tracing: Use class->reg() for all registering of events
[linux-2.6/btrfs-unstable.git] / mm / slub.c
blob7bb7940f4eeea2a686937d69795c3acb95077297
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
86 * Overloading of page flags that are otherwise used for LRU management.
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
109 #ifdef CONFIG_SLUB_DEBUG
110 #define SLABDEBUG 1
111 #else
112 #define SLABDEBUG 0
113 #endif
116 * Issues still to be resolved:
118 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 * - Variable sizing of the per node arrays
123 /* Enable to test recovery from slab corruption on boot */
124 #undef SLUB_RESILIENCY_TEST
127 * Mininum number of partial slabs. These will be left on the partial
128 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 #define MIN_PARTIAL 5
133 * Maximum number of desirable partial slabs.
134 * The existence of more partial slabs makes kmem_cache_shrink
135 * sort the partial list by the number of objects in the.
137 #define MAX_PARTIAL 10
139 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
140 SLAB_POISON | SLAB_STORE_USER)
143 * Debugging flags that require metadata to be stored in the slab. These get
144 * disabled when slub_debug=O is used and a cache's min order increases with
145 * metadata.
147 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
150 * Set of flags that will prevent slab merging
152 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
153 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
154 SLAB_FAILSLAB)
156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157 SLAB_CACHE_DMA | SLAB_NOTRACK)
159 #define OO_SHIFT 16
160 #define OO_MASK ((1 << OO_SHIFT) - 1)
161 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
163 /* Internal SLUB flags */
164 #define __OBJECT_POISON 0x80000000 /* Poison object */
165 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
167 static int kmem_size = sizeof(struct kmem_cache);
169 #ifdef CONFIG_SMP
170 static struct notifier_block slab_notifier;
171 #endif
173 static enum {
174 DOWN, /* No slab functionality available */
175 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
176 UP, /* Everything works but does not show up in sysfs */
177 SYSFS /* Sysfs up */
178 } slab_state = DOWN;
180 /* A list of all slab caches on the system */
181 static DECLARE_RWSEM(slub_lock);
182 static LIST_HEAD(slab_caches);
185 * Tracking user of a slab.
187 struct track {
188 unsigned long addr; /* Called from address */
189 int cpu; /* Was running on cpu */
190 int pid; /* Pid context */
191 unsigned long when; /* When did the operation occur */
194 enum track_item { TRACK_ALLOC, TRACK_FREE };
196 #ifdef CONFIG_SLUB_DEBUG
197 static int sysfs_slab_add(struct kmem_cache *);
198 static int sysfs_slab_alias(struct kmem_cache *, const char *);
199 static void sysfs_slab_remove(struct kmem_cache *);
201 #else
202 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
203 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
204 { return 0; }
205 static inline void sysfs_slab_remove(struct kmem_cache *s)
207 kfree(s);
210 #endif
212 static inline void stat(struct kmem_cache *s, enum stat_item si)
214 #ifdef CONFIG_SLUB_STATS
215 __this_cpu_inc(s->cpu_slab->stat[si]);
216 #endif
219 /********************************************************************
220 * Core slab cache functions
221 *******************************************************************/
223 int slab_is_available(void)
225 return slab_state >= UP;
228 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
230 #ifdef CONFIG_NUMA
231 return s->node[node];
232 #else
233 return &s->local_node;
234 #endif
237 /* Verify that a pointer has an address that is valid within a slab page */
238 static inline int check_valid_pointer(struct kmem_cache *s,
239 struct page *page, const void *object)
241 void *base;
243 if (!object)
244 return 1;
246 base = page_address(page);
247 if (object < base || object >= base + page->objects * s->size ||
248 (object - base) % s->size) {
249 return 0;
252 return 1;
255 static inline void *get_freepointer(struct kmem_cache *s, void *object)
257 return *(void **)(object + s->offset);
260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
262 *(void **)(object + s->offset) = fp;
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
268 __p += (__s)->size)
270 /* Scan freelist */
271 #define for_each_free_object(__p, __s, __free) \
272 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
274 /* Determine object index from a given position */
275 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
277 return (p - addr) / s->size;
280 static inline struct kmem_cache_order_objects oo_make(int order,
281 unsigned long size)
283 struct kmem_cache_order_objects x = {
284 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
287 return x;
290 static inline int oo_order(struct kmem_cache_order_objects x)
292 return x.x >> OO_SHIFT;
295 static inline int oo_objects(struct kmem_cache_order_objects x)
297 return x.x & OO_MASK;
300 #ifdef CONFIG_SLUB_DEBUG
302 * Debug settings:
304 #ifdef CONFIG_SLUB_DEBUG_ON
305 static int slub_debug = DEBUG_DEFAULT_FLAGS;
306 #else
307 static int slub_debug;
308 #endif
310 static char *slub_debug_slabs;
311 static int disable_higher_order_debug;
314 * Object debugging
316 static void print_section(char *text, u8 *addr, unsigned int length)
318 int i, offset;
319 int newline = 1;
320 char ascii[17];
322 ascii[16] = 0;
324 for (i = 0; i < length; i++) {
325 if (newline) {
326 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
327 newline = 0;
329 printk(KERN_CONT " %02x", addr[i]);
330 offset = i % 16;
331 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
332 if (offset == 15) {
333 printk(KERN_CONT " %s\n", ascii);
334 newline = 1;
337 if (!newline) {
338 i %= 16;
339 while (i < 16) {
340 printk(KERN_CONT " ");
341 ascii[i] = ' ';
342 i++;
344 printk(KERN_CONT " %s\n", ascii);
348 static struct track *get_track(struct kmem_cache *s, void *object,
349 enum track_item alloc)
351 struct track *p;
353 if (s->offset)
354 p = object + s->offset + sizeof(void *);
355 else
356 p = object + s->inuse;
358 return p + alloc;
361 static void set_track(struct kmem_cache *s, void *object,
362 enum track_item alloc, unsigned long addr)
364 struct track *p = get_track(s, object, alloc);
366 if (addr) {
367 p->addr = addr;
368 p->cpu = smp_processor_id();
369 p->pid = current->pid;
370 p->when = jiffies;
371 } else
372 memset(p, 0, sizeof(struct track));
375 static void init_tracking(struct kmem_cache *s, void *object)
377 if (!(s->flags & SLAB_STORE_USER))
378 return;
380 set_track(s, object, TRACK_FREE, 0UL);
381 set_track(s, object, TRACK_ALLOC, 0UL);
384 static void print_track(const char *s, struct track *t)
386 if (!t->addr)
387 return;
389 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
390 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
393 static void print_tracking(struct kmem_cache *s, void *object)
395 if (!(s->flags & SLAB_STORE_USER))
396 return;
398 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
399 print_track("Freed", get_track(s, object, TRACK_FREE));
402 static void print_page_info(struct page *page)
404 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
405 page, page->objects, page->inuse, page->freelist, page->flags);
409 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
411 va_list args;
412 char buf[100];
414 va_start(args, fmt);
415 vsnprintf(buf, sizeof(buf), fmt, args);
416 va_end(args);
417 printk(KERN_ERR "========================================"
418 "=====================================\n");
419 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
420 printk(KERN_ERR "----------------------------------------"
421 "-------------------------------------\n\n");
424 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
426 va_list args;
427 char buf[100];
429 va_start(args, fmt);
430 vsnprintf(buf, sizeof(buf), fmt, args);
431 va_end(args);
432 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
435 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
437 unsigned int off; /* Offset of last byte */
438 u8 *addr = page_address(page);
440 print_tracking(s, p);
442 print_page_info(page);
444 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
445 p, p - addr, get_freepointer(s, p));
447 if (p > addr + 16)
448 print_section("Bytes b4", p - 16, 16);
450 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
452 if (s->flags & SLAB_RED_ZONE)
453 print_section("Redzone", p + s->objsize,
454 s->inuse - s->objsize);
456 if (s->offset)
457 off = s->offset + sizeof(void *);
458 else
459 off = s->inuse;
461 if (s->flags & SLAB_STORE_USER)
462 off += 2 * sizeof(struct track);
464 if (off != s->size)
465 /* Beginning of the filler is the free pointer */
466 print_section("Padding", p + off, s->size - off);
468 dump_stack();
471 static void object_err(struct kmem_cache *s, struct page *page,
472 u8 *object, char *reason)
474 slab_bug(s, "%s", reason);
475 print_trailer(s, page, object);
478 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
480 va_list args;
481 char buf[100];
483 va_start(args, fmt);
484 vsnprintf(buf, sizeof(buf), fmt, args);
485 va_end(args);
486 slab_bug(s, "%s", buf);
487 print_page_info(page);
488 dump_stack();
491 static void init_object(struct kmem_cache *s, void *object, int active)
493 u8 *p = object;
495 if (s->flags & __OBJECT_POISON) {
496 memset(p, POISON_FREE, s->objsize - 1);
497 p[s->objsize - 1] = POISON_END;
500 if (s->flags & SLAB_RED_ZONE)
501 memset(p + s->objsize,
502 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
503 s->inuse - s->objsize);
506 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
508 while (bytes) {
509 if (*start != (u8)value)
510 return start;
511 start++;
512 bytes--;
514 return NULL;
517 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518 void *from, void *to)
520 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521 memset(from, data, to - from);
524 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525 u8 *object, char *what,
526 u8 *start, unsigned int value, unsigned int bytes)
528 u8 *fault;
529 u8 *end;
531 fault = check_bytes(start, value, bytes);
532 if (!fault)
533 return 1;
535 end = start + bytes;
536 while (end > fault && end[-1] == value)
537 end--;
539 slab_bug(s, "%s overwritten", what);
540 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541 fault, end - 1, fault[0], value);
542 print_trailer(s, page, object);
544 restore_bytes(s, what, value, fault, end);
545 return 0;
549 * Object layout:
551 * object address
552 * Bytes of the object to be managed.
553 * If the freepointer may overlay the object then the free
554 * pointer is the first word of the object.
556 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
557 * 0xa5 (POISON_END)
559 * object + s->objsize
560 * Padding to reach word boundary. This is also used for Redzoning.
561 * Padding is extended by another word if Redzoning is enabled and
562 * objsize == inuse.
564 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565 * 0xcc (RED_ACTIVE) for objects in use.
567 * object + s->inuse
568 * Meta data starts here.
570 * A. Free pointer (if we cannot overwrite object on free)
571 * B. Tracking data for SLAB_STORE_USER
572 * C. Padding to reach required alignment boundary or at mininum
573 * one word if debugging is on to be able to detect writes
574 * before the word boundary.
576 * Padding is done using 0x5a (POISON_INUSE)
578 * object + s->size
579 * Nothing is used beyond s->size.
581 * If slabcaches are merged then the objsize and inuse boundaries are mostly
582 * ignored. And therefore no slab options that rely on these boundaries
583 * may be used with merged slabcaches.
586 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
588 unsigned long off = s->inuse; /* The end of info */
590 if (s->offset)
591 /* Freepointer is placed after the object. */
592 off += sizeof(void *);
594 if (s->flags & SLAB_STORE_USER)
595 /* We also have user information there */
596 off += 2 * sizeof(struct track);
598 if (s->size == off)
599 return 1;
601 return check_bytes_and_report(s, page, p, "Object padding",
602 p + off, POISON_INUSE, s->size - off);
605 /* Check the pad bytes at the end of a slab page */
606 static int slab_pad_check(struct kmem_cache *s, struct page *page)
608 u8 *start;
609 u8 *fault;
610 u8 *end;
611 int length;
612 int remainder;
614 if (!(s->flags & SLAB_POISON))
615 return 1;
617 start = page_address(page);
618 length = (PAGE_SIZE << compound_order(page));
619 end = start + length;
620 remainder = length % s->size;
621 if (!remainder)
622 return 1;
624 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
625 if (!fault)
626 return 1;
627 while (end > fault && end[-1] == POISON_INUSE)
628 end--;
630 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
631 print_section("Padding", end - remainder, remainder);
633 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
634 return 0;
637 static int check_object(struct kmem_cache *s, struct page *page,
638 void *object, int active)
640 u8 *p = object;
641 u8 *endobject = object + s->objsize;
643 if (s->flags & SLAB_RED_ZONE) {
644 unsigned int red =
645 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
647 if (!check_bytes_and_report(s, page, object, "Redzone",
648 endobject, red, s->inuse - s->objsize))
649 return 0;
650 } else {
651 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
652 check_bytes_and_report(s, page, p, "Alignment padding",
653 endobject, POISON_INUSE, s->inuse - s->objsize);
657 if (s->flags & SLAB_POISON) {
658 if (!active && (s->flags & __OBJECT_POISON) &&
659 (!check_bytes_and_report(s, page, p, "Poison", p,
660 POISON_FREE, s->objsize - 1) ||
661 !check_bytes_and_report(s, page, p, "Poison",
662 p + s->objsize - 1, POISON_END, 1)))
663 return 0;
665 * check_pad_bytes cleans up on its own.
667 check_pad_bytes(s, page, p);
670 if (!s->offset && active)
672 * Object and freepointer overlap. Cannot check
673 * freepointer while object is allocated.
675 return 1;
677 /* Check free pointer validity */
678 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
679 object_err(s, page, p, "Freepointer corrupt");
681 * No choice but to zap it and thus lose the remainder
682 * of the free objects in this slab. May cause
683 * another error because the object count is now wrong.
685 set_freepointer(s, p, NULL);
686 return 0;
688 return 1;
691 static int check_slab(struct kmem_cache *s, struct page *page)
693 int maxobj;
695 VM_BUG_ON(!irqs_disabled());
697 if (!PageSlab(page)) {
698 slab_err(s, page, "Not a valid slab page");
699 return 0;
702 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
703 if (page->objects > maxobj) {
704 slab_err(s, page, "objects %u > max %u",
705 s->name, page->objects, maxobj);
706 return 0;
708 if (page->inuse > page->objects) {
709 slab_err(s, page, "inuse %u > max %u",
710 s->name, page->inuse, page->objects);
711 return 0;
713 /* Slab_pad_check fixes things up after itself */
714 slab_pad_check(s, page);
715 return 1;
719 * Determine if a certain object on a page is on the freelist. Must hold the
720 * slab lock to guarantee that the chains are in a consistent state.
