if (!rc)
4180 /* Reserve space for FW operations */
4181 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4182 #define DRIVE_QUEUE_DEPTH 7
4183 dev->queue_depth =
4184 le16_to_cpu(id_phys->current_queue_depth_limit) -
4185 DRIVE_CMDS_RESERVED_FOR_FW;
4186 else
4187 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4190 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4191 struct ReportExtendedLUNdata *rlep, int rle_index,
4192 struct bmic_identify_physical_device *id_phys)
4194 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4196 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4197 this_device->hba_ioaccel_enabled = 1;
4199 memcpy(&this_device->active_path_index,
4200 &id_phys->active_path_number,
4201 sizeof(this_device->active_path_index));
4202 memcpy(&this_device->path_map,
4203 &id_phys->redundant_path_present_map,
4204 sizeof(this_device->path_map));
4205 memcpy(&this_device->box,
4206 &id_phys->alternate_paths_phys_box_on_port,
4207 sizeof(this_device->box));
4208 memcpy(&this_device->phys_connector,
4209 &id_phys->alternate_paths_phys_connector,
4210 sizeof(this_device->phys_connector));
4211 memcpy(&this_device->bay,
4212 &id_phys->phys_bay_in_box,
4213 sizeof(this_device->bay));
4216 /* get number of local logical disks. */
4217 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4218 struct bmic_identify_controller *id_ctlr,
4219 u32 *nlocals)
4221 int rc;
4223 if (!id_ctlr) {
4224 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4225 __func__);
4226 return -ENOMEM;
4228 memset(id_ctlr, 0, sizeof(*id_ctlr));
4229 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4230 if (!rc)
4231 if (id_ctlr->configured_logical_drive_count < 255)
4232 *nlocals = id_ctlr->configured_logical_drive_count;
4233 else
4234 *nlocals = le16_to_cpu(
4235 id_ctlr->extended_logical_unit_count);
4236 else
4237 *nlocals = -1;
4238 return rc;
4241 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4243 struct bmic_identify_physical_device *id_phys;
4244 bool is_spare = false;
4245 int rc;
4247 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4248 if (!id_phys)
4249 return false;
4251 rc = hpsa_bmic_id_physical_device(h,
4252 lunaddrbytes,
4253 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4254 id_phys, sizeof(*id_phys));
4255 if (rc == 0)
4256 is_spare = (id_phys->more_flags >> 6) & 0x01;
4258 kfree(id_phys);
4259 return is_spare;
4262 #define RPL_DEV_FLAG_NON_DISK 0x1
4263 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4264 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4266 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4268 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4269 struct ext_report_lun_entry *rle)
4271 u8 device_flags;
4272 u8 device_type;
4274 if (!MASKED_DEVICE(lunaddrbytes))
4275 return false;
4277 device_flags = rle->device_flags;
4278 device_type = rle->device_type;
4280 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4281 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4282 return false;
4283 return true;
4286 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4287 return false;
4289 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4290 return false;
4293 * Spares may be spun down, we do not want to
4294 * do an Inquiry to a RAID set spare drive as
4295 * that would have them spun up, that is a
4296 * performance hit because I/O to the RAID device
4297 * stops while the spin up occurs which can take
4298 * over 50 seconds.
4300 if (hpsa_is_disk_spare(h, lunaddrbytes))
4301 return true;
4303 return false;
4306 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4308 /* the idea here is we could get notified
4309 * that some devices have changed, so we do a report
4310 * physical luns and report logical luns cmd, and adjust
4311 * our list of devices accordingly.
4313 * The scsi3addr's of devices won't change so long as the
4314 * adapter is not reset. That means we can rescan and
4315 * tell which devices we already know about, vs. new
4316 * devices, vs. disappearing devices.
4318 struct ReportExtendedLUNdata *physdev_list = NULL;
4319 struct ReportLUNdata *logdev_list = NULL;
4320 struct bmic_identify_physical_device *id_phys = NULL;
4321 struct bmic_identify_controller *id_ctlr = NULL;
4322 u32 nphysicals = 0;
4323 u32 nlogicals = 0;
4324 u32 nlocal_logicals = 0;
4325 u32 ndev_allocated = 0;
4326 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4327 int ncurrent = 0;
4328 int i, n_ext_target_devs, ndevs_to_allocate;
4329 int raid_ctlr_position;
4330 bool physical_device;
4331 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4333 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4334 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4335 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4336 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4337 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4338 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4340 if (!currentsd || !physdev_list || !logdev_list ||
4341 !tmpdevice || !id_phys || !id_ctlr) {
4342 dev_err(&h->pdev->dev, "out of memory\n");
4343 goto out;
4345 memset(lunzerobits, 0, sizeof(lunzerobits));
4347 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4349 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4350 logdev_list, &nlogicals)) {
4351 h->drv_req_rescan = 1;
4352 goto out;
4355 /* Set number of local logicals (non PTRAID) */
4356 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4357 dev_warn(&h->pdev->dev,
4358 "%s: Can't determine number of local logical devices.\n",
4359 __func__);
4362 /* We might see up to the maximum number of logical and physical disks
4363 * plus external target devices, and a device for the local RAID
4364 * controller.
4366 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4368 hpsa_ext_ctrl_present(h, physdev_list);
4370 /* Allocate the per device structures */
4371 for (i = 0; i < ndevs_to_allocate; i++) {
4372 if (i >= HPSA_MAX_DEVICES) {
4373 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4374 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4375 ndevs_to_allocate - HPSA_MAX_DEVICES);
4376 break;
4379 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4380 if (!currentsd[i]) {
4381 h->drv_req_rescan = 1;
4382 goto out;
4384 ndev_allocated++;
4387 if (is_scsi_rev_5(h))
4388 raid_ctlr_position = 0;
4389 else
4390 raid_ctlr_position = nphysicals + nlogicals;
4392 /* adjust our table of devices */
4393 n_ext_target_devs = 0;
4394 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4395 u8 *lunaddrbytes, is_OBDR = 0;
4396 int rc = 0;
4397 int phys_dev_index = i - (raid_ctlr_position == 0);
4398 bool skip_device = false;
4400 memset(tmpdevice, 0, sizeof(*tmpdevice));
4402 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4404 /* Figure out where the LUN ID info is coming from */
4405 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4406 i, nphysicals, nlogicals, physdev_list, logdev_list);
4408 /* Determine if this is a lun from an external target array */
4409 tmpdevice->external =
4410 figure_external_status(h, raid_ctlr_position, i,
4411 nphysicals, nlocal_logicals);
4414 * Skip over some devices such as a spare.
4416 if (!tmpdevice->external && physical_device) {
4417 skip_device = hpsa_skip_device(h, lunaddrbytes,
4418 &physdev_list->LUN[phys_dev_index]);
4419 if (skip_device)
4420 continue;
4423 /* Get device type, vendor, model, device id, raid_map */
4424 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4425 &is_OBDR);
4426 if (rc == -ENOMEM) {
4427 dev_warn(&h->pdev->dev,
4428 "Out of memory, rescan deferred.\n");
4429 h->drv_req_rescan = 1;
4430 goto out;
4432 if (rc) {
4433 h->drv_req_rescan = 1;
4434 continue;
4437 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4438 this_device = currentsd[ncurrent];
4440 *this_device = *tmpdevice;
4441 this_device->physical_device = physical_device;
4444 * Expose all devices except for physical devices that
4445 * are masked.
4447 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4448 this_device->expose_device = 0;
4449 else
4450 this_device->expose_device = 1;
4454 * Get the SAS address for physical devices that are exposed.
4456 if (this_device->physical_device && this_device->expose_device)
4457 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4459 switch (this_device->devtype) {
4460 case TYPE_ROM:
4461 /* We don't *really* support actual CD-ROM devices,
4462 * just "One Button Disaster Recovery" tape drive
4463 * which temporarily pretends to be a CD-ROM drive.
4464 * So we check that the device is really an OBDR tape
4465 * device by checking for "$DR-10" in bytes 43-48 of
4466 * the inquiry data.
4468 if (is_OBDR)
4469 ncurrent++;
4470 break;
4471 case TYPE_DISK:
4472 case TYPE_ZBC:
4473 if (this_device->physical_device) {
4474 /* The disk is in HBA mode. */
4475 /* Never use RAID mapper in HBA mode. */
4476 this_device->offload_enabled = 0;
4477 hpsa_get_ioaccel_drive_info(h, this_device,
4478 physdev_list, phys_dev_index, id_phys);
4479 hpsa_get_path_info(this_device,
4480 physdev_list, phys_dev_index, id_phys);
4482 ncurrent++;
4483 break;
4484 case TYPE_TAPE:
4485 case TYPE_MEDIUM_CHANGER:
4486 ncurrent++;
4487 break;
4488 case TYPE_ENCLOSURE:
4489 if (!this_device->external)
4490 hpsa_get_enclosure_info(h, lunaddrbytes,
4491 physdev_list, phys_dev_index,
4492 this_device);
4493 ncurrent++;
4494 break;
4495 case TYPE_RAID:
4496 /* Only present the Smartarray HBA as a RAID controller.
4497 * If it's a RAID controller other than the HBA itself
4498 * (an external RAID controller, MSA500 or similar)
4499 * don't present it.
4501 if (!is_hba_lunid(lunaddrbytes))
4502 break;
4503 ncurrent++;
4504 break;
4505 default:
4506 break;
4508 if (ncurrent >= HPSA_MAX_DEVICES)
4509 break;
4512 if (h->sas_host == NULL) {
4513 int rc = 0;
4515 rc = hpsa_add_sas_host(h);
4516 if (rc) {
4517 dev_warn(&h->pdev->dev,
4518 "Could not add sas host %d\n", rc);
4519 goto out;
4523 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4524 out:
4525 kfree(tmpdevice);
4526 for (i = 0; i < ndev_allocated; i++)
4527 kfree(currentsd[i]);
4528 kfree(currentsd);
4529 kfree(physdev_list);
4530 kfree(logdev_list);
4531 kfree(id_ctlr);
4532 kfree(id_phys);
4535 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4536 struct scatterlist *sg)
4538 u64 addr64 = (u64) sg_dma_address(sg);
4539 unsigned int len = sg_dma_len(sg);
4541 desc->Addr = cpu_to_le64(addr64);
4542 desc->Len = cpu_to_le32(len);
4543 desc->Ext = 0;
4547 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4548 * dma mapping and fills in the scatter gather entries of the
4549 * hpsa command, cp.
4551 static int hpsa_scatter_gather(struct ctlr_info *h,
4552 struct CommandList *cp,
4553 struct scsi_cmnd *cmd)
4555 struct scatterlist *sg;
4556 int use_sg, i, sg_limit, chained, last_sg;
4557 struct SGDescriptor *curr_sg;
4559 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4561 use_sg = scsi_dma_map(cmd);
4562 if (use_sg < 0)
4563 return use_sg;
4565 if (!use_sg)
4566 goto sglist_finished;
4569 * If the number of entries is greater than the max for a single list,
4570 * then we have a chained list; we will set up all but one entry in the
4571 * first list (the last entry is saved for link information);
4572 * otherwise, we don't have a chained list and we'll set up at each of
4573 * the entries in the one list.
4575 curr_sg = cp->SG;
4576 chained = use_sg > h->max_cmd_sg_entries;
4577 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4578 last_sg = scsi_sg_count(cmd) - 1;
4579 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4580 hpsa_set_sg_descriptor(curr_sg, sg);
4581 curr_sg++;
4584 if (chained) {
4586 * Continue with the chained list. Set curr_sg to the chained
4587 * list. Modify the limit to the total count less the entries
4588 * we've already set up. Resume the scan at the list entry
4589 * where the previous loop left off.
4591 curr_sg = h->cmd_sg_list[cp->cmdindex];
4592 sg_limit = use_sg - sg_limit;
4593 for_each_sg(sg, sg, sg_limit, i) {
4594 hpsa_set_sg_descriptor(curr_sg, sg);
4595 curr_sg++;
4599 /* Back the pointer up to the last entry and mark it as "last". */
4600 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4602 if (use_sg + chained > h->maxSG)
4603 h->maxSG = use_sg + chained;
4605 if (chained) {
4606 cp->Header.SGList = h->max_cmd_sg_entries;
4607 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4608 if (hpsa_map_sg_chain_block(h, cp)) {
4609 scsi_dma_unmap(cmd);
4610 return -1;
4612 return 0;
4615 sglist_finished:
4617 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4618 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4619 return 0;
4622 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4623 u8 *cdb, int cdb_len,
4624 const char *func)
4626 dev_warn(&h->pdev->dev,
4627 "%s: Blocking zero-length request: CDB:%*phN\n",
4628 func, cdb_len, cdb);
4631 #define IO_ACCEL_INELIGIBLE 1
4632 /* zero-length transfers trigger hardware errors. */
4633 static bool is_zero_length_transfer(u8 *cdb)
4635 u32 block_cnt;
4637 /* Block zero-length transfer sizes on certain commands. */
4638 switch (cdb[0]) {
4639 case READ_10:
4640 case WRITE_10:
4641 case VERIFY: /* 0x2F */
4642 case WRITE_VERIFY: /* 0x2E */
4643 block_cnt = get_unaligned_be16(&cdb[7]);
4644 break;
4645 case READ_12:
4646 case WRITE_12:
4647 case VERIFY_12: /* 0xAF */
4648 case WRITE_VERIFY_12: /* 0xAE */
4649 block_cnt = get_unaligned_be32(&cdb[6]);
4650 break;
4651 case READ_16:
4652 case WRITE_16:
4653 case VERIFY_16: /* 0x8F */
4654 block_cnt = get_unaligned_be32(&cdb[10]);
4655 break;
4656 default:
4657 return false;
4660 return block_cnt == 0;
4663 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4665 int is_write = 0;
4666 u32 block;
4667 u32 block_cnt;
4669 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4670 switch (cdb[0]) {
4671 case WRITE_6:
4672 case WRITE_12:
4673 is_write = 1;
4674 case READ_6:
4675 case READ_12:
4676 if (*cdb_len == 6) {
4677 block = (((cdb[1] & 0x1F) << 16) |
4678 (cdb[2] << 8) |
4679 cdb[3]);
4680 block_cnt = cdb[4];
4681 if (block_cnt == 0)
4682 block_cnt = 256;
4683 } else {
4684 BUG_ON(*cdb_len != 12);
4685 block = get_unaligned_be32(&cdb[2]);
4686 block_cnt = get_unaligned_be32(&cdb[6]);
4688 if (block_cnt > 0xffff)
4689 return IO_ACCEL_INELIGIBLE;
4691 cdb[0] = is_write ? WRITE_10 : READ_10;
4692 cdb[1] = 0;
4693 cdb[2] = (u8) (block >> 24);
4694 cdb[3] = (u8) (block >> 16);
4695 cdb[4] = (u8) (block >> 8);
4696 cdb[5] = (u8) (block);
4697 cdb[6] = 0;
4698 cdb[7] = (u8) (block_cnt >> 8);
4699 cdb[8] = (u8) (block_cnt);
4700 cdb[9] = 0;
4701 *cdb_len = 10;
4702 break;
4704 return 0;
4707 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4708 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4709 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4711 struct scsi_cmnd *cmd = c->scsi_cmd;
4712 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4713 unsigned int len;
4714 unsigned int total_len = 0;
4715 struct scatterlist *sg;
4716 u64 addr64;
4717 int use_sg, i;
4718 struct SGDescriptor *curr_sg;
4719 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4721 /* TODO: implement chaining support */
4722 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4723 atomic_dec(&phys_disk->ioaccel_cmds_out);
4724 return IO_ACCEL_INELIGIBLE;
4727 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4729 if (is_zero_length_transfer(cdb)) {
4730 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4731 atomic_dec(&phys_disk->ioaccel_cmds_out);
4732 return IO_ACCEL_INELIGIBLE;
4735 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4736 atomic_dec(&phys_disk->ioaccel_cmds_out);
4737 return IO_ACCEL_INELIGIBLE;
4740 c->cmd_type = CMD_IOACCEL1;
4742 /* Adjust the DMA address to point to the accelerated command buffer */
4743 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4744 (c->cmdindex * sizeof(*cp));
4745 BUG_ON(c->busaddr & 0x0000007F);
4747 use_sg = scsi_dma_map(cmd);
4748 if (use_sg < 0) {
4749 atomic_dec(&phys_disk->ioaccel_cmds_out);
4750 return use_sg;
4753 if (use_sg) {
4754 curr_sg = cp->SG;
4755 scsi_for_each_sg(cmd, sg, use_sg, i) {
4756 addr64 = (u64) sg_dma_address(sg);
4757 len = sg_dma_len(sg);
4758 total_len += len;
4759 curr_sg->Addr = cpu_to_le64(addr64);
4760 curr_sg->Len = cpu_to_le32(len);
4761 curr_sg->Ext = cpu_to_le32(0);
4762 curr_sg++;
4764 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4766 switch (cmd->sc_data_direction) {
4767 case DMA_TO_DEVICE:
4768 control |= IOACCEL1_CONTROL_DATA_OUT;
4769 break;
4770 case DMA_FROM_DEVICE:
4771 control |= IOACCEL1_CONTROL_DATA_IN;
4772 break;
4773 case DMA_NONE:
4774 control |= IOACCEL1_CONTROL_NODATAXFER;
4775 break;
4776 default:
4777 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4778 cmd->sc_data_direction);
4779 BUG();
4780 break;
4782 } else {
4783 control |= IOACCEL1_CONTROL_NODATAXFER;
4786 c->Header.SGList = use_sg;
4787 /* Fill out the command structure to submit */
4788 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4789 cp->transfer_len = cpu_to_le32(total_len);
4790 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4791 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4792 cp->control = cpu_to_le32(control);
4793 memcpy(cp->CDB, cdb, cdb_len);
4794 memcpy(cp->CISS_LUN, scsi3addr, 8);
4795 /* Tag was already set at init time. */
4796 enqueue_cmd_and_start_io(h, c);
4797 return 0;
4801 * Queue a command directly to a device behind the controller using the
4802 * I/O accelerator path.
4804 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4805 struct CommandList *c)
4807 struct scsi_cmnd *cmd = c->scsi_cmd;
4808 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4810 if (!dev)
4811 return -1;
4813 c->phys_disk = dev;
4815 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4816 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4820 * Set encryption parameters for the ioaccel2 request
4822 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4823 struct CommandList *c, struct io_accel2_cmd *cp)
4825 struct scsi_cmnd *cmd = c->scsi_cmd;
4826 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4827 struct raid_map_data *map = &dev->raid_map;
4828 u64 first_block;
4830 /* Are we doing encryption on this device */
4831 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4832 return;
4833 /* Set the data encryption key index. */
4834 cp->dekindex = map->dekindex;
4836 /* Set the encryption enable flag, encoded into direction field. */
4837 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4839 /* Set encryption tweak values based on logical block address
4840 * If block size is 512, tweak value is LBA.
