dma-buf: don't open-code atomic_long_read()
[linux-2.6/btrfs-unstable.git] / fs / super.c
blob6f8c954315c0299ccd41f6d7b1367461b9d9ed67
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 "sb_writers",
44 "sb_pagefaults",
45 "sb_internal",
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 struct shrink_control *sc)
58 struct super_block *sb;
59 long fs_objects = 0;
60 long total_objects;
61 long freed = 0;
62 long dentries;
63 long inodes;
65 sb = container_of(shrink, struct super_block, s_shrink);
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
71 if (!(sc->gfp_mask & __GFP_FS))
72 return SHRINK_STOP;
74 if (!grab_super_passive(sb))
75 return SHRINK_STOP;
77 if (sb->s_op->nr_cached_objects)
78 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
80 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
81 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
82 total_objects = dentries + inodes + fs_objects + 1;
83 if (!total_objects)
84 total_objects = 1;
86 /* proportion the scan between the caches */
87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 * prune the dcache first as the icache is pinned by it, then
92 * prune the icache, followed by the filesystem specific caches
94 freed = prune_dcache_sb(sb, dentries, sc->nid);
95 freed += prune_icache_sb(sb, inodes, sc->nid);
97 if (fs_objects) {
98 fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
99 total_objects);
100 freed += sb->s_op->free_cached_objects(sb, fs_objects,
101 sc->nid);
104 drop_super(sb);
105 return freed;
108 static unsigned long super_cache_count(struct shrinker *shrink,
109 struct shrink_control *sc)
111 struct super_block *sb;
112 long total_objects = 0;
114 sb = container_of(shrink, struct super_block, s_shrink);
117 * Don't call grab_super_passive as it is a potential
118 * scalability bottleneck. The counts could get updated
119 * between super_cache_count and super_cache_scan anyway.
120 * Call to super_cache_count with shrinker_rwsem held
121 * ensures the safety of call to list_lru_count_node() and
122 * s_op->nr_cached_objects().
124 if (sb->s_op && sb->s_op->nr_cached_objects)
125 total_objects = sb->s_op->nr_cached_objects(sb,
126 sc->nid);
128 total_objects += list_lru_count_node(&sb->s_dentry_lru,
129 sc->nid);
130 total_objects += list_lru_count_node(&sb->s_inode_lru,
131 sc->nid);
133 total_objects = vfs_pressure_ratio(total_objects);
134 return total_objects;
138 * destroy_super - frees a superblock
139 * @s: superblock to free
141 * Frees a superblock.
143 static void destroy_super(struct super_block *s)
145 int i;
146 list_lru_destroy(&s->s_dentry_lru);
147 list_lru_destroy(&s->s_inode_lru);
148 for (i = 0; i < SB_FREEZE_LEVELS; i++)
149 percpu_counter_destroy(&s->s_writers.counter[i]);
150 security_sb_free(s);
151 WARN_ON(!list_empty(&s->s_mounts));
152 kfree(s->s_subtype);
153 kfree(s->s_options);
154 kfree_rcu(s, rcu);
158 * alloc_super - create new superblock
159 * @type: filesystem type superblock should belong to
160 * @flags: the mount flags
162 * Allocates and initializes a new &struct super_block. alloc_super()
163 * returns a pointer new superblock or %NULL if allocation had failed.
165 static struct super_block *alloc_super(struct file_system_type *type, int flags)
167 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
168 static const struct super_operations default_op;
169 int i;
171 if (!s)
172 return NULL;
174 INIT_LIST_HEAD(&s->s_mounts);
176 if (security_sb_alloc(s))
177 goto fail;
179 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
180 if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
181 goto fail;
182 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
183 &type->s_writers_key[i], 0);
185 init_waitqueue_head(&s->s_writers.wait);
186 init_waitqueue_head(&s->s_writers.wait_unfrozen);
187 s->s_flags = flags;
188 s->s_bdi = &default_backing_dev_info;
189 INIT_HLIST_NODE(&s->s_instances);
190 INIT_HLIST_BL_HEAD(&s->s_anon);
191 INIT_LIST_HEAD(&s->s_inodes);
193 if (list_lru_init(&s->s_dentry_lru))
194 goto fail;
195 if (list_lru_init(&s->s_inode_lru))
196 goto fail;
198 init_rwsem(&s->s_umount);
199 lockdep_set_class(&s->s_umount, &type->s_umount_key);
201 * sget() can have s_umount recursion.
203 * When it cannot find a suitable sb, it allocates a new
204 * one (this one), and tries again to find a suitable old
205 * one.
207 * In case that succeeds, it will acquire the s_umount
208 * lock of the old one. Since these are clearly distrinct
209 * locks, and this object isn't exposed yet, there's no
210 * risk of deadlocks.
