fs/proc/kcore.c: fix invalid memory access in multi-page read optimization
[linux-2.6/btrfs-unstable.git] / block / bfq-iosched.c
blob653100fb719eb80e1bb11e9ef7761f14f960623f
1 /*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. In more detail, BFQ
53 * behaves this way if the low_latency parameter is set (default
54 * configuration). This feature enables BFQ to provide applications in
55 * these classes with a very low latency.
57 * To implement this feature, BFQ constantly tries to detect whether
58 * the I/O requests in a bfq_queue come from an interactive or a soft
59 * real-time application. For brevity, in these cases, the queue is
60 * said to be interactive or soft real-time. In both cases, BFQ
61 * privileges the service of the queue, over that of non-interactive
62 * and non-soft-real-time queues. This privileging is performed,
63 * mainly, by raising the weight of the queue. So, for brevity, we
64 * call just weight-raising periods the time periods during which a
65 * queue is privileged, because deemed interactive or soft real-time.
67 * The detection of soft real-time queues/applications is described in
68 * detail in the comments on the function
69 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70 * interactive queue works as follows: a queue is deemed interactive
71 * if it is constantly non empty only for a limited time interval,
72 * after which it does become empty. The queue may be deemed
73 * interactive again (for a limited time), if it restarts being
74 * constantly non empty, provided that this happens only after the
75 * queue has remained empty for a given minimum idle time.
77 * By default, BFQ computes automatically the above maximum time
78 * interval, i.e., the time interval after which a constantly
79 * non-empty queue stops being deemed interactive. Since a queue is
80 * weight-raised while it is deemed interactive, this maximum time
81 * interval happens to coincide with the (maximum) duration of the
82 * weight-raising for interactive queues.
84 * Finally, BFQ also features additional heuristics for
85 * preserving both a low latency and a high throughput on NCQ-capable,
86 * rotational or flash-based devices, and to get the job done quickly
87 * for applications consisting in many I/O-bound processes.
89 * NOTE: if the main or only goal, with a given device, is to achieve
90 * the maximum-possible throughput at all times, then do switch off
91 * all low-latency heuristics for that device, by setting low_latency
92 * to 0.
94 * BFQ is described in [1], where also a reference to the initial,
95 * more theoretical paper on BFQ can be found. The interested reader
96 * can find in the latter paper full details on the main algorithm, as
97 * well as formulas of the guarantees and formal proofs of all the
98 * properties. With respect to the version of BFQ presented in these
99 * papers, this implementation adds a few more heuristics, such as the
100 * ones that guarantee a low latency to interactive and soft real-time
101 * applications, and a hierarchical extension based on H-WF2Q+.
103 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105 * with O(log N) complexity derives from the one introduced with EEVDF
106 * in [3].
108 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109 * Scheduler", Proceedings of the First Workshop on Mobile System
110 * Technologies (MST-2015), May 2015.
111 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
113 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115 * Oct 1997.
117 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
119 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120 * First: A Flexible and Accurate Mechanism for Proportional Share
121 * Resource Allocation", technical report.
123 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
125 #include <linux/module.h>
126 #include <linux/slab.h>
127 #include <linux/blkdev.h>
128 #include <linux/cgroup.h>
129 #include <linux/elevator.h>
130 #include <linux/ktime.h>
131 #include <linux/rbtree.h>
132 #include <linux/ioprio.h>
133 #include <linux/sbitmap.h>
134 #include <linux/delay.h>
136 #include "blk.h"
137 #include "blk-mq.h"
138 #include "blk-mq-tag.h"
139 #include "blk-mq-sched.h"
140 #include "bfq-iosched.h"
141 #include "blk-wbt.h"
143 #define BFQ_BFQQ_FNS(name) \
144 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
146 __set_bit(BFQQF_##name, &(bfqq)->flags); \
148 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
150 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
152 int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
154 return test_bit(BFQQF_##name, &(bfqq)->flags); \
157 BFQ_BFQQ_FNS(just_created);
158 BFQ_BFQQ_FNS(busy);
159 BFQ_BFQQ_FNS(wait_request);
160 BFQ_BFQQ_FNS(non_blocking_wait_rq);
161 BFQ_BFQQ_FNS(fifo_expire);
162 BFQ_BFQQ_FNS(has_short_ttime);
163 BFQ_BFQQ_FNS(sync);
164 BFQ_BFQQ_FNS(IO_bound);
165 BFQ_BFQQ_FNS(in_large_burst);
166 BFQ_BFQQ_FNS(coop);
167 BFQ_BFQQ_FNS(split_coop);
168 BFQ_BFQQ_FNS(softrt_update);
169 #undef BFQ_BFQQ_FNS \
171 /* Expiration time of sync (0) and async (1) requests, in ns. */
172 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
174 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175 static const int bfq_back_max = 16 * 1024;
177 /* Penalty of a backwards seek, in number of sectors. */
178 static const int bfq_back_penalty = 2;
180 /* Idling period duration, in ns. */
181 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
183 /* Minimum number of assigned budgets for which stats are safe to compute. */
184 static const int bfq_stats_min_budgets = 194;
186 /* Default maximum budget values, in sectors and number of requests. */
187 static const int bfq_default_max_budget = 16 * 1024;
190 * When a sync request is dispatched, the queue that contains that
191 * request, and all the ancestor entities of that queue, are charged
192 * with the number of sectors of the request. In constrast, if the
193 * request is async, then the queue and its ancestor entities are
194 * charged with the number of sectors of the request, multiplied by
195 * the factor below. This throttles the bandwidth for async I/O,
196 * w.r.t. to sync I/O, and it is done to counter the tendency of async
197 * writes to steal I/O throughput to reads.
199 * The current value of this parameter is the result of a tuning with
200 * several hardware and software configurations. We tried to find the
201 * lowest value for which writes do not cause noticeable problems to
202 * reads. In fact, the lower this parameter, the stabler I/O control,
203 * in the following respect. The lower this parameter is, the less
204 * the bandwidth enjoyed by a group decreases
205 * - when the group does writes, w.r.t. to when it does reads;
206 * - when other groups do reads, w.r.t. to when they do writes.
208 static const int bfq_async_charge_factor = 3;
210 /* Default timeout values, in jiffies, approximating CFQ defaults. */
211 const int bfq_timeout = HZ / 8;
214 * Time limit for merging (see comments in bfq_setup_cooperator). Set
215 * to the slowest value that, in our tests, proved to be effective in
216 * removing false positives, while not causing true positives to miss
217 * queue merging.
219 * As can be deduced from the low time limit below, queue merging, if
220 * successful, happens at the very beggining of the I/O of the involved
221 * cooperating processes, as a consequence of the arrival of the very
222 * first requests from each cooperator. After that, there is very
223 * little chance to find cooperators.
225 static const unsigned long bfq_merge_time_limit = HZ/10;
227 static struct kmem_cache *bfq_pool;
229 /* Below this threshold (in ns), we consider thinktime immediate. */
230 #define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
232 /* hw_tag detection: parallel requests threshold and min samples needed. */
233 #define BFQ_HW_QUEUE_THRESHOLD 4
234 #define BFQ_HW_QUEUE_SAMPLES 32
236 #define BFQQ_SEEK_THR (sector_t)(8 * 100)
237 #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
238 #define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
239 #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
241 /* Min number of samples required to perform peak-rate update */
242 #define BFQ_RATE_MIN_SAMPLES 32
243 /* Min observation time interval required to perform a peak-rate update (ns) */
244 #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
245 /* Target observation time interval for a peak-rate update (ns) */
246 #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
249 * Shift used for peak-rate fixed precision calculations.