4841 * For other block sizes, tweak is (LBA * block size)/ 512)
4843 switch (cmd->cmnd[0]) {
4844 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4845 case READ_6:
4846 case WRITE_6:
4847 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4848 (cmd->cmnd[2] << 8) |
4849 cmd->cmnd[3]);
4850 break;
4851 case WRITE_10:
4852 case READ_10:
4853 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4854 case WRITE_12:
4855 case READ_12:
4856 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4857 break;
4858 case WRITE_16:
4859 case READ_16:
4860 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4861 break;
4862 default:
4863 dev_err(&h->pdev->dev,
4864 "ERROR: %s: size (0x%x) not supported for encryption\n",
4865 __func__, cmd->cmnd[0]);
4866 BUG();
4867 break;
4870 if (le32_to_cpu(map->volume_blk_size) != 512)
4871 first_block = first_block *
4872 le32_to_cpu(map->volume_blk_size)/512;
4874 cp->tweak_lower = cpu_to_le32(first_block);
4875 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4878 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4879 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4880 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4882 struct scsi_cmnd *cmd = c->scsi_cmd;
4883 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4884 struct ioaccel2_sg_element *curr_sg;
4885 int use_sg, i;
4886 struct scatterlist *sg;
4887 u64 addr64;
4888 u32 len;
4889 u32 total_len = 0;
4891 if (!cmd->device)
4892 return -1;
4894 if (!cmd->device->hostdata)
4895 return -1;
4897 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4899 if (is_zero_length_transfer(cdb)) {
4900 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4901 atomic_dec(&phys_disk->ioaccel_cmds_out);
4902 return IO_ACCEL_INELIGIBLE;
4905 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4906 atomic_dec(&phys_disk->ioaccel_cmds_out);
4907 return IO_ACCEL_INELIGIBLE;
4910 c->cmd_type = CMD_IOACCEL2;
4911 /* Adjust the DMA address to point to the accelerated command buffer */
4912 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4913 (c->cmdindex * sizeof(*cp));
4914 BUG_ON(c->busaddr & 0x0000007F);
4916 memset(cp, 0, sizeof(*cp));
4917 cp->IU_type = IOACCEL2_IU_TYPE;
4919 use_sg = scsi_dma_map(cmd);
4920 if (use_sg < 0) {
4921 atomic_dec(&phys_disk->ioaccel_cmds_out);
4922 return use_sg;
4925 if (use_sg) {
4926 curr_sg = cp->sg;
4927 if (use_sg > h->ioaccel_maxsg) {
4928 addr64 = le64_to_cpu(
4929 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4930 curr_sg->address = cpu_to_le64(addr64);
4931 curr_sg->length = 0;
4932 curr_sg->reserved[0] = 0;
4933 curr_sg->reserved[1] = 0;
4934 curr_sg->reserved[2] = 0;
4935 curr_sg->chain_indicator = 0x80;
4937 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4939 scsi_for_each_sg(cmd, sg, use_sg, i) {
4940 addr64 = (u64) sg_dma_address(sg);
4941 len = sg_dma_len(sg);
4942 total_len += len;
4943 curr_sg->address = cpu_to_le64(addr64);
4944 curr_sg->length = cpu_to_le32(len);
4945 curr_sg->reserved[0] = 0;
4946 curr_sg->reserved[1] = 0;
4947 curr_sg->reserved[2] = 0;
4948 curr_sg->chain_indicator = 0;
4949 curr_sg++;
4952 switch (cmd->sc_data_direction) {
4953 case DMA_TO_DEVICE:
4954 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4955 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4956 break;
4957 case DMA_FROM_DEVICE:
4958 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4959 cp->direction |= IOACCEL2_DIR_DATA_IN;
4960 break;
4961 case DMA_NONE:
4962 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4963 cp->direction |= IOACCEL2_DIR_NO_DATA;
4964 break;
4965 default:
4966 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4967 cmd->sc_data_direction);
4968 BUG();
4969 break;
4971 } else {
4972 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4973 cp->direction |= IOACCEL2_DIR_NO_DATA;
4976 /* Set encryption parameters, if necessary */
4977 set_encrypt_ioaccel2(h, c, cp);
4979 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4980 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4981 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4983 cp->data_len = cpu_to_le32(total_len);
4984 cp->err_ptr = cpu_to_le64(c->busaddr +
4985 offsetof(struct io_accel2_cmd, error_data));
4986 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4988 /* fill in sg elements */
4989 if (use_sg > h->ioaccel_maxsg) {
4990 cp->sg_count = 1;
4991 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4992 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4993 atomic_dec(&phys_disk->ioaccel_cmds_out);
4994 scsi_dma_unmap(cmd);
4995 return -1;
4997 } else
4998 cp->sg_count = (u8) use_sg;
5000 enqueue_cmd_and_start_io(h, c);
5001 return 0;
5005 * Queue a command to the correct I/O accelerator path.
5007 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5008 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5009 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5011 if (!c->scsi_cmd->device)
5012 return -1;
5014 if (!c->scsi_cmd->device->hostdata)
5015 return -1;
5017 /* Try to honor the device's queue depth */
5018 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5019 phys_disk->queue_depth) {
5020 atomic_dec(&phys_disk->ioaccel_cmds_out);
5021 return IO_ACCEL_INELIGIBLE;
5023 if (h->transMethod & CFGTBL_Trans_io_accel1)
5024 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5025 cdb, cdb_len, scsi3addr,
5026 phys_disk);
5027 else
5028 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5029 cdb, cdb_len, scsi3addr,
5030 phys_disk);
5033 static void raid_map_helper(struct raid_map_data *map,
5034 int offload_to_mirror, u32 *map_index, u32 *current_group)
5036 if (offload_to_mirror == 0) {
5037 /* use physical disk in the first mirrored group. */
5038 *map_index %= le16_to_cpu(map->data_disks_per_row);
5039 return;
5041 do {
5042 /* determine mirror group that *map_index indicates */
5043 *current_group = *map_index /
5044 le16_to_cpu(map->data_disks_per_row);
5045 if (offload_to_mirror == *current_group)
5046 continue;
5047 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5048 /* select map index from next group */
5049 *map_index += le16_to_cpu(map->data_disks_per_row);
5050 (*current_group)++;
5051 } else {
5052 /* select map index from first group */
5053 *map_index %= le16_to_cpu(map->data_disks_per_row);
5054 *current_group = 0;
5056 } while (offload_to_mirror != *current_group);
5060 * Attempt to perform offload RAID mapping for a logical volume I/O.
5062 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5063 struct CommandList *c)
5065 struct scsi_cmnd *cmd = c->scsi_cmd;
5066 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5067 struct raid_map_data *map = &dev->raid_map;
5068 struct raid_map_disk_data *dd = &map->data[0];
5069 int is_write = 0;
5070 u32 map_index;
5071 u64 first_block, last_block;
5072 u32 block_cnt;
5073 u32 blocks_per_row;
5074 u64 first_row, last_row;
5075 u32 first_row_offset, last_row_offset;
5076 u32 first_column, last_column;
5077 u64 r0_first_row, r0_last_row;
5078 u32 r5or6_blocks_per_row;
5079 u64 r5or6_first_row, r5or6_last_row;
5080 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5081 u32 r5or6_first_column, r5or6_last_column;
5082 u32 total_disks_per_row;
5083 u32 stripesize;
5084 u32 first_group, last_group, current_group;
5085 u32 map_row;
5086 u32 disk_handle;
5087 u64 disk_block;
5088 u32 disk_block_cnt;
5089 u8 cdb[16];
5090 u8 cdb_len;
5091 u16 strip_size;
5092 #if BITS_PER_LONG == 32
5093 u64 tmpdiv;
5094 #endif
5095 int offload_to_mirror;
5097 if (!dev)
5098 return -1;
5100 /* check for valid opcode, get LBA and block count */
5101 switch (cmd->cmnd[0]) {
5102 case WRITE_6:
5103 is_write = 1;
5104 case READ_6:
5105 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5106 (cmd->cmnd[2] << 8) |
5107 cmd->cmnd[3]);
5108 block_cnt = cmd->cmnd[4];
5109 if (block_cnt == 0)
5110 block_cnt = 256;
5111 break;
5112 case WRITE_10:
5113 is_write = 1;
5114 case READ_10:
5115 first_block =
5116 (((u64) cmd->cmnd[2]) << 24) |
5117 (((u64) cmd->cmnd[3]) << 16) |
5118 (((u64) cmd->cmnd[4]) << 8) |
5119 cmd->cmnd[5];
5120 block_cnt =
5121 (((u32) cmd->cmnd[7]) << 8) |
5122 cmd->cmnd[8];
5123 break;
5124 case WRITE_12:
5125 is_write = 1;
5126 case READ_12:
5127 first_block =
5128 (((u64) cmd->cmnd[2]) << 24) |
5129 (((u64) cmd->cmnd[3]) << 16) |
5130 (((u64) cmd->cmnd[4]) << 8) |
5131 cmd->cmnd[5];
5132 block_cnt =
5133 (((u32) cmd->cmnd[6]) << 24) |
5134 (((u32) cmd->cmnd[7]) << 16) |
5135 (((u32) cmd->cmnd[8]) << 8) |
5136 cmd->cmnd[9];
5137 break;
5138 case WRITE_16:
5139 is_write = 1;
5140 case READ_16:
5141 first_block =
5142 (((u64) cmd->cmnd[2]) << 56) |
5143 (((u64) cmd->cmnd[3]) << 48) |
5144 (((u64) cmd->cmnd[4]) << 40) |
5145 (((u64) cmd->cmnd[5]) << 32) |
5146 (((u64) cmd->cmnd[6]) << 24) |
5147 (((u64) cmd->cmnd[7]) << 16) |
5148 (((u64) cmd->cmnd[8]) << 8) |
5149 cmd->cmnd[9];
5150 block_cnt =
5151 (((u32) cmd->cmnd[10]) << 24) |
5152 (((u32) cmd->cmnd[11]) << 16) |
5153 (((u32) cmd->cmnd[12]) << 8) |
5154 cmd->cmnd[13];
5155 break;
5156 default:
5157 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5159 last_block = first_block + block_cnt - 1;
5161 /* check for write to non-RAID-0 */
5162 if (is_write && dev->raid_level != 0)
5163 return IO_ACCEL_INELIGIBLE;
5165 /* check for invalid block or wraparound */
5166 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5167 last_block < first_block)
5168 return IO_ACCEL_INELIGIBLE;
5170 /* calculate stripe information for the request */
5171 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5172 le16_to_cpu(map->strip_size);
5173 strip_size = le16_to_cpu(map->strip_size);
5174 #if BITS_PER_LONG == 32
5175 tmpdiv = first_block;
5176 (void) do_div(tmpdiv, blocks_per_row);
5177 first_row = tmpdiv;
5178 tmpdiv = last_block;
5179 (void) do_div(tmpdiv, blocks_per_row);
5180 last_row = tmpdiv;
5181 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5182 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5183 tmpdiv = first_row_offset;
5184 (void) do_div(tmpdiv, strip_size);
5185 first_column = tmpdiv;
5186 tmpdiv = last_row_offset;
5187 (void) do_div(tmpdiv, strip_size);
5188 last_column = tmpdiv;
5189 #else
5190 first_row = first_block / blocks_per_row;
5191 last_row = last_block / blocks_per_row;
5192 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5193 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5194 first_column = first_row_offset / strip_size;
5195 last_column = last_row_offset / strip_size;
5196 #endif
5198 /* if this isn't a single row/column then give to the controller */
5199 if ((first_row != last_row) || (first_column != last_column))
5200 return IO_ACCEL_INELIGIBLE;
5202 /* proceeding with driver mapping */
5203 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5204 le16_to_cpu(map->metadata_disks_per_row);
5205 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5206 le16_to_cpu(map->row_cnt);
5207 map_index = (map_row * total_disks_per_row) + first_column;
5209 switch (dev->raid_level) {
5210 case HPSA_RAID_0:
5211 break; /* nothing special to do */
5212 case HPSA_RAID_1:
5213 /* Handles load balance across RAID 1 members.
5214 * (2-drive R1 and R10 with even # of drives.)
5215 * Appropriate for SSDs, not optimal for HDDs
5217 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5218 if (dev->offload_to_mirror)
5219 map_index += le16_to_cpu(map->data_disks_per_row);
5220 dev->offload_to_mirror = !dev->offload_to_mirror;
5221 break;
5222 case HPSA_RAID_ADM:
5223 /* Handles N-way mirrors (R1-ADM)
5224 * and R10 with # of drives divisible by 3.)
5226 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5228 offload_to_mirror = dev->offload_to_mirror;
5229 raid_map_helper(map, offload_to_mirror,
5230 &map_index, &current_group);
5231 /* set mirror group to use next time */
5232 offload_to_mirror =
5233 (offload_to_mirror >=
5234 le16_to_cpu(map->layout_map_count) - 1)
5235 ? 0 : offload_to_mirror + 1;
5236 dev->offload_to_mirror = offload_to_mirror;
5237 /* Avoid direct use of dev->offload_to_mirror within this
5238 * function since multiple threads might simultaneously
5239 * increment it beyond the range of dev->layout_map_count -1.
5241 break;
5242 case HPSA_RAID_5:
5243 case HPSA_RAID_6:
5244 if (le16_to_cpu(map->layout_map_count) <= 1)
5245 break;
5247 /* Verify first and last block are in same RAID group */
5248 r5or6_blocks_per_row =
5249 le16_to_cpu(map->strip_size) *
5250 le16_to_cpu(map->data_disks_per_row);
5251 BUG_ON(r5or6_blocks_per_row == 0);
5252 stripesize = r5or6_blocks_per_row *
5253 le16_to_cpu(map->layout_map_count);
5254 #if BITS_PER_LONG == 32
5255 tmpdiv = first_block;
5256 first_group = do_div(tmpdiv, stripesize);
5257 tmpdiv = first_group;
5258 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5259 first_group = tmpdiv;
5260 tmpdiv = last_block;
5261 last_group = do_div(tmpdiv, stripesize);
5262 tmpdiv = last_group;
5263 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5264 last_group = tmpdiv;
5265 #else
5266 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5267 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5268 #endif
5269 if (first_group != last_group)
5270 return IO_ACCEL_INELIGIBLE;
5272 /* Verify request is in a single row of RAID 5/6 */
5273 #if BITS_PER_LONG == 32
5274 tmpdiv = first_block;
5275 (void) do_div(tmpdiv, stripesize);
5276 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5277 tmpdiv = last_block;
5278 (void) do_div(tmpdiv, stripesize);
5279 r5or6_last_row = r0_last_row = tmpdiv;
5280 #else
5281 first_row = r5or6_first_row = r0_first_row =
5282 first_block / stripesize;
5283 r5or6_last_row = r0_last_row = last_block / stripesize;
5284 #endif
5285 if (r5or6_first_row != r5or6_last_row)
5286 return IO_ACCEL_INELIGIBLE;
5289 /* Verify request is in a single column */
5290 #if BITS_PER_LONG == 32
5291 tmpdiv = first_block;
5292 first_row_offset = do_div(tmpdiv, stripesize);
5293 tmpdiv = first_row_offset;
5294 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5295 r5or6_first_row_offset = first_row_offset;
5296 tmpdiv = last_block;
5297 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5298 tmpdiv = r5or6_last_row_offset;
5299 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5300 tmpdiv = r5or6_first_row_offset;
5301 (void) do_div(tmpdiv, map->strip_size);
5302 first_column = r5or6_first_column = tmpdiv;
5303 tmpdiv = r5or6_last_row_offset;
5304 (void) do_div(tmpdiv, map->strip_size);
5305 r5or6_last_column = tmpdiv;
5306 #else
5307 first_row_offset = r5or6_first_row_offset =
5308 (u32)((first_block % stripesize) %
5309 r5or6_blocks_per_row);
5311 r5or6_last_row_offset =
5312 (u32)((last_block % stripesize) %
5313 r5or6_blocks_per_row);
5315 first_column = r5or6_first_column =
5316 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5317 r5or6_last_column =
5318 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5319 #endif
5320 if (r5or6_first_column != r5or6_last_column)
5321 return IO_ACCEL_INELIGIBLE;
5323 /* Request is eligible */
5324 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5325 le16_to_cpu(map->row_cnt);
5327 map_index = (first_group *
5328 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5329 (map_row * total_disks_per_row) + first_column;
5330 break;
5331 default:
5332 return IO_ACCEL_INELIGIBLE;
5335 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5336 return IO_ACCEL_INELIGIBLE;
5338 c->phys_disk = dev->phys_disk[map_index];
5339 if (!c->phys_disk)
5340 return IO_ACCEL_INELIGIBLE;
5342 disk_handle = dd[map_index].ioaccel_handle;
5343 disk_block = le64_to_cpu(map->disk_starting_blk) +
5344 first_row * le16_to_cpu(map->strip_size) +
5345 (first_row_offset - first_column *
5346 le16_to_cpu(map->strip_size));
5347 disk_block_cnt = block_cnt;
5349 /* handle differing logical/physical block sizes */
5350 if (map->phys_blk_shift) {
5351 disk_block <<= map->phys_blk_shift;
5352 disk_block_cnt <<= map->phys_blk_shift;
5354 BUG_ON(disk_block_cnt > 0xffff);
5356 /* build the new CDB for the physical disk I/O */
5357 if (disk_block > 0xffffffff) {
5358 cdb[0] = is_write ? WRITE_16 : READ_16;
5359 cdb[1] = 0;
5360 cdb[2] = (u8) (disk_block >> 56);
5361 cdb[3] = (u8) (disk_block >> 48);
5362 cdb[4] = (u8) (disk_block >> 40);
5363 cdb[5] = (u8) (disk_block >> 32);
5364 cdb[6] = (u8) (disk_block >> 24);
5365 cdb[7] = (u8) (disk_block >> 16);
5366 cdb[8] = (u8) (disk_block >> 8);
5367 cdb[9] = (u8) (disk_block);
5368 cdb[10] = (u8) (disk_block_cnt >> 24);
5369 cdb[11] = (u8) (disk_block_cnt >> 16);
5370 cdb[12] = (u8) (disk_block_cnt >> 8);
5371 cdb[13] = (u8) (disk_block_cnt);
5372 cdb[14] = 0;
5373 cdb[15] = 0;
5374 cdb_len = 16;
5375 } else {
5376 cdb[0] = is_write ? WRITE_10 : READ_10;
5377 cdb[1] = 0;
5378 cdb[2] = (u8) (disk_block >> 24);
5379 cdb[3] = (u8) (disk_block >> 16);
5380 cdb[4] = (u8) (disk_block >> 8);
5381 cdb[5] = (u8) (disk_block);
5382 cdb[6] = 0;
5383 cdb[7] = (u8) (disk_block_cnt >> 8);
5384 cdb[8] = (u8) (disk_block_cnt);
5385 cdb[9] = 0;
5386 cdb_len = 10;
5388 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5389 dev->scsi3addr,
5390 dev->phys_disk[map_index]);
5394 * Submit commands down the "normal" RAID stack path
5395 * All callers to hpsa_ciss_submit must check lockup_detected
5396 * beforehand, before (opt.) and after calling cmd_alloc
5398 static int hpsa_ciss_submit(struct ctlr_info *h,
5399 struct CommandList *c, struct scsi_cmnd *cmd,
5400 unsigned char scsi3addr[])
5402 cmd->host_scribble = (unsigned char *) c;
5403 c->cmd_type = CMD_SCSI;
5404 c->scsi_cmd = cmd;
5405 c->Header.ReplyQueue = 0; /* unused in simple mode */
5406 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5407 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5409 /* Fill in the request block... */
5411 c->Request.Timeout = 0;
5412 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5413 c->Request.CDBLen = cmd->cmd_len;
5414 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5415 switch (cmd->sc_data_direction) {
5416 case DMA_TO_DEVICE:
5417 c->Request.type_attr_dir =
5418 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5419 break;
5420 case DMA_FROM_DEVICE:
5421 c->Request.type_attr_dir =
5422 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5423 break;
5424 case DMA_NONE:
5425 c->Request.type_attr_dir =
5426 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5427 break;
5428 case DMA_BIDIRECTIONAL:
5429 /* This can happen if a buggy application does a scsi passthru
5430 * and sets both inlen and outlen to non-zero. ( see
5431 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5434 c->Request.type_attr_dir =
5435 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5436 /* This is technically wrong, and hpsa controllers should
5437 * reject it with CMD_INVALID, which is the most correct
5438 * response, but non-fibre backends appear to let it
5439 * slide by, and give the same results as if this field
5440 * were set correctly. Either way is acceptable for
5441 * our purposes here.
5444 break;
5446 default:
5447 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5448 cmd->sc_data_direction);
5449 BUG();
5450 break;
5453 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5454 hpsa_cmd_resolve_and_free(h, c);
5455 return SCSI_MLQUEUE_HOST_BUSY;
5457 enqueue_cmd_and_start_io(h, c);
5458 /* the cmd'll come back via intr handler in complete_scsi_command() */
5459 return 0;
5462 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5463 struct CommandList *c)
5465 dma_addr_t cmd_dma_handle, err_dma_handle;
5467 /* Zero out all of commandlist except the last field, refcount */
5468 memset(c, 0, offsetof(struct CommandList, refcount));
5469 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5470 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5471 c->err_info = h->errinfo_pool + index;
5472 memset(c->err_info, 0, sizeof(*c->err_info));
5473 err_dma_handle = h->errinfo_pool_dhandle
5474 + index * sizeof(*c->err_info);
5475 c->cmdindex = index;
5476 c->busaddr = (u32) cmd_dma_handle;
5477 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5478 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5479 c->h = h;
5480 c->scsi_cmd = SCSI_CMD_IDLE;
5483 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5485 int i;
5487 for (i = 0; i < h->nr_cmds; i++) {
5488 struct CommandList *c = h->cmd_pool + i;
5490 hpsa_cmd_init(h, i, c);
5491 atomic_set(&c->refcount, 0);
5495 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5496 struct CommandList *c)
5498 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5500 BUG_ON(c->cmdindex != index);
5502 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5503 memset(c->err_info, 0, sizeof(*c->err_info));
5504 c->busaddr = (u32) cmd_dma_handle;
5507 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5508 struct CommandList *c, struct scsi_cmnd *cmd,
5509 unsigned char *scsi3addr)
5511 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5512 int rc = IO_ACCEL_INELIGIBLE;
5514 if (!dev)
5515 return SCSI_MLQUEUE_HOST_BUSY;
5517 cmd->host_scribble = (unsigned char *) c;
5519 if (dev->offload_enabled) {
5520 hpsa_cmd_init(h, c->cmdindex, c);
5521 c->cmd_type = CMD_SCSI;
5522 c->scsi_cmd = cmd;
5523 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5524 if (rc < 0) /* scsi_dma_map failed. */
5525 rc = SCSI_MLQUEUE_HOST_BUSY;
5526 } else if (dev->hba_ioaccel_enabled) {
5527 hpsa_cmd_init(h, c->cmdindex, c);
5528 c->cmd_type = CMD_SCSI;
5529 c->scsi_cmd = cmd;
5530 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5531 if (rc < 0) /* scsi_dma_map failed. */
5532 rc = SCSI_MLQUEUE_HOST_BUSY;
5534 return rc;
5537 static void hpsa_command_resubmit_worker(struct work_struct *work)
5539 struct scsi_cmnd *cmd;
5540 struct hpsa_scsi_dev_t *dev;
5541 struct CommandList *c = container_of(work, struct CommandList, work);
5543 cmd = c->scsi_cmd;
5544 dev = cmd->device->hostdata;
5545 if (!dev) {
5546 cmd->result = DID_NO_CONNECT << 16;
5547 return hpsa_cmd_free_and_done(c->h, c, cmd);
5549 if (c->reset_pending)
5550 return hpsa_cmd_free_and_done(c->h, c, cmd);
5551 if (c->cmd_type == CMD_IOACCEL2) {
5552 struct ctlr_info *h = c->h;
5553 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5554 int rc;
5556 if (c2->error_data.serv_response ==
5557 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5558 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5559 if (rc == 0)
5560 return;
5561 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5563 * If we get here, it means dma mapping failed.