212 * Annotate this by putting this lock in a different
213 * subclass.
215 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
216 s->s_count = 1;
217 atomic_set(&s->s_active, 1);
218 mutex_init(&s->s_vfs_rename_mutex);
219 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
220 mutex_init(&s->s_dquot.dqio_mutex);
221 mutex_init(&s->s_dquot.dqonoff_mutex);
222 s->s_maxbytes = MAX_NON_LFS;
223 s->s_op = &default_op;
224 s->s_time_gran = 1000000000;
225 s->cleancache_poolid = -1;
227 s->s_shrink.seeks = DEFAULT_SEEKS;
228 s->s_shrink.scan_objects = super_cache_scan;
229 s->s_shrink.count_objects = super_cache_count;
230 s->s_shrink.batch = 1024;
231 s->s_shrink.flags = SHRINKER_NUMA_AWARE;
232 return s;
234 fail:
235 destroy_super(s);
236 return NULL;
239 /* Superblock refcounting */
242 * Drop a superblock's refcount. The caller must hold sb_lock.
244 static void __put_super(struct super_block *sb)
246 if (!--sb->s_count) {
247 list_del_init(&sb->s_list);
248 destroy_super(sb);
253 * put_super - drop a temporary reference to superblock
254 * @sb: superblock in question
256 * Drops a temporary reference, frees superblock if there's no
257 * references left.
259 static void put_super(struct super_block *sb)
261 spin_lock(&sb_lock);
262 __put_super(sb);
263 spin_unlock(&sb_lock);
268 * deactivate_locked_super - drop an active reference to superblock
269 * @s: superblock to deactivate
271 * Drops an active reference to superblock, converting it into a temprory
272 * one if there is no other active references left. In that case we
273 * tell fs driver to shut it down and drop the temporary reference we
274 * had just acquired.
276 * Caller holds exclusive lock on superblock; that lock is released.
278 void deactivate_locked_super(struct super_block *s)
280 struct file_system_type *fs = s->s_type;
281 if (atomic_dec_and_test(&s->s_active)) {
282 cleancache_invalidate_fs(s);
283 unregister_shrinker(&s->s_shrink);
284 fs->kill_sb(s);
286 put_filesystem(fs);
287 put_super(s);
288 } else {
289 up_write(&s->s_umount);
293 EXPORT_SYMBOL(deactivate_locked_super);
296 * deactivate_super - drop an active reference to superblock
297 * @s: superblock to deactivate
299 * Variant of deactivate_locked_super(), except that superblock is *not*
300 * locked by caller. If we are going to drop the final active reference,
301 * lock will be acquired prior to that.
303 void deactivate_super(struct super_block *s)
305 if (!atomic_add_unless(&s->s_active, -1, 1)) {
306 down_write(&s->s_umount);
307 deactivate_locked_super(s);
311 EXPORT_SYMBOL(deactivate_super);
314 * grab_super - acquire an active reference
315 * @s: reference we are trying to make active
317 * Tries to acquire an active reference. grab_super() is used when we
318 * had just found a superblock in super_blocks or fs_type->fs_supers
319 * and want to turn it into a full-blown active reference. grab_super()
320 * is called with sb_lock held and drops it. Returns 1 in case of
321 * success, 0 if we had failed (superblock contents was already dead or
322 * dying when grab_super() had been called). Note that this is only
323 * called for superblocks not in rundown mode (== ones still on ->fs_supers
324 * of their type), so increment of ->s_count is OK here.
326 static int grab_super(struct super_block *s) __releases(sb_lock)
328 s->s_count++;
329 spin_unlock(&sb_lock);
330 down_write(&s->s_umount);
331 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
332 put_super(s);
333 return 1;
335 up_write(&s->s_umount);
336 put_super(s);
337 return 0;
341 * grab_super_passive - acquire a passive reference
342 * @sb: reference we are trying to grab
344 * Tries to acquire a passive reference. This is used in places where we
345 * cannot take an active reference but we need to ensure that the
346 * superblock does not go away while we are working on it. It returns
347 * false if a reference was not gained, and returns true with the s_umount
348 * lock held in read mode if a reference is gained. On successful return,
349 * the caller must drop the s_umount lock and the passive reference when
350 * done.
352 bool grab_super_passive(struct super_block *sb)
354 spin_lock(&sb_lock);
355 if (hlist_unhashed(&sb->s_instances)) {
356 spin_unlock(&sb_lock);
357 return false;
360 sb->s_count++;
361 spin_unlock(&sb_lock);
363 if (down_read_trylock(&sb->s_umount)) {
364 if (sb->s_root && (sb->s_flags & MS_BORN))
365 return true;
366 up_read(&sb->s_umount);
369 put_super(sb);
370 return false;
374 * generic_shutdown_super - common helper for ->kill_sb()
375 * @sb: superblock to kill
377 * generic_shutdown_super() does all fs-independent work on superblock
378 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
379 * that need destruction out of superblock, call generic_shutdown_super()
380 * and release aforementioned objects. Note: dentries and inodes _are_
381 * taken care of and do not need specific handling.