722 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
724 int nr = 0;
725 void *fp = page->freelist;
726 void *object = NULL;
727 unsigned long max_objects;
729 while (fp && nr <= page->objects) {
730 if (fp == search)
731 return 1;
732 if (!check_valid_pointer(s, page, fp)) {
733 if (object) {
734 object_err(s, page, object,
735 "Freechain corrupt");
736 set_freepointer(s, object, NULL);
737 break;
738 } else {
739 slab_err(s, page, "Freepointer corrupt");
740 page->freelist = NULL;
741 page->inuse = page->objects;
742 slab_fix(s, "Freelist cleared");
743 return 0;
745 break;
747 object = fp;
748 fp = get_freepointer(s, object);
749 nr++;
752 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
753 if (max_objects > MAX_OBJS_PER_PAGE)
754 max_objects = MAX_OBJS_PER_PAGE;
756 if (page->objects != max_objects) {
757 slab_err(s, page, "Wrong number of objects. Found %d but "
758 "should be %d", page->objects, max_objects);
759 page->objects = max_objects;
760 slab_fix(s, "Number of objects adjusted.");
762 if (page->inuse != page->objects - nr) {
763 slab_err(s, page, "Wrong object count. Counter is %d but "
764 "counted were %d", page->inuse, page->objects - nr);
765 page->inuse = page->objects - nr;
766 slab_fix(s, "Object count adjusted.");
768 return search == NULL;
771 static void trace(struct kmem_cache *s, struct page *page, void *object,
772 int alloc)
774 if (s->flags & SLAB_TRACE) {
775 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
776 s->name,
777 alloc ? "alloc" : "free",
778 object, page->inuse,
779 page->freelist);
781 if (!alloc)
782 print_section("Object", (void *)object, s->objsize);
784 dump_stack();
789 * Tracking of fully allocated slabs for debugging purposes.
791 static void add_full(struct kmem_cache_node *n, struct page *page)
793 spin_lock(&n->list_lock);
794 list_add(&page->lru, &n->full);
795 spin_unlock(&n->list_lock);
798 static void remove_full(struct kmem_cache *s, struct page *page)
800 struct kmem_cache_node *n;
802 if (!(s->flags & SLAB_STORE_USER))
803 return;
805 n = get_node(s, page_to_nid(page));
807 spin_lock(&n->list_lock);
808 list_del(&page->lru);
809 spin_unlock(&n->list_lock);
812 /* Tracking of the number of slabs for debugging purposes */
813 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
815 struct kmem_cache_node *n = get_node(s, node);
817 return atomic_long_read(&n->nr_slabs);
820 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
822 return atomic_long_read(&n->nr_slabs);
825 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
827 struct kmem_cache_node *n = get_node(s, node);
830 * May be called early in order to allocate a slab for the
831 * kmem_cache_node structure. Solve the chicken-egg
832 * dilemma by deferring the increment of the count during
833 * bootstrap (see early_kmem_cache_node_alloc).
835 if (!NUMA_BUILD || n) {
836 atomic_long_inc(&n->nr_slabs);
837 atomic_long_add(objects, &n->total_objects);
840 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
842 struct kmem_cache_node *n = get_node(s, node);
844 atomic_long_dec(&n->nr_slabs);
845 atomic_long_sub(objects, &n->total_objects);
848 /* Object debug checks for alloc/free paths */
849 static void setup_object_debug(struct kmem_cache *s, struct page *page,
850 void *object)
852 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
853 return;
855 init_object(s, object, 0);
856 init_tracking(s, object);
859 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
860 void *object, unsigned long addr)
862 if (!check_slab(s, page))
863 goto bad;
865 if (!on_freelist(s, page, object)) {
866 object_err(s, page, object, "Object already allocated");
867 goto bad;
870 if (!check_valid_pointer(s, page, object)) {
871 object_err(s, page, object, "Freelist Pointer check fails");
872 goto bad;
875 if (!check_object(s, page, object, 0))
876 goto bad;
878 /* Success perform special debug activities for allocs */
879 if (s->flags & SLAB_STORE_USER)
880 set_track(s, object, TRACK_ALLOC, addr);
881 trace(s, page, object, 1);
882 init_object(s, object, 1);
883 return 1;
885 bad:
886 if (PageSlab(page)) {
888 * If this is a slab page then lets do the best we can
889 * to avoid issues in the future. Marking all objects
890 * as used avoids touching the remaining objects.
892 slab_fix(s, "Marking all objects used");
893 page->inuse = page->objects;
894 page->freelist = NULL;
896 return 0;
899 static int free_debug_processing(struct kmem_cache *s, struct page *page,
900 void *object, unsigned long addr)
902 if (!check_slab(s, page))
903 goto fail;
905 if (!check_valid_pointer(s, page, object)) {
906 slab_err(s, page, "Invalid object pointer 0x%p", object);
907 goto fail;
910 if (on_freelist(s, page, object)) {
911 object_err(s, page, object, "Object already free");
912 goto fail;
915 if (!check_object(s, page, object, 1))
916 return 0;
918 if (unlikely(s != page->slab)) {
919 if (!PageSlab(page)) {
920 slab_err(s, page, "Attempt to free object(0x%p) "
921 "outside of slab", object);
922 } else if (!page->slab) {
923 printk(KERN_ERR
924 "SLUB <none>: no slab for object 0x%p.\n",
925 object);
926 dump_stack();
927 } else
928 object_err(s, page, object,
929 "page slab pointer corrupt.");
930 goto fail;
933 /* Special debug activities for freeing objects */
934 if (!PageSlubFrozen(page) && !page->freelist)
935 remove_full(s, page);
936 if (s->flags & SLAB_STORE_USER)
937 set_track(s, object, TRACK_FREE, addr);
938 trace(s, page, object, 0);
939 init_object(s, object, 0);
940 return 1;
942 fail:
943 slab_fix(s, "Object at 0x%p not freed", object);
944 return 0;
947 static int __init setup_slub_debug(char *str)
949 slub_debug = DEBUG_DEFAULT_FLAGS;
950 if (*str++ != '=' || !*str)
952 * No options specified. Switch on full debugging.
954 goto out;
956 if (*str == ',')
958 * No options but restriction on slabs. This means full
959 * debugging for slabs matching a pattern.
961 goto check_slabs;
963 if (tolower(*str) == 'o') {
965 * Avoid enabling debugging on caches if its minimum order
966 * would increase as a result.
968 disable_higher_order_debug = 1;
969 goto out;
972 slub_debug = 0;
973 if (*str == '-')
975 * Switch off all debugging measures.
977 goto out;
980 * Determine which debug features should be switched on
982 for (; *str && *str != ','; str++) {
983 switch (tolower(*str)) {
984 case 'f':
985 slub_debug |= SLAB_DEBUG_FREE;
986 break;
987 case 'z':
988 slub_debug |= SLAB_RED_ZONE;
989 break;
990 case 'p':
991 slub_debug |= SLAB_POISON;
992 break;
993 case 'u':
994 slub_debug |= SLAB_STORE_USER;
995 break;
996 case 't':
997 slub_debug |= SLAB_TRACE;
998 break;
999 case 'a':
1000 slub_debug |= SLAB_FAILSLAB;
1001 break;
1002 default:
1003 printk(KERN_ERR "slub_debug option '%c' "
1004 "unknown. skipped\n", *str);
1008 check_slabs:
1009 if (*str == ',')
1010 slub_debug_slabs = str + 1;
1011 out:
1012 return 1;
1015 __setup("slub_debug", setup_slub_debug);
1017 static unsigned long kmem_cache_flags(unsigned long objsize,
1018 unsigned long flags, const char *name,
1019 void (*ctor)(void *))
1022 * Enable debugging if selected on the kernel commandline.
1024 if (slub_debug && (!slub_debug_slabs ||
1025 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1026 flags |= slub_debug;
1028 return flags;
1030 #else
1031 static inline void setup_object_debug(struct kmem_cache *s,
1032 struct page *page, void *object) {}
1034 static inline int alloc_debug_processing(struct kmem_cache *s,
1035 struct page *page, void *object, unsigned long addr) { return 0; }
1037 static inline int free_debug_processing(struct kmem_cache *s,
1038 struct page *page, void *object, unsigned long addr) { return 0; }
1040 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1041 { return 1; }
1042 static inline int check_object(struct kmem_cache *s, struct page *page,
1043 void *object, int active) { return 1; }
1044 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1045 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1046 unsigned long flags, const char *name,
1047 void (*ctor)(void *))
1049 return flags;
1051 #define slub_debug 0
1053 #define disable_higher_order_debug 0
1055 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1056 { return 0; }
1057 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1058 { return 0; }
1059 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1060 int objects) {}
1061 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1062 int objects) {}
1063 #endif
1066 * Slab allocation and freeing
1068 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1069 struct kmem_cache_order_objects oo)
1071 int order = oo_order(oo);
1073 flags |= __GFP_NOTRACK;
1075 if (node == -1)
1076 return alloc_pages(flags, order);
1077 else
1078 return alloc_pages_exact_node(node, flags, order);
1081 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1083 struct page *page;
1084 struct kmem_cache_order_objects oo = s->oo;
1085 gfp_t alloc_gfp;
1087 flags |= s->allocflags;
1090 * Let the initial higher-order allocation fail under memory pressure
1091 * so we fall-back to the minimum order allocation.
1093 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1095 page = alloc_slab_page(alloc_gfp, node, oo);
1096 if (unlikely(!page)) {
1097 oo = s->min;
1099 * Allocation may have failed due to fragmentation.
1100 * Try a lower order alloc if possible
1102 page = alloc_slab_page(flags, node, oo);
1103 if (!page)
1104 return NULL;
1106 stat(s, ORDER_FALLBACK);
1109 if (kmemcheck_enabled
1110 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1111 int pages = 1 << oo_order(oo);
1113 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1116 * Objects from caches that have a constructor don't get
1117 * cleared when they're allocated, so we need to do it here.
1119 if (s->ctor)
1120 kmemcheck_mark_uninitialized_pages(page, pages);
1121 else
1122 kmemcheck_mark_unallocated_pages(page, pages);
1125 page->objects = oo_objects(oo);
1126 mod_zone_page_state(page_zone(page),
1127 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1128 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1129 1 << oo_order(oo));
1131 return page;
1134 static void setup_object(struct kmem_cache *s, struct page *page,
1135 void *object)
1137 setup_object_debug(s, page, object);
1138 if (unlikely(s->ctor))
1139 s->ctor(object);
1142 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1144 struct page *page;
1145 void *start;
1146 void *last;
1147 void *p;
1149 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1151 page = allocate_slab(s,
1152 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1153 if (!page)
1154 goto out;
1156 inc_slabs_node(s, page_to_nid(page), page->objects);
1157 page->slab = s;
1158 page->flags |= 1 << PG_slab;
1159 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1160 SLAB_STORE_USER | SLAB_TRACE))
1161 __SetPageSlubDebug(page);
1163 start = page_address(page);
1165 if (unlikely(s->flags & SLAB_POISON))
1166 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1168 last = start;
1169 for_each_object(p, s, start, page->objects) {
1170 setup_object(s, page, last);
1171 set_freepointer(s, last, p);
1172 last = p;
1174 setup_object(s, page, last);
1175 set_freepointer(s, last, NULL);
1177 page->freelist = start;
1178 page->inuse = 0;
1179 out:
1180 return page;
1183 static void __free_slab(struct kmem_cache *s, struct page *page)
1185 int order = compound_order(page);
1186 int pages = 1 << order;
1188 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1189 void *p;
1191 slab_pad_check(s, page);
1192 for_each_object(p, s, page_address(page),
1193 page->objects)
1194 check_object(s, page, p, 0);
1195 __ClearPageSlubDebug(page);
1198 kmemcheck_free_shadow(page, compound_order(page));
1200 mod_zone_page_state(page_zone(page),
1201 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1202 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1203 -pages);
1205 __ClearPageSlab(page);
1206 reset_page_mapcount(page);
1207 if (current->reclaim_state)
1208 current->reclaim_state->reclaimed_slab += pages;
1209 __free_pages(page, order);
1212 static void rcu_free_slab(struct rcu_head *h)
1214 struct page *page;
1216 page = container_of((struct list_head *)h, struct page, lru);
1217 __free_slab(page->slab, page);
1220 static void free_slab(struct kmem_cache *s, struct page *page)
1222 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1224 * RCU free overloads the RCU head over the LRU
1226 struct rcu_head *head = (void *)&page->lru;
1228 call_rcu(head, rcu_free_slab);
1229 } else
1230 __free_slab(s, page);
1233 static void discard_slab(struct kmem_cache *s, struct page *page)
1235 dec_slabs_node(s, page_to_nid(page), page->objects);
1236 free_slab(s, page);
1240 * Per slab locking using the pagelock
1242 static __always_inline void slab_lock(struct page *page)
1244 bit_spin_lock(PG_locked, &page->flags);
1247 static __always_inline void slab_unlock(struct page *page)
1249 __bit_spin_unlock(PG_locked, &page->flags);
1252 static __always_inline int slab_trylock(struct page *page)
1254 int rc = 1;
1256 rc = bit_spin_trylock(PG_locked, &page->flags);
1257 return rc;
1261 * Management of partially allocated slabs
1263 static void add_partial(struct kmem_cache_node *n,
1264 struct page *page, int tail)
1266 spin_lock(&n->list_lock);
1267 n->nr_partial++;
1268 if (tail)
1269 list_add_tail(&page->lru, &n->partial);
1270 else
1271 list_add(&page->lru, &n->partial);
1272 spin_unlock(&n->list_lock);
1275 static void remove_partial(struct kmem_cache *s, struct page *page)
1277 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1279 spin_lock(&n->list_lock);
1280 list_del(&page->lru);
1281 n->nr_partial--;
1282 spin_unlock(&n->list_lock);
1286 * Lock slab and remove from the partial list.
1288 * Must hold list_lock.
1290 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1291 struct page *page)
1293 if (slab_trylock(page)) {
1294 list_del(&page->lru);
1295 n->nr_partial--;
1296 __SetPageSlubFrozen(page);
1297 return 1;
1299 return 0;
1303 * Try to allocate a partial slab from a specific node.
1305 static struct page *get_partial_node(struct kmem_cache_node *n)
1307 struct page *page;
1310 * Racy check. If we mistakenly see no partial slabs then we
1311 * just allocate an empty slab. If we mistakenly try to get a
1312 * partial slab and there is none available then get_partials()
1313 * will return NULL.