5564 * Try again via scsi mid layer, which will
5565 * then get SCSI_MLQUEUE_HOST_BUSY.
5567 cmd->result = DID_IMM_RETRY << 16;
5568 return hpsa_cmd_free_and_done(h, c, cmd);
5570 /* else, fall thru and resubmit down CISS path */
5573 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5574 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5576 * If we get here, it means dma mapping failed. Try
5577 * again via scsi mid layer, which will then get
5578 * SCSI_MLQUEUE_HOST_BUSY.
5580 * hpsa_ciss_submit will have already freed c
5581 * if it encountered a dma mapping failure.
5583 cmd->result = DID_IMM_RETRY << 16;
5584 cmd->scsi_done(cmd);
5588 /* Running in struct Scsi_Host->host_lock less mode */
5589 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5591 struct ctlr_info *h;
5592 struct hpsa_scsi_dev_t *dev;
5593 unsigned char scsi3addr[8];
5594 struct CommandList *c;
5595 int rc = 0;
5597 /* Get the ptr to our adapter structure out of cmd->host. */
5598 h = sdev_to_hba(cmd->device);
5600 BUG_ON(cmd->request->tag < 0);
5602 dev = cmd->device->hostdata;
5603 if (!dev) {
5604 cmd->result = DID_NO_CONNECT << 16;
5605 cmd->scsi_done(cmd);
5606 return 0;
5609 if (dev->removed) {
5610 cmd->result = DID_NO_CONNECT << 16;
5611 cmd->scsi_done(cmd);
5612 return 0;
5615 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5617 if (unlikely(lockup_detected(h))) {
5618 cmd->result = DID_NO_CONNECT << 16;
5619 cmd->scsi_done(cmd);
5620 return 0;
5622 c = cmd_tagged_alloc(h, cmd);
5625 * Call alternate submit routine for I/O accelerated commands.
5626 * Retries always go down the normal I/O path.
5628 if (likely(cmd->retries == 0 &&
5629 !blk_rq_is_passthrough(cmd->request) &&
5630 h->acciopath_status)) {
5631 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5632 if (rc == 0)
5633 return 0;
5634 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5635 hpsa_cmd_resolve_and_free(h, c);
5636 return SCSI_MLQUEUE_HOST_BUSY;
5639 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5642 static void hpsa_scan_complete(struct ctlr_info *h)
5644 unsigned long flags;
5646 spin_lock_irqsave(&h->scan_lock, flags);
5647 h->scan_finished = 1;
5648 wake_up(&h->scan_wait_queue);
5649 spin_unlock_irqrestore(&h->scan_lock, flags);
5652 static void hpsa_scan_start(struct Scsi_Host *sh)
5654 struct ctlr_info *h = shost_to_hba(sh);
5655 unsigned long flags;
5658 * Don't let rescans be initiated on a controller known to be locked
5659 * up. If the controller locks up *during* a rescan, that thread is
5660 * probably hosed, but at least we can prevent new rescan threads from
5661 * piling up on a locked up controller.
5663 if (unlikely(lockup_detected(h)))
5664 return hpsa_scan_complete(h);
5667 * If a scan is already waiting to run, no need to add another
5669 spin_lock_irqsave(&h->scan_lock, flags);
5670 if (h->scan_waiting) {
5671 spin_unlock_irqrestore(&h->scan_lock, flags);
5672 return;
5675 spin_unlock_irqrestore(&h->scan_lock, flags);
5677 /* wait until any scan already in progress is finished. */
5678 while (1) {
5679 spin_lock_irqsave(&h->scan_lock, flags);
5680 if (h->scan_finished)
5681 break;
5682 h->scan_waiting = 1;
5683 spin_unlock_irqrestore(&h->scan_lock, flags);
5684 wait_event(h->scan_wait_queue, h->scan_finished);
5685 /* Note: We don't need to worry about a race between this
5686 * thread and driver unload because the midlayer will
5687 * have incremented the reference count, so unload won't
5688 * happen if we're in here.
5691 h->scan_finished = 0; /* mark scan as in progress */
5692 h->scan_waiting = 0;
5693 spin_unlock_irqrestore(&h->scan_lock, flags);
5695 if (unlikely(lockup_detected(h)))
5696 return hpsa_scan_complete(h);
5699 * Do the scan after a reset completion
5701 spin_lock_irqsave(&h->reset_lock, flags);
5702 if (h->reset_in_progress) {
5703 h->drv_req_rescan = 1;
5704 spin_unlock_irqrestore(&h->reset_lock, flags);
5705 hpsa_scan_complete(h);
5706 return;
5708 spin_unlock_irqrestore(&h->reset_lock, flags);
5710 hpsa_update_scsi_devices(h);
5712 hpsa_scan_complete(h);
5715 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5717 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5719 if (!logical_drive)
5720 return -ENODEV;
5722 if (qdepth < 1)
5723 qdepth = 1;
5724 else if (qdepth > logical_drive->queue_depth)
5725 qdepth = logical_drive->queue_depth;
5727 return scsi_change_queue_depth(sdev, qdepth);
5730 static int hpsa_scan_finished(struct Scsi_Host *sh,
5731 unsigned long elapsed_time)
5733 struct ctlr_info *h = shost_to_hba(sh);
5734 unsigned long flags;
5735 int finished;
5737 spin_lock_irqsave(&h->scan_lock, flags);
5738 finished = h->scan_finished;
5739 spin_unlock_irqrestore(&h->scan_lock, flags);
5740 return finished;
5743 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5745 struct Scsi_Host *sh;
5747 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5748 if (sh == NULL) {
5749 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5750 return -ENOMEM;
5753 sh->io_port = 0;
5754 sh->n_io_port = 0;
5755 sh->this_id = -1;
5756 sh->max_channel = 3;
5757 sh->max_cmd_len = MAX_COMMAND_SIZE;
5758 sh->max_lun = HPSA_MAX_LUN;
5759 sh->max_id = HPSA_MAX_LUN;
5760 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5761 sh->cmd_per_lun = sh->can_queue;
5762 sh->sg_tablesize = h->maxsgentries;
5763 sh->transportt = hpsa_sas_transport_template;
5764 sh->hostdata[0] = (unsigned long) h;
5765 sh->irq = pci_irq_vector(h->pdev, 0);
5766 sh->unique_id = sh->irq;
5768 h->scsi_host = sh;
5769 return 0;
5772 static int hpsa_scsi_add_host(struct ctlr_info *h)
5774 int rv;
5776 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5777 if (rv) {
5778 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5779 return rv;
5781 scsi_scan_host(h->scsi_host);
5782 return 0;
5786 * The block layer has already gone to the trouble of picking out a unique,
5787 * small-integer tag for this request. We use an offset from that value as
5788 * an index to select our command block. (The offset allows us to reserve the
5789 * low-numbered entries for our own uses.)
5791 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5793 int idx = scmd->request->tag;
5795 if (idx < 0)
5796 return idx;
5798 /* Offset to leave space for internal cmds. */
5799 return idx += HPSA_NRESERVED_CMDS;
5803 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5804 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5806 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5807 struct CommandList *c, unsigned char lunaddr[],
5808 int reply_queue)
5810 int rc;
5812 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5813 (void) fill_cmd(c, TEST_UNIT_READY, h,
5814 NULL, 0, 0, lunaddr, TYPE_CMD);
5815 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5816 if (rc)
5817 return rc;
5818 /* no unmap needed here because no data xfer. */
5820 /* Check if the unit is already ready. */
5821 if (c->err_info->CommandStatus == CMD_SUCCESS)
5822 return 0;
5825 * The first command sent after reset will receive "unit attention" to
5826 * indicate that the LUN has been reset...this is actually what we're
5827 * looking for (but, success is good too).
5829 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5830 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5831 (c->err_info->SenseInfo[2] == NO_SENSE ||
5832 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5833 return 0;
5835 return 1;
5839 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5840 * returns zero when the unit is ready, and non-zero when giving up.
5842 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5843 struct CommandList *c,
5844 unsigned char lunaddr[], int reply_queue)
5846 int rc;
5847 int count = 0;
5848 int waittime = 1; /* seconds */
5850 /* Send test unit ready until device ready, or give up. */
5851 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5854 * Wait for a bit. do this first, because if we send
5855 * the TUR right away, the reset will just abort it.
5857 msleep(1000 * waittime);
5859 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5860 if (!rc)
5861 break;
5863 /* Increase wait time with each try, up to a point. */
5864 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5865 waittime *= 2;
5867 dev_warn(&h->pdev->dev,
5868 "waiting %d secs for device to become ready.\n",
5869 waittime);
5872 return rc;
5875 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5876 unsigned char lunaddr[],
5877 int reply_queue)
5879 int first_queue;
5880 int last_queue;
5881 int rq;
5882 int rc = 0;
5883 struct CommandList *c;
5885 c = cmd_alloc(h);
5888 * If no specific reply queue was requested, then send the TUR
5889 * repeatedly, requesting a reply on each reply queue; otherwise execute
5890 * the loop exactly once using only the specified queue.
5892 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5893 first_queue = 0;
5894 last_queue = h->nreply_queues - 1;
5895 } else {
5896 first_queue = reply_queue;
5897 last_queue = reply_queue;
5900 for (rq = first_queue; rq <= last_queue; rq++) {
5901 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5902 if (rc)
5903 break;
5906 if (rc)
5907 dev_warn(&h->pdev->dev, "giving up on device.\n");
5908 else
5909 dev_warn(&h->pdev->dev, "device is ready.\n");
5911 cmd_free(h, c);
5912 return rc;
5915 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5916 * complaining. Doing a host- or bus-reset can't do anything good here.
5918 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5920 int rc = SUCCESS;
5921 struct ctlr_info *h;
5922 struct hpsa_scsi_dev_t *dev;
5923 u8 reset_type;
5924 char msg[48];
5925 unsigned long flags;
5927 /* find the controller to which the command to be aborted was sent */
5928 h = sdev_to_hba(scsicmd->device);
5929 if (h == NULL) /* paranoia */
5930 return FAILED;
5932 spin_lock_irqsave(&h->reset_lock, flags);
5933 h->reset_in_progress = 1;
5934 spin_unlock_irqrestore(&h->reset_lock, flags);
5936 if (lockup_detected(h)) {
5937 rc = FAILED;
5938 goto return_reset_status;
5941 dev = scsicmd->device->hostdata;
5942 if (!dev) {
5943 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5944 rc = FAILED;
5945 goto return_reset_status;
5948 if (dev->devtype == TYPE_ENCLOSURE) {
5949 rc = SUCCESS;
5950 goto return_reset_status;
5953 /* if controller locked up, we can guarantee command won't complete */
5954 if (lockup_detected(h)) {
5955 snprintf(msg, sizeof(msg),
5956 "cmd %d RESET FAILED, lockup detected",
5957 hpsa_get_cmd_index(scsicmd));
5958 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5959 rc = FAILED;
5960 goto return_reset_status;
5963 /* this reset request might be the result of a lockup; check */
5964 if (detect_controller_lockup(h)) {
5965 snprintf(msg, sizeof(msg),
5966 "cmd %d RESET FAILED, new lockup detected",
5967 hpsa_get_cmd_index(scsicmd));
5968 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5969 rc = FAILED;
5970 goto return_reset_status;
5973 /* Do not attempt on controller */
5974 if (is_hba_lunid(dev->scsi3addr)) {
5975 rc = SUCCESS;
5976 goto return_reset_status;
5979 if (is_logical_dev_addr_mode(dev->scsi3addr))
5980 reset_type = HPSA_DEVICE_RESET_MSG;
5981 else
5982 reset_type = HPSA_PHYS_TARGET_RESET;
5984 sprintf(msg, "resetting %s",
5985 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5986 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5988 /* send a reset to the SCSI LUN which the command was sent to */
5989 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5990 DEFAULT_REPLY_QUEUE);
5991 if (rc == 0)
5992 rc = SUCCESS;
5993 else
5994 rc = FAILED;
5996 sprintf(msg, "reset %s %s",
5997 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5998 rc == SUCCESS ? "completed successfully" : "failed");
5999 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6001 return_reset_status:
6002 spin_lock_irqsave(&h->reset_lock, flags);
6003 h->reset_in_progress = 0;
6004 spin_unlock_irqrestore(&h->reset_lock, flags);
6005 return rc;
6009 * For operations with an associated SCSI command, a command block is allocated
6010 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6011 * block request tag as an index into a table of entries. cmd_tagged_free() is
6012 * the complement, although cmd_free() may be called instead.
6014 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6015 struct scsi_cmnd *scmd)
6017 int idx = hpsa_get_cmd_index(scmd);
6018 struct CommandList *c = h->cmd_pool + idx;
6020 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6021 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6022 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6023 /* The index value comes from the block layer, so if it's out of
6024 * bounds, it's probably not our bug.
6026 BUG();
6029 atomic_inc(&c->refcount);
6030 if (unlikely(!hpsa_is_cmd_idle(c))) {
6032 * We expect that the SCSI layer will hand us a unique tag
6033 * value. Thus, there should never be a collision here between
6034 * two requests...because if the selected command isn't idle
6035 * then someone is going to be very disappointed.
6037 dev_err(&h->pdev->dev,
6038 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6039 idx);
6040 if (c->scsi_cmd != NULL)
6041 scsi_print_command(c->scsi_cmd);
6042 scsi_print_command(scmd);
6045 hpsa_cmd_partial_init(h, idx, c);
6046 return c;
6049 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6052 * Release our reference to the block. We don't need to do anything
6053 * else to free it, because it is accessed by index.
6055 (void)atomic_dec(&c->refcount);
6059 * For operations that cannot sleep, a command block is allocated at init,
6060 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6061 * which ones are free or in use. Lock must be held when calling this.
6062 * cmd_free() is the complement.
6063 * This function never gives up and returns NULL. If it hangs,
6064 * another thread must call cmd_free() to free some tags.
6067 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6069 struct CommandList *c;
6070 int refcount, i;
6071 int offset = 0;
6074 * There is some *extremely* small but non-zero chance that that
6075 * multiple threads could get in here, and one thread could
6076 * be scanning through the list of bits looking for a free
6077 * one, but the free ones are always behind him, and other
6078 * threads sneak in behind him and eat them before he can
6079 * get to them, so that while there is always a free one, a
6080 * very unlucky thread might be starved anyway, never able to
6081 * beat the other threads. In reality, this happens so
6082 * infrequently as to be indistinguishable from never.
6084 * Note that we start allocating commands before the SCSI host structure
6085 * is initialized. Since the search starts at bit zero, this
6086 * all works, since we have at least one command structure available;
6087 * however, it means that the structures with the low indexes have to be
6088 * reserved for driver-initiated requests, while requests from the block
6089 * layer will use the higher indexes.
6092 for (;;) {
6093 i = find_next_zero_bit(h->cmd_pool_bits,
6094 HPSA_NRESERVED_CMDS,
6095 offset);
6096 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6097 offset = 0;
6098 continue;
6100 c = h->cmd_pool + i;
6101 refcount = atomic_inc_return(&c->refcount);
6102 if (unlikely(refcount > 1)) {
6103 cmd_free(h, c); /* already in use */
6104 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6105 continue;
6107 set_bit(i & (BITS_PER_LONG - 1),
6108 h->cmd_pool_bits + (i / BITS_PER_LONG));
6109 break; /* it's ours now. */
6111 hpsa_cmd_partial_init(h, i, c);
6112 return c;
6116 * This is the complementary operation to cmd_alloc(). Note, however, in some
6117 * corner cases it may also be used to free blocks allocated by
6118 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6119 * the clear-bit is harmless.