383 * Upon calling this function, the filesystem may no longer alter or
384 * rearrange the set of dentries belonging to this super_block, nor may it
385 * change the attachments of dentries to inodes.
387 void generic_shutdown_super(struct super_block *sb)
389 const struct super_operations *sop = sb->s_op;
391 if (sb->s_root) {
392 shrink_dcache_for_umount(sb);
393 sync_filesystem(sb);
394 sb->s_flags &= ~MS_ACTIVE;
396 fsnotify_unmount_inodes(&sb->s_inodes);
398 evict_inodes(sb);
400 if (sb->s_dio_done_wq) {
401 destroy_workqueue(sb->s_dio_done_wq);
402 sb->s_dio_done_wq = NULL;
405 if (sop->put_super)
406 sop->put_super(sb);
408 if (!list_empty(&sb->s_inodes)) {
409 printk("VFS: Busy inodes after unmount of %s. "
410 "Self-destruct in 5 seconds. Have a nice day...\n",
411 sb->s_id);
414 spin_lock(&sb_lock);
415 /* should be initialized for __put_super_and_need_restart() */
416 hlist_del_init(&sb->s_instances);
417 spin_unlock(&sb_lock);
418 up_write(&sb->s_umount);
421 EXPORT_SYMBOL(generic_shutdown_super);
424 * sget - find or create a superblock
425 * @type: filesystem type superblock should belong to
426 * @test: comparison callback
427 * @set: setup callback
428 * @flags: mount flags
429 * @data: argument to each of them
431 struct super_block *sget(struct file_system_type *type,
432 int (*test)(struct super_block *,void *),
433 int (*set)(struct super_block *,void *),
434 int flags,
435 void *data)
437 struct super_block *s = NULL;
438 struct super_block *old;
439 int err;
441 retry:
442 spin_lock(&sb_lock);
443 if (test) {
444 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
445 if (!test(old, data))
446 continue;
447 if (!grab_super(old))
448 goto retry;
449 if (s) {
450 up_write(&s->s_umount);
451 destroy_super(s);
452 s = NULL;
454 return old;
457 if (!s) {
458 spin_unlock(&sb_lock);
459 s = alloc_super(type, flags);
460 if (!s)
461 return ERR_PTR(-ENOMEM);
462 goto retry;
465 err = set(s, data);
466 if (err) {
467 spin_unlock(&sb_lock);
468 up_write(&s->s_umount);
469 destroy_super(s);
470 return ERR_PTR(err);
472 s->s_type = type;
473 strlcpy(s->s_id, type->name, sizeof(s->s_id));
474 list_add_tail(&s->s_list, &super_blocks);
475 hlist_add_head(&s->s_instances, &type->fs_supers);
476 spin_unlock(&sb_lock);
477 get_filesystem(type);
478 register_shrinker(&s->s_shrink);
479 return s;
482 EXPORT_SYMBOL(sget);
484 void drop_super(struct super_block *sb)
486 up_read(&sb->s_umount);
487 put_super(sb);
490 EXPORT_SYMBOL(drop_super);
493 * iterate_supers - call function for all active superblocks
494 * @f: function to call
495 * @arg: argument to pass to it
497 * Scans the superblock list and calls given function, passing it
498 * locked superblock and given argument.
500 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
502 struct super_block *sb, *p = NULL;
504 spin_lock(&sb_lock);
505 list_for_each_entry(sb, &super_blocks, s_list) {
506 if (hlist_unhashed(&sb->s_instances))
507 continue;
508 sb->s_count++;
509 spin_unlock(&sb_lock);
511 down_read(&sb->s_umount);
512 if (sb->s_root && (sb->s_flags & MS_BORN))
513 f(sb, arg);
514 up_read(&sb->s_umount);
516 spin_lock(&sb_lock);
517 if (p)
518 __put_super(p);
519 p = sb;
521 if (p)
522 __put_super(p);
523 spin_unlock(&sb_lock);
527 * iterate_supers_type - call function for superblocks of given type
528 * @type: fs type
529 * @f: function to call
530 * @arg: argument to pass to it
532 * Scans the superblock list and calls given function, passing it
533 * locked superblock and given argument.