1315 if (!n || !n->nr_partial)
1316 return NULL;
1318 spin_lock(&n->list_lock);
1319 list_for_each_entry(page, &n->partial, lru)
1320 if (lock_and_freeze_slab(n, page))
1321 goto out;
1322 page = NULL;
1323 out:
1324 spin_unlock(&n->list_lock);
1325 return page;
1329 * Get a page from somewhere. Search in increasing NUMA distances.
1331 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1333 #ifdef CONFIG_NUMA
1334 struct zonelist *zonelist;
1335 struct zoneref *z;
1336 struct zone *zone;
1337 enum zone_type high_zoneidx = gfp_zone(flags);
1338 struct page *page;
1341 * The defrag ratio allows a configuration of the tradeoffs between
1342 * inter node defragmentation and node local allocations. A lower
1343 * defrag_ratio increases the tendency to do local allocations
1344 * instead of attempting to obtain partial slabs from other nodes.
1346 * If the defrag_ratio is set to 0 then kmalloc() always
1347 * returns node local objects. If the ratio is higher then kmalloc()
1348 * may return off node objects because partial slabs are obtained
1349 * from other nodes and filled up.
1351 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1352 * defrag_ratio = 1000) then every (well almost) allocation will
1353 * first attempt to defrag slab caches on other nodes. This means
1354 * scanning over all nodes to look for partial slabs which may be
1355 * expensive if we do it every time we are trying to find a slab
1356 * with available objects.
1358 if (!s->remote_node_defrag_ratio ||
1359 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1360 return NULL;
1362 get_mems_allowed();
1363 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1364 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1365 struct kmem_cache_node *n;
1367 n = get_node(s, zone_to_nid(zone));
1369 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1370 n->nr_partial > s->min_partial) {
1371 page = get_partial_node(n);
1372 if (page) {
1373 put_mems_allowed();
1374 return page;
1378 put_mems_allowed();
1379 #endif
1380 return NULL;
1384 * Get a partial page, lock it and return it.
1386 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1388 struct page *page;
1389 int searchnode = (node == -1) ? numa_node_id() : node;
1391 page = get_partial_node(get_node(s, searchnode));
1392 if (page || (flags & __GFP_THISNODE))
1393 return page;
1395 return get_any_partial(s, flags);
1399 * Move a page back to the lists.
1401 * Must be called with the slab lock held.
1403 * On exit the slab lock will have been dropped.
1405 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1407 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1409 __ClearPageSlubFrozen(page);
1410 if (page->inuse) {
1412 if (page->freelist) {
1413 add_partial(n, page, tail);
1414 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1415 } else {
1416 stat(s, DEACTIVATE_FULL);
1417 if (SLABDEBUG && PageSlubDebug(page) &&
1418 (s->flags & SLAB_STORE_USER))
1419 add_full(n, page);
1421 slab_unlock(page);
1422 } else {
1423 stat(s, DEACTIVATE_EMPTY);
1424 if (n->nr_partial < s->min_partial) {
1426 * Adding an empty slab to the partial slabs in order
1427 * to avoid page allocator overhead. This slab needs
1428 * to come after the other slabs with objects in
1429 * so that the others get filled first. That way the
1430 * size of the partial list stays small.
1432 * kmem_cache_shrink can reclaim any empty slabs from
1433 * the partial list.
1435 add_partial(n, page, 1);
1436 slab_unlock(page);
1437 } else {
1438 slab_unlock(page);
1439 stat(s, FREE_SLAB);
1440 discard_slab(s, page);
1446 * Remove the cpu slab
1448 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 struct page *page = c->page;
1451 int tail = 1;
1453 if (page->freelist)
1454 stat(s, DEACTIVATE_REMOTE_FREES);
1456 * Merge cpu freelist into slab freelist. Typically we get here
1457 * because both freelists are empty. So this is unlikely
1458 * to occur.
1460 while (unlikely(c->freelist)) {
1461 void **object;
1463 tail = 0; /* Hot objects. Put the slab first */
1465 /* Retrieve object from cpu_freelist */
1466 object = c->freelist;
1467 c->freelist = get_freepointer(s, c->freelist);
1469 /* And put onto the regular freelist */
1470 set_freepointer(s, object, page->freelist);
1471 page->freelist = object;
1472 page->inuse--;
1474 c->page = NULL;
1475 unfreeze_slab(s, page, tail);
1478 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1480 stat(s, CPUSLAB_FLUSH);
1481 slab_lock(c->page);
1482 deactivate_slab(s, c);
1486 * Flush cpu slab.
1488 * Called from IPI handler with interrupts disabled.
1490 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1492 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1494 if (likely(c && c->page))
1495 flush_slab(s, c);
1498 static void flush_cpu_slab(void *d)
1500 struct kmem_cache *s = d;
1502 __flush_cpu_slab(s, smp_processor_id());
1505 static void flush_all(struct kmem_cache *s)
1507 on_each_cpu(flush_cpu_slab, s, 1);
1511 * Check if the objects in a per cpu structure fit numa
1512 * locality expectations.
1514 static inline int node_match(struct kmem_cache_cpu *c, int node)
1516 #ifdef CONFIG_NUMA
1517 if (node != -1 && c->node != node)
1518 return 0;
1519 #endif
1520 return 1;
1523 static int count_free(struct page *page)
1525 return page->objects - page->inuse;
1528 static unsigned long count_partial(struct kmem_cache_node *n,
1529 int (*get_count)(struct page *))
1531 unsigned long flags;
1532 unsigned long x = 0;
1533 struct page *page;
1535 spin_lock_irqsave(&n->list_lock, flags);
1536 list_for_each_entry(page, &n->partial, lru)
1537 x += get_count(page);
1538 spin_unlock_irqrestore(&n->list_lock, flags);
1539 return x;
1542 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1544 #ifdef CONFIG_SLUB_DEBUG
1545 return atomic_long_read(&n->total_objects);
1546 #else
1547 return 0;
1548 #endif
1551 static noinline void
1552 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1554 int node;
1556 printk(KERN_WARNING
1557 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1558 nid, gfpflags);
1559 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1560 "default order: %d, min order: %d\n", s->name, s->objsize,
1561 s->size, oo_order(s->oo), oo_order(s->min));
1563 if (oo_order(s->min) > get_order(s->objsize))
1564 printk(KERN_WARNING " %s debugging increased min order, use "
1565 "slub_debug=O to disable.\n", s->name);
1567 for_each_online_node(node) {
1568 struct kmem_cache_node *n = get_node(s, node);
1569 unsigned long nr_slabs;
1570 unsigned long nr_objs;
1571 unsigned long nr_free;
1573 if (!n)
1574 continue;
1576 nr_free = count_partial(n, count_free);
1577 nr_slabs = node_nr_slabs(n);
1578 nr_objs = node_nr_objs(n);
1580 printk(KERN_WARNING
1581 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1582 node, nr_slabs, nr_objs, nr_free);
1587 * Slow path. The lockless freelist is empty or we need to perform
1588 * debugging duties.
1590 * Interrupts are disabled.
1592 * Processing is still very fast if new objects have been freed to the
1593 * regular freelist. In that case we simply take over the regular freelist
1594 * as the lockless freelist and zap the regular freelist.
1596 * If that is not working then we fall back to the partial lists. We take the
1597 * first element of the freelist as the object to allocate now and move the
1598 * rest of the freelist to the lockless freelist.
1600 * And if we were unable to get a new slab from the partial slab lists then
1601 * we need to allocate a new slab. This is the slowest path since it involves
1602 * a call to the page allocator and the setup of a new slab.
1604 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1605 unsigned long addr, struct kmem_cache_cpu *c)
1607 void **object;
1608 struct page *new;
1610 /* We handle __GFP_ZERO in the caller */
1611 gfpflags &= ~__GFP_ZERO;
1613 if (!c->page)
1614 goto new_slab;
1616 slab_lock(c->page);
1617 if (unlikely(!node_match(c, node)))
1618 goto another_slab;
1620 stat(s, ALLOC_REFILL);
1622 load_freelist:
1623 object = c->page->freelist;
1624 if (unlikely(!object))
1625 goto another_slab;
1626 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1627 goto debug;
1629 c->freelist = get_freepointer(s, object);
1630 c->page->inuse = c->page->objects;
1631 c->page->freelist = NULL;
1632 c->node = page_to_nid(c->page);
1633 unlock_out:
1634 slab_unlock(c->page);
1635 stat(s, ALLOC_SLOWPATH);
1636 return object;
1638 another_slab:
1639 deactivate_slab(s, c);
1641 new_slab:
1642 new = get_partial(s, gfpflags, node);
1643 if (new) {
1644 c->page = new;
1645 stat(s, ALLOC_FROM_PARTIAL);
1646 goto load_freelist;
1649 if (gfpflags & __GFP_WAIT)
1650 local_irq_enable();
1652 new = new_slab(s, gfpflags, node);
1654 if (gfpflags & __GFP_WAIT)
1655 local_irq_disable();
1657 if (new) {
1658 c = __this_cpu_ptr(s->cpu_slab);
1659 stat(s, ALLOC_SLAB);
1660 if (c->page)
1661 flush_slab(s, c);
1662 slab_lock(new);
1663 __SetPageSlubFrozen(new);
1664 c->page = new;
1665 goto load_freelist;
1667 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1668 slab_out_of_memory(s, gfpflags, node);
1669 return NULL;
1670 debug:
1671 if (!alloc_debug_processing(s, c->page, object, addr))
1672 goto another_slab;
1674 c->page->inuse++;
1675 c->page->freelist = get_freepointer(s, object);
1676 c->node = -1;
1677 goto unlock_out;
1681 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1682 * have the fastpath folded into their functions. So no function call
1683 * overhead for requests that can be satisfied on the fastpath.
1685 * The fastpath works by first checking if the lockless freelist can be used.
1686 * If not then __slab_alloc is called for slow processing.
1688 * Otherwise we can simply pick the next object from the lockless free list.
1690 static __always_inline void *slab_alloc(struct kmem_cache *s,
1691 gfp_t gfpflags, int node, unsigned long addr)
1693 void **object;
1694 struct kmem_cache_cpu *c;
1695 unsigned long flags;
1697 gfpflags &= gfp_allowed_mask;
1699 lockdep_trace_alloc(gfpflags);
1700 might_sleep_if(gfpflags & __GFP_WAIT);
1702 if (should_failslab(s->objsize, gfpflags, s->flags))
1703 return NULL;
1705 local_irq_save(flags);
1706 c = __this_cpu_ptr(s->cpu_slab);
1707 object = c->freelist;
1708 if (unlikely(!object || !node_match(c, node)))
1710 object = __slab_alloc(s, gfpflags, node, addr, c);
1712 else {
1713 c->freelist = get_freepointer(s, object);
1714 stat(s, ALLOC_FASTPATH);
1716 local_irq_restore(flags);
1718 if (unlikely(gfpflags & __GFP_ZERO) && object)
1719 memset(object, 0, s->objsize);
1721 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1722 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1724 return object;
1727 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1729 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1731 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1733 return ret;
1735 EXPORT_SYMBOL(kmem_cache_alloc);
1737 #ifdef CONFIG_TRACING
1738 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1740 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1742 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1743 #endif
1745 #ifdef CONFIG_NUMA
1746 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1748 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1750 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1751 s->objsize, s->size, gfpflags, node);
1753 return ret;
1755 EXPORT_SYMBOL(kmem_cache_alloc_node);
1756 #endif
1758 #ifdef CONFIG_TRACING
1759 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1760 gfp_t gfpflags,
1761 int node)
1763 return slab_alloc(s, gfpflags, node, _RET_IP_);
1765 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1766 #endif
1769 * Slow patch handling. This may still be called frequently since objects
1770 * have a longer lifetime than the cpu slabs in most processing loads.
1772 * So we still attempt to reduce cache line usage. Just take the slab
1773 * lock and free the item. If there is no additional partial page
1774 * handling required then we can return immediately.
1776 static void __slab_free(struct kmem_cache *s, struct page *page,
1777 void *x, unsigned long addr)
1779 void *prior;
1780 void **object = (void *)x;
1782 stat(s, FREE_SLOWPATH);
1783 slab_lock(page);
1785 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1786 goto debug;
1788 checks_ok:
1789 prior = page->freelist;
1790 set_freepointer(s, object, prior);
1791 page->freelist = object;
1792 page->inuse--;
1794 if (unlikely(PageSlubFrozen(page))) {
1795 stat(s, FREE_FROZEN);
1796 goto out_unlock;
1799 if (unlikely(!page->inuse))
1800 goto slab_empty;
1803 * Objects left in the slab. If it was not on the partial list before
1804 * then add it.
1806 if (unlikely(!prior)) {
1807 add_partial(get_node(s, page_to_nid(page)), page, 1);
1808 stat(s, FREE_ADD_PARTIAL);
1811 out_unlock:
1812 slab_unlock(page);
1813 return;
1815 slab_empty:
1816 if (prior) {
1818 * Slab still on the partial list.
1820 remove_partial(s, page);
1821 stat(s, FREE_REMOVE_PARTIAL);
1823 slab_unlock(page);
1824 stat(s, FREE_SLAB);
1825 discard_slab(s, page);
1826 return;
1828 debug:
1829 if (!free_debug_processing(s, page, x, addr))
1830 goto out_unlock;
1831 goto checks_ok;
1835 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1836 * can perform fastpath freeing without additional function calls.
1838 * The fastpath is only possible if we are freeing to the current cpu slab
1839 * of this processor. This typically the case if we have just allocated
1840 * the item before.
1842 * If fastpath is not possible then fall back to __slab_free where we deal
1843 * with all sorts of special processing.