6121 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6123 if (atomic_dec_and_test(&c->refcount)) {
6124 int i;
6126 i = c - h->cmd_pool;
6127 clear_bit(i & (BITS_PER_LONG - 1),
6128 h->cmd_pool_bits + (i / BITS_PER_LONG));
6132 #ifdef CONFIG_COMPAT
6134 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6135 void __user *arg)
6137 IOCTL32_Command_struct __user *arg32 =
6138 (IOCTL32_Command_struct __user *) arg;
6139 IOCTL_Command_struct arg64;
6140 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6141 int err;
6142 u32 cp;
6144 memset(&arg64, 0, sizeof(arg64));
6145 err = 0;
6146 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6147 sizeof(arg64.LUN_info));
6148 err |= copy_from_user(&arg64.Request, &arg32->Request,
6149 sizeof(arg64.Request));
6150 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6151 sizeof(arg64.error_info));
6152 err |= get_user(arg64.buf_size, &arg32->buf_size);
6153 err |= get_user(cp, &arg32->buf);
6154 arg64.buf = compat_ptr(cp);
6155 err |= copy_to_user(p, &arg64, sizeof(arg64));
6157 if (err)
6158 return -EFAULT;
6160 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6161 if (err)
6162 return err;
6163 err |= copy_in_user(&arg32->error_info, &p->error_info,
6164 sizeof(arg32->error_info));
6165 if (err)
6166 return -EFAULT;
6167 return err;
6170 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6171 int cmd, void __user *arg)
6173 BIG_IOCTL32_Command_struct __user *arg32 =
6174 (BIG_IOCTL32_Command_struct __user *) arg;
6175 BIG_IOCTL_Command_struct arg64;
6176 BIG_IOCTL_Command_struct __user *p =
6177 compat_alloc_user_space(sizeof(arg64));
6178 int err;
6179 u32 cp;
6181 memset(&arg64, 0, sizeof(arg64));
6182 err = 0;
6183 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6184 sizeof(arg64.LUN_info));
6185 err |= copy_from_user(&arg64.Request, &arg32->Request,
6186 sizeof(arg64.Request));
6187 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6188 sizeof(arg64.error_info));
6189 err |= get_user(arg64.buf_size, &arg32->buf_size);
6190 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6191 err |= get_user(cp, &arg32->buf);
6192 arg64.buf = compat_ptr(cp);
6193 err |= copy_to_user(p, &arg64, sizeof(arg64));
6195 if (err)
6196 return -EFAULT;
6198 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6199 if (err)
6200 return err;
6201 err |= copy_in_user(&arg32->error_info, &p->error_info,
6202 sizeof(arg32->error_info));
6203 if (err)
6204 return -EFAULT;
6205 return err;
6208 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6210 switch (cmd) {
6211 case CCISS_GETPCIINFO:
6212 case CCISS_GETINTINFO:
6213 case CCISS_SETINTINFO:
6214 case CCISS_GETNODENAME:
6215 case CCISS_SETNODENAME:
6216 case CCISS_GETHEARTBEAT:
6217 case CCISS_GETBUSTYPES:
6218 case CCISS_GETFIRMVER:
6219 case CCISS_GETDRIVVER:
6220 case CCISS_REVALIDVOLS:
6221 case CCISS_DEREGDISK:
6222 case CCISS_REGNEWDISK:
6223 case CCISS_REGNEWD:
6224 case CCISS_RESCANDISK:
6225 case CCISS_GETLUNINFO:
6226 return hpsa_ioctl(dev, cmd, arg);
6228 case CCISS_PASSTHRU32:
6229 return hpsa_ioctl32_passthru(dev, cmd, arg);
6230 case CCISS_BIG_PASSTHRU32:
6231 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6233 default:
6234 return -ENOIOCTLCMD;
6237 #endif
6239 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6241 struct hpsa_pci_info pciinfo;
6243 if (!argp)
6244 return -EINVAL;
6245 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6246 pciinfo.bus = h->pdev->bus->number;
6247 pciinfo.dev_fn = h->pdev->devfn;
6248 pciinfo.board_id = h->board_id;
6249 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6250 return -EFAULT;
6251 return 0;
6254 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6256 DriverVer_type DriverVer;
6257 unsigned char vmaj, vmin, vsubmin;
6258 int rc;
6260 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6261 &vmaj, &vmin, &vsubmin);
6262 if (rc != 3) {
6263 dev_info(&h->pdev->dev, "driver version string '%s' "
6264 "unrecognized.", HPSA_DRIVER_VERSION);
6265 vmaj = 0;
6266 vmin = 0;
6267 vsubmin = 0;
6269 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6270 if (!argp)
6271 return -EINVAL;
6272 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6273 return -EFAULT;
6274 return 0;
6277 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6279 IOCTL_Command_struct iocommand;
6280 struct CommandList *c;
6281 char *buff = NULL;
6282 u64 temp64;
6283 int rc = 0;
6285 if (!argp)
6286 return -EINVAL;
6287 if (!capable(CAP_SYS_RAWIO))
6288 return -EPERM;
6289 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6290 return -EFAULT;
6291 if ((iocommand.buf_size < 1) &&
6292 (iocommand.Request.Type.Direction != XFER_NONE)) {
6293 return -EINVAL;
6295 if (iocommand.buf_size > 0) {
6296 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6297 if (buff == NULL)
6298 return -ENOMEM;
6299 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6300 /* Copy the data into the buffer we created */
6301 if (copy_from_user(buff, iocommand.buf,
6302 iocommand.buf_size)) {
6303 rc = -EFAULT;
6304 goto out_kfree;
6306 } else {
6307 memset(buff, 0, iocommand.buf_size);
6310 c = cmd_alloc(h);
6312 /* Fill in the command type */
6313 c->cmd_type = CMD_IOCTL_PEND;
6314 c->scsi_cmd = SCSI_CMD_BUSY;
6315 /* Fill in Command Header */
6316 c->Header.ReplyQueue = 0; /* unused in simple mode */
6317 if (iocommand.buf_size > 0) { /* buffer to fill */
6318 c->Header.SGList = 1;
6319 c->Header.SGTotal = cpu_to_le16(1);
6320 } else { /* no buffers to fill */
6321 c->Header.SGList = 0;
6322 c->Header.SGTotal = cpu_to_le16(0);
6324 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6326 /* Fill in Request block */
6327 memcpy(&c->Request, &iocommand.Request,
6328 sizeof(c->Request));
6330 /* Fill in the scatter gather information */
6331 if (iocommand.buf_size > 0) {
6332 temp64 = pci_map_single(h->pdev, buff,
6333 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6334 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6335 c->SG[0].Addr = cpu_to_le64(0);
6336 c->SG[0].Len = cpu_to_le32(0);
6337 rc = -ENOMEM;
6338 goto out;
6340 c->SG[0].Addr = cpu_to_le64(temp64);
6341 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6342 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6344 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6345 NO_TIMEOUT);
6346 if (iocommand.buf_size > 0)
6347 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6348 check_ioctl_unit_attention(h, c);
6349 if (rc) {
6350 rc = -EIO;
6351 goto out;
6354 /* Copy the error information out */
6355 memcpy(&iocommand.error_info, c->err_info,
6356 sizeof(iocommand.error_info));
6357 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6358 rc = -EFAULT;
6359 goto out;
6361 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6362 iocommand.buf_size > 0) {
6363 /* Copy the data out of the buffer we created */
6364 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6365 rc = -EFAULT;
6366 goto out;
6369 out:
6370 cmd_free(h, c);
6371 out_kfree:
6372 kfree(buff);
6373 return rc;
6376 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6378 BIG_IOCTL_Command_struct *ioc;
6379 struct CommandList *c;
6380 unsigned char **buff = NULL;
6381 int *buff_size = NULL;
6382 u64 temp64;
6383 BYTE sg_used = 0;
6384 int status = 0;
6385 u32 left;
6386 u32 sz;
6387 BYTE __user *data_ptr;
6389 if (!argp)
6390 return -EINVAL;
6391 if (!capable(CAP_SYS_RAWIO))
6392 return -EPERM;
6393 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6394 if (!ioc) {
6395 status = -ENOMEM;
6396 goto cleanup1;
6398 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6399 status = -EFAULT;
6400 goto cleanup1;
6402 if ((ioc->buf_size < 1) &&
6403 (ioc->Request.Type.Direction != XFER_NONE)) {
6404 status = -EINVAL;
6405 goto cleanup1;
6407 /* Check kmalloc limits using all SGs */
6408 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6409 status = -EINVAL;
6410 goto cleanup1;
6412 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6413 status = -EINVAL;
6414 goto cleanup1;
6416 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6417 if (!buff) {
6418 status = -ENOMEM;
6419 goto cleanup1;
6421 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6422 if (!buff_size) {
6423 status = -ENOMEM;
6424 goto cleanup1;
6426 left = ioc->buf_size;
6427 data_ptr = ioc->buf;
6428 while (left) {
6429 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6430 buff_size[sg_used] = sz;
6431 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6432 if (buff[sg_used] == NULL) {
6433 status = -ENOMEM;
6434 goto cleanup1;
6436 if (ioc->Request.Type.Direction & XFER_WRITE) {
6437 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6438 status = -EFAULT;
6439 goto cleanup1;
6441 } else
6442 memset(buff[sg_used], 0, sz);
6443 left -= sz;
6444 data_ptr += sz;
6445 sg_used++;
6447 c = cmd_alloc(h);
6449 c->cmd_type = CMD_IOCTL_PEND;
6450 c->scsi_cmd = SCSI_CMD_BUSY;
6451 c->Header.ReplyQueue = 0;
6452 c->Header.SGList = (u8) sg_used;
6453 c->Header.SGTotal = cpu_to_le16(sg_used);
6454 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6455 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6456 if (ioc->buf_size > 0) {
6457 int i;
6458 for (i = 0; i < sg_used; i++) {
6459 temp64 = pci_map_single(h->pdev, buff[i],
6460 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6461 if (dma_mapping_error(&h->pdev->dev,
6462 (dma_addr_t) temp64)) {
6463 c->SG[i].Addr = cpu_to_le64(0);
6464 c->SG[i].Len = cpu_to_le32(0);
6465 hpsa_pci_unmap(h->pdev, c, i,
6466 PCI_DMA_BIDIRECTIONAL);
6467 status = -ENOMEM;
6468 goto cleanup0;
6470 c->SG[i].Addr = cpu_to_le64(temp64);
6471 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6472 c->SG[i].Ext = cpu_to_le32(0);
6474 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6476 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6477 NO_TIMEOUT);
6478 if (sg_used)
6479 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6480 check_ioctl_unit_attention(h, c);
6481 if (status) {
6482 status = -EIO;
6483 goto cleanup0;
6486 /* Copy the error information out */
6487 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6488 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6489 status = -EFAULT;
6490 goto cleanup0;
6492 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6493 int i;
6495 /* Copy the data out of the buffer we created */
6496 BYTE __user *ptr = ioc->buf;
6497 for (i = 0; i < sg_used; i++) {
6498 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6499 status = -EFAULT;
6500 goto cleanup0;
6502 ptr += buff_size[i];
6505 status = 0;
6506 cleanup0:
6507 cmd_free(h, c);
6508 cleanup1:
6509 if (buff) {
6510 int i;
6512 for (i = 0; i < sg_used; i++)
6513 kfree(buff[i]);
6514 kfree(buff);
6516 kfree(buff_size);
6517 kfree(ioc);
6518 return status;
6521 static void check_ioctl_unit_attention(struct ctlr_info *h,
6522 struct CommandList *c)
6524 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6525 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6526 (void) check_for_unit_attention(h, c);
6530 * ioctl
6532 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6534 struct ctlr_info *h;
6535 void __user *argp = (void __user *)arg;
6536 int rc;
6538 h = sdev_to_hba(dev);
6540 switch (cmd) {
6541 case CCISS_DEREGDISK:
6542 case CCISS_REGNEWDISK:
6543 case CCISS_REGNEWD:
6544 hpsa_scan_start(h->scsi_host);
6545 return 0;
6546 case CCISS_GETPCIINFO:
6547 return hpsa_getpciinfo_ioctl(h, argp);
6548 case CCISS_GETDRIVVER:
6549 return hpsa_getdrivver_ioctl(h, argp);
6550 case CCISS_PASSTHRU:
6551 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6552 return -EAGAIN;
6553 rc = hpsa_passthru_ioctl(h, argp);
6554 atomic_inc(&h->passthru_cmds_avail);
6555 return rc;
6556 case CCISS_BIG_PASSTHRU:
6557 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6558 return -EAGAIN;
6559 rc = hpsa_big_passthru_ioctl(h, argp);
6560 atomic_inc(&h->passthru_cmds_avail);
6561 return rc;
6562 default:
6563 return -ENOTTY;
6567 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6568 u8 reset_type)
6570 struct CommandList *c;
6572 c = cmd_alloc(h);
6574 /* fill_cmd can't fail here, no data buffer to map */
6575 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6576 RAID_CTLR_LUNID, TYPE_MSG);
6577 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6578 c->waiting = NULL;
6579 enqueue_cmd_and_start_io(h, c);
6580 /* Don't wait for completion, the reset won't complete. Don't free
6581 * the command either. This is the last command we will send before
6582 * re-initializing everything, so it doesn't matter and won't leak.
6584 return;
6587 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6588 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6589 int cmd_type)
6591 int pci_dir = XFER_NONE;
6593 c->cmd_type = CMD_IOCTL_PEND;
6594 c->scsi_cmd = SCSI_CMD_BUSY;
6595 c->Header.ReplyQueue = 0;
6596 if (buff != NULL && size > 0) {
6597 c->Header.SGList = 1;
6598 c->Header.SGTotal = cpu_to_le16(1);
6599 } else {
6600 c->Header.SGList = 0;
6601 c->Header.SGTotal = cpu_to_le16(0);
6603 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6605 if (cmd_type == TYPE_CMD) {
6606 switch (cmd) {
6607 case HPSA_INQUIRY:
6608 /* are we trying to read a vital product page */
6609 if (page_code & VPD_PAGE) {
6610 c->Request.CDB[1] = 0x01;
6611 c->Request.CDB[2] = (page_code & 0xff);
6613 c->Request.CDBLen = 6;
6614 c->Request.type_attr_dir =
6615 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6616 c->Request.Timeout = 0;
6617 c->Request.CDB[0] = HPSA_INQUIRY;
6618 c->Request.CDB[4] = size & 0xFF;
6619 break;
6620 case RECEIVE_DIAGNOSTIC:
6621 c->Request.CDBLen = 6;
6622 c->Request.type_attr_dir =
6623 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6624 c->Request.Timeout = 0;
6625 c->Request.CDB[0] = cmd;
6626 c->Request.CDB[1] = 1;
6627 c->Request.CDB[2] = 1;
6628 c->Request.CDB[3] = (size >> 8) & 0xFF;
6629 c->Request.CDB[4] = size & 0xFF;
6630 break;
6631 case HPSA_REPORT_LOG:
6632 case HPSA_REPORT_PHYS:
6633 /* Talking to controller so It's a physical command
6634 mode = 00 target = 0. Nothing to write.
6636 c->Request.CDBLen = 12;
6637 c->Request.type_attr_dir =
6638 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639 c->Request.Timeout = 0;
6640 c->Request.CDB[0] = cmd;
6641 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6642 c->Request.CDB[7] = (size >> 16) & 0xFF;
6643 c->Request.CDB[8] = (size >> 8) & 0xFF;
6644 c->Request.CDB[9] = size & 0xFF;
6645 break;
6646 case BMIC_SENSE_DIAG_OPTIONS:
6647 c->Request.CDBLen = 16;
6648 c->Request.type_attr_dir =
6649 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6650 c->Request.Timeout = 0;
6651 /* Spec says this should be BMIC_WRITE */
6652 c->Request.CDB[0] = BMIC_READ;
6653 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6654 break;
6655 case BMIC_SET_DIAG_OPTIONS:
6656 c->Request.CDBLen = 16;
6657 c->Request.type_attr_dir =
6658 TYPE_ATTR_DIR(cmd_type,
6659 ATTR_SIMPLE, XFER_WRITE);
6660 c->Request.Timeout = 0;
6661 c->Request.CDB[0] = BMIC_WRITE;
6662 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6663 break;
6664 case HPSA_CACHE_FLUSH:
6665 c->Request.CDBLen = 12;
6666 c->Request.type_attr_dir =
6667 TYPE_ATTR_DIR(cmd_type,
6668 ATTR_SIMPLE, XFER_WRITE);
6669 c->Request.Timeout = 0;
6670 c->Request.CDB[0] = BMIC_WRITE;
6671 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6672 c->Request.CDB[7] = (size >> 8) & 0xFF;
6673 c->Request.CDB[8] = size & 0xFF;
6674 break;
6675 case TEST_UNIT_READY:
6676 c->Request.CDBLen = 6;
6677 c->Request.type_attr_dir =
6678 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6679 c->Request.Timeout = 0;
6680 break;
6681 case HPSA_GET_RAID_MAP:
6682 c->Request.CDBLen = 12;
6683 c->Request.type_attr_dir =
6684 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6685 c->Request.Timeout = 0;
6686 c->Request.CDB[0] = HPSA_CISS_READ;
6687 c->Request.CDB[1] = cmd;
6688 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6689 c->Request.CDB[7] = (size >> 16) & 0xFF;
6690 c->Request.CDB[8] = (size >> 8) & 0xFF;
6691 c->Request.CDB[9] = size & 0xFF;
6692 break;
6693 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6694 c->Request.CDBLen = 10;
6695 c->Request.type_attr_dir =
6696 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6697 c->Request.Timeout = 0;
6698 c->Request.CDB[0] = BMIC_READ;
6699 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6700 c->Request.CDB[7] = (size >> 16) & 0xFF;
6701 c->Request.CDB[8] = (size >> 8) & 0xFF;
6702 break;
6703 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6704 c->Request.CDBLen = 10;
6705 c->Request.type_attr_dir =
6706 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6707 c->Request.Timeout = 0;
6708 c->Request.CDB[0] = BMIC_READ;
6709 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6710 c->Request.CDB[7] = (size >> 16) & 0xFF;
6711 c->Request.CDB[8] = (size >> 8) & 0XFF;
6712 break;
6713 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6714 c->Request.CDBLen = 10;
6715 c->Request.type_attr_dir =
6716 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6717 c->Request.Timeout = 0;
6718 c->Request.CDB[0] = BMIC_READ;
6719 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6720 c->Request.CDB[7] = (size >> 16) & 0xFF;
6721 c->Request.CDB[8] = (size >> 8) & 0XFF;
6722 break;
6723 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6724 c->Request.CDBLen = 10;
6725 c->Request.type_attr_dir =
6726 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6727 c->Request.Timeout = 0;
6728 c->Request.CDB[0] = BMIC_READ;
6729 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6730 c->Request.CDB[7] = (size >> 16) & 0xFF;
6731 c->Request.CDB[8] = (size >> 8) & 0XFF;
6732 break;
6733 case BMIC_IDENTIFY_CONTROLLER:
6734 c->Request.CDBLen = 10;
6735 c->Request.type_attr_dir =
6736 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6737 c->Request.Timeout = 0;
6738 c->Request.CDB[0] = BMIC_READ;
6739 c->Request.CDB[1] = 0;
6740 c->Request.CDB[2] = 0;
6741 c->Request.CDB[3] = 0;
6742 c->Request.CDB[4] = 0;
6743 c->Request.CDB[5] = 0;
6744 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6745 c->Request.CDB[7] = (size >> 16) & 0xFF;
6746 c->Request.CDB[8] = (size >> 8) & 0XFF;
6747 c->Request.CDB[9] = 0;
6748 break;
6749 default:
6750 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6751 BUG();
6753 } else if (cmd_type == TYPE_MSG) {
6754 switch (cmd) {
6756 case HPSA_PHYS_TARGET_RESET:
6757 c->Request.CDBLen = 16;
6758 c->Request.type_attr_dir =
6759 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6760 c->Request.Timeout = 0; /* Don't time out */
6761 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6762 c->Request.CDB[0] = HPSA_RESET;
6763 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6764 /* Physical target reset needs no control bytes 4-7*/
6765 c->Request.CDB[4] = 0x00;
6766 c->Request.CDB[5] = 0x00;
6767 c->Request.CDB[6] = 0x00;
6768 c->Request.CDB[7] = 0x00;
6769 break;
6770 case HPSA_DEVICE_RESET_MSG:
6771 c->Request.CDBLen = 16;
6772 c->Request.type_attr_dir =
6773 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6774 c->Request.Timeout = 0; /* Don't time out */
6775 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6776 c->Request.CDB[0] = cmd;
6777 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6778 /* If bytes 4-7 are zero, it means reset the */
6779 /* LunID device */
6780 c->Request.CDB[4] = 0x00;
6781 c->Request.CDB[5] = 0x00;
6782 c->Request.CDB[6] = 0x00;
6783 c->Request.CDB[7] = 0x00;
6784 break;
6785 default:
6786 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6787 cmd);
6788 BUG();
6790 } else {
6791 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6792 BUG();
6795 switch (GET_DIR(c->Request.type_attr_dir)) {
6796 case XFER_READ:
6797 pci_dir = PCI_DMA_FROMDEVICE;
6798 break;
6799 case XFER_WRITE:
6800 pci_dir = PCI_DMA_TODEVICE;
6801 break;
6802 case XFER_NONE:
6803 pci_dir = PCI_DMA_NONE;
6804 break;
6805 default:
6806 pci_dir = PCI_DMA_BIDIRECTIONAL;
6808 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6809 return -1;
6810 return 0;
6814 * Map (physical) PCI mem into (virtual) kernel space
6816 static void __iomem *remap_pci_mem(ulong base, ulong size)
6818 ulong page_base = ((ulong) base) & PAGE_MASK;
6819 ulong page_offs = ((ulong) base) - page_base;
6820 void __iomem *page_remapped = ioremap_nocache(page_base,
6821 page_offs + size);
6823 return page_remapped ? (page_remapped + page_offs) : NULL;
6826 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6828 return h->access.command_completed(h, q);
6831 static inline bool interrupt_pending(struct ctlr_info *h)
6833 return h->access.intr_pending(h);
6836 static inline long interrupt_not_for_us(struct ctlr_info *h)
6838 return (h->access.intr_pending(h) == 0) ||
6839 (h->interrupts_enabled == 0);
6842 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6843 u32 raw_tag)
6845 if (unlikely(tag_index >= h->nr_cmds)) {
6846 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6847 return 1;
6849 return 0;
6852 static inline void finish_cmd(struct CommandList *c)
6854 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6855 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6856 || c->cmd_type == CMD_IOACCEL2))
6857 complete_scsi_command(c);
6858 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6859 complete(c->waiting);
6862 /* process completion of an indexed ("direct lookup") command */
6863 static inline void process_indexed_cmd(struct ctlr_info *h,
6864 u32 raw_tag)
6866 u32 tag_index;
6867 struct CommandList *c;
6869 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6870 if (!bad_tag(h, tag_index, raw_tag)) {
6871 c = h->cmd_pool + tag_index;
6872 finish_cmd(c);
6876 /* Some controllers, like p400, will give us one interrupt
6877 * after a soft reset, even if we turned interrupts off.
6878 * Only need to check for this in the hpsa_xxx_discard_completions
6879 * functions.
6881 static int ignore_bogus_interrupt(struct ctlr_info *h)
6883 if (likely(!reset_devices))
6884 return 0;
6886 if (likely(h->interrupts_enabled))
6887 return 0;
6889 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6890 "(known firmware bug.) Ignoring.\n");
6892 return 1;
6896 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6897 * Relies on (h-q[x] == x) being true for x such that
6898 * 0 <= x < MAX_REPLY_QUEUES.