535 void iterate_supers_type(struct file_system_type *type,
536 void (*f)(struct super_block *, void *), void *arg)
538 struct super_block *sb, *p = NULL;
540 spin_lock(&sb_lock);
541 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
542 sb->s_count++;
543 spin_unlock(&sb_lock);
545 down_read(&sb->s_umount);
546 if (sb->s_root && (sb->s_flags & MS_BORN))
547 f(sb, arg);
548 up_read(&sb->s_umount);
550 spin_lock(&sb_lock);
551 if (p)
552 __put_super(p);
553 p = sb;
555 if (p)
556 __put_super(p);
557 spin_unlock(&sb_lock);
560 EXPORT_SYMBOL(iterate_supers_type);
563 * get_super - get the superblock of a device
564 * @bdev: device to get the superblock for
566 * Scans the superblock list and finds the superblock of the file system
567 * mounted on the device given. %NULL is returned if no match is found.
570 struct super_block *get_super(struct block_device *bdev)
572 struct super_block *sb;
574 if (!bdev)
575 return NULL;
577 spin_lock(&sb_lock);
578 rescan:
579 list_for_each_entry(sb, &super_blocks, s_list) {
580 if (hlist_unhashed(&sb->s_instances))
581 continue;
582 if (sb->s_bdev == bdev) {
583 sb->s_count++;
584 spin_unlock(&sb_lock);
585 down_read(&sb->s_umount);
586 /* still alive? */
587 if (sb->s_root && (sb->s_flags & MS_BORN))
588 return sb;
589 up_read(&sb->s_umount);
590 /* nope, got unmounted */
591 spin_lock(&sb_lock);
592 __put_super(sb);
593 goto rescan;
596 spin_unlock(&sb_lock);
597 return NULL;
600 EXPORT_SYMBOL(get_super);
603 * get_super_thawed - get thawed superblock of a device
604 * @bdev: device to get the superblock for
606 * Scans the superblock list and finds the superblock of the file system
607 * mounted on the device. The superblock is returned once it is thawed
608 * (or immediately if it was not frozen). %NULL is returned if no match
609 * is found.
611 struct super_block *get_super_thawed(struct block_device *bdev)
613 while (1) {
614 struct super_block *s = get_super(bdev);
615 if (!s || s->s_writers.frozen == SB_UNFROZEN)
616 return s;
617 up_read(&s->s_umount);
618 wait_event(s->s_writers.wait_unfrozen,
619 s->s_writers.frozen == SB_UNFROZEN);
620 put_super(s);
623 EXPORT_SYMBOL(get_super_thawed);
626 * get_active_super - get an active reference to the superblock of a device
627 * @bdev: device to get the superblock for
629 * Scans the superblock list and finds the superblock of the file system
630 * mounted on the device given. Returns the superblock with an active
631 * reference or %NULL if none was found.
633 struct super_block *get_active_super(struct block_device *bdev)
635 struct super_block *sb;
637 if (!bdev)
638 return NULL;
640 restart:
641 spin_lock(&sb_lock);
642 list_for_each_entry(sb, &super_blocks, s_list) {
643 if (hlist_unhashed(&sb->s_instances))
644 continue;
645 if (sb->s_bdev == bdev) {
646 if (!grab_super(sb))
647 goto restart;
648 up_write(&sb->s_umount);
649 return sb;
652 spin_unlock(&sb_lock);
653 return NULL;
656 struct super_block *user_get_super(dev_t dev)
658 struct super_block *sb;
660 spin_lock(&sb_lock);
661 rescan:
662 list_for_each_entry(sb, &super_blocks, s_list) {
663 if (hlist_unhashed(&sb->s_instances))
664 continue;
665 if (sb->s_dev == dev) {
666 sb->s_count++;
667 spin_unlock(&sb_lock);
668 down_read(&sb->s_umount);
669 /* still alive? */
670 if (sb->s_root && (sb->s_flags & MS_BORN))
671 return sb;
672 up_read(&sb->s_umount);
673 /* nope, got unmounted */
674 spin_lock(&sb_lock);
675 __put_super(sb);
676 goto rescan;
679 spin_unlock(&sb_lock);
680 return NULL;
684 * do_remount_sb - asks filesystem to change mount options.
685 * @sb: superblock in question
686 * @flags: numeric part of options
687 * @data: the rest of options
688 * @force: whether or not to force the change
690 * Alters the mount options of a mounted file system.