1845 static __always_inline void slab_free(struct kmem_cache *s,
1846 struct page *page, void *x, unsigned long addr)
1848 void **object = (void *)x;
1849 struct kmem_cache_cpu *c;
1850 unsigned long flags;
1852 kmemleak_free_recursive(x, s->flags);
1853 local_irq_save(flags);
1854 c = __this_cpu_ptr(s->cpu_slab);
1855 kmemcheck_slab_free(s, object, s->objsize);
1856 debug_check_no_locks_freed(object, s->objsize);
1857 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1858 debug_check_no_obj_freed(object, s->objsize);
1859 if (likely(page == c->page && c->node >= 0)) {
1860 set_freepointer(s, object, c->freelist);
1861 c->freelist = object;
1862 stat(s, FREE_FASTPATH);
1863 } else
1864 __slab_free(s, page, x, addr);
1866 local_irq_restore(flags);
1869 void kmem_cache_free(struct kmem_cache *s, void *x)
1871 struct page *page;
1873 page = virt_to_head_page(x);
1875 slab_free(s, page, x, _RET_IP_);
1877 trace_kmem_cache_free(_RET_IP_, x);
1879 EXPORT_SYMBOL(kmem_cache_free);
1881 /* Figure out on which slab page the object resides */
1882 static struct page *get_object_page(const void *x)
1884 struct page *page = virt_to_head_page(x);
1886 if (!PageSlab(page))
1887 return NULL;
1889 return page;
1893 * Object placement in a slab is made very easy because we always start at
1894 * offset 0. If we tune the size of the object to the alignment then we can
1895 * get the required alignment by putting one properly sized object after
1896 * another.
1898 * Notice that the allocation order determines the sizes of the per cpu
1899 * caches. Each processor has always one slab available for allocations.
1900 * Increasing the allocation order reduces the number of times that slabs
1901 * must be moved on and off the partial lists and is therefore a factor in
1902 * locking overhead.
1906 * Mininum / Maximum order of slab pages. This influences locking overhead
1907 * and slab fragmentation. A higher order reduces the number of partial slabs
1908 * and increases the number of allocations possible without having to
1909 * take the list_lock.
1911 static int slub_min_order;
1912 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1913 static int slub_min_objects;
1916 * Merge control. If this is set then no merging of slab caches will occur.
1917 * (Could be removed. This was introduced to pacify the merge skeptics.)
1919 static int slub_nomerge;
1922 * Calculate the order of allocation given an slab object size.
1924 * The order of allocation has significant impact on performance and other
1925 * system components. Generally order 0 allocations should be preferred since
1926 * order 0 does not cause fragmentation in the page allocator. Larger objects
1927 * be problematic to put into order 0 slabs because there may be too much
1928 * unused space left. We go to a higher order if more than 1/16th of the slab
1929 * would be wasted.
1931 * In order to reach satisfactory performance we must ensure that a minimum
1932 * number of objects is in one slab. Otherwise we may generate too much
1933 * activity on the partial lists which requires taking the list_lock. This is
1934 * less a concern for large slabs though which are rarely used.
1936 * slub_max_order specifies the order where we begin to stop considering the
1937 * number of objects in a slab as critical. If we reach slub_max_order then
1938 * we try to keep the page order as low as possible. So we accept more waste
1939 * of space in favor of a small page order.
1941 * Higher order allocations also allow the placement of more objects in a
1942 * slab and thereby reduce object handling overhead. If the user has
1943 * requested a higher mininum order then we start with that one instead of
1944 * the smallest order which will fit the object.
1946 static inline int slab_order(int size, int min_objects,
1947 int max_order, int fract_leftover)
1949 int order;
1950 int rem;
1951 int min_order = slub_min_order;
1953 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1954 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1956 for (order = max(min_order,
1957 fls(min_objects * size - 1) - PAGE_SHIFT);
1958 order <= max_order; order++) {
1960 unsigned long slab_size = PAGE_SIZE << order;
1962 if (slab_size < min_objects * size)
1963 continue;
1965 rem = slab_size % size;
1967 if (rem <= slab_size / fract_leftover)
1968 break;
1972 return order;
1975 static inline int calculate_order(int size)
1977 int order;
1978 int min_objects;
1979 int fraction;
1980 int max_objects;
1983 * Attempt to find best configuration for a slab. This
1984 * works by first attempting to generate a layout with
1985 * the best configuration and backing off gradually.
1987 * First we reduce the acceptable waste in a slab. Then
1988 * we reduce the minimum objects required in a slab.
1990 min_objects = slub_min_objects;
1991 if (!min_objects)
1992 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1993 max_objects = (PAGE_SIZE << slub_max_order)/size;
1994 min_objects = min(min_objects, max_objects);
1996 while (min_objects > 1) {
1997 fraction = 16;
1998 while (fraction >= 4) {
1999 order = slab_order(size, min_objects,
2000 slub_max_order, fraction);
2001 if (order <= slub_max_order)
2002 return order;
2003 fraction /= 2;
2005 min_objects--;
2009 * We were unable to place multiple objects in a slab. Now
2010 * lets see if we can place a single object there.
2012 order = slab_order(size, 1, slub_max_order, 1);
2013 if (order <= slub_max_order)
2014 return order;
2017 * Doh this slab cannot be placed using slub_max_order.
2019 order = slab_order(size, 1, MAX_ORDER, 1);
2020 if (order < MAX_ORDER)
2021 return order;
2022 return -ENOSYS;
2026 * Figure out what the alignment of the objects will be.
2028 static unsigned long calculate_alignment(unsigned long flags,
2029 unsigned long align, unsigned long size)
2032 * If the user wants hardware cache aligned objects then follow that
2033 * suggestion if the object is sufficiently large.
2035 * The hardware cache alignment cannot override the specified
2036 * alignment though. If that is greater then use it.
2038 if (flags & SLAB_HWCACHE_ALIGN) {
2039 unsigned long ralign = cache_line_size();
2040 while (size <= ralign / 2)
2041 ralign /= 2;
2042 align = max(align, ralign);
2045 if (align < ARCH_SLAB_MINALIGN)
2046 align = ARCH_SLAB_MINALIGN;
2048 return ALIGN(align, sizeof(void *));
2051 static void
2052 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2054 n->nr_partial = 0;
2055 spin_lock_init(&n->list_lock);
2056 INIT_LIST_HEAD(&n->partial);
2057 #ifdef CONFIG_SLUB_DEBUG
2058 atomic_long_set(&n->nr_slabs, 0);
2059 atomic_long_set(&n->total_objects, 0);
2060 INIT_LIST_HEAD(&n->full);
2061 #endif
2064 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2066 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2068 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2070 * Boot time creation of the kmalloc array. Use static per cpu data
2071 * since the per cpu allocator is not available yet.
2073 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2074 else
2075 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2077 if (!s->cpu_slab)
2078 return 0;
2080 return 1;
2083 #ifdef CONFIG_NUMA
2085 * No kmalloc_node yet so do it by hand. We know that this is the first
2086 * slab on the node for this slabcache. There are no concurrent accesses
2087 * possible.
2089 * Note that this function only works on the kmalloc_node_cache
2090 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2091 * memory on a fresh node that has no slab structures yet.
2093 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2095 struct page *page;
2096 struct kmem_cache_node *n;
2097 unsigned long flags;
2099 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2101 page = new_slab(kmalloc_caches, gfpflags, node);
2103 BUG_ON(!page);
2104 if (page_to_nid(page) != node) {
2105 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2106 "node %d\n", node);
2107 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2108 "in order to be able to continue\n");
2111 n = page->freelist;
2112 BUG_ON(!n);
2113 page->freelist = get_freepointer(kmalloc_caches, n);
2114 page->inuse++;
2115 kmalloc_caches->node[node] = n;
2116 #ifdef CONFIG_SLUB_DEBUG
2117 init_object(kmalloc_caches, n, 1);
2118 init_tracking(kmalloc_caches, n);
2119 #endif
2120 init_kmem_cache_node(n, kmalloc_caches);
2121 inc_slabs_node(kmalloc_caches, node, page->objects);
2124 * lockdep requires consistent irq usage for each lock
2125 * so even though there cannot be a race this early in
2126 * the boot sequence, we still disable irqs.
2128 local_irq_save(flags);
2129 add_partial(n, page, 0);
2130 local_irq_restore(flags);
2133 static void free_kmem_cache_nodes(struct kmem_cache *s)
2135 int node;
2137 for_each_node_state(node, N_NORMAL_MEMORY) {
2138 struct kmem_cache_node *n = s->node[node];
2139 if (n)
2140 kmem_cache_free(kmalloc_caches, n);
2141 s->node[node] = NULL;
2145 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2147 int node;
2149 for_each_node_state(node, N_NORMAL_MEMORY) {
2150 struct kmem_cache_node *n;
2152 if (slab_state == DOWN) {
2153 early_kmem_cache_node_alloc(gfpflags, node);
2154 continue;
2156 n = kmem_cache_alloc_node(kmalloc_caches,
2157 gfpflags, node);
2159 if (!n) {
2160 free_kmem_cache_nodes(s);
2161 return 0;
2164 s->node[node] = n;
2165 init_kmem_cache_node(n, s);
2167 return 1;
2169 #else
2170 static void free_kmem_cache_nodes(struct kmem_cache *s)
2174 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2176 init_kmem_cache_node(&s->local_node, s);
2177 return 1;
2179 #endif
2181 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2183 if (min < MIN_PARTIAL)
2184 min = MIN_PARTIAL;
2185 else if (min > MAX_PARTIAL)
2186 min = MAX_PARTIAL;
2187 s->min_partial = min;
2191 * calculate_sizes() determines the order and the distribution of data within
2192 * a slab object.
2194 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2196 unsigned long flags = s->flags;
2197 unsigned long size = s->objsize;
2198 unsigned long align = s->align;
2199 int order;
2202 * Round up object size to the next word boundary. We can only
2203 * place the free pointer at word boundaries and this determines
2204 * the possible location of the free pointer.
2206 size = ALIGN(size, sizeof(void *));
2208 #ifdef CONFIG_SLUB_DEBUG
2210 * Determine if we can poison the object itself. If the user of
2211 * the slab may touch the object after free or before allocation
2212 * then we should never poison the object itself.
2214 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2215 !s->ctor)
2216 s->flags |= __OBJECT_POISON;
2217 else
2218 s->flags &= ~__OBJECT_POISON;
2222 * If we are Redzoning then check if there is some space between the
2223 * end of the object and the free pointer. If not then add an
2224 * additional word to have some bytes to store Redzone information.
2226 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2227 size += sizeof(void *);
2228 #endif
2231 * With that we have determined the number of bytes in actual use
2232 * by the object. This is the potential offset to the free pointer.
2234 s->inuse = size;
2236 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2237 s->ctor)) {
2239 * Relocate free pointer after the object if it is not
2240 * permitted to overwrite the first word of the object on
2241 * kmem_cache_free.
2243 * This is the case if we do RCU, have a constructor or
2244 * destructor or are poisoning the objects.
2246 s->offset = size;
2247 size += sizeof(void *);
2250 #ifdef CONFIG_SLUB_DEBUG
2251 if (flags & SLAB_STORE_USER)
2253 * Need to store information about allocs and frees after
2254 * the object.
2256 size += 2 * sizeof(struct track);
2258 if (flags & SLAB_RED_ZONE)
2260 * Add some empty padding so that we can catch
2261 * overwrites from earlier objects rather than let
2262 * tracking information or the free pointer be
2263 * corrupted if a user writes before the start
2264 * of the object.
2266 size += sizeof(void *);
2267 #endif
2270 * Determine the alignment based on various parameters that the
2271 * user specified and the dynamic determination of cache line size
2272 * on bootup.
2274 align = calculate_alignment(flags, align, s->objsize);
2275 s->align = align;
2278 * SLUB stores one object immediately after another beginning from
2279 * offset 0. In order to align the objects we have to simply size
2280 * each object to conform to the alignment.
2282 size = ALIGN(size, align);
2283 s->size = size;
2284 if (forced_order >= 0)
2285 order = forced_order;
2286 else
2287 order = calculate_order(size);
2289 if (order < 0)
2290 return 0;
2292 s->allocflags = 0;
2293 if (order)
2294 s->allocflags |= __GFP_COMP;
2296 if (s->flags & SLAB_CACHE_DMA)
2297 s->allocflags |= SLUB_DMA;
2299 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2300 s->allocflags |= __GFP_RECLAIMABLE;
2303 * Determine the number of objects per slab
2305 s->oo = oo_make(order, size);
2306 s->min = oo_make(get_order(size), size);
2307 if (oo_objects(s->oo) > oo_objects(s->max))
2308 s->max = s->oo;
2310 return !!oo_objects(s->oo);
2314 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2315 const char *name, size_t size,
2316 size_t align, unsigned long flags,
2317 void (*ctor)(void *))
2319 memset(s, 0, kmem_size);
2320 s->name = name;
2321 s->ctor = ctor;
2322 s->objsize = size;
2323 s->align = align;
2324 s->flags = kmem_cache_flags(size, flags, name, ctor);
2326 if (!calculate_sizes(s, -1))
2327 goto error;
2328 if (disable_higher_order_debug) {
2330 * Disable debugging flags that store metadata if the min slab
2331 * order increased.
2333 if (get_order(s->size) > get_order(s->objsize)) {
2334 s->flags &= ~DEBUG_METADATA_FLAGS;
2335 s->offset = 0;
2336 if (!calculate_sizes(s, -1))
2337 goto error;
2342 * The larger the object size is, the more pages we want on the partial
2343 * list to avoid pounding the page allocator excessively.
2345 set_min_partial(s, ilog2(s->size));
2346 s->refcount = 1;
2347 #ifdef CONFIG_NUMA
2348 s->remote_node_defrag_ratio = 1000;
2349 #endif
2350 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2351 goto error;
2353 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2354 return 1;
2356 free_kmem_cache_nodes(s);
2357 error:
2358 if (flags & SLAB_PANIC)
2359 panic("Cannot create slab %s size=%lu realsize=%u "
2360 "order=%u offset=%u flags=%lx\n",
2361 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2362 s->offset, flags);
2363 return 0;
2367 * Check if a given pointer is valid
2369 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2371 struct page *page;
2373 if (!kern_ptr_validate(object, s->size))
2374 return 0;
2376 page = get_object_page(object);
2378 if (!page || s != page->slab)
2379 /* No slab or wrong slab */
2380 return 0;
2382 if (!check_valid_pointer(s, page, object))
2383 return 0;
2386 * We could also check if the object is on the slabs freelist.
2387 * But this would be too expensive and it seems that the main
2388 * purpose of kmem_ptr_valid() is to check if the object belongs
2389 * to a certain slab.