6900 static struct ctlr_info *queue_to_hba(u8 *queue)
6902 return container_of((queue - *queue), struct ctlr_info, q[0]);
6905 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6907 struct ctlr_info *h = queue_to_hba(queue);
6908 u8 q = *(u8 *) queue;
6909 u32 raw_tag;
6911 if (ignore_bogus_interrupt(h))
6912 return IRQ_NONE;
6914 if (interrupt_not_for_us(h))
6915 return IRQ_NONE;
6916 h->last_intr_timestamp = get_jiffies_64();
6917 while (interrupt_pending(h)) {
6918 raw_tag = get_next_completion(h, q);
6919 while (raw_tag != FIFO_EMPTY)
6920 raw_tag = next_command(h, q);
6922 return IRQ_HANDLED;
6925 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6927 struct ctlr_info *h = queue_to_hba(queue);
6928 u32 raw_tag;
6929 u8 q = *(u8 *) queue;
6931 if (ignore_bogus_interrupt(h))
6932 return IRQ_NONE;
6934 h->last_intr_timestamp = get_jiffies_64();
6935 raw_tag = get_next_completion(h, q);
6936 while (raw_tag != FIFO_EMPTY)
6937 raw_tag = next_command(h, q);
6938 return IRQ_HANDLED;
6941 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6943 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6944 u32 raw_tag;
6945 u8 q = *(u8 *) queue;
6947 if (interrupt_not_for_us(h))
6948 return IRQ_NONE;
6949 h->last_intr_timestamp = get_jiffies_64();
6950 while (interrupt_pending(h)) {
6951 raw_tag = get_next_completion(h, q);
6952 while (raw_tag != FIFO_EMPTY) {
6953 process_indexed_cmd(h, raw_tag);
6954 raw_tag = next_command(h, q);
6957 return IRQ_HANDLED;
6960 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6962 struct ctlr_info *h = queue_to_hba(queue);
6963 u32 raw_tag;
6964 u8 q = *(u8 *) queue;
6966 h->last_intr_timestamp = get_jiffies_64();
6967 raw_tag = get_next_completion(h, q);
6968 while (raw_tag != FIFO_EMPTY) {
6969 process_indexed_cmd(h, raw_tag);
6970 raw_tag = next_command(h, q);
6972 return IRQ_HANDLED;
6975 /* Send a message CDB to the firmware. Careful, this only works
6976 * in simple mode, not performant mode due to the tag lookup.
6977 * We only ever use this immediately after a controller reset.
6979 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6980 unsigned char type)
6982 struct Command {
6983 struct CommandListHeader CommandHeader;
6984 struct RequestBlock Request;
6985 struct ErrDescriptor ErrorDescriptor;
6987 struct Command *cmd;
6988 static const size_t cmd_sz = sizeof(*cmd) +
6989 sizeof(cmd->ErrorDescriptor);
6990 dma_addr_t paddr64;
6991 __le32 paddr32;
6992 u32 tag;
6993 void __iomem *vaddr;
6994 int i, err;
6996 vaddr = pci_ioremap_bar(pdev, 0);
6997 if (vaddr == NULL)
6998 return -ENOMEM;
7000 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7001 * CCISS commands, so they must be allocated from the lower 4GiB of
7002 * memory.
7004 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7005 if (err) {
7006 iounmap(vaddr);
7007 return err;
7010 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7011 if (cmd == NULL) {
7012 iounmap(vaddr);
7013 return -ENOMEM;
7016 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7017 * although there's no guarantee, we assume that the address is at
7018 * least 4-byte aligned (most likely, it's page-aligned).
7020 paddr32 = cpu_to_le32(paddr64);
7022 cmd->CommandHeader.ReplyQueue = 0;
7023 cmd->CommandHeader.SGList = 0;
7024 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7025 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7026 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7028 cmd->Request.CDBLen = 16;
7029 cmd->Request.type_attr_dir =
7030 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7031 cmd->Request.Timeout = 0; /* Don't time out */
7032 cmd->Request.CDB[0] = opcode;
7033 cmd->Request.CDB[1] = type;
7034 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7035 cmd->ErrorDescriptor.Addr =
7036 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7037 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7039 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7041 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7042 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7043 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7044 break;
7045 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7048 iounmap(vaddr);
7050 /* we leak the DMA buffer here ... no choice since the controller could
7051 * still complete the command.
7053 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7054 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7055 opcode, type);
7056 return -ETIMEDOUT;
7059 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7061 if (tag & HPSA_ERROR_BIT) {
7062 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7063 opcode, type);
7064 return -EIO;
7067 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7068 opcode, type);
7069 return 0;
7072 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7074 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7075 void __iomem *vaddr, u32 use_doorbell)
7078 if (use_doorbell) {
7079 /* For everything after the P600, the PCI power state method
7080 * of resetting the controller doesn't work, so we have this
7081 * other way using the doorbell register.
7083 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7084 writel(use_doorbell, vaddr + SA5_DOORBELL);
7086 /* PMC hardware guys tell us we need a 10 second delay after
7087 * doorbell reset and before any attempt to talk to the board
7088 * at all to ensure that this actually works and doesn't fall
7089 * over in some weird corner cases.
7091 msleep(10000);
7092 } else { /* Try to do it the PCI power state way */
7094 /* Quoting from the Open CISS Specification: "The Power
7095 * Management Control/Status Register (CSR) controls the power
7096 * state of the device. The normal operating state is D0,
7097 * CSR=00h. The software off state is D3, CSR=03h. To reset
7098 * the controller, place the interface device in D3 then to D0,
7099 * this causes a secondary PCI reset which will reset the
7100 * controller." */
7102 int rc = 0;
7104 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7106 /* enter the D3hot power management state */
7107 rc = pci_set_power_state(pdev, PCI_D3hot);
7108 if (rc)
7109 return rc;
7111 msleep(500);
7113 /* enter the D0 power management state */
7114 rc = pci_set_power_state(pdev, PCI_D0);
7115 if (rc)
7116 return rc;
7119 * The P600 requires a small delay when changing states.
7120 * Otherwise we may think the board did not reset and we bail.
7121 * This for kdump only and is particular to the P600.
7123 msleep(500);
7125 return 0;
7128 static void init_driver_version(char *driver_version, int len)
7130 memset(driver_version, 0, len);
7131 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7134 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7136 char *driver_version;
7137 int i, size = sizeof(cfgtable->driver_version);
7139 driver_version = kmalloc(size, GFP_KERNEL);
7140 if (!driver_version)
7141 return -ENOMEM;
7143 init_driver_version(driver_version, size);
7144 for (i = 0; i < size; i++)
7145 writeb(driver_version[i], &cfgtable->driver_version[i]);
7146 kfree(driver_version);
7147 return 0;
7150 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7151 unsigned char *driver_ver)
7153 int i;
7155 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7156 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7159 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7162 char *driver_ver, *old_driver_ver;
7163 int rc, size = sizeof(cfgtable->driver_version);
7165 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7166 if (!old_driver_ver)
7167 return -ENOMEM;
7168 driver_ver = old_driver_ver + size;
7170 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7171 * should have been changed, otherwise we know the reset failed.
7173 init_driver_version(old_driver_ver, size);
7174 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7175 rc = !memcmp(driver_ver, old_driver_ver, size);
7176 kfree(old_driver_ver);
7177 return rc;
7179 /* This does a hard reset of the controller using PCI power management
7180 * states or the using the doorbell register.
7182 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7184 u64 cfg_offset;
7185 u32 cfg_base_addr;
7186 u64 cfg_base_addr_index;
7187 void __iomem *vaddr;
7188 unsigned long paddr;
7189 u32 misc_fw_support;
7190 int rc;
7191 struct CfgTable __iomem *cfgtable;
7192 u32 use_doorbell;
7193 u16 command_register;
7195 /* For controllers as old as the P600, this is very nearly
7196 * the same thing as
7198 * pci_save_state(pci_dev);
7199 * pci_set_power_state(pci_dev, PCI_D3hot);
7200 * pci_set_power_state(pci_dev, PCI_D0);
7201 * pci_restore_state(pci_dev);
7203 * For controllers newer than the P600, the pci power state
7204 * method of resetting doesn't work so we have another way
7205 * using the doorbell register.
7208 if (!ctlr_is_resettable(board_id)) {
7209 dev_warn(&pdev->dev, "Controller not resettable\n");
7210 return -ENODEV;
7213 /* if controller is soft- but not hard resettable... */
7214 if (!ctlr_is_hard_resettable(board_id))
7215 return -ENOTSUPP; /* try soft reset later. */
7217 /* Save the PCI command register */
7218 pci_read_config_word(pdev, 4, &command_register);
7219 pci_save_state(pdev);
7221 /* find the first memory BAR, so we can find the cfg table */
7222 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7223 if (rc)
7224 return rc;
7225 vaddr = remap_pci_mem(paddr, 0x250);
7226 if (!vaddr)
7227 return -ENOMEM;
7229 /* find cfgtable in order to check if reset via doorbell is supported */
7230 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7231 &cfg_base_addr_index, &cfg_offset);
7232 if (rc)
7233 goto unmap_vaddr;
7234 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7235 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7236 if (!cfgtable) {
7237 rc = -ENOMEM;
7238 goto unmap_vaddr;
7240 rc = write_driver_ver_to_cfgtable(cfgtable);
7241 if (rc)
7242 goto unmap_cfgtable;
7244 /* If reset via doorbell register is supported, use that.
7245 * There are two such methods. Favor the newest method.
7247 misc_fw_support = readl(&cfgtable->misc_fw_support);
7248 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7249 if (use_doorbell) {
7250 use_doorbell = DOORBELL_CTLR_RESET2;
7251 } else {
7252 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7253 if (use_doorbell) {
7254 dev_warn(&pdev->dev,
7255 "Soft reset not supported. Firmware update is required.\n");
7256 rc = -ENOTSUPP; /* try soft reset */
7257 goto unmap_cfgtable;
7261 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7262 if (rc)
7263 goto unmap_cfgtable;
7265 pci_restore_state(pdev);
7266 pci_write_config_word(pdev, 4, command_register);
7268 /* Some devices (notably the HP Smart Array 5i Controller)
7269 need a little pause here */
7270 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7272 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7273 if (rc) {
7274 dev_warn(&pdev->dev,
7275 "Failed waiting for board to become ready after hard reset\n");
7276 goto unmap_cfgtable;
7279 rc = controller_reset_failed(vaddr);
7280 if (rc < 0)
7281 goto unmap_cfgtable;
7282 if (rc) {
7283 dev_warn(&pdev->dev, "Unable to successfully reset "
7284 "controller. Will try soft reset.\n");
7285 rc = -ENOTSUPP;
7286 } else {
7287 dev_info(&pdev->dev, "board ready after hard reset.\n");
7290 unmap_cfgtable:
7291 iounmap(cfgtable);
7293 unmap_vaddr:
7294 iounmap(vaddr);
7295 return rc;
7299 * We cannot read the structure directly, for portability we must use
7300 * the io functions.
7301 * This is for debug only.
7303 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7305 #ifdef HPSA_DEBUG
7306 int i;
7307 char temp_name[17];
7309 dev_info(dev, "Controller Configuration information\n");
7310 dev_info(dev, "------------------------------------\n");
7311 for (i = 0; i < 4; i++)
7312 temp_name[i] = readb(&(tb->Signature[i]));
7313 temp_name[4] = '\0';
7314 dev_info(dev, " Signature = %s\n", temp_name);
7315 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7316 dev_info(dev, " Transport methods supported = 0x%x\n",
7317 readl(&(tb->TransportSupport)));
7318 dev_info(dev, " Transport methods active = 0x%x\n",
7319 readl(&(tb->TransportActive)));
7320 dev_info(dev, " Requested transport Method = 0x%x\n",
7321 readl(&(tb->HostWrite.TransportRequest)));
7322 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7323 readl(&(tb->HostWrite.CoalIntDelay)));
7324 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7325 readl(&(tb->HostWrite.CoalIntCount)));
7326 dev_info(dev, " Max outstanding commands = %d\n",
7327 readl(&(tb->CmdsOutMax)));
7328 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7329 for (i = 0; i < 16; i++)
7330 temp_name[i] = readb(&(tb->ServerName[i]));
7331 temp_name[16] = '\0';
7332 dev_info(dev, " Server Name = %s\n", temp_name);
7333 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7334 readl(&(tb->HeartBeat)));
7335 #endif /* HPSA_DEBUG */
7338 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7340 int i, offset, mem_type, bar_type;
7342 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7343 return 0;
7344 offset = 0;
7345 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7346 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7347 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7348 offset += 4;
7349 else {
7350 mem_type = pci_resource_flags(pdev, i) &
7351 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7352 switch (mem_type) {
7353 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7354 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7355 offset += 4; /* 32 bit */
7356 break;
7357 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7358 offset += 8;
7359 break;
7360 default: /* reserved in PCI 2.2 */
7361 dev_warn(&pdev->dev,
7362 "base address is invalid\n");
7363 return -1;
7364 break;
7367 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7368 return i + 1;
7370 return -1;
7373 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7375 pci_free_irq_vectors(h->pdev);
7376 h->msix_vectors = 0;
7379 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7380 * controllers that are capable. If not, we use legacy INTx mode.
7382 static int hpsa_interrupt_mode(struct ctlr_info *h)
7384 unsigned int flags = PCI_IRQ_LEGACY;
7385 int ret;
7387 /* Some boards advertise MSI but don't really support it */
7388 switch (h->board_id) {
7389 case 0x40700E11:
7390 case 0x40800E11:
7391 case 0x40820E11:
7392 case 0x40830E11:
7393 break;
7394 default:
7395 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7396 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7397 if (ret > 0) {
7398 h->msix_vectors = ret;
7399 return 0;
7402 flags |= PCI_IRQ_MSI;
7403 break;
7406 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7407 if (ret < 0)
7408 return ret;
7409 return 0;
7412 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7413 bool *legacy_board)
7415 int i;
7416 u32 subsystem_vendor_id, subsystem_device_id;
7418 subsystem_vendor_id = pdev->subsystem_vendor;
7419 subsystem_device_id = pdev->subsystem_device;
7420 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7421 subsystem_vendor_id;
7423 if (legacy_board)
7424 *legacy_board = false;
7425 for (i = 0; i < ARRAY_SIZE(products); i++)
7426 if (*board_id == products[i].board_id) {
7427 if (products[i].access != &SA5A_access &&
7428 products[i].access != &SA5B_access)
7429 return i;
7430 dev_warn(&pdev->dev,
7431 "legacy board ID: 0x%08x\n",
7432 *board_id);
7433 if (legacy_board)
7434 *legacy_board = true;
7435 return i;
7438 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7439 if (legacy_board)
7440 *legacy_board = true;
7441 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7444 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7445 unsigned long *memory_bar)
7447 int i;
7449 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7450 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7451 /* addressing mode bits already removed */
7452 *memory_bar = pci_resource_start(pdev, i);
7453 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7454 *memory_bar);
7455 return 0;
7457 dev_warn(&pdev->dev, "no memory BAR found\n");
7458 return -ENODEV;
7461 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7462 int wait_for_ready)
7464 int i, iterations;
7465 u32 scratchpad;
7466 if (wait_for_ready)
7467 iterations = HPSA_BOARD_READY_ITERATIONS;
7468 else
7469 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7471 for (i = 0; i < iterations; i++) {
7472 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7473 if (wait_for_ready) {
7474 if (scratchpad == HPSA_FIRMWARE_READY)
7475 return 0;
7476 } else {
7477 if (scratchpad != HPSA_FIRMWARE_READY)
7478 return 0;
7480 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7482 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7483 return -ENODEV;
7486 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7487 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7488 u64 *cfg_offset)
7490 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7491 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7492 *cfg_base_addr &= (u32) 0x0000ffff;
7493 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7494 if (*cfg_base_addr_index == -1) {
7495 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7496 return -ENODEV;
7498 return 0;
7501 static void hpsa_free_cfgtables(struct ctlr_info *h)
7503 if (h->transtable) {
7504 iounmap(h->transtable);
7505 h->transtable = NULL;
7507 if (h->cfgtable) {
7508 iounmap(h->cfgtable);
7509 h->cfgtable = NULL;
7513 /* Find and map CISS config table and transfer table
7514 + * several items must be unmapped (freed) later
7515 + * */
7516 static int hpsa_find_cfgtables(struct ctlr_info *h)
7518 u64 cfg_offset;
7519 u32 cfg_base_addr;
7520 u64 cfg_base_addr_index;
7521 u32 trans_offset;
7522 int rc;
7524 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7525 &cfg_base_addr_index, &cfg_offset);
7526 if (rc)
7527 return rc;
7528 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7529 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7530 if (!h->cfgtable) {
7531 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7532 return -ENOMEM;
7534 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7535 if (rc)
7536 return rc;
7537 /* Find performant mode table. */
7538 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7539 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7540 cfg_base_addr_index)+cfg_offset+trans_offset,
7541 sizeof(*h->transtable));
7542 if (!h->transtable) {
7543 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7544 hpsa_free_cfgtables(h);
7545 return -ENOMEM;
7547 return 0;
7550 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7552 #define MIN_MAX_COMMANDS 16
7553 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7555 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7557 /* Limit commands in memory limited kdump scenario. */
7558 if (reset_devices && h->max_commands > 32)
7559 h->max_commands = 32;
7561 if (h->max_commands < MIN_MAX_COMMANDS) {
7562 dev_warn(&h->pdev->dev,
7563 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7564 h->max_commands,
7565 MIN_MAX_COMMANDS);
7566 h->max_commands = MIN_MAX_COMMANDS;
7570 /* If the controller reports that the total max sg entries is greater than 512,
7571 * then we know that chained SG blocks work. (Original smart arrays did not
7572 * support chained SG blocks and would return zero for max sg entries.)
7574 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7576 return h->maxsgentries > 512;
7579 /* Interrogate the hardware for some limits:
7580 * max commands, max SG elements without chaining, and with chaining,
7581 * SG chain block size, etc.
7583 static void hpsa_find_board_params(struct ctlr_info *h)
7585 hpsa_get_max_perf_mode_cmds(h);
7586 h->nr_cmds = h->max_commands;
7587 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7588 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7589 if (hpsa_supports_chained_sg_blocks(h)) {
7590 /* Limit in-command s/g elements to 32 save dma'able memory. */
7591 h->max_cmd_sg_entries = 32;
7592 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7593 h->maxsgentries--; /* save one for chain pointer */
7594 } else {
7596 * Original smart arrays supported at most 31 s/g entries
7597 * embedded inline in the command (trying to use more
7598 * would lock up the controller)
7600 h->max_cmd_sg_entries = 31;
7601 h->maxsgentries = 31; /* default to traditional values */
7602 h->chainsize = 0;
7605 /* Find out what task management functions are supported and cache */
7606 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7607 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7608 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7609 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7610 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7611 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7612 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7615 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7617 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7618 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7619 return false;
7621 return true;
7624 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7626 u32 driver_support;
7628 driver_support = readl(&(h->cfgtable->driver_support));
7629 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7630 #ifdef CONFIG_X86
7631 driver_support |= ENABLE_SCSI_PREFETCH;
7632 #endif
7633 driver_support |= ENABLE_UNIT_ATTN;
7634 writel(driver_support, &(h->cfgtable->driver_support));
7637 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7638 * in a prefetch beyond physical memory.
7640 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7642 u32 dma_prefetch;
7644 if (h->board_id != 0x3225103C)
7645 return;
7646 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7647 dma_prefetch |= 0x8000;
7648 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7651 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7653 int i;
7654 u32 doorbell_value;
7655 unsigned long flags;
7656 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7657 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7658 spin_lock_irqsave(&h->lock, flags);
7659 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7660 spin_unlock_irqrestore(&h->lock, flags);
7661 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7662 goto done;
7663 /* delay and try again */
7664 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7666 return -ENODEV;
7667 done:
7668 return 0;
7671 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7673 int i;
7674 u32 doorbell_value;
7675 unsigned long flags;
7677 /* under certain very rare conditions, this can take awhile.
7678 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7679 * as we enter this code.)