692 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
694 int retval;
695 int remount_ro;
697 if (sb->s_writers.frozen != SB_UNFROZEN)
698 return -EBUSY;
700 #ifdef CONFIG_BLOCK
701 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
702 return -EACCES;
703 #endif
705 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
707 if (remount_ro) {
708 if (sb->s_pins.first) {
709 up_write(&sb->s_umount);
710 sb_pin_kill(sb);
711 down_write(&sb->s_umount);
712 if (!sb->s_root)
713 return 0;
714 if (sb->s_writers.frozen != SB_UNFROZEN)
715 return -EBUSY;
716 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
719 shrink_dcache_sb(sb);
721 /* If we are remounting RDONLY and current sb is read/write,
722 make sure there are no rw files opened */
723 if (remount_ro) {
724 if (force) {
725 sb->s_readonly_remount = 1;
726 smp_wmb();
727 } else {
728 retval = sb_prepare_remount_readonly(sb);
729 if (retval)
730 return retval;
734 if (sb->s_op->remount_fs) {
735 retval = sb->s_op->remount_fs(sb, &flags, data);
736 if (retval) {
737 if (!force)
738 goto cancel_readonly;
739 /* If forced remount, go ahead despite any errors */
740 WARN(1, "forced remount of a %s fs returned %i\n",
741 sb->s_type->name, retval);
744 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
745 /* Needs to be ordered wrt mnt_is_readonly() */
746 smp_wmb();
747 sb->s_readonly_remount = 0;
750 * Some filesystems modify their metadata via some other path than the
751 * bdev buffer cache (eg. use a private mapping, or directories in
752 * pagecache, etc). Also file data modifications go via their own
753 * mappings. So If we try to mount readonly then copy the filesystem
754 * from bdev, we could get stale data, so invalidate it to give a best
755 * effort at coherency.
757 if (remount_ro && sb->s_bdev)
758 invalidate_bdev(sb->s_bdev);
759 return 0;
761 cancel_readonly:
762 sb->s_readonly_remount = 0;
763 return retval;
766 static void do_emergency_remount(struct work_struct *work)
768 struct super_block *sb, *p = NULL;
770 spin_lock(&sb_lock);
771 list_for_each_entry(sb, &super_blocks, s_list) {
772 if (hlist_unhashed(&sb->s_instances))
773 continue;
774 sb->s_count++;
775 spin_unlock(&sb_lock);
776 down_write(&sb->s_umount);
777 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
778 !(sb->s_flags & MS_RDONLY)) {
780 * What lock protects sb->s_flags??
782 do_remount_sb(sb, MS_RDONLY, NULL, 1);
784 up_write(&sb->s_umount);
785 spin_lock(&sb_lock);
786 if (p)
787 __put_super(p);
788 p = sb;
790 if (p)
791 __put_super(p);
792 spin_unlock(&sb_lock);
793 kfree(work);
794 printk("Emergency Remount complete\n");
797 void emergency_remount(void)
799 struct work_struct *work;
801 work = kmalloc(sizeof(*work), GFP_ATOMIC);
802 if (work) {
803 INIT_WORK(work, do_emergency_remount);
804 schedule_work(work);
809 * Unnamed block devices are dummy devices used by virtual
810 * filesystems which don't use real block-devices. -- jrs
813 static DEFINE_IDA(unnamed_dev_ida);
814 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
815 /* Many userspace utilities consider an FSID of 0 invalid.
816 * Always return at least 1 from get_anon_bdev.
818 static int unnamed_dev_start = 1;
820 int get_anon_bdev(dev_t *p)
822 int dev;
823 int error;
825 retry:
826 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
827 return -ENOMEM;
828 spin_lock(&unnamed_dev_lock);
829 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
830 if (!error)
831 unnamed_dev_start = dev + 1;
832 spin_unlock(&unnamed_dev_lock);
833 if (error == -EAGAIN)
834 /* We raced and lost with another CPU. */
835 goto retry;
836 else if (error)
837 return -EAGAIN;
839 if (dev == (1 << MINORBITS)) {
840 spin_lock(&unnamed_dev_lock);
841 ida_remove(&unnamed_dev_ida, dev);
842 if (unnamed_dev_start > dev)
843 unnamed_dev_start = dev;
844 spin_unlock(&unnamed_dev_lock);
845 return -EMFILE;
847 *p = MKDEV(0, dev & MINORMASK);
848 return 0;
850 EXPORT_SYMBOL(get_anon_bdev);
852 void free_anon_bdev(dev_t dev)
854 int slot = MINOR(dev);
855 spin_lock(&unnamed_dev_lock);
856 ida_remove(&unnamed_dev_ida, slot);
857 if (slot < unnamed_dev_start)
858 unnamed_dev_start = slot;
859 spin_unlock(&unnamed_dev_lock);
861 EXPORT_SYMBOL(free_anon_bdev);
863 int set_anon_super(struct super_block *s, void *data)
865 int error = get_anon_bdev(&s->s_dev);
866 if (!error)
867 s->s_bdi = &noop_backing_dev_info;
868 return error;
871 EXPORT_SYMBOL(set_anon_super);