250 * With
251 * - the current shift: 16 positions
252 * - the current type used to store rate: u32
253 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
254 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
255 * the range of rates that can be stored is
256 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
257 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
258 * [15, 65G] sectors/sec
259 * Which, assuming a sector size of 512B, corresponds to a range of
260 * [7.5K, 33T] B/sec
262 #define BFQ_RATE_SHIFT 16
265 * When configured for computing the duration of the weight-raising
266 * for interactive queues automatically (see the comments at the
267 * beginning of this file), BFQ does it using the following formula:
268 * duration = (ref_rate / r) * ref_wr_duration,
269 * where r is the peak rate of the device, and ref_rate and
270 * ref_wr_duration are two reference parameters. In particular,
271 * ref_rate is the peak rate of the reference storage device (see
272 * below), and ref_wr_duration is about the maximum time needed, with
273 * BFQ and while reading two files in parallel, to load typical large
274 * applications on the reference device (see the comments on
275 * max_service_from_wr below, for more details on how ref_wr_duration
276 * is obtained). In practice, the slower/faster the device at hand
277 * is, the more/less it takes to load applications with respect to the
278 * reference device. Accordingly, the longer/shorter BFQ grants
279 * weight raising to interactive applications.
281 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
282 * depending on whether the device is rotational or non-rotational.
284 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
285 * are the reference values for a rotational device, whereas
286 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
287 * non-rotational device. The reference rates are not the actual peak
288 * rates of the devices used as a reference, but slightly lower
289 * values. The reason for using slightly lower values is that the
290 * peak-rate estimator tends to yield slightly lower values than the
291 * actual peak rate (it can yield the actual peak rate only if there
292 * is only one process doing I/O, and the process does sequential
293 * I/O).
295 * The reference peak rates are measured in sectors/usec, left-shifted
296 * by BFQ_RATE_SHIFT.
298 static int ref_rate[2] = {14000, 33000};
300 * To improve readability, a conversion function is used to initialize
301 * the following array, which entails that the array can be
302 * initialized only in a function.
304 static int ref_wr_duration[2];
307 * BFQ uses the above-detailed, time-based weight-raising mechanism to
308 * privilege interactive tasks. This mechanism is vulnerable to the
309 * following false positives: I/O-bound applications that will go on
310 * doing I/O for much longer than the duration of weight
311 * raising. These applications have basically no benefit from being
312 * weight-raised at the beginning of their I/O. On the opposite end,
313 * while being weight-raised, these applications
314 * a) unjustly steal throughput to applications that may actually need
315 * low latency;
316 * b) make BFQ uselessly perform device idling; device idling results
317 * in loss of device throughput with most flash-based storage, and may
318 * increase latencies when used purposelessly.
320 * BFQ tries to reduce these problems, by adopting the following
321 * countermeasure. To introduce this countermeasure, we need first to
322 * finish explaining how the duration of weight-raising for
323 * interactive tasks is computed.
325 * For a bfq_queue deemed as interactive, the duration of weight
326 * raising is dynamically adjusted, as a function of the estimated
327 * peak rate of the device, so as to be equal to the time needed to
328 * execute the 'largest' interactive task we benchmarked so far. By
329 * largest task, we mean the task for which each involved process has
330 * to do more I/O than for any of the other tasks we benchmarked. This
331 * reference interactive task is the start-up of LibreOffice Writer,
332 * and in this task each process/bfq_queue needs to have at most ~110K
333 * sectors transferred.
335 * This last piece of information enables BFQ to reduce the actual
336 * duration of weight-raising for at least one class of I/O-bound
337 * applications: those doing sequential or quasi-sequential I/O. An
338 * example is file copy. In fact, once started, the main I/O-bound
339 * processes of these applications usually consume the above 110K
340 * sectors in much less time than the processes of an application that
341 * is starting, because these I/O-bound processes will greedily devote
342 * almost all their CPU cycles only to their target,
343 * throughput-friendly I/O operations. This is even more true if BFQ
344 * happens to be underestimating the device peak rate, and thus
345 * overestimating the duration of weight raising. But, according to
346 * our measurements, once transferred 110K sectors, these processes
347 * have no right to be weight-raised any longer.
349 * Basing on the last consideration, BFQ ends weight-raising for a
350 * bfq_queue if the latter happens to have received an amount of
351 * service at least equal to the following constant. The constant is
352 * set to slightly more than 110K, to have a minimum safety margin.
354 * This early ending of weight-raising reduces the amount of time
355 * during which interactive false positives cause the two problems
356 * described at the beginning of these comments.
358 static const unsigned long max_service_from_wr = 120000;
360 #define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
361 #define RQ_BFQQ(rq) ((rq)->elv.priv[1])
363 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
365 return bic->bfqq[is_sync];
368 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
370 bic->bfqq[is_sync] = bfqq;
373 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
375 return bic->icq.q->elevator->elevator_data;
379 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
380 * @icq: the iocontext queue.
382 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
384 /* bic->icq is the first member, %NULL will convert to %NULL */
385 return container_of(icq, struct bfq_io_cq, icq);
389 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
390 * @bfqd: the lookup key.
391 * @ioc: the io_context of the process doing I/O.
392 * @q: the request queue.
394 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
395 struct io_context *ioc,
396 struct request_queue *q)
398 if (ioc) {
399 unsigned long flags;
400 struct bfq_io_cq *icq;
402 spin_lock_irqsave(q->queue_lock, flags);
403 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
404 spin_unlock_irqrestore(q->queue_lock, flags);
406 return icq;
409 return NULL;
413 * Scheduler run of queue, if there are requests pending and no one in the
414 * driver that will restart queueing.
416 void bfq_schedule_dispatch(struct bfq_data *bfqd)
418 if (bfqd->queued != 0) {
419 bfq_log(bfqd, "schedule dispatch");
420 blk_mq_run_hw_queues(bfqd->queue, true);
424 #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
425 #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
427 #define bfq_sample_valid(samples) ((samples) > 80)
430 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
431 * We choose the request that is closesr to the head right now. Distance
432 * behind the head is penalized and only allowed to a certain extent.
434 static struct request *bfq_choose_req(struct bfq_data *bfqd,
435 struct request *rq1,
436 struct request *rq2,
437 sector_t last)
439 sector_t s1, s2, d1 = 0, d2 = 0;
440 unsigned long back_max;
441 #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
442 #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
443 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
445 if (!rq1 || rq1 == rq2)
446 return rq2;
447 if (!rq2)
448 return rq1;
450 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
451 return rq1;
452 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
453 return rq2;
454 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
455 return rq1;
456 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
457 return rq2;
459 s1 = blk_rq_pos(rq1);
460 s2 = blk_rq_pos(rq2);
463 * By definition, 1KiB is 2 sectors.
465 back_max = bfqd->bfq_back_max * 2;
468 * Strict one way elevator _except_ in the case where we allow
469 * short backward seeks which are biased as twice the cost of a
470 * similar forward seek.
472 if (s1 >= last)
473 d1 = s1 - last;
474 else if (s1 + back_max >= last)
475 d1 = (last - s1) * bfqd->bfq_back_penalty;
476 else
477 wrap |= BFQ_RQ1_WRAP;
479 if (s2 >= last)
480 d2 = s2 - last;
481 else if (s2 + back_max >= last)
482 d2 = (last - s2) * bfqd->bfq_back_penalty;
483 else
484 wrap |= BFQ_RQ2_WRAP;
486 /* Found required data */
489 * By doing switch() on the bit mask "wrap" we avoid having to
490 * check two variables for all permutations: --> faster!
492 switch (wrap) {
493 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
494 if (d1 < d2)
495 return rq1;
496 else if (d2 < d1)
497 return rq2;
499 if (s1 >= s2)
500 return rq1;
501 else
502 return rq2;
504 case BFQ_RQ2_WRAP:
505 return rq1;
506 case BFQ_RQ1_WRAP:
507 return rq2;
508 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
509 default:
511 * Since both rqs are wrapped,
512 * start with the one that's further behind head
513 * (--> only *one* back seek required),
514 * since back seek takes more time than forward.