7681 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7682 if (h->remove_in_progress)
7683 goto done;
7684 spin_lock_irqsave(&h->lock, flags);
7685 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7686 spin_unlock_irqrestore(&h->lock, flags);
7687 if (!(doorbell_value & CFGTBL_ChangeReq))
7688 goto done;
7689 /* delay and try again */
7690 msleep(MODE_CHANGE_WAIT_INTERVAL);
7692 return -ENODEV;
7693 done:
7694 return 0;
7697 /* return -ENODEV or other reason on error, 0 on success */
7698 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7700 u32 trans_support;
7702 trans_support = readl(&(h->cfgtable->TransportSupport));
7703 if (!(trans_support & SIMPLE_MODE))
7704 return -ENOTSUPP;
7706 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7708 /* Update the field, and then ring the doorbell */
7709 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7710 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7711 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7712 if (hpsa_wait_for_mode_change_ack(h))
7713 goto error;
7714 print_cfg_table(&h->pdev->dev, h->cfgtable);
7715 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7716 goto error;
7717 h->transMethod = CFGTBL_Trans_Simple;
7718 return 0;
7719 error:
7720 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7721 return -ENODEV;
7724 /* free items allocated or mapped by hpsa_pci_init */
7725 static void hpsa_free_pci_init(struct ctlr_info *h)
7727 hpsa_free_cfgtables(h); /* pci_init 4 */
7728 iounmap(h->vaddr); /* pci_init 3 */
7729 h->vaddr = NULL;
7730 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7732 * call pci_disable_device before pci_release_regions per
7733 * Documentation/PCI/pci.txt
7735 pci_disable_device(h->pdev); /* pci_init 1 */
7736 pci_release_regions(h->pdev); /* pci_init 2 */
7739 /* several items must be freed later */
7740 static int hpsa_pci_init(struct ctlr_info *h)
7742 int prod_index, err;
7743 bool legacy_board;
7745 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7746 if (prod_index < 0)
7747 return prod_index;
7748 h->product_name = products[prod_index].product_name;
7749 h->access = *(products[prod_index].access);
7750 h->legacy_board = legacy_board;
7751 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7752 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7754 err = pci_enable_device(h->pdev);
7755 if (err) {
7756 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7757 pci_disable_device(h->pdev);
7758 return err;
7761 err = pci_request_regions(h->pdev, HPSA);
7762 if (err) {
7763 dev_err(&h->pdev->dev,
7764 "failed to obtain PCI resources\n");
7765 pci_disable_device(h->pdev);
7766 return err;
7769 pci_set_master(h->pdev);
7771 err = hpsa_interrupt_mode(h);
7772 if (err)
7773 goto clean1;
7774 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7775 if (err)
7776 goto clean2; /* intmode+region, pci */
7777 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7778 if (!h->vaddr) {
7779 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7780 err = -ENOMEM;
7781 goto clean2; /* intmode+region, pci */
7783 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7784 if (err)
7785 goto clean3; /* vaddr, intmode+region, pci */
7786 err = hpsa_find_cfgtables(h);
7787 if (err)
7788 goto clean3; /* vaddr, intmode+region, pci */
7789 hpsa_find_board_params(h);
7791 if (!hpsa_CISS_signature_present(h)) {
7792 err = -ENODEV;
7793 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7795 hpsa_set_driver_support_bits(h);
7796 hpsa_p600_dma_prefetch_quirk(h);
7797 err = hpsa_enter_simple_mode(h);
7798 if (err)
7799 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7800 return 0;
7802 clean4: /* cfgtables, vaddr, intmode+region, pci */
7803 hpsa_free_cfgtables(h);
7804 clean3: /* vaddr, intmode+region, pci */
7805 iounmap(h->vaddr);
7806 h->vaddr = NULL;
7807 clean2: /* intmode+region, pci */
7808 hpsa_disable_interrupt_mode(h);
7809 clean1:
7811 * call pci_disable_device before pci_release_regions per
7812 * Documentation/PCI/pci.txt
7814 pci_disable_device(h->pdev);
7815 pci_release_regions(h->pdev);
7816 return err;
7819 static void hpsa_hba_inquiry(struct ctlr_info *h)
7821 int rc;
7823 #define HBA_INQUIRY_BYTE_COUNT 64
7824 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7825 if (!h->hba_inquiry_data)
7826 return;
7827 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7828 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7829 if (rc != 0) {
7830 kfree(h->hba_inquiry_data);
7831 h->hba_inquiry_data = NULL;
7835 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7837 int rc, i;
7838 void __iomem *vaddr;
7840 if (!reset_devices)
7841 return 0;
7843 /* kdump kernel is loading, we don't know in which state is
7844 * the pci interface. The dev->enable_cnt is equal zero
7845 * so we call enable+disable, wait a while and switch it on.
7847 rc = pci_enable_device(pdev);
7848 if (rc) {
7849 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7850 return -ENODEV;
7852 pci_disable_device(pdev);
7853 msleep(260); /* a randomly chosen number */
7854 rc = pci_enable_device(pdev);
7855 if (rc) {
7856 dev_warn(&pdev->dev, "failed to enable device.\n");
7857 return -ENODEV;
7860 pci_set_master(pdev);
7862 vaddr = pci_ioremap_bar(pdev, 0);
7863 if (vaddr == NULL) {
7864 rc = -ENOMEM;
7865 goto out_disable;
7867 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7868 iounmap(vaddr);
7870 /* Reset the controller with a PCI power-cycle or via doorbell */
7871 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7873 /* -ENOTSUPP here means we cannot reset the controller
7874 * but it's already (and still) up and running in
7875 * "performant mode". Or, it might be 640x, which can't reset
7876 * due to concerns about shared bbwc between 6402/6404 pair.
7878 if (rc)
7879 goto out_disable;
7881 /* Now try to get the controller to respond to a no-op */
7882 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7883 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7884 if (hpsa_noop(pdev) == 0)
7885 break;
7886 else
7887 dev_warn(&pdev->dev, "no-op failed%s\n",
7888 (i < 11 ? "; re-trying" : ""));
7891 out_disable:
7893 pci_disable_device(pdev);
7894 return rc;
7897 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7899 kfree(h->cmd_pool_bits);
7900 h->cmd_pool_bits = NULL;
7901 if (h->cmd_pool) {
7902 pci_free_consistent(h->pdev,
7903 h->nr_cmds * sizeof(struct CommandList),
7904 h->cmd_pool,
7905 h->cmd_pool_dhandle);
7906 h->cmd_pool = NULL;
7907 h->cmd_pool_dhandle = 0;
7909 if (h->errinfo_pool) {
7910 pci_free_consistent(h->pdev,
7911 h->nr_cmds * sizeof(struct ErrorInfo),
7912 h->errinfo_pool,
7913 h->errinfo_pool_dhandle);
7914 h->errinfo_pool = NULL;
7915 h->errinfo_pool_dhandle = 0;
7919 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7921 h->cmd_pool_bits = kzalloc(
7922 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7923 sizeof(unsigned long), GFP_KERNEL);
7924 h->cmd_pool = pci_alloc_consistent(h->pdev,
7925 h->nr_cmds * sizeof(*h->cmd_pool),
7926 &(h->cmd_pool_dhandle));
7927 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7928 h->nr_cmds * sizeof(*h->errinfo_pool),
7929 &(h->errinfo_pool_dhandle));
7930 if ((h->cmd_pool_bits == NULL)
7931 || (h->cmd_pool == NULL)
7932 || (h->errinfo_pool == NULL)) {
7933 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7934 goto clean_up;
7936 hpsa_preinitialize_commands(h);
7937 return 0;
7938 clean_up:
7939 hpsa_free_cmd_pool(h);
7940 return -ENOMEM;
7943 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7944 static void hpsa_free_irqs(struct ctlr_info *h)
7946 int i;
7948 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7949 /* Single reply queue, only one irq to free */
7950 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7951 h->q[h->intr_mode] = 0;
7952 return;
7955 for (i = 0; i < h->msix_vectors; i++) {
7956 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7957 h->q[i] = 0;
7959 for (; i < MAX_REPLY_QUEUES; i++)
7960 h->q[i] = 0;
7963 /* returns 0 on success; cleans up and returns -Enn on error */
7964 static int hpsa_request_irqs(struct ctlr_info *h,
7965 irqreturn_t (*msixhandler)(int, void *),
7966 irqreturn_t (*intxhandler)(int, void *))
7968 int rc, i;
7971 * initialize h->q[x] = x so that interrupt handlers know which
7972 * queue to process.
7974 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7975 h->q[i] = (u8) i;
7977 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7978 /* If performant mode and MSI-X, use multiple reply queues */
7979 for (i = 0; i < h->msix_vectors; i++) {
7980 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7981 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7982 0, h->intrname[i],
7983 &h->q[i]);
7984 if (rc) {
7985 int j;
7987 dev_err(&h->pdev->dev,
7988 "failed to get irq %d for %s\n",
7989 pci_irq_vector(h->pdev, i), h->devname);
7990 for (j = 0; j < i; j++) {
7991 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7992 h->q[j] = 0;
7994 for (; j < MAX_REPLY_QUEUES; j++)
7995 h->q[j] = 0;
7996 return rc;
7999 } else {
8000 /* Use single reply pool */
8001 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8002 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8003 h->msix_vectors ? "x" : "");
8004 rc = request_irq(pci_irq_vector(h->pdev, 0),
8005 msixhandler, 0,
8006 h->intrname[0],
8007 &h->q[h->intr_mode]);
8008 } else {
8009 sprintf(h->intrname[h->intr_mode],
8010 "%s-intx", h->devname);
8011 rc = request_irq(pci_irq_vector(h->pdev, 0),
8012 intxhandler, IRQF_SHARED,
8013 h->intrname[0],
8014 &h->q[h->intr_mode]);
8017 if (rc) {
8018 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8019 pci_irq_vector(h->pdev, 0), h->devname);
8020 hpsa_free_irqs(h);
8021 return -ENODEV;
8023 return 0;
8026 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8028 int rc;
8029 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8031 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8032 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8033 if (rc) {
8034 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8035 return rc;
8038 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8039 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8040 if (rc) {
8041 dev_warn(&h->pdev->dev, "Board failed to become ready "
8042 "after soft reset.\n");
8043 return rc;
8046 return 0;
8049 static void hpsa_free_reply_queues(struct ctlr_info *h)
8051 int i;
8053 for (i = 0; i < h->nreply_queues; i++) {
8054 if (!h->reply_queue[i].head)
8055 continue;
8056 pci_free_consistent(h->pdev,
8057 h->reply_queue_size,
8058 h->reply_queue[i].head,
8059 h->reply_queue[i].busaddr);
8060 h->reply_queue[i].head = NULL;
8061 h->reply_queue[i].busaddr = 0;
8063 h->reply_queue_size = 0;
8066 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8068 hpsa_free_performant_mode(h); /* init_one 7 */
8069 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8070 hpsa_free_cmd_pool(h); /* init_one 5 */
8071 hpsa_free_irqs(h); /* init_one 4 */
8072 scsi_host_put(h->scsi_host); /* init_one 3 */
8073 h->scsi_host = NULL; /* init_one 3 */
8074 hpsa_free_pci_init(h); /* init_one 2_5 */
8075 free_percpu(h->lockup_detected); /* init_one 2 */
8076 h->lockup_detected = NULL; /* init_one 2 */
8077 if (h->resubmit_wq) {
8078 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8079 h->resubmit_wq = NULL;
8081 if (h->rescan_ctlr_wq) {
8082 destroy_workqueue(h->rescan_ctlr_wq);
8083 h->rescan_ctlr_wq = NULL;
8085 kfree(h); /* init_one 1 */
8088 /* Called when controller lockup detected. */
8089 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8091 int i, refcount;
8092 struct CommandList *c;
8093 int failcount = 0;
8095 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8096 for (i = 0; i < h->nr_cmds; i++) {
8097 c = h->cmd_pool + i;
8098 refcount = atomic_inc_return(&c->refcount);
8099 if (refcount > 1) {
8100 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8101 finish_cmd(c);
8102 atomic_dec(&h->commands_outstanding);
8103 failcount++;
8105 cmd_free(h, c);
8107 dev_warn(&h->pdev->dev,
8108 "failed %d commands in fail_all\n", failcount);
8111 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8113 int cpu;
8115 for_each_online_cpu(cpu) {
8116 u32 *lockup_detected;
8117 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8118 *lockup_detected = value;
8120 wmb(); /* be sure the per-cpu variables are out to memory */
8123 static void controller_lockup_detected(struct ctlr_info *h)
8125 unsigned long flags;
8126 u32 lockup_detected;
8128 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8129 spin_lock_irqsave(&h->lock, flags);
8130 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8131 if (!lockup_detected) {
8132 /* no heartbeat, but controller gave us a zero. */
8133 dev_warn(&h->pdev->dev,
8134 "lockup detected after %d but scratchpad register is zero\n",
8135 h->heartbeat_sample_interval / HZ);
8136 lockup_detected = 0xffffffff;
8138 set_lockup_detected_for_all_cpus(h, lockup_detected);
8139 spin_unlock_irqrestore(&h->lock, flags);
8140 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8141 lockup_detected, h->heartbeat_sample_interval / HZ);
8142 if (lockup_detected == 0xffff0000) {
8143 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8144 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8146 pci_disable_device(h->pdev);
8147 fail_all_outstanding_cmds(h);
8150 static int detect_controller_lockup(struct ctlr_info *h)
8152 u64 now;
8153 u32 heartbeat;
8154 unsigned long flags;
8156 now = get_jiffies_64();
8157 /* If we've received an interrupt recently, we're ok. */
8158 if (time_after64(h->last_intr_timestamp +
8159 (h->heartbeat_sample_interval), now))
8160 return false;
8163 * If we've already checked the heartbeat recently, we're ok.
8164 * This could happen if someone sends us a signal. We
8165 * otherwise don't care about signals in this thread.
8167 if (time_after64(h->last_heartbeat_timestamp +
8168 (h->heartbeat_sample_interval), now))
8169 return false;
8171 /* If heartbeat has not changed since we last looked, we're not ok. */
8172 spin_lock_irqsave(&h->lock, flags);
8173 heartbeat = readl(&h->cfgtable->HeartBeat);
8174 spin_unlock_irqrestore(&h->lock, flags);
8175 if (h->last_heartbeat == heartbeat) {
8176 controller_lockup_detected(h);
8177 return true;
8180 /* We're ok. */
8181 h->last_heartbeat = heartbeat;
8182 h->last_heartbeat_timestamp = now;
8183 return false;
8187 * Set ioaccel status for all ioaccel volumes.
8189 * Called from monitor controller worker (hpsa_event_monitor_worker)
8191 * A Volume (or Volumes that comprise an Array set may be undergoing a
8192 * transformation, so we will be turning off ioaccel for all volumes that
8193 * make up the Array.
8195 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8197 int rc;
8198 int i;
8199 u8 ioaccel_status;
8200 unsigned char *buf;
8201 struct hpsa_scsi_dev_t *device;
8203 if (!h)
8204 return;
8206 buf = kmalloc(64, GFP_KERNEL);
8207 if (!buf)
8208 return;
8211 * Run through current device list used during I/O requests.
8213 for (i = 0; i < h->ndevices; i++) {
8214 device = h->dev[i];
8216 if (!device)
8217 continue;
8218 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8219 HPSA_VPD_LV_IOACCEL_STATUS))
8220 continue;
8222 memset(buf, 0, 64);
8224 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8225 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8226 buf, 64);
8227 if (rc != 0)
8228 continue;
8230 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8231 device->offload_config =
8232 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8233 if (device->offload_config)
8234 device->offload_to_be_enabled =
8235 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8238 * Immediately turn off ioaccel for any volume the
8239 * controller tells us to. Some of the reasons could be:
8240 * transformation - change to the LVs of an Array.
8241 * degraded volume - component failure
8243 * If ioaccel is to be re-enabled, re-enable later during the
8244 * scan operation so the driver can get a fresh raidmap
8245 * before turning ioaccel back on.
8248 if (!device->offload_to_be_enabled)
8249 device->offload_enabled = 0;
8252 kfree(buf);
8255 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8257 char *event_type;
8259 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8260 return;
8262 /* Ask the controller to clear the events we're handling. */
8263 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8264 | CFGTBL_Trans_io_accel2)) &&
8265 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8266 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8268 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8269 event_type = "state change";
8270 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8271 event_type = "configuration change";
8272 /* Stop sending new RAID offload reqs via the IO accelerator */
8273 scsi_block_requests(h->scsi_host);
8274 hpsa_set_ioaccel_status(h);
8275 hpsa_drain_accel_commands(h);
8276 /* Set 'accelerator path config change' bit */
8277 dev_warn(&h->pdev->dev,
8278 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8279 h->events, event_type);
8280 writel(h->events, &(h->cfgtable->clear_event_notify));
8281 /* Set the "clear event notify field update" bit 6 */
8282 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8283 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8284 hpsa_wait_for_clear_event_notify_ack(h);
8285 scsi_unblock_requests(h->scsi_host);
8286 } else {
8287 /* Acknowledge controller notification events. */
8288 writel(h->events, &(h->cfgtable->clear_event_notify));
8289 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8290 hpsa_wait_for_clear_event_notify_ack(h);
8292 return;
8295 /* Check a register on the controller to see if there are configuration
8296 * changes (added/changed/removed logical drives, etc.) which mean that
8297 * we should rescan the controller for devices.
8298 * Also check flag for driver-initiated rescan.
8300 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8302 if (h->drv_req_rescan) {
8303 h->drv_req_rescan = 0;
8304 return 1;
8307 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8308 return 0;
8310 h->events = readl(&(h->cfgtable->event_notify));
8311 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8315 * Check if any of the offline devices have become ready
8317 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8319 unsigned long flags;
8320 struct offline_device_entry *d;
8321 struct list_head *this, *tmp;
8323 spin_lock_irqsave(&h->offline_device_lock, flags);
8324 list_for_each_safe(this, tmp, &h->offline_device_list) {
8325 d = list_entry(this, struct offline_device_entry,
8326 offline_list);
8327 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8328 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8329 spin_lock_irqsave(&h->offline_device_lock, flags);
8330 list_del(&d->offline_list);
8331 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8332 return 1;
8334 spin_lock_irqsave(&h->offline_device_lock, flags);
8336 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8337 return 0;
8340 static int hpsa_luns_changed(struct ctlr_info *h)
8342 int rc = 1; /* assume there are changes */
8343 struct ReportLUNdata *logdev = NULL;
8345 /* if we can't find out if lun data has changed,
8346 * assume that it has.
8349 if (!h->lastlogicals)
8350 return rc;
8352 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8353 if (!logdev)
8354 return rc;
8356 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8357 dev_warn(&h->pdev->dev,
8358 "report luns failed, can't track lun changes.\n");
8359 goto out;
8361 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8362 dev_info(&h->pdev->dev,
8363 "Lun changes detected.\n");
8364 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8365 goto out;
8366 } else
8367 rc = 0; /* no changes detected. */
8368 out:
8369 kfree(logdev);
8370 return rc;
8373 static void hpsa_perform_rescan(struct ctlr_info *h)
8375 struct Scsi_Host *sh = NULL;
8376 unsigned long flags;
8379 * Do the scan after the reset
8381 spin_lock_irqsave(&h->reset_lock, flags);
8382 if (h->reset_in_progress) {
8383 h->drv_req_rescan = 1;
8384 spin_unlock_irqrestore(&h->reset_lock, flags);
8385 return;
8387 spin_unlock_irqrestore(&h->reset_lock, flags);
8389 sh = scsi_host_get(h->scsi_host);
8390 if (sh != NULL) {
8391 hpsa_scan_start(sh);
8392 scsi_host_put(sh);
8393 h->drv_req_rescan = 0;
8398 * watch for controller events
8400 static void hpsa_event_monitor_worker(struct work_struct *work)
8402 struct ctlr_info *h = container_of(to_delayed_work(work),
8403 struct ctlr_info, event_monitor_work);
8404 unsigned long flags;
8406 spin_lock_irqsave(&h->lock, flags);
8407 if (h->remove_in_progress) {
8408 spin_unlock_irqrestore(&h->lock, flags);
8409 return;
8411 spin_unlock_irqrestore(&h->lock, flags);
8413 if (hpsa_ctlr_needs_rescan(h)) {
8414 hpsa_ack_ctlr_events(h);
8415 hpsa_perform_rescan(h);
8418 spin_lock_irqsave(&h->lock, flags);
8419 if (!h->remove_in_progress)
8420 schedule_delayed_work(&h->event_monitor_work,
8421 HPSA_EVENT_MONITOR_INTERVAL);
8422 spin_unlock_irqrestore(&h->lock, flags);
8425 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8427 unsigned long flags;
8428 struct ctlr_info *h = container_of(to_delayed_work(work),
8429 struct ctlr_info, rescan_ctlr_work);
8431 spin_lock_irqsave(&h->lock, flags);
8432 if (h->remove_in_progress) {
8433 spin_unlock_irqrestore(&h->lock, flags);
8434 return;
8436 spin_unlock_irqrestore(&h->lock, flags);
8438 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8439 hpsa_perform_rescan(h);
8440 } else if (h->discovery_polling) {
8441 if (hpsa_luns_changed(h)) {
8442 dev_info(&h->pdev->dev,
8443 "driver discovery polling rescan.\n");
8444 hpsa_perform_rescan(h);
8447 spin_lock_irqsave(&h->lock, flags);
8448 if (!h->remove_in_progress)
8449 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8450 h->heartbeat_sample_interval);
8451 spin_unlock_irqrestore(&h->lock, flags);
8454 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8456 unsigned long flags;
8457 struct ctlr_info *h = container_of(to_delayed_work(work),
8458 struct ctlr_info, monitor_ctlr_work);
8460 detect_controller_lockup(h);
8461 if (lockup_detected(h))
8462 return;
8464 spin_lock_irqsave(&h->lock, flags);
8465 if (!h->remove_in_progress)
8466 schedule_delayed_work(&h->monitor_ctlr_work,
8467 h->heartbeat_sample_interval);
8468 spin_unlock_irqrestore(&h->lock, flags);
8471 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8472 char *name)
8474 struct workqueue_struct *wq = NULL;
8476 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8477 if (!wq)
8478 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8480 return wq;
8483 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8485 int dac, rc;
8486 struct ctlr_info *h;
8487 int try_soft_reset = 0;
8488 unsigned long flags;
8489 u32 board_id;
8491 if (number_of_controllers == 0)
8492 printk(KERN_INFO DRIVER_NAME "\n");
8494 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8495 if (rc < 0) {
8496 dev_warn(&pdev->dev, "Board ID not found\n");
8497 return rc;
8500 rc = hpsa_init_reset_devices(pdev, board_id);
8501 if (rc) {
8502 if (rc != -ENOTSUPP)
8503 return rc;
8504 /* If the reset fails in a particular way (it has no way to do
8505 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8506 * a soft reset once we get the controller configured up to the
8507 * point that it can accept a command.