2391 return 1;
2393 EXPORT_SYMBOL(kmem_ptr_validate);
2396 * Determine the size of a slab object
2398 unsigned int kmem_cache_size(struct kmem_cache *s)
2400 return s->objsize;
2402 EXPORT_SYMBOL(kmem_cache_size);
2404 const char *kmem_cache_name(struct kmem_cache *s)
2406 return s->name;
2408 EXPORT_SYMBOL(kmem_cache_name);
2410 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2411 const char *text)
2413 #ifdef CONFIG_SLUB_DEBUG
2414 void *addr = page_address(page);
2415 void *p;
2416 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2417 GFP_ATOMIC);
2419 if (!map)
2420 return;
2421 slab_err(s, page, "%s", text);
2422 slab_lock(page);
2423 for_each_free_object(p, s, page->freelist)
2424 set_bit(slab_index(p, s, addr), map);
2426 for_each_object(p, s, addr, page->objects) {
2428 if (!test_bit(slab_index(p, s, addr), map)) {
2429 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2430 p, p - addr);
2431 print_tracking(s, p);
2434 slab_unlock(page);
2435 kfree(map);
2436 #endif
2440 * Attempt to free all partial slabs on a node.
2442 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2444 unsigned long flags;
2445 struct page *page, *h;
2447 spin_lock_irqsave(&n->list_lock, flags);
2448 list_for_each_entry_safe(page, h, &n->partial, lru) {
2449 if (!page->inuse) {
2450 list_del(&page->lru);
2451 discard_slab(s, page);
2452 n->nr_partial--;
2453 } else {
2454 list_slab_objects(s, page,
2455 "Objects remaining on kmem_cache_close()");
2458 spin_unlock_irqrestore(&n->list_lock, flags);
2462 * Release all resources used by a slab cache.
2464 static inline int kmem_cache_close(struct kmem_cache *s)
2466 int node;
2468 flush_all(s);
2469 free_percpu(s->cpu_slab);
2470 /* Attempt to free all objects */
2471 for_each_node_state(node, N_NORMAL_MEMORY) {
2472 struct kmem_cache_node *n = get_node(s, node);
2474 free_partial(s, n);
2475 if (n->nr_partial || slabs_node(s, node))
2476 return 1;
2478 free_kmem_cache_nodes(s);
2479 return 0;
2483 * Close a cache and release the kmem_cache structure
2484 * (must be used for caches created using kmem_cache_create)
2486 void kmem_cache_destroy(struct kmem_cache *s)
2488 down_write(&slub_lock);
2489 s->refcount--;
2490 if (!s->refcount) {
2491 list_del(&s->list);
2492 up_write(&slub_lock);
2493 if (kmem_cache_close(s)) {
2494 printk(KERN_ERR "SLUB %s: %s called for cache that "
2495 "still has objects.\n", s->name, __func__);
2496 dump_stack();
2498 if (s->flags & SLAB_DESTROY_BY_RCU)
2499 rcu_barrier();
2500 sysfs_slab_remove(s);
2501 } else
2502 up_write(&slub_lock);
2504 EXPORT_SYMBOL(kmem_cache_destroy);
2506 /********************************************************************
2507 * Kmalloc subsystem
2508 *******************************************************************/
2510 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2511 EXPORT_SYMBOL(kmalloc_caches);
2513 static int __init setup_slub_min_order(char *str)
2515 get_option(&str, &slub_min_order);
2517 return 1;
2520 __setup("slub_min_order=", setup_slub_min_order);
2522 static int __init setup_slub_max_order(char *str)
2524 get_option(&str, &slub_max_order);
2525 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2527 return 1;
2530 __setup("slub_max_order=", setup_slub_max_order);
2532 static int __init setup_slub_min_objects(char *str)
2534 get_option(&str, &slub_min_objects);
2536 return 1;
2539 __setup("slub_min_objects=", setup_slub_min_objects);
2541 static int __init setup_slub_nomerge(char *str)
2543 slub_nomerge = 1;
2544 return 1;
2547 __setup("slub_nomerge", setup_slub_nomerge);
2549 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2550 const char *name, int size, gfp_t gfp_flags)
2552 unsigned int flags = 0;
2554 if (gfp_flags & SLUB_DMA)
2555 flags = SLAB_CACHE_DMA;
2558 * This function is called with IRQs disabled during early-boot on
2559 * single CPU so there's no need to take slub_lock here.
2561 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2562 flags, NULL))
2563 goto panic;
2565 list_add(&s->list, &slab_caches);
2567 if (sysfs_slab_add(s))
2568 goto panic;
2569 return s;
2571 panic:
2572 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2575 #ifdef CONFIG_ZONE_DMA
2576 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2578 static void sysfs_add_func(struct work_struct *w)
2580 struct kmem_cache *s;
2582 down_write(&slub_lock);
2583 list_for_each_entry(s, &slab_caches, list) {
2584 if (s->flags & __SYSFS_ADD_DEFERRED) {
2585 s->flags &= ~__SYSFS_ADD_DEFERRED;
2586 sysfs_slab_add(s);
2589 up_write(&slub_lock);
2592 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2594 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2596 struct kmem_cache *s;
2597 char *text;
2598 size_t realsize;
2599 unsigned long slabflags;
2600 int i;
2602 s = kmalloc_caches_dma[index];
2603 if (s)
2604 return s;
2606 /* Dynamically create dma cache */
2607 if (flags & __GFP_WAIT)
2608 down_write(&slub_lock);
2609 else {
2610 if (!down_write_trylock(&slub_lock))
2611 goto out;
2614 if (kmalloc_caches_dma[index])
2615 goto unlock_out;
2617 realsize = kmalloc_caches[index].objsize;
2618 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2619 (unsigned int)realsize);
2621 s = NULL;
2622 for (i = 0; i < KMALLOC_CACHES; i++)
2623 if (!kmalloc_caches[i].size)
2624 break;
2626 BUG_ON(i >= KMALLOC_CACHES);
2627 s = kmalloc_caches + i;
2630 * Must defer sysfs creation to a workqueue because we don't know
2631 * what context we are called from. Before sysfs comes up, we don't
2632 * need to do anything because our sysfs initcall will start by
2633 * adding all existing slabs to sysfs.
2635 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2636 if (slab_state >= SYSFS)
2637 slabflags |= __SYSFS_ADD_DEFERRED;
2639 if (!text || !kmem_cache_open(s, flags, text,
2640 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2641 s->size = 0;
2642 kfree(text);
2643 goto unlock_out;
2646 list_add(&s->list, &slab_caches);
2647 kmalloc_caches_dma[index] = s;
2649 if (slab_state >= SYSFS)
2650 schedule_work(&sysfs_add_work);
2652 unlock_out:
2653 up_write(&slub_lock);
2654 out:
2655 return kmalloc_caches_dma[index];
2657 #endif
2660 * Conversion table for small slabs sizes / 8 to the index in the
2661 * kmalloc array. This is necessary for slabs < 192 since we have non power
2662 * of two cache sizes there. The size of larger slabs can be determined using
2663 * fls.
2665 static s8 size_index[24] = {
2666 3, /* 8 */
2667 4, /* 16 */
2668 5, /* 24 */
2669 5, /* 32 */
2670 6, /* 40 */
2671 6, /* 48 */
2672 6, /* 56 */
2673 6, /* 64 */
2674 1, /* 72 */
2675 1, /* 80 */
2676 1, /* 88 */
2677 1, /* 96 */
2678 7, /* 104 */
2679 7, /* 112 */
2680 7, /* 120 */
2681 7, /* 128 */
2682 2, /* 136 */
2683 2, /* 144 */
2684 2, /* 152 */
2685 2, /* 160 */
2686 2, /* 168 */
2687 2, /* 176 */
2688 2, /* 184 */
2689 2 /* 192 */
2692 static inline int size_index_elem(size_t bytes)
2694 return (bytes - 1) / 8;
2697 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2699 int index;
2701 if (size <= 192) {
2702 if (!size)
2703 return ZERO_SIZE_PTR;
2705 index = size_index[size_index_elem(size)];
2706 } else
2707 index = fls(size - 1);
2709 #ifdef CONFIG_ZONE_DMA
2710 if (unlikely((flags & SLUB_DMA)))
2711 return dma_kmalloc_cache(index, flags);
2713 #endif
2714 return &kmalloc_caches[index];
2717 void *__kmalloc(size_t size, gfp_t flags)
2719 struct kmem_cache *s;
2720 void *ret;
2722 if (unlikely(size > SLUB_MAX_SIZE))
2723 return kmalloc_large(size, flags);
2725 s = get_slab(size, flags);
2727 if (unlikely(ZERO_OR_NULL_PTR(s)))
2728 return s;
2730 ret = slab_alloc(s, flags, -1, _RET_IP_);
2732 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2734 return ret;
2736 EXPORT_SYMBOL(__kmalloc);
2738 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2740 struct page *page;
2741 void *ptr = NULL;
2743 flags |= __GFP_COMP | __GFP_NOTRACK;
2744 page = alloc_pages_node(node, flags, get_order(size));
2745 if (page)
2746 ptr = page_address(page);
2748 kmemleak_alloc(ptr, size, 1, flags);
2749 return ptr;
2752 #ifdef CONFIG_NUMA
2753 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2755 struct kmem_cache *s;
2756 void *ret;
2758 if (unlikely(size > SLUB_MAX_SIZE)) {
2759 ret = kmalloc_large_node(size, flags, node);
2761 trace_kmalloc_node(_RET_IP_, ret,
2762 size, PAGE_SIZE << get_order(size),
2763 flags, node);
2765 return ret;
2768 s = get_slab(size, flags);
2770 if (unlikely(ZERO_OR_NULL_PTR(s)))
2771 return s;
2773 ret = slab_alloc(s, flags, node, _RET_IP_);
2775 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2777 return ret;
2779 EXPORT_SYMBOL(__kmalloc_node);
2780 #endif
2782 size_t ksize(const void *object)
2784 struct page *page;
2785 struct kmem_cache *s;
2787 if (unlikely(object == ZERO_SIZE_PTR))
2788 return 0;
2790 page = virt_to_head_page(object);
2792 if (unlikely(!PageSlab(page))) {
2793 WARN_ON(!PageCompound(page));
2794 return PAGE_SIZE << compound_order(page);
2796 s = page->slab;
2798 #ifdef CONFIG_SLUB_DEBUG
2800 * Debugging requires use of the padding between object
2801 * and whatever may come after it.
2803 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2804 return s->objsize;
2806 #endif
2808 * If we have the need to store the freelist pointer
2809 * back there or track user information then we can
2810 * only use the space before that information.
2812 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2813 return s->inuse;
2815 * Else we can use all the padding etc for the allocation
2817 return s->size;
2819 EXPORT_SYMBOL(ksize);
2821 void kfree(const void *x)
2823 struct page *page;
2824 void *object = (void *)x;
2826 trace_kfree(_RET_IP_, x);
2828 if (unlikely(ZERO_OR_NULL_PTR(x)))
2829 return;
2831 page = virt_to_head_page(x);
2832 if (unlikely(!PageSlab(page))) {
2833 BUG_ON(!PageCompound(page));
2834 kmemleak_free(x);
2835 put_page(page);
2836 return;
2838 slab_free(page->slab, page, object, _RET_IP_);
2840 EXPORT_SYMBOL(kfree);
2843 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2844 * the remaining slabs by the number of items in use. The slabs with the
2845 * most items in use come first. New allocations will then fill those up
2846 * and thus they can be removed from the partial lists.
2848 * The slabs with the least items are placed last. This results in them
2849 * being allocated from last increasing the chance that the last objects
2850 * are freed in them.
2852 int kmem_cache_shrink(struct kmem_cache *s)
2854 int node;
2855 int i;
2856 struct kmem_cache_node *n;
2857 struct page *page;
2858 struct page *t;
2859 int objects = oo_objects(s->max);
2860 struct list_head *slabs_by_inuse =
2861 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2862 unsigned long flags;
2864 if (!slabs_by_inuse)
2865 return -ENOMEM;
2867 flush_all(s);
2868 for_each_node_state(node, N_NORMAL_MEMORY) {
2869 n = get_node(s, node);
2871 if (!n->nr_partial)
2872 continue;
2874 for (i = 0; i < objects; i++)
2875 INIT_LIST_HEAD(slabs_by_inuse + i);
2877 spin_lock_irqsave(&n->list_lock, flags);
2880 * Build lists indexed by the items in use in each slab.
2882 * Note that concurrent frees may occur while we hold the
2883 * list_lock. page->inuse here is the upper limit.
2885 list_for_each_entry_safe(page, t, &n->partial, lru) {
2886 if (!page->inuse && slab_trylock(page)) {
2888 * Must hold slab lock here because slab_free
2889 * may have freed the last object and be
2890 * waiting to release the slab.
2892 list_del(&page->lru);
2893 n->nr_partial--;
2894 slab_unlock(page);
2895 discard_slab(s, page);
2896 } else {
2897 list_move(&page->lru,
2898 slabs_by_inuse + page->inuse);
2903 * Rebuild the partial list with the slabs filled up most
2904 * first and the least used slabs at the end.
2906 for (i = objects - 1; i >= 0; i--)
2907 list_splice(slabs_by_inuse + i, n->partial.prev);
2909 spin_unlock_irqrestore(&n->list_lock, flags);
2912 kfree(slabs_by_inuse);
2913 return 0;
2915 EXPORT_SYMBOL(kmem_cache_shrink);
2917 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2918 static int slab_mem_going_offline_callback(void *arg)
2920 struct kmem_cache *s;
2922 down_read(&slub_lock);
2923 list_for_each_entry(s, &slab_caches, list)
2924 kmem_cache_shrink(s);
2925 up_read(&slub_lock);
2927 return 0;
2930 static void slab_mem_offline_callback(void *arg)
2932 struct kmem_cache_node *n;
2933 struct kmem_cache *s;
2934 struct memory_notify *marg = arg;
2935 int offline_node;
2937 offline_node = marg->status_change_nid;
2940 * If the node still has available memory. we need kmem_cache_node
2941 * for it yet.
2943 if (offline_node < 0)
2944 return;
2946 down_read(&slub_lock);
2947 list_for_each_entry(s, &slab_caches, list) {
2948 n = get_node(s, offline_node);
2949 if (n) {
2951 * if n->nr_slabs > 0, slabs still exist on the node
2952 * that is going down. We were unable to free them,
2953 * and offline_pages() function shouldn't call this
2954 * callback. So, we must fail.