516 if (s1 <= s2)
517 return rq1;
518 else
519 return rq2;
524 * Async I/O can easily starve sync I/O (both sync reads and sync
525 * writes), by consuming all tags. Similarly, storms of sync writes,
526 * such as those that sync(2) may trigger, can starve sync reads.
527 * Limit depths of async I/O and sync writes so as to counter both
528 * problems.
530 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
532 struct bfq_data *bfqd = data->q->elevator->elevator_data;
534 if (op_is_sync(op) && !op_is_write(op))
535 return;
537 data->shallow_depth =
538 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
540 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
541 __func__, bfqd->wr_busy_queues, op_is_sync(op),
542 data->shallow_depth);
545 static struct bfq_queue *
546 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
547 sector_t sector, struct rb_node **ret_parent,
548 struct rb_node ***rb_link)
550 struct rb_node **p, *parent;
551 struct bfq_queue *bfqq = NULL;
553 parent = NULL;
554 p = &root->rb_node;
555 while (*p) {
556 struct rb_node **n;
558 parent = *p;
559 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
562 * Sort strictly based on sector. Smallest to the left,
563 * largest to the right.
565 if (sector > blk_rq_pos(bfqq->next_rq))
566 n = &(*p)->rb_right;
567 else if (sector < blk_rq_pos(bfqq->next_rq))
568 n = &(*p)->rb_left;
569 else
570 break;
571 p = n;
572 bfqq = NULL;
575 *ret_parent = parent;
576 if (rb_link)
577 *rb_link = p;
579 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
580 (unsigned long long)sector,
581 bfqq ? bfqq->pid : 0);
583 return bfqq;
586 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
588 return bfqq->service_from_backlogged > 0 &&
589 time_is_before_jiffies(bfqq->first_IO_time +
590 bfq_merge_time_limit);
593 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
595 struct rb_node **p, *parent;
596 struct bfq_queue *__bfqq;
598 if (bfqq->pos_root) {
599 rb_erase(&bfqq->pos_node, bfqq->pos_root);
600 bfqq->pos_root = NULL;
604 * bfqq cannot be merged any longer (see comments in
605 * bfq_setup_cooperator): no point in adding bfqq into the
606 * position tree.
608 if (bfq_too_late_for_merging(bfqq))
609 return;
611 if (bfq_class_idle(bfqq))
612 return;
613 if (!bfqq->next_rq)
614 return;
616 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
617 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
618 blk_rq_pos(bfqq->next_rq), &parent, &p);
619 if (!__bfqq) {
620 rb_link_node(&bfqq->pos_node, parent, p);
621 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
622 } else
623 bfqq->pos_root = NULL;
627 * Tell whether there are active queues or groups with differentiated weights.
629 static bool bfq_differentiated_weights(struct bfq_data *bfqd)
632 * For weights to differ, at least one of the trees must contain
633 * at least two nodes.
635 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
636 (bfqd->queue_weights_tree.rb_node->rb_left ||
637 bfqd->queue_weights_tree.rb_node->rb_right)
638 #ifdef CONFIG_BFQ_GROUP_IOSCHED
639 ) ||
640 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
641 (bfqd->group_weights_tree.rb_node->rb_left ||
642 bfqd->group_weights_tree.rb_node->rb_right)
643 #endif
648 * The following function returns true if every queue must receive the
649 * same share of the throughput (this condition is used when deciding
650 * whether idling may be disabled, see the comments in the function
651 * bfq_better_to_idle()).
653 * Such a scenario occurs when:
654 * 1) all active queues have the same weight,
655 * 2) all active groups at the same level in the groups tree have the same
656 * weight,
657 * 3) all active groups at the same level in the groups tree have the same
658 * number of children.
660 * Unfortunately, keeping the necessary state for evaluating exactly the
661 * above symmetry conditions would be quite complex and time-consuming.
662 * Therefore this function evaluates, instead, the following stronger
663 * sub-conditions, for which it is much easier to maintain the needed
664 * state:
665 * 1) all active queues have the same weight,
666 * 2) all active groups have the same weight,
667 * 3) all active groups have at most one active child each.
668 * In particular, the last two conditions are always true if hierarchical
669 * support and the cgroups interface are not enabled, thus no state needs
670 * to be maintained in this case.
672 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
674 return !bfq_differentiated_weights(bfqd);
678 * If the weight-counter tree passed as input contains no counter for
679 * the weight of the input entity, then add that counter; otherwise just
680 * increment the existing counter.
682 * Note that weight-counter trees contain few nodes in mostly symmetric
683 * scenarios. For example, if all queues have the same weight, then the
684 * weight-counter tree for the queues may contain at most one node.
685 * This holds even if low_latency is on, because weight-raised queues
686 * are not inserted in the tree.
687 * In most scenarios, the rate at which nodes are created/destroyed
688 * should be low too.
690 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
691 struct rb_root *root)
693 struct rb_node **new = &(root->rb_node), *parent = NULL;
696 * Do not insert if the entity is already associated with a
697 * counter, which happens if:
698 * 1) the entity is associated with a queue,
699 * 2) a request arrival has caused the queue to become both
700 * non-weight-raised, and hence change its weight, and
701 * backlogged; in this respect, each of the two events
702 * causes an invocation of this function,
703 * 3) this is the invocation of this function caused by the
704 * second event. This second invocation is actually useless,
705 * and we handle this fact by exiting immediately. More
706 * efficient or clearer solutions might possibly be adopted.
708 if (entity->weight_counter)
709 return;
711 while (*new) {
712 struct bfq_weight_counter *__counter = container_of(*new,
713 struct bfq_weight_counter,
714 weights_node);
715 parent = *new;
717 if (entity->weight == __counter->weight) {
718 entity->weight_counter = __counter;
719 goto inc_counter;
721 if (entity->weight < __counter->weight)
722 new = &((*new)->rb_left);
723 else
724 new = &((*new)->rb_right);
727 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
728 GFP_ATOMIC);
731 * In the unlucky event of an allocation failure, we just
732 * exit. This will cause the weight of entity to not be
733 * considered in bfq_differentiated_weights, which, in its
734 * turn, causes the scenario to be deemed wrongly symmetric in
735 * case entity's weight would have been the only weight making
736 * the scenario asymmetric. On the bright side, no unbalance
737 * will however occur when entity becomes inactive again (the
738 * invocation of this function is triggered by an activation
739 * of entity). In fact, bfq_weights_tree_remove does nothing
740 * if !entity->weight_counter.
742 if (unlikely(!entity->weight_counter))
743 return;
745 entity->weight_counter->weight = entity->weight;
746 rb_link_node(&entity->weight_counter->weights_node, parent, new);
747 rb_insert_color(&entity->weight_counter->weights_node, root);
749 inc_counter:
750 entity->weight_counter->num_active++;
754 * Decrement the weight counter associated with the entity, and, if the
755 * counter reaches 0, remove the counter from the tree.
756 * See the comments to the function bfq_weights_tree_add() for considerations
757 * about overhead.
759 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
760 struct bfq_entity *entity,
761 struct rb_root *root)
763 if (!entity->weight_counter)
764 return;
766 entity->weight_counter->num_active--;
767 if (entity->weight_counter->num_active > 0)
768 goto reset_entity_pointer;
770 rb_erase(&entity->weight_counter->weights_node, root);
771 kfree(entity->weight_counter);
773 reset_entity_pointer:
774 entity->weight_counter = NULL;
778 * Invoke __bfq_weights_tree_remove on bfqq and all its inactive
779 * parent entities.
781 void bfq_weights_tree_remove(struct bfq_data *bfqd,
782 struct bfq_queue *bfqq)
784 struct bfq_entity *entity = bfqq->entity.parent;
786 __bfq_weights_tree_remove(bfqd, &bfqq->entity,
787 &bfqd->queue_weights_tree);
789 for_each_entity(entity) {
790 struct bfq_sched_data *sd = entity->my_sched_data;
792 if (sd->next_in_service || sd->in_service_entity) {
794 * entity is still active, because either
795 * next_in_service or in_service_entity is not
796 * NULL (see the comments on the definition of
797 * next_in_service for details on why
798 * in_service_entity must be checked too).