873 void kill_anon_super(struct super_block *sb)
875 dev_t dev = sb->s_dev;
876 generic_shutdown_super(sb);
877 free_anon_bdev(dev);
880 EXPORT_SYMBOL(kill_anon_super);
882 void kill_litter_super(struct super_block *sb)
884 if (sb->s_root)
885 d_genocide(sb->s_root);
886 kill_anon_super(sb);
889 EXPORT_SYMBOL(kill_litter_super);
891 static int ns_test_super(struct super_block *sb, void *data)
893 return sb->s_fs_info == data;
896 static int ns_set_super(struct super_block *sb, void *data)
898 sb->s_fs_info = data;
899 return set_anon_super(sb, NULL);
902 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
903 void *data, int (*fill_super)(struct super_block *, void *, int))
905 struct super_block *sb;
907 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
908 if (IS_ERR(sb))
909 return ERR_CAST(sb);
911 if (!sb->s_root) {
912 int err;
913 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
914 if (err) {
915 deactivate_locked_super(sb);
916 return ERR_PTR(err);
919 sb->s_flags |= MS_ACTIVE;
922 return dget(sb->s_root);
925 EXPORT_SYMBOL(mount_ns);
927 #ifdef CONFIG_BLOCK
928 static int set_bdev_super(struct super_block *s, void *data)
930 s->s_bdev = data;
931 s->s_dev = s->s_bdev->bd_dev;
934 * We set the bdi here to the queue backing, file systems can
935 * overwrite this in ->fill_super()
937 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
938 return 0;
941 static int test_bdev_super(struct super_block *s, void *data)
943 return (void *)s->s_bdev == data;
946 struct dentry *mount_bdev(struct file_system_type *fs_type,
947 int flags, const char *dev_name, void *data,
948 int (*fill_super)(struct super_block *, void *, int))
950 struct block_device *bdev;
951 struct super_block *s;
952 fmode_t mode = FMODE_READ | FMODE_EXCL;
953 int error = 0;
955 if (!(flags & MS_RDONLY))
956 mode |= FMODE_WRITE;
958 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
959 if (IS_ERR(bdev))
960 return ERR_CAST(bdev);
963 * once the super is inserted into the list by sget, s_umount
964 * will protect the lockfs code from trying to start a snapshot
965 * while we are mounting
967 mutex_lock(&bdev->bd_fsfreeze_mutex);
968 if (bdev->bd_fsfreeze_count > 0) {
969 mutex_unlock(&bdev->bd_fsfreeze_mutex);
970 error = -EBUSY;
971 goto error_bdev;
973 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
974 bdev);
975 mutex_unlock(&bdev->bd_fsfreeze_mutex);
976 if (IS_ERR(s))
977 goto error_s;
979 if (s->s_root) {
980 if ((flags ^ s->s_flags) & MS_RDONLY) {
981 deactivate_locked_super(s);
982 error = -EBUSY;
983 goto error_bdev;
987 * s_umount nests inside bd_mutex during
988 * __invalidate_device(). blkdev_put() acquires
989 * bd_mutex and can't be called under s_umount. Drop
990 * s_umount temporarily. This is safe as we're
991 * holding an active reference.
993 up_write(&s->s_umount);
994 blkdev_put(bdev, mode);
995 down_write(&s->s_umount);
996 } else {
997 char b[BDEVNAME_SIZE];
999 s->s_mode = mode;
1000 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1001 sb_set_blocksize(s, block_size(bdev));
1002 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1003 if (error) {
1004 deactivate_locked_super(s);
1005 goto error;
1008 s->s_flags |= MS_ACTIVE;
1009 bdev->bd_super = s;
1012 return dget(s->s_root);
1014 error_s:
1015 error = PTR_ERR(s);
1016 error_bdev:
1017 blkdev_put(bdev, mode);
1018 error:
1019 return ERR_PTR(error);
1021 EXPORT_SYMBOL(mount_bdev);
1023 void kill_block_super(struct super_block *sb)
1025 struct block_device *bdev = sb->s_bdev;
1026 fmode_t mode = sb->s_mode;
1028 bdev->bd_super = NULL;
1029 generic_shutdown_super(sb);
1030 sync_blockdev(bdev);
1031 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1032 blkdev_put(bdev, mode | FMODE_EXCL);
1035 EXPORT_SYMBOL(kill_block_super);
1036 #endif
1038 struct dentry *mount_nodev(struct file_system_type *fs_type,
1039 int flags, void *data,
1040 int (*fill_super)(struct super_block *, void *, int))
1042 int error;
1043 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1045 if (IS_ERR(s))
1046 return ERR_CAST(s);
1048 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1049 if (error) {
1050 deactivate_locked_super(s);
1051 return ERR_PTR(error);
1053 s->s_flags |= MS_ACTIVE;
1054 return dget(s->s_root);
1056 EXPORT_SYMBOL(mount_nodev);
1058 static int compare_single(struct super_block *s, void *p)
1060 return 1;
1063 struct dentry *mount_single(struct file_system_type *fs_type,
1064 int flags, void *data,