2956 BUG_ON(slabs_node(s, offline_node));
2958 s->node[offline_node] = NULL;
2959 kmem_cache_free(kmalloc_caches, n);
2962 up_read(&slub_lock);
2965 static int slab_mem_going_online_callback(void *arg)
2967 struct kmem_cache_node *n;
2968 struct kmem_cache *s;
2969 struct memory_notify *marg = arg;
2970 int nid = marg->status_change_nid;
2971 int ret = 0;
2974 * If the node's memory is already available, then kmem_cache_node is
2975 * already created. Nothing to do.
2977 if (nid < 0)
2978 return 0;
2981 * We are bringing a node online. No memory is available yet. We must
2982 * allocate a kmem_cache_node structure in order to bring the node
2983 * online.
2985 down_read(&slub_lock);
2986 list_for_each_entry(s, &slab_caches, list) {
2988 * XXX: kmem_cache_alloc_node will fallback to other nodes
2989 * since memory is not yet available from the node that
2990 * is brought up.
2992 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2993 if (!n) {
2994 ret = -ENOMEM;
2995 goto out;
2997 init_kmem_cache_node(n, s);
2998 s->node[nid] = n;
3000 out:
3001 up_read(&slub_lock);
3002 return ret;
3005 static int slab_memory_callback(struct notifier_block *self,
3006 unsigned long action, void *arg)
3008 int ret = 0;
3010 switch (action) {
3011 case MEM_GOING_ONLINE:
3012 ret = slab_mem_going_online_callback(arg);
3013 break;
3014 case MEM_GOING_OFFLINE:
3015 ret = slab_mem_going_offline_callback(arg);
3016 break;
3017 case MEM_OFFLINE:
3018 case MEM_CANCEL_ONLINE:
3019 slab_mem_offline_callback(arg);
3020 break;
3021 case MEM_ONLINE:
3022 case MEM_CANCEL_OFFLINE:
3023 break;
3025 if (ret)
3026 ret = notifier_from_errno(ret);
3027 else
3028 ret = NOTIFY_OK;
3029 return ret;
3032 #endif /* CONFIG_MEMORY_HOTPLUG */
3034 /********************************************************************
3035 * Basic setup of slabs
3036 *******************************************************************/
3038 void __init kmem_cache_init(void)
3040 int i;
3041 int caches = 0;
3043 #ifdef CONFIG_NUMA
3045 * Must first have the slab cache available for the allocations of the
3046 * struct kmem_cache_node's. There is special bootstrap code in
3047 * kmem_cache_open for slab_state == DOWN.
3049 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3050 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3051 kmalloc_caches[0].refcount = -1;
3052 caches++;
3054 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3055 #endif
3057 /* Able to allocate the per node structures */
3058 slab_state = PARTIAL;
3060 /* Caches that are not of the two-to-the-power-of size */
3061 if (KMALLOC_MIN_SIZE <= 32) {
3062 create_kmalloc_cache(&kmalloc_caches[1],
3063 "kmalloc-96", 96, GFP_NOWAIT);
3064 caches++;
3066 if (KMALLOC_MIN_SIZE <= 64) {
3067 create_kmalloc_cache(&kmalloc_caches[2],
3068 "kmalloc-192", 192, GFP_NOWAIT);
3069 caches++;
3072 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3073 create_kmalloc_cache(&kmalloc_caches[i],
3074 "kmalloc", 1 << i, GFP_NOWAIT);
3075 caches++;
3080 * Patch up the size_index table if we have strange large alignment
3081 * requirements for the kmalloc array. This is only the case for
3082 * MIPS it seems. The standard arches will not generate any code here.
3084 * Largest permitted alignment is 256 bytes due to the way we
3085 * handle the index determination for the smaller caches.
3087 * Make sure that nothing crazy happens if someone starts tinkering
3088 * around with ARCH_KMALLOC_MINALIGN
3090 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3091 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3093 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3094 int elem = size_index_elem(i);
3095 if (elem >= ARRAY_SIZE(size_index))
3096 break;
3097 size_index[elem] = KMALLOC_SHIFT_LOW;
3100 if (KMALLOC_MIN_SIZE == 64) {
3102 * The 96 byte size cache is not used if the alignment
3103 * is 64 byte.
3105 for (i = 64 + 8; i <= 96; i += 8)
3106 size_index[size_index_elem(i)] = 7;
3107 } else if (KMALLOC_MIN_SIZE == 128) {
3109 * The 192 byte sized cache is not used if the alignment
3110 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3111 * instead.
3113 for (i = 128 + 8; i <= 192; i += 8)
3114 size_index[size_index_elem(i)] = 8;
3117 slab_state = UP;
3119 /* Provide the correct kmalloc names now that the caches are up */
3120 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3121 kmalloc_caches[i]. name =
3122 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3124 #ifdef CONFIG_SMP
3125 register_cpu_notifier(&slab_notifier);
3126 #endif
3127 #ifdef CONFIG_NUMA
3128 kmem_size = offsetof(struct kmem_cache, node) +
3129 nr_node_ids * sizeof(struct kmem_cache_node *);
3130 #else
3131 kmem_size = sizeof(struct kmem_cache);
3132 #endif
3134 printk(KERN_INFO
3135 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3136 " CPUs=%d, Nodes=%d\n",
3137 caches, cache_line_size(),
3138 slub_min_order, slub_max_order, slub_min_objects,
3139 nr_cpu_ids, nr_node_ids);
3142 void __init kmem_cache_init_late(void)
3147 * Find a mergeable slab cache
3149 static int slab_unmergeable(struct kmem_cache *s)
3151 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3152 return 1;
3154 if (s->ctor)
3155 return 1;
3158 * We may have set a slab to be unmergeable during bootstrap.
3160 if (s->refcount < 0)
3161 return 1;
3163 return 0;
3166 static struct kmem_cache *find_mergeable(size_t size,
3167 size_t align, unsigned long flags, const char *name,
3168 void (*ctor)(void *))
3170 struct kmem_cache *s;
3172 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3173 return NULL;
3175 if (ctor)
3176 return NULL;
3178 size = ALIGN(size, sizeof(void *));
3179 align = calculate_alignment(flags, align, size);
3180 size = ALIGN(size, align);
3181 flags = kmem_cache_flags(size, flags, name, NULL);
3183 list_for_each_entry(s, &slab_caches, list) {
3184 if (slab_unmergeable(s))
3185 continue;
3187 if (size > s->size)
3188 continue;
3190 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3191 continue;
3193 * Check if alignment is compatible.
3194 * Courtesy of Adrian Drzewiecki
3196 if ((s->size & ~(align - 1)) != s->size)
3197 continue;
3199 if (s->size - size >= sizeof(void *))
3200 continue;
3202 return s;
3204 return NULL;
3207 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3208 size_t align, unsigned long flags, void (*ctor)(void *))
3210 struct kmem_cache *s;
3212 if (WARN_ON(!name))
3213 return NULL;
3215 down_write(&slub_lock);
3216 s = find_mergeable(size, align, flags, name, ctor);
3217 if (s) {
3218 s->refcount++;
3220 * Adjust the object sizes so that we clear
3221 * the complete object on kzalloc.
3223 s->objsize = max(s->objsize, (int)size);
3224 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3225 up_write(&slub_lock);
3227 if (sysfs_slab_alias(s, name)) {
3228 down_write(&slub_lock);
3229 s->refcount--;
3230 up_write(&slub_lock);
3231 goto err;
3233 return s;
3236 s = kmalloc(kmem_size, GFP_KERNEL);
3237 if (s) {
3238 if (kmem_cache_open(s, GFP_KERNEL, name,
3239 size, align, flags, ctor)) {
3240 list_add(&s->list, &slab_caches);
3241 up_write(&slub_lock);
3242 if (sysfs_slab_add(s)) {
3243 down_write(&slub_lock);
3244 list_del(&s->list);
3245 up_write(&slub_lock);
3246 kfree(s);
3247 goto err;
3249 return s;
3251 kfree(s);
3253 up_write(&slub_lock);
3255 err:
3256 if (flags & SLAB_PANIC)
3257 panic("Cannot create slabcache %s\n", name);
3258 else
3259 s = NULL;
3260 return s;
3262 EXPORT_SYMBOL(kmem_cache_create);
3264 #ifdef CONFIG_SMP
3266 * Use the cpu notifier to insure that the cpu slabs are flushed when
3267 * necessary.
3269 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3270 unsigned long action, void *hcpu)
3272 long cpu = (long)hcpu;
3273 struct kmem_cache *s;
3274 unsigned long flags;
3276 switch (action) {
3277 case CPU_UP_CANCELED:
3278 case CPU_UP_CANCELED_FROZEN:
3279 case CPU_DEAD:
3280 case CPU_DEAD_FROZEN:
3281 down_read(&slub_lock);
3282 list_for_each_entry(s, &slab_caches, list) {
3283 local_irq_save(flags);
3284 __flush_cpu_slab(s, cpu);
3285 local_irq_restore(flags);
3287 up_read(&slub_lock);
3288 break;
3289 default:
3290 break;
3292 return NOTIFY_OK;
3295 static struct notifier_block __cpuinitdata slab_notifier = {
3296 .notifier_call = slab_cpuup_callback
3299 #endif
3301 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3303 struct kmem_cache *s;
3304 void *ret;
3306 if (unlikely(size > SLUB_MAX_SIZE))
3307 return kmalloc_large(size, gfpflags);
3309 s = get_slab(size, gfpflags);
3311 if (unlikely(ZERO_OR_NULL_PTR(s)))
3312 return s;
3314 ret = slab_alloc(s, gfpflags, -1, caller);
3316 /* Honor the call site pointer we recieved. */
3317 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3319 return ret;
3322 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3323 int node, unsigned long caller)
3325 struct kmem_cache *s;
3326 void *ret;
3328 if (unlikely(size > SLUB_MAX_SIZE)) {
3329 ret = kmalloc_large_node(size, gfpflags, node);
3331 trace_kmalloc_node(caller, ret,
3332 size, PAGE_SIZE << get_order(size),
3333 gfpflags, node);
3335 return ret;
3338 s = get_slab(size, gfpflags);
3340 if (unlikely(ZERO_OR_NULL_PTR(s)))
3341 return s;
3343 ret = slab_alloc(s, gfpflags, node, caller);
3345 /* Honor the call site pointer we recieved. */
3346 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3348 return ret;
3351 #ifdef CONFIG_SLUB_DEBUG
3352 static int count_inuse(struct page *page)
3354 return page->inuse;
3357 static int count_total(struct page *page)
3359 return page->objects;
3362 static int validate_slab(struct kmem_cache *s, struct page *page,
3363 unsigned long *map)
3365 void *p;
3366 void *addr = page_address(page);
3368 if (!check_slab(s, page) ||
3369 !on_freelist(s, page, NULL))
3370 return 0;
3372 /* Now we know that a valid freelist exists */
3373 bitmap_zero(map, page->objects);
3375 for_each_free_object(p, s, page->freelist) {
3376 set_bit(slab_index(p, s, addr), map);
3377 if (!check_object(s, page, p, 0))
3378 return 0;
3381 for_each_object(p, s, addr, page->objects)
3382 if (!test_bit(slab_index(p, s, addr), map))
3383 if (!check_object(s, page, p, 1))
3384 return 0;
3385 return 1;
3388 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3389 unsigned long *map)
3391 if (slab_trylock(page)) {
3392 validate_slab(s, page, map);
3393 slab_unlock(page);
3394 } else
3395 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3396 s->name, page);
3398 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3399 if (!PageSlubDebug(page))
3400 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3401 "on slab 0x%p\n", s->name, page);
3402 } else {
3403 if (PageSlubDebug(page))
3404 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3405 "slab 0x%p\n", s->name, page);
3409 static int validate_slab_node(struct kmem_cache *s,
3410 struct kmem_cache_node *n, unsigned long *map)
3412 unsigned long count = 0;
3413 struct page *page;
3414 unsigned long flags;
3416 spin_lock_irqsave(&n->list_lock, flags);
3418 list_for_each_entry(page, &n->partial, lru) {
3419 validate_slab_slab(s, page, map);
3420 count++;
3422 if (count != n->nr_partial)
3423 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3424 "counter=%ld\n", s->name, count, n->nr_partial);
3426 if (!(s->flags & SLAB_STORE_USER))
3427 goto out;
3429 list_for_each_entry(page, &n->full, lru) {
3430 validate_slab_slab(s, page, map);
3431 count++;
3433 if (count != atomic_long_read(&n->nr_slabs))
3434 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3435 "counter=%ld\n", s->name, count,
3436 atomic_long_read(&n->nr_slabs));
3438 out:
3439 spin_unlock_irqrestore(&n->list_lock, flags);
3440 return count;
3443 static long validate_slab_cache(struct kmem_cache *s)
3445 int node;
3446 unsigned long count = 0;
3447 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3448 sizeof(unsigned long), GFP_KERNEL);
3450 if (!map)
3451 return -ENOMEM;
3453 flush_all(s);
3454 for_each_node_state(node, N_NORMAL_MEMORY) {
3455 struct kmem_cache_node *n = get_node(s, node);
3457 count += validate_slab_node(s, n, map);
3459 kfree(map);
3460 return count;
3463 #ifdef SLUB_RESILIENCY_TEST
3464 static void resiliency_test(void)
3466 u8 *p;
3468 printk(KERN_ERR "SLUB resiliency testing\n");
3469 printk(KERN_ERR "-----------------------\n");
3470 printk(KERN_ERR "A. Corruption after allocation\n");
3472 p = kzalloc(16, GFP_KERNEL);
3473 p[16] = 0x12;
3474 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3475 " 0x12->0x%p\n\n", p + 16);
3477 validate_slab_cache(kmalloc_caches + 4);
3479 /* Hmmm... The next two are dangerous */
3480 p = kzalloc(32, GFP_KERNEL);
3481 p[32 + sizeof(void *)] = 0x34;
3482 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3483 " 0x34 -> -0x%p\n", p);
3484 printk(KERN_ERR
3485 "If allocated object is overwritten then not detectable\n\n");
3487 validate_slab_cache(kmalloc_caches + 5);
3488 p = kzalloc(64, GFP_KERNEL);
3489 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3490 *p = 0x56;
3491 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3493 printk(KERN_ERR
3494 "If allocated object is overwritten then not detectable\n\n");
3495 validate_slab_cache(kmalloc_caches + 6);
3497 printk(KERN_ERR "\nB. Corruption after free\n");
3498 p = kzalloc(128, GFP_KERNEL);
3499 kfree(p);
3500 *p = 0x78;
3501 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3502 validate_slab_cache(kmalloc_caches + 7);
3504 p = kzalloc(256, GFP_KERNEL);
3505 kfree(p);
3506 p[50] = 0x9a;
3507 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3509 validate_slab_cache(kmalloc_caches + 8);
3511 p = kzalloc(512, GFP_KERNEL);
3512 kfree(p);
3513 p[512] = 0xab;
3514 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3515 validate_slab_cache(kmalloc_caches + 9);
3517 #else
3518 static void resiliency_test(void) {};
3519 #endif
3522 * Generate lists of code addresses where slabcache objects are allocated
3523 * and freed.