800 * As a consequence, the weight of entity is
801 * not to be removed. In addition, if entity
802 * is active, then its parent entities are
803 * active as well, and thus their weights are
804 * not to be removed either. In the end, this
805 * loop must stop here.
807 break;
809 __bfq_weights_tree_remove(bfqd, entity,
810 &bfqd->group_weights_tree);
815 * Return expired entry, or NULL to just start from scratch in rbtree.
817 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
818 struct request *last)
820 struct request *rq;
822 if (bfq_bfqq_fifo_expire(bfqq))
823 return NULL;
825 bfq_mark_bfqq_fifo_expire(bfqq);
827 rq = rq_entry_fifo(bfqq->fifo.next);
829 if (rq == last || ktime_get_ns() < rq->fifo_time)
830 return NULL;
832 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
833 return rq;
836 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
837 struct bfq_queue *bfqq,
838 struct request *last)
840 struct rb_node *rbnext = rb_next(&last->rb_node);
841 struct rb_node *rbprev = rb_prev(&last->rb_node);
842 struct request *next, *prev = NULL;
844 /* Follow expired path, else get first next available. */
845 next = bfq_check_fifo(bfqq, last);
846 if (next)
847 return next;
849 if (rbprev)
850 prev = rb_entry_rq(rbprev);
852 if (rbnext)
853 next = rb_entry_rq(rbnext);
854 else {
855 rbnext = rb_first(&bfqq->sort_list);
856 if (rbnext && rbnext != &last->rb_node)
857 next = rb_entry_rq(rbnext);
860 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
863 /* see the definition of bfq_async_charge_factor for details */
864 static unsigned long bfq_serv_to_charge(struct request *rq,
865 struct bfq_queue *bfqq)
867 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
868 return blk_rq_sectors(rq);
870 return blk_rq_sectors(rq) * bfq_async_charge_factor;
874 * bfq_updated_next_req - update the queue after a new next_rq selection.
875 * @bfqd: the device data the queue belongs to.
876 * @bfqq: the queue to update.
878 * If the first request of a queue changes we make sure that the queue
879 * has enough budget to serve at least its first request (if the
880 * request has grown). We do this because if the queue has not enough
881 * budget for its first request, it has to go through two dispatch
882 * rounds to actually get it dispatched.
884 static void bfq_updated_next_req(struct bfq_data *bfqd,
885 struct bfq_queue *bfqq)
887 struct bfq_entity *entity = &bfqq->entity;
888 struct request *next_rq = bfqq->next_rq;
889 unsigned long new_budget;
891 if (!next_rq)
892 return;
894 if (bfqq == bfqd->in_service_queue)
896 * In order not to break guarantees, budgets cannot be
897 * changed after an entity has been selected.
899 return;
901 new_budget = max_t(unsigned long, bfqq->max_budget,
902 bfq_serv_to_charge(next_rq, bfqq));
903 if (entity->budget != new_budget) {
904 entity->budget = new_budget;
905 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
906 new_budget);
907 bfq_requeue_bfqq(bfqd, bfqq, false);
911 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
913 u64 dur;
915 if (bfqd->bfq_wr_max_time > 0)
916 return bfqd->bfq_wr_max_time;
918 dur = bfqd->rate_dur_prod;
919 do_div(dur, bfqd->peak_rate);
922 * Limit duration between 3 and 25 seconds. The upper limit
923 * has been conservatively set after the following worst case:
924 * on a QEMU/KVM virtual machine
925 * - running in a slow PC
926 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
927 * - serving a heavy I/O workload, such as the sequential reading
928 * of several files
929 * mplayer took 23 seconds to start, if constantly weight-raised.
931 * As for higher values than that accomodating the above bad
932 * scenario, tests show that higher values would often yield
933 * the opposite of the desired result, i.e., would worsen
934 * responsiveness by allowing non-interactive applications to
935 * preserve weight raising for too long.
937 * On the other end, lower values than 3 seconds make it
938 * difficult for most interactive tasks to complete their jobs
939 * before weight-raising finishes.
941 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
944 /* switch back from soft real-time to interactive weight raising */
945 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
946 struct bfq_data *bfqd)
948 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
949 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
950 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
953 static void
954 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
955 struct bfq_io_cq *bic, bool bfq_already_existing)
957 unsigned int old_wr_coeff = bfqq->wr_coeff;
958 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
960 if (bic->saved_has_short_ttime)
961 bfq_mark_bfqq_has_short_ttime(bfqq);
962 else
963 bfq_clear_bfqq_has_short_ttime(bfqq);
965 if (bic->saved_IO_bound)
966 bfq_mark_bfqq_IO_bound(bfqq);
967 else
968 bfq_clear_bfqq_IO_bound(bfqq);
970 bfqq->ttime = bic->saved_ttime;
971 bfqq->wr_coeff = bic->saved_wr_coeff;
972 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
973 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
974 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
976 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
977 time_is_before_jiffies(bfqq->last_wr_start_finish +
978 bfqq->wr_cur_max_time))) {
979 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
980 !bfq_bfqq_in_large_burst(bfqq) &&
981 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
982 bfq_wr_duration(bfqd))) {
983 switch_back_to_interactive_wr(bfqq, bfqd);
984 } else {
985 bfqq->wr_coeff = 1;
986 bfq_log_bfqq(bfqq->bfqd, bfqq,
987 "resume state: switching off wr");
991 /* make sure weight will be updated, however we got here */
992 bfqq->entity.prio_changed = 1;
994 if (likely(!busy))
995 return;
997 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
998 bfqd->wr_busy_queues++;
999 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1000 bfqd->wr_busy_queues--;
1003 static int bfqq_process_refs(struct bfq_queue *bfqq)
1005 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
1008 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1009 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1011 struct bfq_queue *item;
1012 struct hlist_node *n;
1014 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1015 hlist_del_init(&item->burst_list_node);
1016 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1017 bfqd->burst_size = 1;
1018 bfqd->burst_parent_entity = bfqq->entity.parent;
1021 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1022 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1024 /* Increment burst size to take into account also bfqq */
1025 bfqd->burst_size++;
1027 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1028 struct bfq_queue *pos, *bfqq_item;
1029 struct hlist_node *n;
1032 * Enough queues have been activated shortly after each
1033 * other to consider this burst as large.
1035 bfqd->large_burst = true;
1038 * We can now mark all queues in the burst list as
1039 * belonging to a large burst.
1041 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1042 burst_list_node)
1043 bfq_mark_bfqq_in_large_burst(bfqq_item);
1044 bfq_mark_bfqq_in_large_burst(bfqq);
1047 * From now on, and until the current burst finishes, any
1048 * new queue being activated shortly after the last queue
1049 * was inserted in the burst can be immediately marked as
1050 * belonging to a large burst. So the burst list is not
1051 * needed any more. Remove it.
1053 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1054 burst_list_node)
1055 hlist_del_init(&pos->burst_list_node);
1056 } else /*
1057 * Burst not yet large: add bfqq to the burst list. Do
1058 * not increment the ref counter for bfqq, because bfqq
1059 * is removed from the burst list before freeing bfqq
1060 * in put_queue.
1062 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1066 * If many queues belonging to the same group happen to be created
1067 * shortly after each other, then the processes associated with these
1068 * queues have typically a common goal. In particular, bursts of queue
1069 * creations are usually caused by services or applications that spawn
1070 * many parallel threads/processes. Examples are systemd during boot,
1071 * or git grep. To help these processes get their job done as soon as
1072 * possible, it is usually better to not grant either weight-raising
1073 * or device idling to their queues.
1075 * In this comment we describe, firstly, the reasons why this fact
1076 * holds, and, secondly, the next function, which implements the main
1077 * steps needed to properly mark these queues so that they can then be
1078 * treated in a different way.