1065 int (*fill_super)(struct super_block *, void *, int))
1067 struct super_block *s;
1068 int error;
1070 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1071 if (IS_ERR(s))
1072 return ERR_CAST(s);
1073 if (!s->s_root) {
1074 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1075 if (error) {
1076 deactivate_locked_super(s);
1077 return ERR_PTR(error);
1079 s->s_flags |= MS_ACTIVE;
1080 } else {
1081 do_remount_sb(s, flags, data, 0);
1083 return dget(s->s_root);
1085 EXPORT_SYMBOL(mount_single);
1087 struct dentry *
1088 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1090 struct dentry *root;
1091 struct super_block *sb;
1092 char *secdata = NULL;
1093 int error = -ENOMEM;
1095 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1096 secdata = alloc_secdata();
1097 if (!secdata)
1098 goto out;
1100 error = security_sb_copy_data(data, secdata);
1101 if (error)
1102 goto out_free_secdata;
1105 root = type->mount(type, flags, name, data);
1106 if (IS_ERR(root)) {
1107 error = PTR_ERR(root);
1108 goto out_free_secdata;
1110 sb = root->d_sb;
1111 BUG_ON(!sb);
1112 WARN_ON(!sb->s_bdi);
1113 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1114 sb->s_flags |= MS_BORN;
1116 error = security_sb_kern_mount(sb, flags, secdata);
1117 if (error)
1118 goto out_sb;
1121 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1122 * but s_maxbytes was an unsigned long long for many releases. Throw
1123 * this warning for a little while to try and catch filesystems that
1124 * violate this rule.
1126 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1127 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1129 up_write(&sb->s_umount);
1130 free_secdata(secdata);
1131 return root;
1132 out_sb:
1133 dput(root);
1134 deactivate_locked_super(sb);
1135 out_free_secdata:
1136 free_secdata(secdata);
1137 out:
1138 return ERR_PTR(error);
1142 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1143 * instead.
1145 void __sb_end_write(struct super_block *sb, int level)
1147 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1149 * Make sure s_writers are updated before we wake up waiters in
1150 * freeze_super().
1152 smp_mb();
1153 if (waitqueue_active(&sb->s_writers.wait))
1154 wake_up(&sb->s_writers.wait);
1155 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1157 EXPORT_SYMBOL(__sb_end_write);
1159 #ifdef CONFIG_LOCKDEP
1161 * We want lockdep to tell us about possible deadlocks with freezing but
1162 * it's it bit tricky to properly instrument it. Getting a freeze protection
1163 * works as getting a read lock but there are subtle problems. XFS for example
1164 * gets freeze protection on internal level twice in some cases, which is OK
1165 * only because we already hold a freeze protection also on higher level. Due
1166 * to these cases we have to tell lockdep we are doing trylock when we
1167 * already hold a freeze protection for a higher freeze level.
1169 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1170 unsigned long ip)
1172 int i;
1174 if (!trylock) {
1175 for (i = 0; i < level - 1; i++)
1176 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1177 trylock = true;
1178 break;
1181 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1183 #endif
1186 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1187 * instead.
1189 int __sb_start_write(struct super_block *sb, int level, bool wait)
1191 retry:
1192 if (unlikely(sb->s_writers.frozen >= level)) {
1193 if (!wait)
1194 return 0;
1195 wait_event(sb->s_writers.wait_unfrozen,
1196 sb->s_writers.frozen < level);
1199 #ifdef CONFIG_LOCKDEP
1200 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1201 #endif
1202 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1204 * Make sure counter is updated before we check for frozen.
1205 * freeze_super() first sets frozen and then checks the counter.
1207 smp_mb();
1208 if (unlikely(sb->s_writers.frozen >= level)) {
1209 __sb_end_write(sb, level);
1210 goto retry;
1212 return 1;
1214 EXPORT_SYMBOL(__sb_start_write);
1217 * sb_wait_write - wait until all writers to given file system finish
1218 * @sb: the super for which we wait
1219 * @level: type of writers we wait for (normal vs page fault)
1221 * This function waits until there are no writers of given type to given file
1222 * system. Caller of this function should make sure there can be no new writers
1223 * of type @level before calling this function. Otherwise this function can
1224 * livelock.