3526 struct location {
3527 unsigned long count;
3528 unsigned long addr;
3529 long long sum_time;
3530 long min_time;
3531 long max_time;
3532 long min_pid;
3533 long max_pid;
3534 DECLARE_BITMAP(cpus, NR_CPUS);
3535 nodemask_t nodes;
3538 struct loc_track {
3539 unsigned long max;
3540 unsigned long count;
3541 struct location *loc;
3544 static void free_loc_track(struct loc_track *t)
3546 if (t->max)
3547 free_pages((unsigned long)t->loc,
3548 get_order(sizeof(struct location) * t->max));
3551 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3553 struct location *l;
3554 int order;
3556 order = get_order(sizeof(struct location) * max);
3558 l = (void *)__get_free_pages(flags, order);
3559 if (!l)
3560 return 0;
3562 if (t->count) {
3563 memcpy(l, t->loc, sizeof(struct location) * t->count);
3564 free_loc_track(t);
3566 t->max = max;
3567 t->loc = l;
3568 return 1;
3571 static int add_location(struct loc_track *t, struct kmem_cache *s,
3572 const struct track *track)
3574 long start, end, pos;
3575 struct location *l;
3576 unsigned long caddr;
3577 unsigned long age = jiffies - track->when;
3579 start = -1;
3580 end = t->count;
3582 for ( ; ; ) {
3583 pos = start + (end - start + 1) / 2;
3586 * There is nothing at "end". If we end up there
3587 * we need to add something to before end.
3589 if (pos == end)
3590 break;
3592 caddr = t->loc[pos].addr;
3593 if (track->addr == caddr) {
3595 l = &t->loc[pos];
3596 l->count++;
3597 if (track->when) {
3598 l->sum_time += age;
3599 if (age < l->min_time)
3600 l->min_time = age;
3601 if (age > l->max_time)
3602 l->max_time = age;
3604 if (track->pid < l->min_pid)
3605 l->min_pid = track->pid;
3606 if (track->pid > l->max_pid)
3607 l->max_pid = track->pid;
3609 cpumask_set_cpu(track->cpu,
3610 to_cpumask(l->cpus));
3612 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3613 return 1;
3616 if (track->addr < caddr)
3617 end = pos;
3618 else
3619 start = pos;
3623 * Not found. Insert new tracking element.
3625 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3626 return 0;
3628 l = t->loc + pos;
3629 if (pos < t->count)
3630 memmove(l + 1, l,
3631 (t->count - pos) * sizeof(struct location));
3632 t->count++;
3633 l->count = 1;
3634 l->addr = track->addr;
3635 l->sum_time = age;
3636 l->min_time = age;
3637 l->max_time = age;
3638 l->min_pid = track->pid;
3639 l->max_pid = track->pid;
3640 cpumask_clear(to_cpumask(l->cpus));
3641 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3642 nodes_clear(l->nodes);
3643 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3644 return 1;
3647 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3648 struct page *page, enum track_item alloc,
3649 long *map)
3651 void *addr = page_address(page);
3652 void *p;
3654 bitmap_zero(map, page->objects);
3655 for_each_free_object(p, s, page->freelist)
3656 set_bit(slab_index(p, s, addr), map);
3658 for_each_object(p, s, addr, page->objects)
3659 if (!test_bit(slab_index(p, s, addr), map))
3660 add_location(t, s, get_track(s, p, alloc));
3663 static int list_locations(struct kmem_cache *s, char *buf,
3664 enum track_item alloc)
3666 int len = 0;
3667 unsigned long i;
3668 struct loc_track t = { 0, 0, NULL };
3669 int node;
3670 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3671 sizeof(unsigned long), GFP_KERNEL);
3673 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3674 GFP_TEMPORARY)) {
3675 kfree(map);
3676 return sprintf(buf, "Out of memory\n");
3678 /* Push back cpu slabs */
3679 flush_all(s);
3681 for_each_node_state(node, N_NORMAL_MEMORY) {
3682 struct kmem_cache_node *n = get_node(s, node);
3683 unsigned long flags;
3684 struct page *page;
3686 if (!atomic_long_read(&n->nr_slabs))
3687 continue;
3689 spin_lock_irqsave(&n->list_lock, flags);
3690 list_for_each_entry(page, &n->partial, lru)
3691 process_slab(&t, s, page, alloc, map);
3692 list_for_each_entry(page, &n->full, lru)
3693 process_slab(&t, s, page, alloc, map);
3694 spin_unlock_irqrestore(&n->list_lock, flags);
3697 for (i = 0; i < t.count; i++) {
3698 struct location *l = &t.loc[i];
3700 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3701 break;
3702 len += sprintf(buf + len, "%7ld ", l->count);
3704 if (l->addr)
3705 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3706 else
3707 len += sprintf(buf + len, "<not-available>");
3709 if (l->sum_time != l->min_time) {
3710 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3711 l->min_time,
3712 (long)div_u64(l->sum_time, l->count),
3713 l->max_time);
3714 } else
3715 len += sprintf(buf + len, " age=%ld",
3716 l->min_time);
3718 if (l->min_pid != l->max_pid)
3719 len += sprintf(buf + len, " pid=%ld-%ld",
3720 l->min_pid, l->max_pid);
3721 else
3722 len += sprintf(buf + len, " pid=%ld",
3723 l->min_pid);
3725 if (num_online_cpus() > 1 &&
3726 !cpumask_empty(to_cpumask(l->cpus)) &&
3727 len < PAGE_SIZE - 60) {
3728 len += sprintf(buf + len, " cpus=");
3729 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3730 to_cpumask(l->cpus));
3733 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3734 len < PAGE_SIZE - 60) {
3735 len += sprintf(buf + len, " nodes=");
3736 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3737 l->nodes);
3740 len += sprintf(buf + len, "\n");
3743 free_loc_track(&t);
3744 kfree(map);
3745 if (!t.count)
3746 len += sprintf(buf, "No data\n");
3747 return len;
3750 enum slab_stat_type {
3751 SL_ALL, /* All slabs */
3752 SL_PARTIAL, /* Only partially allocated slabs */
3753 SL_CPU, /* Only slabs used for cpu caches */
3754 SL_OBJECTS, /* Determine allocated objects not slabs */
3755 SL_TOTAL /* Determine object capacity not slabs */
3758 #define SO_ALL (1 << SL_ALL)
3759 #define SO_PARTIAL (1 << SL_PARTIAL)
3760 #define SO_CPU (1 << SL_CPU)
3761 #define SO_OBJECTS (1 << SL_OBJECTS)
3762 #define SO_TOTAL (1 << SL_TOTAL)
3764 static ssize_t show_slab_objects(struct kmem_cache *s,
3765 char *buf, unsigned long flags)
3767 unsigned long total = 0;
3768 int node;
3769 int x;
3770 unsigned long *nodes;
3771 unsigned long *per_cpu;
3773 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3774 if (!nodes)
3775 return -ENOMEM;
3776 per_cpu = nodes + nr_node_ids;
3778 if (flags & SO_CPU) {
3779 int cpu;
3781 for_each_possible_cpu(cpu) {
3782 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3784 if (!c || c->node < 0)
3785 continue;
3787 if (c->page) {
3788 if (flags & SO_TOTAL)
3789 x = c->page->objects;
3790 else if (flags & SO_OBJECTS)
3791 x = c->page->inuse;
3792 else
3793 x = 1;
3795 total += x;
3796 nodes[c->node] += x;
3798 per_cpu[c->node]++;
3802 if (flags & SO_ALL) {
3803 for_each_node_state(node, N_NORMAL_MEMORY) {
3804 struct kmem_cache_node *n = get_node(s, node);
3806 if (flags & SO_TOTAL)
3807 x = atomic_long_read(&n->total_objects);
3808 else if (flags & SO_OBJECTS)
3809 x = atomic_long_read(&n->total_objects) -
3810 count_partial(n, count_free);
3812 else
3813 x = atomic_long_read(&n->nr_slabs);
3814 total += x;
3815 nodes[node] += x;
3818 } else if (flags & SO_PARTIAL) {
3819 for_each_node_state(node, N_NORMAL_MEMORY) {
3820 struct kmem_cache_node *n = get_node(s, node);
3822 if (flags & SO_TOTAL)
3823 x = count_partial(n, count_total);
3824 else if (flags & SO_OBJECTS)
3825 x = count_partial(n, count_inuse);
3826 else
3827 x = n->nr_partial;
3828 total += x;
3829 nodes[node] += x;
3832 x = sprintf(buf, "%lu", total);
3833 #ifdef CONFIG_NUMA
3834 for_each_node_state(node, N_NORMAL_MEMORY)
3835 if (nodes[node])
3836 x += sprintf(buf + x, " N%d=%lu",
3837 node, nodes[node]);
3838 #endif
3839 kfree(nodes);
3840 return x + sprintf(buf + x, "\n");
3843 static int any_slab_objects(struct kmem_cache *s)
3845 int node;
3847 for_each_online_node(node) {
3848 struct kmem_cache_node *n = get_node(s, node);
3850 if (!n)
3851 continue;
3853 if (atomic_long_read(&n->total_objects))
3854 return 1;
3856 return 0;
3859 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3860 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3862 struct slab_attribute {
3863 struct attribute attr;
3864 ssize_t (*show)(struct kmem_cache *s, char *buf);
3865 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3868 #define SLAB_ATTR_RO(_name) \
3869 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3871 #define SLAB_ATTR(_name) \
3872 static struct slab_attribute _name##_attr = \
3873 __ATTR(_name, 0644, _name##_show, _name##_store)
3875 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3877 return sprintf(buf, "%d\n", s->size);
3879 SLAB_ATTR_RO(slab_size);
3881 static ssize_t align_show(struct kmem_cache *s, char *buf)
3883 return sprintf(buf, "%d\n", s->align);
3885 SLAB_ATTR_RO(align);
3887 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3889 return sprintf(buf, "%d\n", s->objsize);
3891 SLAB_ATTR_RO(object_size);
3893 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3895 return sprintf(buf, "%d\n", oo_objects(s->oo));
3897 SLAB_ATTR_RO(objs_per_slab);
3899 static ssize_t order_store(struct kmem_cache *s,
3900 const char *buf, size_t length)
3902 unsigned long order;
3903 int err;
3905 err = strict_strtoul(buf, 10, &order);
3906 if (err)
3907 return err;
3909 if (order > slub_max_order || order < slub_min_order)
3910 return -EINVAL;
3912 calculate_sizes(s, order);
3913 return length;
3916 static ssize_t order_show(struct kmem_cache *s, char *buf)
3918 return sprintf(buf, "%d\n", oo_order(s->oo));
3920 SLAB_ATTR(order);
3922 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3924 return sprintf(buf, "%lu\n", s->min_partial);
3927 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3928 size_t length)
3930 unsigned long min;
3931 int err;
3933 err = strict_strtoul(buf, 10, &min);
3934 if (err)
3935 return err;
3937 set_min_partial(s, min);
3938 return length;
3940 SLAB_ATTR(min_partial);
3942 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3944 if (s->ctor) {
3945 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3947 return n + sprintf(buf + n, "\n");
3949 return 0;
3951 SLAB_ATTR_RO(ctor);
3953 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3955 return sprintf(buf, "%d\n", s->refcount - 1);
3957 SLAB_ATTR_RO(aliases);
3959 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3961 return show_slab_objects(s, buf, SO_ALL);
3963 SLAB_ATTR_RO(slabs);
3965 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3967 return show_slab_objects(s, buf, SO_PARTIAL);
3969 SLAB_ATTR_RO(partial);
3971 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3973 return show_slab_objects(s, buf, SO_CPU);
3975 SLAB_ATTR_RO(cpu_slabs);
3977 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3979 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3981 SLAB_ATTR_RO(objects);
3983 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3985 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3987 SLAB_ATTR_RO(objects_partial);
3989 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3991 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3993 SLAB_ATTR_RO(total_objects);
3995 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3997 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4000 static ssize_t sanity_checks_store(struct kmem_cache *s,
4001 const char *buf, size_t length)
4003 s->flags &= ~SLAB_DEBUG_FREE;
4004 if (buf[0] == '1')
4005 s->flags |= SLAB_DEBUG_FREE;
4006 return length;
4008 SLAB_ATTR(sanity_checks);
4010 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4012 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4015 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4016 size_t length)
4018 s->flags &= ~SLAB_TRACE;
4019 if (buf[0] == '1')
4020 s->flags |= SLAB_TRACE;
4021 return length;
4023 SLAB_ATTR(trace);
4025 #ifdef CONFIG_FAILSLAB
4026 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4028 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4031 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4032 size_t length)
4034 s->flags &= ~SLAB_FAILSLAB;
4035 if (buf[0] == '1')
4036 s->flags |= SLAB_FAILSLAB;
4037 return length;
4039 SLAB_ATTR(failslab);
4040 #endif
4042 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4047 static ssize_t reclaim_account_store(struct kmem_cache *s,
4048 const char *buf, size_t length)
4050 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4051 if (buf[0] == '1')
4052 s->flags |= SLAB_RECLAIM_ACCOUNT;
4053 return length;
4055 SLAB_ATTR(reclaim_account);
4057 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4061 SLAB_ATTR_RO(hwcache_align);
4063 #ifdef CONFIG_ZONE_DMA
4064 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4066 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4068 SLAB_ATTR_RO(cache_dma);
4069 #endif
4071 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4073 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4075 SLAB_ATTR_RO(destroy_by_rcu);
4077 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4082 static ssize_t red_zone_store(struct kmem_cache *s,
4083 const char *buf, size_t length)
4085 if (any_slab_objects(s))
4086 return -EBUSY;
4088 s->flags &= ~SLAB_RED_ZONE;
4089 if (buf[0] == '1')
4090 s->flags |= SLAB_RED_ZONE;
4091 calculate_sizes(s, -1);
4092 return length;
4094 SLAB_ATTR(red_zone);
4096 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4098 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4101 static ssize_t poison_store(struct kmem_cache *s,
4102 const char *buf, size_t length)
4104 if (any_slab_objects(s))
4105 return -EBUSY;