1080 * The above services or applications benefit mostly from a high
1081 * throughput: the quicker the requests of the activated queues are
1082 * cumulatively served, the sooner the target job of these queues gets
1083 * completed. As a consequence, weight-raising any of these queues,
1084 * which also implies idling the device for it, is almost always
1085 * counterproductive. In most cases it just lowers throughput.
1087 * On the other hand, a burst of queue creations may be caused also by
1088 * the start of an application that does not consist of a lot of
1089 * parallel I/O-bound threads. In fact, with a complex application,
1090 * several short processes may need to be executed to start-up the
1091 * application. In this respect, to start an application as quickly as
1092 * possible, the best thing to do is in any case to privilege the I/O
1093 * related to the application with respect to all other
1094 * I/O. Therefore, the best strategy to start as quickly as possible
1095 * an application that causes a burst of queue creations is to
1096 * weight-raise all the queues created during the burst. This is the
1097 * exact opposite of the best strategy for the other type of bursts.
1099 * In the end, to take the best action for each of the two cases, the
1100 * two types of bursts need to be distinguished. Fortunately, this
1101 * seems relatively easy, by looking at the sizes of the bursts. In
1102 * particular, we found a threshold such that only bursts with a
1103 * larger size than that threshold are apparently caused by
1104 * services or commands such as systemd or git grep. For brevity,
1105 * hereafter we call just 'large' these bursts. BFQ *does not*
1106 * weight-raise queues whose creation occurs in a large burst. In
1107 * addition, for each of these queues BFQ performs or does not perform
1108 * idling depending on which choice boosts the throughput more. The
1109 * exact choice depends on the device and request pattern at
1110 * hand.
1112 * Unfortunately, false positives may occur while an interactive task
1113 * is starting (e.g., an application is being started). The
1114 * consequence is that the queues associated with the task do not
1115 * enjoy weight raising as expected. Fortunately these false positives
1116 * are very rare. They typically occur if some service happens to
1117 * start doing I/O exactly when the interactive task starts.
1119 * Turning back to the next function, it implements all the steps
1120 * needed to detect the occurrence of a large burst and to properly
1121 * mark all the queues belonging to it (so that they can then be
1122 * treated in a different way). This goal is achieved by maintaining a
1123 * "burst list" that holds, temporarily, the queues that belong to the
1124 * burst in progress. The list is then used to mark these queues as
1125 * belonging to a large burst if the burst does become large. The main
1126 * steps are the following.
1128 * . when the very first queue is created, the queue is inserted into the
1129 * list (as it could be the first queue in a possible burst)
1131 * . if the current burst has not yet become large, and a queue Q that does
1132 * not yet belong to the burst is activated shortly after the last time
1133 * at which a new queue entered the burst list, then the function appends
1134 * Q to the burst list
1136 * . if, as a consequence of the previous step, the burst size reaches
1137 * the large-burst threshold, then
1139 * . all the queues in the burst list are marked as belonging to a
1140 * large burst
1142 * . the burst list is deleted; in fact, the burst list already served
1143 * its purpose (keeping temporarily track of the queues in a burst,
1144 * so as to be able to mark them as belonging to a large burst in the
1145 * previous sub-step), and now is not needed any more
1147 * . the device enters a large-burst mode
1149 * . if a queue Q that does not belong to the burst is created while
1150 * the device is in large-burst mode and shortly after the last time
1151 * at which a queue either entered the burst list or was marked as
1152 * belonging to the current large burst, then Q is immediately marked
1153 * as belonging to a large burst.
1155 * . if a queue Q that does not belong to the burst is created a while
1156 * later, i.e., not shortly after, than the last time at which a queue
1157 * either entered the burst list or was marked as belonging to the
1158 * current large burst, then the current burst is deemed as finished and:
1160 * . the large-burst mode is reset if set
1162 * . the burst list is emptied
1164 * . Q is inserted in the burst list, as Q may be the first queue
1165 * in a possible new burst (then the burst list contains just Q
1166 * after this step).
1168 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1171 * If bfqq is already in the burst list or is part of a large
1172 * burst, or finally has just been split, then there is
1173 * nothing else to do.
1175 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1176 bfq_bfqq_in_large_burst(bfqq) ||
1177 time_is_after_eq_jiffies(bfqq->split_time +
1178 msecs_to_jiffies(10)))
1179 return;
1182 * If bfqq's creation happens late enough, or bfqq belongs to
1183 * a different group than the burst group, then the current
1184 * burst is finished, and related data structures must be
1185 * reset.
1187 * In this respect, consider the special case where bfqq is
1188 * the very first queue created after BFQ is selected for this
1189 * device. In this case, last_ins_in_burst and
1190 * burst_parent_entity are not yet significant when we get
1191 * here. But it is easy to verify that, whether or not the
1192 * following condition is true, bfqq will end up being
1193 * inserted into the burst list. In particular the list will
1194 * happen to contain only bfqq. And this is exactly what has
1195 * to happen, as bfqq may be the first queue of the first
1196 * burst.
1198 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1199 bfqd->bfq_burst_interval) ||
1200 bfqq->entity.parent != bfqd->burst_parent_entity) {
1201 bfqd->large_burst = false;
1202 bfq_reset_burst_list(bfqd, bfqq);
1203 goto end;
1207 * If we get here, then bfqq is being activated shortly after the
1208 * last queue. So, if the current burst is also large, we can mark
1209 * bfqq as belonging to this large burst immediately.
1211 if (bfqd->large_burst) {
1212 bfq_mark_bfqq_in_large_burst(bfqq);
1213 goto end;
1217 * If we get here, then a large-burst state has not yet been
1218 * reached, but bfqq is being activated shortly after the last
1219 * queue. Then we add bfqq to the burst.
1221 bfq_add_to_burst(bfqd, bfqq);
1222 end:
1224 * At this point, bfqq either has been added to the current
1225 * burst or has caused the current burst to terminate and a
1226 * possible new burst to start. In particular, in the second
1227 * case, bfqq has become the first queue in the possible new
1228 * burst. In both cases last_ins_in_burst needs to be moved
1229 * forward.
1231 bfqd->last_ins_in_burst = jiffies;
1234 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1236 struct bfq_entity *entity = &bfqq->entity;
1238 return entity->budget - entity->service;
1242 * If enough samples have been computed, return the current max budget
1243 * stored in bfqd, which is dynamically updated according to the
1244 * estimated disk peak rate; otherwise return the default max budget
1246 static int bfq_max_budget(struct bfq_data *bfqd)
1248 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1249 return bfq_default_max_budget;
1250 else
1251 return bfqd->bfq_max_budget;
1255 * Return min budget, which is a fraction of the current or default
1256 * max budget (trying with 1/32)
1258 static int bfq_min_budget(struct bfq_data *bfqd)
1260 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1261 return bfq_default_max_budget / 32;
1262 else
1263 return bfqd->bfq_max_budget / 32;
1267 * The next function, invoked after the input queue bfqq switches from
1268 * idle to busy, updates the budget of bfqq. The function also tells
1269 * whether the in-service queue should be expired, by returning
1270 * true. The purpose of expiring the in-service queue is to give bfqq
1271 * the chance to possibly preempt the in-service queue, and the reason
1272 * for preempting the in-service queue is to achieve one of the two
1273 * goals below.
1275 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1276 * expired because it has remained idle. In particular, bfqq may have
1277 * expired for one of the following two reasons:
1279 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1280 * and did not make it to issue a new request before its last
1281 * request was served;
1283 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1284 * a new request before the expiration of the idling-time.
1286 * Even if bfqq has expired for one of the above reasons, the process
1287 * associated with the queue may be however issuing requests greedily,
1288 * and thus be sensitive to the bandwidth it receives (bfqq may have
1289 * remained idle for other reasons: CPU high load, bfqq not enjoying
1290 * idling, I/O throttling somewhere in the path from the process to
1291 * the I/O scheduler, ...). But if, after every expiration for one of
1292 * the above two reasons, bfqq has to wait for the service of at least
1293 * one full budget of another queue before being served again, then
1294 * bfqq is likely to get a much lower bandwidth or resource time than
1295 * its reserved ones. To address this issue, two countermeasures need
1296 * to be taken.