8509 try_soft_reset = 1;
8510 rc = 0;
8513 reinit_after_soft_reset:
8515 /* Command structures must be aligned on a 32-byte boundary because
8516 * the 5 lower bits of the address are used by the hardware. and by
8517 * the driver. See comments in hpsa.h for more info.
8519 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8520 h = kzalloc(sizeof(*h), GFP_KERNEL);
8521 if (!h) {
8522 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8523 return -ENOMEM;
8526 h->pdev = pdev;
8528 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8529 INIT_LIST_HEAD(&h->offline_device_list);
8530 spin_lock_init(&h->lock);
8531 spin_lock_init(&h->offline_device_lock);
8532 spin_lock_init(&h->scan_lock);
8533 spin_lock_init(&h->reset_lock);
8534 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8536 /* Allocate and clear per-cpu variable lockup_detected */
8537 h->lockup_detected = alloc_percpu(u32);
8538 if (!h->lockup_detected) {
8539 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8540 rc = -ENOMEM;
8541 goto clean1; /* aer/h */
8543 set_lockup_detected_for_all_cpus(h, 0);
8545 rc = hpsa_pci_init(h);
8546 if (rc)
8547 goto clean2; /* lu, aer/h */
8549 /* relies on h-> settings made by hpsa_pci_init, including
8550 * interrupt_mode h->intr */
8551 rc = hpsa_scsi_host_alloc(h);
8552 if (rc)
8553 goto clean2_5; /* pci, lu, aer/h */
8555 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8556 h->ctlr = number_of_controllers;
8557 number_of_controllers++;
8559 /* configure PCI DMA stuff */
8560 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8561 if (rc == 0) {
8562 dac = 1;
8563 } else {
8564 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8565 if (rc == 0) {
8566 dac = 0;
8567 } else {
8568 dev_err(&pdev->dev, "no suitable DMA available\n");
8569 goto clean3; /* shost, pci, lu, aer/h */
8573 /* make sure the board interrupts are off */
8574 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8576 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8577 if (rc)
8578 goto clean3; /* shost, pci, lu, aer/h */
8579 rc = hpsa_alloc_cmd_pool(h);
8580 if (rc)
8581 goto clean4; /* irq, shost, pci, lu, aer/h */
8582 rc = hpsa_alloc_sg_chain_blocks(h);
8583 if (rc)
8584 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8585 init_waitqueue_head(&h->scan_wait_queue);
8586 init_waitqueue_head(&h->event_sync_wait_queue);
8587 mutex_init(&h->reset_mutex);
8588 h->scan_finished = 1; /* no scan currently in progress */
8589 h->scan_waiting = 0;
8591 pci_set_drvdata(pdev, h);
8592 h->ndevices = 0;
8594 spin_lock_init(&h->devlock);
8595 rc = hpsa_put_ctlr_into_performant_mode(h);
8596 if (rc)
8597 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8599 /* create the resubmit workqueue */
8600 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8601 if (!h->rescan_ctlr_wq) {
8602 rc = -ENOMEM;
8603 goto clean7;
8606 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8607 if (!h->resubmit_wq) {
8608 rc = -ENOMEM;
8609 goto clean7; /* aer/h */
8613 * At this point, the controller is ready to take commands.
8614 * Now, if reset_devices and the hard reset didn't work, try
8615 * the soft reset and see if that works.
8617 if (try_soft_reset) {
8619 /* This is kind of gross. We may or may not get a completion
8620 * from the soft reset command, and if we do, then the value
8621 * from the fifo may or may not be valid. So, we wait 10 secs
8622 * after the reset throwing away any completions we get during
8623 * that time. Unregister the interrupt handler and register
8624 * fake ones to scoop up any residual completions.
8626 spin_lock_irqsave(&h->lock, flags);
8627 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8628 spin_unlock_irqrestore(&h->lock, flags);
8629 hpsa_free_irqs(h);
8630 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8631 hpsa_intx_discard_completions);
8632 if (rc) {
8633 dev_warn(&h->pdev->dev,
8634 "Failed to request_irq after soft reset.\n");
8636 * cannot goto clean7 or free_irqs will be called
8637 * again. Instead, do its work
8639 hpsa_free_performant_mode(h); /* clean7 */
8640 hpsa_free_sg_chain_blocks(h); /* clean6 */
8641 hpsa_free_cmd_pool(h); /* clean5 */
8643 * skip hpsa_free_irqs(h) clean4 since that
8644 * was just called before request_irqs failed
8646 goto clean3;
8649 rc = hpsa_kdump_soft_reset(h);
8650 if (rc)
8651 /* Neither hard nor soft reset worked, we're hosed. */
8652 goto clean7;
8654 dev_info(&h->pdev->dev, "Board READY.\n");
8655 dev_info(&h->pdev->dev,
8656 "Waiting for stale completions to drain.\n");
8657 h->access.set_intr_mask(h, HPSA_INTR_ON);
8658 msleep(10000);
8659 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8661 rc = controller_reset_failed(h->cfgtable);
8662 if (rc)
8663 dev_info(&h->pdev->dev,
8664 "Soft reset appears to have failed.\n");
8666 /* since the controller's reset, we have to go back and re-init
8667 * everything. Easiest to just forget what we've done and do it
8668 * all over again.
8670 hpsa_undo_allocations_after_kdump_soft_reset(h);
8671 try_soft_reset = 0;
8672 if (rc)
8673 /* don't goto clean, we already unallocated */
8674 return -ENODEV;
8676 goto reinit_after_soft_reset;
8679 /* Enable Accelerated IO path at driver layer */
8680 h->acciopath_status = 1;
8681 /* Disable discovery polling.*/
8682 h->discovery_polling = 0;
8685 /* Turn the interrupts on so we can service requests */
8686 h->access.set_intr_mask(h, HPSA_INTR_ON);
8688 hpsa_hba_inquiry(h);
8690 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8691 if (!h->lastlogicals)
8692 dev_info(&h->pdev->dev,
8693 "Can't track change to report lun data\n");
8695 /* hook into SCSI subsystem */
8696 rc = hpsa_scsi_add_host(h);
8697 if (rc)
8698 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8700 /* Monitor the controller for firmware lockups */
8701 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8702 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8703 schedule_delayed_work(&h->monitor_ctlr_work,
8704 h->heartbeat_sample_interval);
8705 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8706 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8707 h->heartbeat_sample_interval);
8708 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8709 schedule_delayed_work(&h->event_monitor_work,
8710 HPSA_EVENT_MONITOR_INTERVAL);
8711 return 0;
8713 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8714 hpsa_free_performant_mode(h);
8715 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8716 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8717 hpsa_free_sg_chain_blocks(h);
8718 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8719 hpsa_free_cmd_pool(h);
8720 clean4: /* irq, shost, pci, lu, aer/h */
8721 hpsa_free_irqs(h);
8722 clean3: /* shost, pci, lu, aer/h */
8723 scsi_host_put(h->scsi_host);
8724 h->scsi_host = NULL;
8725 clean2_5: /* pci, lu, aer/h */
8726 hpsa_free_pci_init(h);
8727 clean2: /* lu, aer/h */
8728 if (h->lockup_detected) {
8729 free_percpu(h->lockup_detected);
8730 h->lockup_detected = NULL;
8732 clean1: /* wq/aer/h */
8733 if (h->resubmit_wq) {
8734 destroy_workqueue(h->resubmit_wq);
8735 h->resubmit_wq = NULL;
8737 if (h->rescan_ctlr_wq) {
8738 destroy_workqueue(h->rescan_ctlr_wq);
8739 h->rescan_ctlr_wq = NULL;
8741 kfree(h);
8742 return rc;
8745 static void hpsa_flush_cache(struct ctlr_info *h)
8747 char *flush_buf;
8748 struct CommandList *c;
8749 int rc;
8751 if (unlikely(lockup_detected(h)))
8752 return;
8753 flush_buf = kzalloc(4, GFP_KERNEL);
8754 if (!flush_buf)
8755 return;
8757 c = cmd_alloc(h);
8759 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8760 RAID_CTLR_LUNID, TYPE_CMD)) {
8761 goto out;
8763 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8764 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8765 if (rc)
8766 goto out;
8767 if (c->err_info->CommandStatus != 0)
8768 out:
8769 dev_warn(&h->pdev->dev,
8770 "error flushing cache on controller\n");
8771 cmd_free(h, c);
8772 kfree(flush_buf);
8775 /* Make controller gather fresh report lun data each time we
8776 * send down a report luns request
8778 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8780 u32 *options;
8781 struct CommandList *c;
8782 int rc;
8784 /* Don't bother trying to set diag options if locked up */
8785 if (unlikely(h->lockup_detected))
8786 return;
8788 options = kzalloc(sizeof(*options), GFP_KERNEL);
8789 if (!options)
8790 return;
8792 c = cmd_alloc(h);
8794 /* first, get the current diag options settings */
8795 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8796 RAID_CTLR_LUNID, TYPE_CMD))
8797 goto errout;
8799 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8800 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8801 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8802 goto errout;
8804 /* Now, set the bit for disabling the RLD caching */
8805 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8807 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8808 RAID_CTLR_LUNID, TYPE_CMD))
8809 goto errout;
8811 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8812 PCI_DMA_TODEVICE, NO_TIMEOUT);
8813 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8814 goto errout;
8816 /* Now verify that it got set: */
8817 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8818 RAID_CTLR_LUNID, TYPE_CMD))
8819 goto errout;
8821 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8822 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8823 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8824 goto errout;
8826 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8827 goto out;
8829 errout:
8830 dev_err(&h->pdev->dev,
8831 "Error: failed to disable report lun data caching.\n");
8832 out:
8833 cmd_free(h, c);
8834 kfree(options);
8837 static void hpsa_shutdown(struct pci_dev *pdev)
8839 struct ctlr_info *h;
8841 h = pci_get_drvdata(pdev);
8842 /* Turn board interrupts off and send the flush cache command
8843 * sendcmd will turn off interrupt, and send the flush...
8844 * To write all data in the battery backed cache to disks
8846 hpsa_flush_cache(h);
8847 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8848 hpsa_free_irqs(h); /* init_one 4 */
8849 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8852 static void hpsa_free_device_info(struct ctlr_info *h)
8854 int i;
8856 for (i = 0; i < h->ndevices; i++) {
8857 kfree(h->dev[i]);
8858 h->dev[i] = NULL;
8862 static void hpsa_remove_one(struct pci_dev *pdev)
8864 struct ctlr_info *h;
8865 unsigned long flags;
8867 if (pci_get_drvdata(pdev) == NULL) {
8868 dev_err(&pdev->dev, "unable to remove device\n");
8869 return;
8871 h = pci_get_drvdata(pdev);
8873 /* Get rid of any controller monitoring work items */
8874 spin_lock_irqsave(&h->lock, flags);
8875 h->remove_in_progress = 1;
8876 spin_unlock_irqrestore(&h->lock, flags);
8877 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8878 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8879 cancel_delayed_work_sync(&h->event_monitor_work);
8880 destroy_workqueue(h->rescan_ctlr_wq);
8881 destroy_workqueue(h->resubmit_wq);
8883 hpsa_delete_sas_host(h);
8886 * Call before disabling interrupts.
8887 * scsi_remove_host can trigger I/O operations especially
8888 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8889 * operations which cannot complete and will hang the system.
8891 if (h->scsi_host)
8892 scsi_remove_host(h->scsi_host); /* init_one 8 */
8893 /* includes hpsa_free_irqs - init_one 4 */
8894 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8895 hpsa_shutdown(pdev);
8897 hpsa_free_device_info(h); /* scan */
8899 kfree(h->hba_inquiry_data); /* init_one 10 */
8900 h->hba_inquiry_data = NULL; /* init_one 10 */
8901 hpsa_free_ioaccel2_sg_chain_blocks(h);
8902 hpsa_free_performant_mode(h); /* init_one 7 */
8903 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8904 hpsa_free_cmd_pool(h); /* init_one 5 */
8905 kfree(h->lastlogicals);
8907 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8909 scsi_host_put(h->scsi_host); /* init_one 3 */
8910 h->scsi_host = NULL; /* init_one 3 */
8912 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8913 hpsa_free_pci_init(h); /* init_one 2.5 */
8915 free_percpu(h->lockup_detected); /* init_one 2 */
8916 h->lockup_detected = NULL; /* init_one 2 */
8917 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8919 kfree(h); /* init_one 1 */
8922 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8923 __attribute__((unused)) pm_message_t state)
8925 return -ENOSYS;
8928 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8930 return -ENOSYS;
8933 static struct pci_driver hpsa_pci_driver = {
8934 .name = HPSA,
8935 .probe = hpsa_init_one,
8936 .remove = hpsa_remove_one,
8937 .id_table = hpsa_pci_device_id, /* id_table */
8938 .shutdown = hpsa_shutdown,
8939 .suspend = hpsa_suspend,
8940 .resume = hpsa_resume,
8943 /* Fill in bucket_map[], given nsgs (the max number of
8944 * scatter gather elements supported) and bucket[],
8945 * which is an array of 8 integers. The bucket[] array
8946 * contains 8 different DMA transfer sizes (in 16
8947 * byte increments) which the controller uses to fetch
8948 * commands. This function fills in bucket_map[], which
8949 * maps a given number of scatter gather elements to one of
8950 * the 8 DMA transfer sizes. The point of it is to allow the
8951 * controller to only do as much DMA as needed to fetch the
8952 * command, with the DMA transfer size encoded in the lower
8953 * bits of the command address.
8955 static void calc_bucket_map(int bucket[], int num_buckets,
8956 int nsgs, int min_blocks, u32 *bucket_map)
8958 int i, j, b, size;
8960 /* Note, bucket_map must have nsgs+1 entries. */
8961 for (i = 0; i <= nsgs; i++) {
8962 /* Compute size of a command with i SG entries */
8963 size = i + min_blocks;
8964 b = num_buckets; /* Assume the biggest bucket */
8965 /* Find the bucket that is just big enough */
8966 for (j = 0; j < num_buckets; j++) {
8967 if (bucket[j] >= size) {
8968 b = j;
8969 break;
8972 /* for a command with i SG entries, use bucket b. */
8973 bucket_map[i] = b;
8978 * return -ENODEV on err, 0 on success (or no action)
8979 * allocates numerous items that must be freed later
8981 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8983 int i;
8984 unsigned long register_value;
8985 unsigned long transMethod = CFGTBL_Trans_Performant |
8986 (trans_support & CFGTBL_Trans_use_short_tags) |
8987 CFGTBL_Trans_enable_directed_msix |
8988 (trans_support & (CFGTBL_Trans_io_accel1 |
8989 CFGTBL_Trans_io_accel2));
8990 struct access_method access = SA5_performant_access;
8992 /* This is a bit complicated. There are 8 registers on
8993 * the controller which we write to to tell it 8 different
8994 * sizes of commands which there may be. It's a way of
8995 * reducing the DMA done to fetch each command. Encoded into
8996 * each command's tag are 3 bits which communicate to the controller
8997 * which of the eight sizes that command fits within. The size of
8998 * each command depends on how many scatter gather entries there are.
8999 * Each SG entry requires 16 bytes. The eight registers are programmed
9000 * with the number of 16-byte blocks a command of that size requires.
9001 * The smallest command possible requires 5 such 16 byte blocks.
9002 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9003 * blocks. Note, this only extends to the SG entries contained
9004 * within the command block, and does not extend to chained blocks
9005 * of SG elements. bft[] contains the eight values we write to
9006 * the registers. They are not evenly distributed, but have more
9007 * sizes for small commands, and fewer sizes for larger commands.
9009 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9010 #define MIN_IOACCEL2_BFT_ENTRY 5
9011 #define HPSA_IOACCEL2_HEADER_SZ 4
9012 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9013 13, 14, 15, 16, 17, 18, 19,
9014 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9015 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9016 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9017 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9018 16 * MIN_IOACCEL2_BFT_ENTRY);
9019 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9020 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9021 /* 5 = 1 s/g entry or 4k
9022 * 6 = 2 s/g entry or 8k
9023 * 8 = 4 s/g entry or 16k
9024 * 10 = 6 s/g entry or 24k
9027 /* If the controller supports either ioaccel method then
9028 * we can also use the RAID stack submit path that does not
9029 * perform the superfluous readl() after each command submission.
9031 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9032 access = SA5_performant_access_no_read;
9034 /* Controller spec: zero out this buffer. */
9035 for (i = 0; i < h->nreply_queues; i++)
9036 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9038 bft[7] = SG_ENTRIES_IN_CMD + 4;
9039 calc_bucket_map(bft, ARRAY_SIZE(bft),
9040 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9041 for (i = 0; i < 8; i++)
9042 writel(bft[i], &h->transtable->BlockFetch[i]);
9044 /* size of controller ring buffer */
9045 writel(h->max_commands, &h->transtable->RepQSize);
9046 writel(h->nreply_queues, &h->transtable->RepQCount);
9047 writel(0, &h->transtable->RepQCtrAddrLow32);
9048 writel(0, &h->transtable->RepQCtrAddrHigh32);
9050 for (i = 0; i < h->nreply_queues; i++) {
9051 writel(0, &h->transtable->RepQAddr[i].upper);
9052 writel(h->reply_queue[i].busaddr,
9053 &h->transtable->RepQAddr[i].lower);
9056 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9057 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9059 * enable outbound interrupt coalescing in accelerator mode;
9061 if (trans_support & CFGTBL_Trans_io_accel1) {
9062 access = SA5_ioaccel_mode1_access;
9063 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9064 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9065 } else
9066 if (trans_support & CFGTBL_Trans_io_accel2)
9067 access = SA5_ioaccel_mode2_access;
9068 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9069 if (hpsa_wait_for_mode_change_ack(h)) {
9070 dev_err(&h->pdev->dev,
9071 "performant mode problem - doorbell timeout\n");
9072 return -ENODEV;
9074 register_value = readl(&(h->cfgtable->TransportActive));
9075 if (!(register_value & CFGTBL_Trans_Performant)) {
9076 dev_err(&h->pdev->dev,
9077 "performant mode problem - transport not active\n");
9078 return -ENODEV;
9080 /* Change the access methods to the performant access methods */
9081 h->access = access;
9082 h->transMethod = transMethod;
9084 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9085 (trans_support & CFGTBL_Trans_io_accel2)))
9086 return 0;
9088 if (trans_support & CFGTBL_Trans_io_accel1) {
9089 /* Set up I/O accelerator mode */
9090 for (i = 0; i < h->nreply_queues; i++) {
9091 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9092 h->reply_queue[i].current_entry =
9093 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9095 bft[7] = h->ioaccel_maxsg + 8;
9096 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9097 h->ioaccel1_blockFetchTable);
9099 /* initialize all reply queue entries to unused */
9100 for (i = 0; i < h->nreply_queues; i++)
9101 memset(h->reply_queue[i].head,
9102 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9103 h->reply_queue_size);
9105 /* set all the constant fields in the accelerator command
9106 * frames once at init time to save CPU cycles later.