1226 static void sb_wait_write(struct super_block *sb, int level)
1228 s64 writers;
1231 * We just cycle-through lockdep here so that it does not complain
1232 * about returning with lock to userspace
1234 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1235 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1237 do {
1238 DEFINE_WAIT(wait);
1241 * We use a barrier in prepare_to_wait() to separate setting
1242 * of frozen and checking of the counter
1244 prepare_to_wait(&sb->s_writers.wait, &wait,
1245 TASK_UNINTERRUPTIBLE);
1247 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1248 if (writers)
1249 schedule();
1251 finish_wait(&sb->s_writers.wait, &wait);
1252 } while (writers);
1256 * freeze_super - lock the filesystem and force it into a consistent state
1257 * @sb: the super to lock
1259 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1260 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1261 * -EBUSY.
1263 * During this function, sb->s_writers.frozen goes through these values:
1265 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1267 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1268 * writes should be blocked, though page faults are still allowed. We wait for
1269 * all writes to complete and then proceed to the next stage.
1271 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1272 * but internal fs threads can still modify the filesystem (although they
1273 * should not dirty new pages or inodes), writeback can run etc. After waiting
1274 * for all running page faults we sync the filesystem which will clean all
1275 * dirty pages and inodes (no new dirty pages or inodes can be created when
1276 * sync is running).
1278 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1279 * modification are blocked (e.g. XFS preallocation truncation on inode
1280 * reclaim). This is usually implemented by blocking new transactions for
1281 * filesystems that have them and need this additional guard. After all
1282 * internal writers are finished we call ->freeze_fs() to finish filesystem
1283 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1284 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1286 * sb->s_writers.frozen is protected by sb->s_umount.
1288 int freeze_super(struct super_block *sb)
1290 int ret;
1292 atomic_inc(&sb->s_active);
1293 down_write(&sb->s_umount);
1294 if (sb->s_writers.frozen != SB_UNFROZEN) {
1295 deactivate_locked_super(sb);
1296 return -EBUSY;
1299 if (!(sb->s_flags & MS_BORN)) {
1300 up_write(&sb->s_umount);
1301 return 0; /* sic - it's "nothing to do" */
1304 if (sb->s_flags & MS_RDONLY) {
1305 /* Nothing to do really... */
1306 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1307 up_write(&sb->s_umount);
1308 return 0;
1311 /* From now on, no new normal writers can start */
1312 sb->s_writers.frozen = SB_FREEZE_WRITE;
1313 smp_wmb();
1315 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1316 up_write(&sb->s_umount);
1318 sb_wait_write(sb, SB_FREEZE_WRITE);
1320 /* Now we go and block page faults... */
1321 down_write(&sb->s_umount);
1322 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1323 smp_wmb();
1325 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1327 /* All writers are done so after syncing there won't be dirty data */
1328 sync_filesystem(sb);
1330 /* Now wait for internal filesystem counter */
1331 sb->s_writers.frozen = SB_FREEZE_FS;
1332 smp_wmb();
1333 sb_wait_write(sb, SB_FREEZE_FS);
1335 if (sb->s_op->freeze_fs) {
1336 ret = sb->s_op->freeze_fs(sb);
1337 if (ret) {
1338 printk(KERN_ERR
1339 "VFS:Filesystem freeze failed\n");
1340 sb->s_writers.frozen = SB_UNFROZEN;
1341 smp_wmb();
1342 wake_up(&sb->s_writers.wait_unfrozen);
1343 deactivate_locked_super(sb);
1344 return ret;
1348 * This is just for debugging purposes so that fs can warn if it
1349 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1351 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1352 up_write(&sb->s_umount);
1353 return 0;
1355 EXPORT_SYMBOL(freeze_super);
1358 * thaw_super -- unlock filesystem
1359 * @sb: the super to thaw
1361 * Unlocks the filesystem and marks it writeable again after freeze_super().
1363 int thaw_super(struct super_block *sb)
1365 int error;
1367 down_write(&sb->s_umount);
1368 if (sb->s_writers.frozen == SB_UNFROZEN) {
1369 up_write(&sb->s_umount);
1370 return -EINVAL;
1373 if (sb->s_flags & MS_RDONLY)
1374 goto out;
1376 if (sb->s_op->unfreeze_fs) {
1377 error = sb->s_op->unfreeze_fs(sb);
1378 if (error) {
1379 printk(KERN_ERR
1380 "VFS:Filesystem thaw failed\n");
1381 up_write(&sb->s_umount);
1382 return error;
1386 out:
1387 sb->s_writers.frozen = SB_UNFROZEN;
1388 smp_wmb();
1389 wake_up(&sb->s_writers.wait_unfrozen);
1390 deactivate_locked_super(sb);
1392 return 0;
1394 EXPORT_SYMBOL(thaw_super);