1298 * First, the budget and the timestamps of bfqq need to be updated in
1299 * a special way on bfqq reactivation: they need to be updated as if
1300 * bfqq did not remain idle and did not expire. In fact, if they are
1301 * computed as if bfqq expired and remained idle until reactivation,
1302 * then the process associated with bfqq is treated as if, instead of
1303 * being greedy, it stopped issuing requests when bfqq remained idle,
1304 * and restarts issuing requests only on this reactivation. In other
1305 * words, the scheduler does not help the process recover the "service
1306 * hole" between bfqq expiration and reactivation. As a consequence,
1307 * the process receives a lower bandwidth than its reserved one. In
1308 * contrast, to recover this hole, the budget must be updated as if
1309 * bfqq was not expired at all before this reactivation, i.e., it must
1310 * be set to the value of the remaining budget when bfqq was
1311 * expired. Along the same line, timestamps need to be assigned the
1312 * value they had the last time bfqq was selected for service, i.e.,
1313 * before last expiration. Thus timestamps need to be back-shifted
1314 * with respect to their normal computation (see [1] for more details
1315 * on this tricky aspect).
1317 * Secondly, to allow the process to recover the hole, the in-service
1318 * queue must be expired too, to give bfqq the chance to preempt it
1319 * immediately. In fact, if bfqq has to wait for a full budget of the
1320 * in-service queue to be completed, then it may become impossible to
1321 * let the process recover the hole, even if the back-shifted
1322 * timestamps of bfqq are lower than those of the in-service queue. If
1323 * this happens for most or all of the holes, then the process may not
1324 * receive its reserved bandwidth. In this respect, it is worth noting
1325 * that, being the service of outstanding requests unpreemptible, a
1326 * little fraction of the holes may however be unrecoverable, thereby
1327 * causing a little loss of bandwidth.
1329 * The last important point is detecting whether bfqq does need this
1330 * bandwidth recovery. In this respect, the next function deems the
1331 * process associated with bfqq greedy, and thus allows it to recover
1332 * the hole, if: 1) the process is waiting for the arrival of a new
1333 * request (which implies that bfqq expired for one of the above two
1334 * reasons), and 2) such a request has arrived soon. The first
1335 * condition is controlled through the flag non_blocking_wait_rq,
1336 * while the second through the flag arrived_in_time. If both
1337 * conditions hold, then the function computes the budget in the
1338 * above-described special way, and signals that the in-service queue
1339 * should be expired. Timestamp back-shifting is done later in
1340 * __bfq_activate_entity.
1342 * 2. Reduce latency. Even if timestamps are not backshifted to let
1343 * the process associated with bfqq recover a service hole, bfqq may
1344 * however happen to have, after being (re)activated, a lower finish
1345 * timestamp than the in-service queue. That is, the next budget of
1346 * bfqq may have to be completed before the one of the in-service
1347 * queue. If this is the case, then preempting the in-service queue
1348 * allows this goal to be achieved, apart from the unpreemptible,
1349 * outstanding requests mentioned above.
1351 * Unfortunately, regardless of which of the above two goals one wants
1352 * to achieve, service trees need first to be updated to know whether
1353 * the in-service queue must be preempted. To have service trees
1354 * correctly updated, the in-service queue must be expired and
1355 * rescheduled, and bfqq must be scheduled too. This is one of the
1356 * most costly operations (in future versions, the scheduling
1357 * mechanism may be re-designed in such a way to make it possible to
1358 * know whether preemption is needed without needing to update service
1359 * trees). In addition, queue preemptions almost always cause random
1360 * I/O, and thus loss of throughput. Because of these facts, the next
1361 * function adopts the following simple scheme to avoid both costly
1362 * operations and too frequent preemptions: it requests the expiration
1363 * of the in-service queue (unconditionally) only for queues that need
1364 * to recover a hole, or that either are weight-raised or deserve to
1365 * be weight-raised.
1367 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1368 struct bfq_queue *bfqq,
1369 bool arrived_in_time,
1370 bool wr_or_deserves_wr)
1372 struct bfq_entity *entity = &bfqq->entity;
1374 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1376 * We do not clear the flag non_blocking_wait_rq here, as
1377 * the latter is used in bfq_activate_bfqq to signal
1378 * that timestamps need to be back-shifted (and is
1379 * cleared right after).
1383 * In next assignment we rely on that either
1384 * entity->service or entity->budget are not updated
1385 * on expiration if bfqq is empty (see
1386 * __bfq_bfqq_recalc_budget). Thus both quantities
1387 * remain unchanged after such an expiration, and the
1388 * following statement therefore assigns to
1389 * entity->budget the remaining budget on such an
1390 * expiration.
1392 entity->budget = min_t(unsigned long,
1393 bfq_bfqq_budget_left(bfqq),
1394 bfqq->max_budget);
1397 * At this point, we have used entity->service to get
1398 * the budget left (needed for updating
1399 * entity->budget). Thus we finally can, and have to,
1400 * reset entity->service. The latter must be reset
1401 * because bfqq would otherwise be charged again for
1402 * the service it has received during its previous
1403 * service slot(s).
1405 entity->service = 0;
1407 return true;
1411 * We can finally complete expiration, by setting service to 0.
1413 entity->service = 0;
1414 entity->budget = max_t(unsigned long, bfqq->max_budget,
1415 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1416 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1417 return wr_or_deserves_wr;
1421 * Return the farthest past time instant according to jiffies
1422 * macros.
1424 static unsigned long bfq_smallest_from_now(void)
1426 return jiffies - MAX_JIFFY_OFFSET;
1429 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1430 struct bfq_queue *bfqq,
1431 unsigned int old_wr_coeff,
1432 bool wr_or_deserves_wr,
1433 bool interactive,
1434 bool in_burst,
1435 bool soft_rt)
1437 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1438 /* start a weight-raising period */
1439 if (interactive) {
1440 bfqq->service_from_wr = 0;
1441 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1442 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1443 } else {
1445 * No interactive weight raising in progress
1446 * here: assign minus infinity to
1447 * wr_start_at_switch_to_srt, to make sure
1448 * that, at the end of the soft-real-time
1449 * weight raising periods that is starting
1450 * now, no interactive weight-raising period
1451 * may be wrongly considered as still in
1452 * progress (and thus actually started by
1453 * mistake).
1455 bfqq->wr_start_at_switch_to_srt =
1456 bfq_smallest_from_now();
1457 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1458 BFQ_SOFTRT_WEIGHT_FACTOR;
1459 bfqq->wr_cur_max_time =
1460 bfqd->bfq_wr_rt_max_time;
1464 * If needed, further reduce budget to make sure it is
1465 * close to bfqq's backlog, so as to reduce the
1466 * scheduling-error component due to a too large
1467 * budget. Do not care about throughput consequences,
1468 * but only about latency. Finally, do not assign a
1469 * too small budget either, to avoid increasing
1470 * latency by causing too frequent expirations.
1472 bfqq->entity.budget = min_t(unsigned long,
1473 bfqq->entity.budget,
1474 2 * bfq_min_budget(bfqd));
1475 } else if (old_wr_coeff > 1) {
1476 if (interactive) { /* update wr coeff and duration */
1477 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1478 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1479 } else if (in_burst)
1480 bfqq->wr_coeff = 1;
1481 else if (soft_rt) {
1483 * The application is now or still meeting the
1484 * requirements for being deemed soft rt. We
1485 * can then correctly and safely (re)charge
1486 * the weight-raising duration for the
1487 * application with the weight-raising
1488 * duration for soft rt applications.