4107 s->flags &= ~SLAB_POISON;
4108 if (buf[0] == '1')
4109 s->flags |= SLAB_POISON;
4110 calculate_sizes(s, -1);
4111 return length;
4113 SLAB_ATTR(poison);
4115 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4117 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4120 static ssize_t store_user_store(struct kmem_cache *s,
4121 const char *buf, size_t length)
4123 if (any_slab_objects(s))
4124 return -EBUSY;
4126 s->flags &= ~SLAB_STORE_USER;
4127 if (buf[0] == '1')
4128 s->flags |= SLAB_STORE_USER;
4129 calculate_sizes(s, -1);
4130 return length;
4132 SLAB_ATTR(store_user);
4134 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4136 return 0;
4139 static ssize_t validate_store(struct kmem_cache *s,
4140 const char *buf, size_t length)
4142 int ret = -EINVAL;
4144 if (buf[0] == '1') {
4145 ret = validate_slab_cache(s);
4146 if (ret >= 0)
4147 ret = length;
4149 return ret;
4151 SLAB_ATTR(validate);
4153 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4155 return 0;
4158 static ssize_t shrink_store(struct kmem_cache *s,
4159 const char *buf, size_t length)
4161 if (buf[0] == '1') {
4162 int rc = kmem_cache_shrink(s);
4164 if (rc)
4165 return rc;
4166 } else
4167 return -EINVAL;
4168 return length;
4170 SLAB_ATTR(shrink);
4172 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4174 if (!(s->flags & SLAB_STORE_USER))
4175 return -ENOSYS;
4176 return list_locations(s, buf, TRACK_ALLOC);
4178 SLAB_ATTR_RO(alloc_calls);
4180 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4182 if (!(s->flags & SLAB_STORE_USER))
4183 return -ENOSYS;
4184 return list_locations(s, buf, TRACK_FREE);
4186 SLAB_ATTR_RO(free_calls);
4188 #ifdef CONFIG_NUMA
4189 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4191 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4194 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4195 const char *buf, size_t length)
4197 unsigned long ratio;
4198 int err;
4200 err = strict_strtoul(buf, 10, &ratio);
4201 if (err)
4202 return err;
4204 if (ratio <= 100)
4205 s->remote_node_defrag_ratio = ratio * 10;
4207 return length;
4209 SLAB_ATTR(remote_node_defrag_ratio);
4210 #endif
4212 #ifdef CONFIG_SLUB_STATS
4213 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4215 unsigned long sum = 0;
4216 int cpu;
4217 int len;
4218 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4220 if (!data)
4221 return -ENOMEM;
4223 for_each_online_cpu(cpu) {
4224 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4226 data[cpu] = x;
4227 sum += x;
4230 len = sprintf(buf, "%lu", sum);
4232 #ifdef CONFIG_SMP
4233 for_each_online_cpu(cpu) {
4234 if (data[cpu] && len < PAGE_SIZE - 20)
4235 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4237 #endif
4238 kfree(data);
4239 return len + sprintf(buf + len, "\n");
4242 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4244 int cpu;
4246 for_each_online_cpu(cpu)
4247 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4250 #define STAT_ATTR(si, text) \
4251 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4253 return show_stat(s, buf, si); \
4255 static ssize_t text##_store(struct kmem_cache *s, \
4256 const char *buf, size_t length) \
4258 if (buf[0] != '0') \
4259 return -EINVAL; \
4260 clear_stat(s, si); \
4261 return length; \
4263 SLAB_ATTR(text); \
4265 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4266 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4267 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4268 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4269 STAT_ATTR(FREE_FROZEN, free_frozen);
4270 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4271 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4272 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4273 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4274 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4275 STAT_ATTR(FREE_SLAB, free_slab);
4276 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4277 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4278 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4279 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4280 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4281 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4282 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4283 #endif
4285 static struct attribute *slab_attrs[] = {
4286 &slab_size_attr.attr,
4287 &object_size_attr.attr,
4288 &objs_per_slab_attr.attr,
4289 &order_attr.attr,
4290 &min_partial_attr.attr,
4291 &objects_attr.attr,
4292 &objects_partial_attr.attr,
4293 &total_objects_attr.attr,
4294 &slabs_attr.attr,
4295 &partial_attr.attr,
4296 &cpu_slabs_attr.attr,
4297 &ctor_attr.attr,
4298 &aliases_attr.attr,
4299 &align_attr.attr,
4300 &sanity_checks_attr.attr,
4301 &trace_attr.attr,
4302 &hwcache_align_attr.attr,
4303 &reclaim_account_attr.attr,
4304 &destroy_by_rcu_attr.attr,
4305 &red_zone_attr.attr,
4306 &poison_attr.attr,
4307 &store_user_attr.attr,
4308 &validate_attr.attr,
4309 &shrink_attr.attr,
4310 &alloc_calls_attr.attr,
4311 &free_calls_attr.attr,
4312 #ifdef CONFIG_ZONE_DMA
4313 &cache_dma_attr.attr,
4314 #endif
4315 #ifdef CONFIG_NUMA
4316 &remote_node_defrag_ratio_attr.attr,
4317 #endif
4318 #ifdef CONFIG_SLUB_STATS
4319 &alloc_fastpath_attr.attr,
4320 &alloc_slowpath_attr.attr,
4321 &free_fastpath_attr.attr,
4322 &free_slowpath_attr.attr,
4323 &free_frozen_attr.attr,
4324 &free_add_partial_attr.attr,
4325 &free_remove_partial_attr.attr,
4326 &alloc_from_partial_attr.attr,
4327 &alloc_slab_attr.attr,
4328 &alloc_refill_attr.attr,
4329 &free_slab_attr.attr,
4330 &cpuslab_flush_attr.attr,
4331 &deactivate_full_attr.attr,
4332 &deactivate_empty_attr.attr,
4333 &deactivate_to_head_attr.attr,
4334 &deactivate_to_tail_attr.attr,
4335 &deactivate_remote_frees_attr.attr,
4336 &order_fallback_attr.attr,
4337 #endif
4338 #ifdef CONFIG_FAILSLAB
4339 &failslab_attr.attr,
4340 #endif
4342 NULL
4345 static struct attribute_group slab_attr_group = {
4346 .attrs = slab_attrs,
4349 static ssize_t slab_attr_show(struct kobject *kobj,
4350 struct attribute *attr,
4351 char *buf)
4353 struct slab_attribute *attribute;
4354 struct kmem_cache *s;
4355 int err;
4357 attribute = to_slab_attr(attr);
4358 s = to_slab(kobj);
4360 if (!attribute->show)
4361 return -EIO;
4363 err = attribute->show(s, buf);
4365 return err;
4368 static ssize_t slab_attr_store(struct kobject *kobj,
4369 struct attribute *attr,
4370 const char *buf, size_t len)
4372 struct slab_attribute *attribute;
4373 struct kmem_cache *s;
4374 int err;
4376 attribute = to_slab_attr(attr);
4377 s = to_slab(kobj);
4379 if (!attribute->store)
4380 return -EIO;
4382 err = attribute->store(s, buf, len);
4384 return err;
4387 static void kmem_cache_release(struct kobject *kobj)
4389 struct kmem_cache *s = to_slab(kobj);
4391 kfree(s);
4394 static const struct sysfs_ops slab_sysfs_ops = {
4395 .show = slab_attr_show,
4396 .store = slab_attr_store,
4399 static struct kobj_type slab_ktype = {
4400 .sysfs_ops = &slab_sysfs_ops,
4401 .release = kmem_cache_release
4404 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4406 struct kobj_type *ktype = get_ktype(kobj);
4408 if (ktype == &slab_ktype)
4409 return 1;
4410 return 0;
4413 static const struct kset_uevent_ops slab_uevent_ops = {
4414 .filter = uevent_filter,
4417 static struct kset *slab_kset;
4419 #define ID_STR_LENGTH 64
4421 /* Create a unique string id for a slab cache:
4423 * Format :[flags-]size
4425 static char *create_unique_id(struct kmem_cache *s)
4427 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4428 char *p = name;
4430 BUG_ON(!name);
4432 *p++ = ':';
4434 * First flags affecting slabcache operations. We will only
4435 * get here for aliasable slabs so we do not need to support
4436 * too many flags. The flags here must cover all flags that
4437 * are matched during merging to guarantee that the id is
4438 * unique.
4440 if (s->flags & SLAB_CACHE_DMA)
4441 *p++ = 'd';
4442 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4443 *p++ = 'a';
4444 if (s->flags & SLAB_DEBUG_FREE)
4445 *p++ = 'F';
4446 if (!(s->flags & SLAB_NOTRACK))
4447 *p++ = 't';
4448 if (p != name + 1)
4449 *p++ = '-';
4450 p += sprintf(p, "%07d", s->size);
4451 BUG_ON(p > name + ID_STR_LENGTH - 1);
4452 return name;
4455 static int sysfs_slab_add(struct kmem_cache *s)
4457 int err;
4458 const char *name;
4459 int unmergeable;
4461 if (slab_state < SYSFS)
4462 /* Defer until later */
4463 return 0;
4465 unmergeable = slab_unmergeable(s);
4466 if (unmergeable) {
4468 * Slabcache can never be merged so we can use the name proper.
4469 * This is typically the case for debug situations. In that
4470 * case we can catch duplicate names easily.
4472 sysfs_remove_link(&slab_kset->kobj, s->name);
4473 name = s->name;
4474 } else {
4476 * Create a unique name for the slab as a target
4477 * for the symlinks.
4479 name = create_unique_id(s);
4482 s->kobj.kset = slab_kset;
4483 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4484 if (err) {
4485 kobject_put(&s->kobj);
4486 return err;
4489 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4490 if (err) {
4491 kobject_del(&s->kobj);
4492 kobject_put(&s->kobj);
4493 return err;
4495 kobject_uevent(&s->kobj, KOBJ_ADD);
4496 if (!unmergeable) {
4497 /* Setup first alias */
4498 sysfs_slab_alias(s, s->name);
4499 kfree(name);
4501 return 0;
4504 static void sysfs_slab_remove(struct kmem_cache *s)
4506 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4507 kobject_del(&s->kobj);
4508 kobject_put(&s->kobj);
4512 * Need to buffer aliases during bootup until sysfs becomes
4513 * available lest we lose that information.
4515 struct saved_alias {
4516 struct kmem_cache *s;
4517 const char *name;
4518 struct saved_alias *next;
4521 static struct saved_alias *alias_list;
4523 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4525 struct saved_alias *al;
4527 if (slab_state == SYSFS) {
4529 * If we have a leftover link then remove it.
4531 sysfs_remove_link(&slab_kset->kobj, name);
4532 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4535 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4536 if (!al)
4537 return -ENOMEM;
4539 al->s = s;
4540 al->name = name;
4541 al->next = alias_list;
4542 alias_list = al;
4543 return 0;
4546 static int __init slab_sysfs_init(void)
4548 struct kmem_cache *s;
4549 int err;
4551 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4552 if (!slab_kset) {
4553 printk(KERN_ERR "Cannot register slab subsystem.\n");
4554 return -ENOSYS;
4557 slab_state = SYSFS;
4559 list_for_each_entry(s, &slab_caches, list) {
4560 err = sysfs_slab_add(s);
4561 if (err)
4562 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4563 " to sysfs\n", s->name);
4566 while (alias_list) {
4567 struct saved_alias *al = alias_list;
4569 alias_list = alias_list->next;
4570 err = sysfs_slab_alias(al->s, al->name);
4571 if (err)
4572 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4573 " %s to sysfs\n", s->name);
4574 kfree(al);
4577 resiliency_test();
4578 return 0;
4581 __initcall(slab_sysfs_init);
4582 #endif
4585 * The /proc/slabinfo ABI
4587 #ifdef CONFIG_SLABINFO
4588 static void print_slabinfo_header(struct seq_file *m)
4590 seq_puts(m, "slabinfo - version: 2.1\n");
4591 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4592 "<objperslab> <pagesperslab>");
4593 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4594 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4595 seq_putc(m, '\n');
4598 static void *s_start(struct seq_file *m, loff_t *pos)
4600 loff_t n = *pos;
4602 down_read(&slub_lock);
4603 if (!n)
4604 print_slabinfo_header(m);
4606 return seq_list_start(&slab_caches, *pos);
4609 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4611 return seq_list_next(p, &slab_caches, pos);
4614 static void s_stop(struct seq_file *m, void *p)
4616 up_read(&slub_lock);
4619 static int s_show(struct seq_file *m, void *p)
4621 unsigned long nr_partials = 0;
4622 unsigned long nr_slabs = 0;
4623 unsigned long nr_inuse = 0;
4624 unsigned long nr_objs = 0;
4625 unsigned long nr_free = 0;
4626 struct kmem_cache *s;
4627 int node;
4629 s = list_entry(p, struct kmem_cache, list);
4631 for_each_online_node(node) {
4632 struct kmem_cache_node *n = get_node(s, node);
4634 if (!n)
4635 continue;
4637 nr_partials += n->nr_partial;
4638 nr_slabs += atomic_long_read(&n->nr_slabs);
4639 nr_objs += atomic_long_read(&n->total_objects);
4640 nr_free += count_partial(n, count_free);
4643 nr_inuse = nr_objs - nr_free;
4645 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4646 nr_objs, s->size, oo_objects(s->oo),
4647 (1 << oo_order(s->oo)));
4648 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4649 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4650 0UL);
4651 seq_putc(m, '\n');
4652 return 0;
4655 static const struct seq_operations slabinfo_op = {
4656 .start = s_start,
4657 .next = s_next,
4658 .stop = s_stop,
4659 .show = s_show,
4662 static int slabinfo_open(struct inode *inode, struct file *file)
4664 return seq_open(file, &slabinfo_op);
4667 static const struct file_operations proc_slabinfo_operations = {
4668 .open = slabinfo_open,
4669 .read = seq_read,
4670 .llseek = seq_lseek,
4671 .release = seq_release,
4674 static int __init slab_proc_init(void)
4676 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4677 return 0;
4679 module_init(slab_proc_init);
4680 #endif /* CONFIG_SLABINFO */