9108 for (i = 0; i < h->nr_cmds; i++) {
9109 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9111 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9112 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9113 (i * sizeof(struct ErrorInfo)));
9114 cp->err_info_len = sizeof(struct ErrorInfo);
9115 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9116 cp->host_context_flags =
9117 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9118 cp->timeout_sec = 0;
9119 cp->ReplyQueue = 0;
9120 cp->tag =
9121 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9122 cp->host_addr =
9123 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9124 (i * sizeof(struct io_accel1_cmd)));
9126 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9127 u64 cfg_offset, cfg_base_addr_index;
9128 u32 bft2_offset, cfg_base_addr;
9129 int rc;
9131 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9132 &cfg_base_addr_index, &cfg_offset);
9133 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9134 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9135 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9136 4, h->ioaccel2_blockFetchTable);
9137 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9138 BUILD_BUG_ON(offsetof(struct CfgTable,
9139 io_accel_request_size_offset) != 0xb8);
9140 h->ioaccel2_bft2_regs =
9141 remap_pci_mem(pci_resource_start(h->pdev,
9142 cfg_base_addr_index) +
9143 cfg_offset + bft2_offset,
9144 ARRAY_SIZE(bft2) *
9145 sizeof(*h->ioaccel2_bft2_regs));
9146 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9147 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9149 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9150 if (hpsa_wait_for_mode_change_ack(h)) {
9151 dev_err(&h->pdev->dev,
9152 "performant mode problem - enabling ioaccel mode\n");
9153 return -ENODEV;
9155 return 0;
9158 /* Free ioaccel1 mode command blocks and block fetch table */
9159 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9161 if (h->ioaccel_cmd_pool) {
9162 pci_free_consistent(h->pdev,
9163 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9164 h->ioaccel_cmd_pool,
9165 h->ioaccel_cmd_pool_dhandle);
9166 h->ioaccel_cmd_pool = NULL;
9167 h->ioaccel_cmd_pool_dhandle = 0;
9169 kfree(h->ioaccel1_blockFetchTable);
9170 h->ioaccel1_blockFetchTable = NULL;
9173 /* Allocate ioaccel1 mode command blocks and block fetch table */
9174 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9176 h->ioaccel_maxsg =
9177 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9178 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9179 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9181 /* Command structures must be aligned on a 128-byte boundary
9182 * because the 7 lower bits of the address are used by the
9183 * hardware.
9185 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9186 IOACCEL1_COMMANDLIST_ALIGNMENT);
9187 h->ioaccel_cmd_pool =
9188 pci_alloc_consistent(h->pdev,
9189 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9190 &(h->ioaccel_cmd_pool_dhandle));
9192 h->ioaccel1_blockFetchTable =
9193 kmalloc(((h->ioaccel_maxsg + 1) *
9194 sizeof(u32)), GFP_KERNEL);
9196 if ((h->ioaccel_cmd_pool == NULL) ||
9197 (h->ioaccel1_blockFetchTable == NULL))
9198 goto clean_up;
9200 memset(h->ioaccel_cmd_pool, 0,
9201 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9202 return 0;
9204 clean_up:
9205 hpsa_free_ioaccel1_cmd_and_bft(h);
9206 return -ENOMEM;
9209 /* Free ioaccel2 mode command blocks and block fetch table */
9210 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9212 hpsa_free_ioaccel2_sg_chain_blocks(h);
9214 if (h->ioaccel2_cmd_pool) {
9215 pci_free_consistent(h->pdev,
9216 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9217 h->ioaccel2_cmd_pool,
9218 h->ioaccel2_cmd_pool_dhandle);
9219 h->ioaccel2_cmd_pool = NULL;
9220 h->ioaccel2_cmd_pool_dhandle = 0;
9222 kfree(h->ioaccel2_blockFetchTable);
9223 h->ioaccel2_blockFetchTable = NULL;
9226 /* Allocate ioaccel2 mode command blocks and block fetch table */
9227 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9229 int rc;
9231 /* Allocate ioaccel2 mode command blocks and block fetch table */
9233 h->ioaccel_maxsg =
9234 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9235 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9236 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9238 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9239 IOACCEL2_COMMANDLIST_ALIGNMENT);
9240 h->ioaccel2_cmd_pool =
9241 pci_alloc_consistent(h->pdev,
9242 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9243 &(h->ioaccel2_cmd_pool_dhandle));
9245 h->ioaccel2_blockFetchTable =
9246 kmalloc(((h->ioaccel_maxsg + 1) *
9247 sizeof(u32)), GFP_KERNEL);
9249 if ((h->ioaccel2_cmd_pool == NULL) ||
9250 (h->ioaccel2_blockFetchTable == NULL)) {
9251 rc = -ENOMEM;
9252 goto clean_up;
9255 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9256 if (rc)
9257 goto clean_up;
9259 memset(h->ioaccel2_cmd_pool, 0,
9260 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9261 return 0;
9263 clean_up:
9264 hpsa_free_ioaccel2_cmd_and_bft(h);
9265 return rc;
9268 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9269 static void hpsa_free_performant_mode(struct ctlr_info *h)
9271 kfree(h->blockFetchTable);
9272 h->blockFetchTable = NULL;
9273 hpsa_free_reply_queues(h);
9274 hpsa_free_ioaccel1_cmd_and_bft(h);
9275 hpsa_free_ioaccel2_cmd_and_bft(h);
9278 /* return -ENODEV on error, 0 on success (or no action)
9279 * allocates numerous items that must be freed later
9281 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9283 u32 trans_support;
9284 unsigned long transMethod = CFGTBL_Trans_Performant |
9285 CFGTBL_Trans_use_short_tags;
9286 int i, rc;
9288 if (hpsa_simple_mode)
9289 return 0;
9291 trans_support = readl(&(h->cfgtable->TransportSupport));
9292 if (!(trans_support & PERFORMANT_MODE))
9293 return 0;
9295 /* Check for I/O accelerator mode support */
9296 if (trans_support & CFGTBL_Trans_io_accel1) {
9297 transMethod |= CFGTBL_Trans_io_accel1 |
9298 CFGTBL_Trans_enable_directed_msix;
9299 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9300 if (rc)
9301 return rc;
9302 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9303 transMethod |= CFGTBL_Trans_io_accel2 |
9304 CFGTBL_Trans_enable_directed_msix;
9305 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9306 if (rc)
9307 return rc;
9310 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9311 hpsa_get_max_perf_mode_cmds(h);
9312 /* Performant mode ring buffer and supporting data structures */
9313 h->reply_queue_size = h->max_commands * sizeof(u64);
9315 for (i = 0; i < h->nreply_queues; i++) {
9316 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9317 h->reply_queue_size,
9318 &(h->reply_queue[i].busaddr));
9319 if (!h->reply_queue[i].head) {
9320 rc = -ENOMEM;
9321 goto clean1; /* rq, ioaccel */
9323 h->reply_queue[i].size = h->max_commands;
9324 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9325 h->reply_queue[i].current_entry = 0;
9328 /* Need a block fetch table for performant mode */
9329 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9330 sizeof(u32)), GFP_KERNEL);
9331 if (!h->blockFetchTable) {
9332 rc = -ENOMEM;
9333 goto clean1; /* rq, ioaccel */
9336 rc = hpsa_enter_performant_mode(h, trans_support);
9337 if (rc)
9338 goto clean2; /* bft, rq, ioaccel */
9339 return 0;
9341 clean2: /* bft, rq, ioaccel */
9342 kfree(h->blockFetchTable);
9343 h->blockFetchTable = NULL;
9344 clean1: /* rq, ioaccel */
9345 hpsa_free_reply_queues(h);
9346 hpsa_free_ioaccel1_cmd_and_bft(h);
9347 hpsa_free_ioaccel2_cmd_and_bft(h);
9348 return rc;
9351 static int is_accelerated_cmd(struct CommandList *c)
9353 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9356 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9358 struct CommandList *c = NULL;
9359 int i, accel_cmds_out;
9360 int refcount;
9362 do { /* wait for all outstanding ioaccel commands to drain out */
9363 accel_cmds_out = 0;
9364 for (i = 0; i < h->nr_cmds; i++) {
9365 c = h->cmd_pool + i;
9366 refcount = atomic_inc_return(&c->refcount);
9367 if (refcount > 1) /* Command is allocated */
9368 accel_cmds_out += is_accelerated_cmd(c);
9369 cmd_free(h, c);
9371 if (accel_cmds_out <= 0)
9372 break;
9373 msleep(100);
9374 } while (1);
9377 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9378 struct hpsa_sas_port *hpsa_sas_port)
9380 struct hpsa_sas_phy *hpsa_sas_phy;
9381 struct sas_phy *phy;
9383 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9384 if (!hpsa_sas_phy)
9385 return NULL;
9387 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9388 hpsa_sas_port->next_phy_index);
9389 if (!phy) {
9390 kfree(hpsa_sas_phy);
9391 return NULL;
9394 hpsa_sas_port->next_phy_index++;
9395 hpsa_sas_phy->phy = phy;
9396 hpsa_sas_phy->parent_port = hpsa_sas_port;
9398 return hpsa_sas_phy;
9401 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9403 struct sas_phy *phy = hpsa_sas_phy->phy;
9405 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9406 if (hpsa_sas_phy->added_to_port)
9407 list_del(&hpsa_sas_phy->phy_list_entry);
9408 sas_phy_delete(phy);
9409 kfree(hpsa_sas_phy);
9412 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9414 int rc;
9415 struct hpsa_sas_port *hpsa_sas_port;
9416 struct sas_phy *phy;
9417 struct sas_identify *identify;
9419 hpsa_sas_port = hpsa_sas_phy->parent_port;
9420 phy = hpsa_sas_phy->phy;
9422 identify = &phy->identify;
9423 memset(identify, 0, sizeof(*identify));
9424 identify->sas_address = hpsa_sas_port->sas_address;
9425 identify->device_type = SAS_END_DEVICE;
9426 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9427 identify->target_port_protocols = SAS_PROTOCOL_STP;
9428 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9429 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9430 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9431 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9432 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9434 rc = sas_phy_add(hpsa_sas_phy->phy);
9435 if (rc)
9436 return rc;
9438 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9439 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9440 &hpsa_sas_port->phy_list_head);
9441 hpsa_sas_phy->added_to_port = true;
9443 return 0;
9446 static int
9447 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9448 struct sas_rphy *rphy)
9450 struct sas_identify *identify;
9452 identify = &rphy->identify;
9453 identify->sas_address = hpsa_sas_port->sas_address;
9454 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9455 identify->target_port_protocols = SAS_PROTOCOL_STP;
9457 return sas_rphy_add(rphy);
9460 static struct hpsa_sas_port
9461 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9462 u64 sas_address)
9464 int rc;
9465 struct hpsa_sas_port *hpsa_sas_port;
9466 struct sas_port *port;
9468 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9469 if (!hpsa_sas_port)
9470 return NULL;
9472 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9473 hpsa_sas_port->parent_node = hpsa_sas_node;
9475 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9476 if (!port)
9477 goto free_hpsa_port;
9479 rc = sas_port_add(port);
9480 if (rc)
9481 goto free_sas_port;
9483 hpsa_sas_port->port = port;
9484 hpsa_sas_port->sas_address = sas_address;
9485 list_add_tail(&hpsa_sas_port->port_list_entry,
9486 &hpsa_sas_node->port_list_head);
9488 return hpsa_sas_port;
9490 free_sas_port:
9491 sas_port_free(port);
9492 free_hpsa_port:
9493 kfree(hpsa_sas_port);
9495 return NULL;
9498 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9500 struct hpsa_sas_phy *hpsa_sas_phy;
9501 struct hpsa_sas_phy *next;
9503 list_for_each_entry_safe(hpsa_sas_phy, next,
9504 &hpsa_sas_port->phy_list_head, phy_list_entry)
9505 hpsa_free_sas_phy(hpsa_sas_phy);
9507 sas_port_delete(hpsa_sas_port->port);
9508 list_del(&hpsa_sas_port->port_list_entry);
9509 kfree(hpsa_sas_port);
9512 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9514 struct hpsa_sas_node *hpsa_sas_node;
9516 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9517 if (hpsa_sas_node) {
9518 hpsa_sas_node->parent_dev = parent_dev;
9519 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9522 return hpsa_sas_node;
9525 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9527 struct hpsa_sas_port *hpsa_sas_port;
9528 struct hpsa_sas_port *next;
9530 if (!hpsa_sas_node)
9531 return;
9533 list_for_each_entry_safe(hpsa_sas_port, next,
9534 &hpsa_sas_node->port_list_head, port_list_entry)
9535 hpsa_free_sas_port(hpsa_sas_port);
9537 kfree(hpsa_sas_node);
9540 static struct hpsa_scsi_dev_t
9541 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9542 struct sas_rphy *rphy)
9544 int i;
9545 struct hpsa_scsi_dev_t *device;
9547 for (i = 0; i < h->ndevices; i++) {
9548 device = h->dev[i];
9549 if (!device->sas_port)
9550 continue;
9551 if (device->sas_port->rphy == rphy)
9552 return device;
9555 return NULL;
9558 static int hpsa_add_sas_host(struct ctlr_info *h)
9560 int rc;
9561 struct device *parent_dev;
9562 struct hpsa_sas_node *hpsa_sas_node;
9563 struct hpsa_sas_port *hpsa_sas_port;
9564 struct hpsa_sas_phy *hpsa_sas_phy;
9566 parent_dev = &h->scsi_host->shost_dev;
9568 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9569 if (!hpsa_sas_node)
9570 return -ENOMEM;
9572 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9573 if (!hpsa_sas_port) {
9574 rc = -ENODEV;
9575 goto free_sas_node;
9578 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9579 if (!hpsa_sas_phy) {
9580 rc = -ENODEV;
9581 goto free_sas_port;
9584 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9585 if (rc)
9586 goto free_sas_phy;
9588 h->sas_host = hpsa_sas_node;
9590 return 0;
9592 free_sas_phy:
9593 hpsa_free_sas_phy(hpsa_sas_phy);
9594 free_sas_port:
9595 hpsa_free_sas_port(hpsa_sas_port);
9596 free_sas_node:
9597 hpsa_free_sas_node(hpsa_sas_node);
9599 return rc;
9602 static void hpsa_delete_sas_host(struct ctlr_info *h)
9604 hpsa_free_sas_node(h->sas_host);
9607 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9608 struct hpsa_scsi_dev_t *device)
9610 int rc;
9611 struct hpsa_sas_port *hpsa_sas_port;
9612 struct sas_rphy *rphy;
9614 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9615 if (!hpsa_sas_port)
9616 return -ENOMEM;
9618 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9619 if (!rphy) {
9620 rc = -ENODEV;
9621 goto free_sas_port;
9624 hpsa_sas_port->rphy = rphy;
9625 device->sas_port = hpsa_sas_port;
9627 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9628 if (rc)
9629 goto free_sas_port;
9631 return 0;
9633 free_sas_port:
9634 hpsa_free_sas_port(hpsa_sas_port);
9635 device->sas_port = NULL;
9637 return rc;
9640 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9642 if (device->sas_port) {
9643 hpsa_free_sas_port(device->sas_port);
9644 device->sas_port = NULL;
9648 static int
9649 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9651 return 0;
9654 static int
9655 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9657 *identifier = rphy->identify.sas_address;
9658 return 0;
9661 static int
9662 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9664 return -ENXIO;
9667 static int
9668 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9670 return 0;
9673 static int
9674 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9676 return 0;
9679 static int
9680 hpsa_sas_phy_setup(struct sas_phy *phy)
9682 return 0;
9685 static void
9686 hpsa_sas_phy_release(struct sas_phy *phy)
9690 static int
9691 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9693 return -EINVAL;
9696 static struct sas_function_template hpsa_sas_transport_functions = {
9697 .get_linkerrors = hpsa_sas_get_linkerrors,
9698 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9699 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9700 .phy_reset = hpsa_sas_phy_reset,
9701 .phy_enable = hpsa_sas_phy_enable,
9702 .phy_setup = hpsa_sas_phy_setup,
9703 .phy_release = hpsa_sas_phy_release,
9704 .set_phy_speed = hpsa_sas_phy_speed,
9708 * This is it. Register the PCI driver information for the cards we control
9709 * the OS will call our registered routines when it finds one of our cards.
9711 static int __init hpsa_init(void)
9713 int rc;
9715 hpsa_sas_transport_template =
9716 sas_attach_transport(&hpsa_sas_transport_functions);
9717 if (!hpsa_sas_transport_template)
9718 return -ENODEV;
9720 rc = pci_register_driver(&hpsa_pci_driver);
9722 if (rc)
9723 sas_release_transport(hpsa_sas_transport_template);
9725 return rc;
9728 static void __exit hpsa_cleanup(void)
9730 pci_unregister_driver(&hpsa_pci_driver);
9731 sas_release_transport(hpsa_sas_transport_template);
9734 static void __attribute__((unused)) verify_offsets(void)
9736 #define VERIFY_OFFSET(member, offset) \
9737 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9739 VERIFY_OFFSET(structure_size, 0);
9740 VERIFY_OFFSET(volume_blk_size, 4);
9741 VERIFY_OFFSET(volume_blk_cnt, 8);
9742 VERIFY_OFFSET(phys_blk_shift, 16);
9743 VERIFY_OFFSET(parity_rotation_shift, 17);
9744 VERIFY_OFFSET(strip_size, 18);
9745 VERIFY_OFFSET(disk_starting_blk, 20);
9746 VERIFY_OFFSET(disk_blk_cnt, 28);
9747 VERIFY_OFFSET(data_disks_per_row, 36);
9748 VERIFY_OFFSET(metadata_disks_per_row, 38);
9749 VERIFY_OFFSET(row_cnt, 40);
9750 VERIFY_OFFSET(layout_map_count, 42);
9751 VERIFY_OFFSET(flags, 44);
9752 VERIFY_OFFSET(dekindex, 46);
9753 /* VERIFY_OFFSET(reserved, 48 */
9754 VERIFY_OFFSET(data, 64);
9756 #undef VERIFY_OFFSET
9758 #define VERIFY_OFFSET(member, offset) \
9759 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9761 VERIFY_OFFSET(IU_type, 0);
9762 VERIFY_OFFSET(direction, 1);
9763 VERIFY_OFFSET(reply_queue, 2);
9764 /* VERIFY_OFFSET(reserved1, 3); */
9765 VERIFY_OFFSET(scsi_nexus, 4);
9766 VERIFY_OFFSET(Tag, 8);
9767 VERIFY_OFFSET(cdb, 16);
9768 VERIFY_OFFSET(cciss_lun, 32);
9769 VERIFY_OFFSET(data_len, 40);
9770 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9771 VERIFY_OFFSET(sg_count, 45);
9772 /* VERIFY_OFFSET(reserved3 */
9773 VERIFY_OFFSET(err_ptr, 48);
9774 VERIFY_OFFSET(err_len, 56);
9775 /* VERIFY_OFFSET(reserved4 */
9776 VERIFY_OFFSET(sg, 64);
9778 #undef VERIFY_OFFSET
9780 #define VERIFY_OFFSET(member, offset) \
9781 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9783 VERIFY_OFFSET(dev_handle, 0x00);
9784 VERIFY_OFFSET(reserved1, 0x02);
9785 VERIFY_OFFSET(function, 0x03);
9786 VERIFY_OFFSET(reserved2, 0x04);
9787 VERIFY_OFFSET(err_info, 0x0C);
9788 VERIFY_OFFSET(reserved3, 0x10);
9789 VERIFY_OFFSET(err_info_len, 0x12);
9790 VERIFY_OFFSET(reserved4, 0x13);
9791 VERIFY_OFFSET(sgl_offset, 0x14);
9792 VERIFY_OFFSET(reserved5, 0x15);
9793 VERIFY_OFFSET(transfer_len, 0x1C);
9794 VERIFY_OFFSET(reserved6, 0x20);
9795 VERIFY_OFFSET(io_flags, 0x24);
9796 VERIFY_OFFSET(reserved7, 0x26);
9797 VERIFY_OFFSET(LUN, 0x34);
9798 VERIFY_OFFSET(control, 0x3C);
9799 VERIFY_OFFSET(CDB, 0x40);
9800 VERIFY_OFFSET(reserved8, 0x50);
9801 VERIFY_OFFSET(host_context_flags, 0x60);
9802 VERIFY_OFFSET(timeout_sec, 0x62);
9803 VERIFY_OFFSET(ReplyQueue, 0x64);
9804 VERIFY_OFFSET(reserved9, 0x65);
9805 VERIFY_OFFSET(tag, 0x68);
9806 VERIFY_OFFSET(host_addr, 0x70);
9807 VERIFY_OFFSET(CISS_LUN, 0x78);
9808 VERIFY_OFFSET(SG, 0x78 + 8);
9809 #undef VERIFY_OFFSET
9812 module_init(hpsa_init);
9813 module_exit(hpsa_cleanup);