1490 * In particular, doing this recharge now, i.e.,
1491 * before the weight-raising period for the
1492 * application finishes, reduces the probability
1493 * of the following negative scenario:
1494 * 1) the weight of a soft rt application is
1495 * raised at startup (as for any newly
1496 * created application),
1497 * 2) since the application is not interactive,
1498 * at a certain time weight-raising is
1499 * stopped for the application,
1500 * 3) at that time the application happens to
1501 * still have pending requests, and hence
1502 * is destined to not have a chance to be
1503 * deemed soft rt before these requests are
1504 * completed (see the comments to the
1505 * function bfq_bfqq_softrt_next_start()
1506 * for details on soft rt detection),
1507 * 4) these pending requests experience a high
1508 * latency because the application is not
1509 * weight-raised while they are pending.
1511 if (bfqq->wr_cur_max_time !=
1512 bfqd->bfq_wr_rt_max_time) {
1513 bfqq->wr_start_at_switch_to_srt =
1514 bfqq->last_wr_start_finish;
1516 bfqq->wr_cur_max_time =
1517 bfqd->bfq_wr_rt_max_time;
1518 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1519 BFQ_SOFTRT_WEIGHT_FACTOR;
1521 bfqq->last_wr_start_finish = jiffies;
1526 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1527 struct bfq_queue *bfqq)
1529 return bfqq->dispatched == 0 &&
1530 time_is_before_jiffies(
1531 bfqq->budget_timeout +
1532 bfqd->bfq_wr_min_idle_time);
1535 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1536 struct bfq_queue *bfqq,
1537 int old_wr_coeff,
1538 struct request *rq,
1539 bool *interactive)
1541 bool soft_rt, in_burst, wr_or_deserves_wr,
1542 bfqq_wants_to_preempt,
1543 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1545 * See the comments on
1546 * bfq_bfqq_update_budg_for_activation for
1547 * details on the usage of the next variable.
1549 arrived_in_time = ktime_get_ns() <=
1550 bfqq->ttime.last_end_request +
1551 bfqd->bfq_slice_idle * 3;
1555 * bfqq deserves to be weight-raised if:
1556 * - it is sync,
1557 * - it does not belong to a large burst,
1558 * - it has been idle for enough time or is soft real-time,
1559 * - is linked to a bfq_io_cq (it is not shared in any sense).
1561 in_burst = bfq_bfqq_in_large_burst(bfqq);
1562 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1563 !in_burst &&
1564 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1565 bfqq->dispatched == 0;
1566 *interactive = !in_burst && idle_for_long_time;
1567 wr_or_deserves_wr = bfqd->low_latency &&
1568 (bfqq->wr_coeff > 1 ||
1569 (bfq_bfqq_sync(bfqq) &&
1570 bfqq->bic && (*interactive || soft_rt)));
1573 * Using the last flag, update budget and check whether bfqq
1574 * may want to preempt the in-service queue.
1576 bfqq_wants_to_preempt =
1577 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1578 arrived_in_time,
1579 wr_or_deserves_wr);
1582 * If bfqq happened to be activated in a burst, but has been
1583 * idle for much more than an interactive queue, then we
1584 * assume that, in the overall I/O initiated in the burst, the
1585 * I/O associated with bfqq is finished. So bfqq does not need
1586 * to be treated as a queue belonging to a burst
1587 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1588 * if set, and remove bfqq from the burst list if it's
1589 * there. We do not decrement burst_size, because the fact
1590 * that bfqq does not need to belong to the burst list any
1591 * more does not invalidate the fact that bfqq was created in
1592 * a burst.
1594 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1595 idle_for_long_time &&
1596 time_is_before_jiffies(
1597 bfqq->budget_timeout +
1598 msecs_to_jiffies(10000))) {
1599 hlist_del_init(&bfqq->burst_list_node);
1600 bfq_clear_bfqq_in_large_burst(bfqq);
1603 bfq_clear_bfqq_just_created(bfqq);
1606 if (!bfq_bfqq_IO_bound(bfqq)) {
1607 if (arrived_in_time) {
1608 bfqq->requests_within_timer++;
1609 if (bfqq->requests_within_timer >=
1610 bfqd->bfq_requests_within_timer)
1611 bfq_mark_bfqq_IO_bound(bfqq);
1612 } else
1613 bfqq->requests_within_timer = 0;
1616 if (bfqd->low_latency) {
1617 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1618 /* wraparound */
1619 bfqq->split_time =
1620 jiffies - bfqd->bfq_wr_min_idle_time - 1;
1622 if (time_is_before_jiffies(bfqq->split_time +
1623 bfqd->bfq_wr_min_idle_time)) {
1624 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1625 old_wr_coeff,
1626 wr_or_deserves_wr,
1627 *interactive,
1628 in_burst,
1629 soft_rt);
1631 if (old_wr_coeff != bfqq->wr_coeff)
1632 bfqq->entity.prio_changed = 1;
1636 bfqq->last_idle_bklogged = jiffies;
1637 bfqq->service_from_backlogged = 0;
1638 bfq_clear_bfqq_softrt_update(bfqq);
1640 bfq_add_bfqq_busy(bfqd, bfqq);
1643 * Expire in-service queue only if preemption may be needed
1644 * for guarantees. In this respect, the function
1645 * next_queue_may_preempt just checks a simple, necessary
1646 * condition, and not a sufficient condition based on
1647 * timestamps. In fact, for the latter condition to be
1648 * evaluated, timestamps would need first to be updated, and
1649 * this operation is quite costly (see the comments on the
1650 * function bfq_bfqq_update_budg_for_activation).
1652 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1653 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1654 next_queue_may_preempt(bfqd))
1655 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1656 false, BFQQE_PREEMPTED);
1659 static void bfq_add_request(struct request *rq)
1661 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1662 struct bfq_data *bfqd = bfqq->bfqd;
1663 struct request *next_rq, *prev;
1664 unsigned int old_wr_coeff = bfqq->wr_coeff;
1665 bool interactive = false;
1667 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1668 bfqq->queued[rq_is_sync(rq)]++;
1669 bfqd->queued++;
1671 elv_rb_add(&bfqq->sort_list, rq);
1674 * Check if this request is a better next-serve candidate.
1676 prev = bfqq->next_rq;
1677 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1678 bfqq->next_rq = next_rq;
1681 * Adjust priority tree position, if next_rq changes.
1683 if (prev != bfqq->next_rq)
1684 bfq_pos_tree_add_move(bfqd, bfqq);
1686 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1687 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1688 rq, &interactive);
1689 else {
1690 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1691 time_is_before_jiffies(
1692 bfqq->last_wr_start_finish +
1693 bfqd->bfq_wr_min_inter_arr_async)) {
1694 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1695 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1697 bfqd->wr_busy_queues++;
1698 bfqq->entity.prio_changed = 1;
1700 if (prev != bfqq->next_rq)
1701 bfq_updated_next_req(bfqd, bfqq);
1705 * Assign jiffies to last_wr_start_finish in the following
1706 * cases:
1708 * . if bfqq is not going to be weight-raised, because, for
1709 * non weight-raised queues, last_wr_start_finish stores the
1710 * arrival time of the last request; as of now, this piece
1711 * of information is used only for deciding whether to
1712 * weight-raise async queues
1714 * . if bfqq is not weight-raised, because, if bfqq is now
1715 * switching to weight-raised, then last_wr_start_finish
1716 * stores the time when weight-raising starts
1718 * . if bfqq is interactive, because, regardless of whether
1719 * bfqq is currently weight-raised, the weight-raising
1720 * period must start or restart (this case is considered
1721 * separately because it is not detected by the above
1722 * conditions, if bfqq is already weight-raised)
1724 * last_wr_start_finish has to be updated also if bfqq is soft
1725 * real-time, because the weight-raising period is constantly
1726 * restarted on idle-to-busy transitions for these queues, but
1727 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1728 * needed.
1730 if (bfqd->low_latency &&
1731 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1732 bfqq->last_wr_start_finish = jiffies;
1735 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1736 struct bio *bio,
1737 struct request_queue *q)
1739 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1742 if (bfqq)
1743 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1745 return NULL;
1748 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1750 if (last_pos)
1751 return abs(blk_rq_pos(rq) - last_pos);
1753 return 0;
1756 #if 0 /* Still not clear if we can do without next two functions */
1757 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1759 struct bfq_data *bfqd = q->elevator->elevator_data;
1761 bfqd->rq_in_driver++;
1764 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1766 struct bfq_data *bfqd = q->elevator->elevator_data;
1768 bfqd->rq_in_driver--;
1770 #endif
1772 static void bfq_remove_request(struct request_queue *q,
1773 struct request *rq)
1775 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1776 struct bfq_data *bfqd = bfqq->bfqd;
1777 const int sync = rq_is_sync(rq);
1779 if (bfqq->next_rq == rq) {
1780 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1781 bfq_updated_next_req(bfqd, bfqq);
1784 if (rq->queuelist.prev != &rq->queuelist)
1785 list_del_init(&rq->queuelist);
1786 bfqq->queued[sync]--;
1787 bfqd->queued--;
1788 elv_rb_del(&bfqq->sort_list, rq);
1790 elv_rqhash_del(q, rq);
1791 if (q->last_merge == rq)
1792 q->last_merge = NULL;
1794 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1795 bfqq->next_rq = NULL;
1797 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1798 bfq_del_bfqq_busy(bfqd, bfqq, false);
1800 * bfqq emptied. In normal operation, when
1801 * bfqq is empty, bfqq->entity.service and
1802 * bfqq->entity.budget must contain,
1803 * respectively, the service received and the
1804 * budget used last time bfqq emptied. These
1805 * facts do not hold in this case, as at least
1806 * this last removal occurred while bfqq is
1807 * not in service. To avoid inconsistencies,
1808 * reset both bfqq->entity.service and
1809 * bfqq->entity.budget, if bfqq has still a
1810 * process that may issue I/O requests to it.
1812 bfqq->entity.budget = bfqq->entity.service = 0;
1816 * Remove queue from request-position tree as it is empty.
1818 if (bfqq->pos_root) {
1819 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1820 bfqq->pos_root = NULL;
1822 } else {
1823 bfq_pos_tree_add_move(bfqd, bfqq);
1826 if (rq->cmd_flags & REQ_META)
1827 bfqq->meta_pending--;
1831 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1833 struct request_queue *q = hctx->queue;
1834 struct bfq_data *bfqd = q->elevator->elevator_data;
1835 struct request *free = NULL;
1837 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1838 * store its return value for later use, to avoid nesting
1839 * queue_lock inside the bfqd->lock. We assume that the bic
1840 * returned by bfq_bic_lookup does not go away before
1841 * bfqd->lock is taken.
1843 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1844 bool ret;
1846 spin_lock_irq(&bfqd->lock);
1848 if (bic)
1849 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1850 else
1851 bfqd->bio_bfqq = NULL;
1852 bfqd->bio_bic = bic;
1854 ret = blk_mq_sched_try_merge(q, bio, &free);
1856 if (free)
1857 blk_mq_free_request(free);
1858 spin_unlock_irq(&bfqd->lock);
1860 return ret;
1863 static int bfq_request_merge(struct request_queue *q, struct request **req,
1864 struct bio *bio)
1866 struct bfq_data *bfqd = q->elevator->elevator_data;
1867 struct request *__rq;
1869 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1870 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1871 *req = __rq;
1872 return ELEVATOR_FRONT_MERGE;
1875 return ELEVATOR_NO_MERGE;
1878 static struct bfq_queue *bfq_init_rq(struct request *rq);
1880 static void bfq_request_merged(struct request_queue *q, struct request *req,
1881 enum elv_merge type)
1883 if (type == ELEVATOR_FRONT_MERGE &&
1884 rb_prev(&req->rb_node) &&
1885 blk_rq_pos(req) <
1886 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1887 struct request, rb_node))) {
1888 struct bfq_queue *bfqq = bfq_init_rq(req);
1889 struct bfq_data *bfqd = bfqq->bfqd;
1890 struct request *prev, *next_rq;
1892 /* Reposition request in its sort_list */
1893 elv_rb_del(&bfqq->sort_list, req);
1894 elv_rb_add(&bfqq->sort_list, req);
1896 /* Choose next request to be served for bfqq */
1897 prev = bfqq->next_rq;
1898 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1899 bfqd->last_position);
1900 bfqq->next_rq = next_rq;
1902 * If next_rq changes, update both the queue's budget to
1903 * fit the new request and the queue's position in its
1904 * rq_pos_tree.
1906 if (prev != bfqq->next_rq) {
1907 bfq_updated_next_req(bfqd, bfqq);
1908 bfq_pos_tree_add_move(bfqd, bfqq);
1914 * This function is called to notify the scheduler that the requests
1915 * rq and 'next' have been merged, with 'next' going away. BFQ
1916 * exploits this hook to address the following issue: if 'next' has a
1917 * fifo_time lower that rq, then the fifo_time of rq must be set to
1918 * the value of 'next', to not forget the greater age of 'next'.
1920 * NOTE: in this function we assume that rq is in a bfq_queue, basing
1921 * on that rq is picked from the hash table q->elevator->hash, which,
1922 * in its turn, is filled only with I/O requests present in
1923 * bfq_queues, while BFQ is in use for the request queue q. In fact,
1924 * the function that fills this hash table (elv_rqhash_add) is called
1925 * only by bfq_insert_request.
1927 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1928 struct request *next)
1930 struct bfq_queue *bfqq = bfq_init_rq(rq),
1931 *next_bfqq = bfq_init_rq(next);
1934 * If next and rq belong to the same bfq_queue and next is older
1935 * than rq, then reposition rq in the fifo (by substituting next
1936 * with rq). Otherwise, if next and rq belong to different
1937 * bfq_queues, never reposition rq: in fact, we would have to
1938 * reposition it with respect to next's position in its own fifo,
1939 * which would most certainly be too expensive with respect to
1940 * the benefits.
1942 if (bfqq == next_bfqq &&
1943 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1944 next->fifo_time < rq->fifo_time) {
1945 list_del_init(&rq->queuelist);
1946 list_replace_init(&next->queuelist, &rq->queuelist);
1947 rq->fifo_time = next->fifo_time;
1950 if (bfqq->next_rq == next)
1951 bfqq->next_rq = rq;
1953 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1956 /* Must be called with bfqq != NULL */
1957 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1959 if (bfq_bfqq_busy(bfqq))
1960 bfqq->bfqd->wr_busy_queues--;
1961 bfqq->wr_coeff = 1;
1962 bfqq->wr_cur_max_time = 0;
1963 bfqq->last_wr_start_finish = jiffies;
1965 * Trigger a weight change on the next invocation of
1966 * __bfq_entity_update_weight_prio.
1968 bfqq->entity.prio_changed = 1;
1971 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1972 struct bfq_group *bfqg)
1974 int i, j;
1976 for (i = 0; i < 2; i++)
1977 for (j = 0; j < IOPRIO_BE_NR; j++)
1978 if (bfqg->async_bfqq[i][j])
1979 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1980 if (bfqg->async_idle_bfqq)
1981 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1984 static void bfq_end_wr(struct bfq_data *bfqd)
1986 struct bfq_queue *bfqq;
1988 spin_lock_irq(&bfqd->lock);
1990 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1991 bfq_bfqq_end_wr(bfqq);
1992 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1993 bfq_bfqq_end_wr(bfqq);
1994 bfq_end_wr_async(bfqd);
1996 spin_unlock_irq(&bfqd->lock);
1999 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2001 if (request)
2002 return blk_rq_pos(io_struct);
2003 else
2004 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2007 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2008 sector_t sector)
2010 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2011 BFQQ_CLOSE_THR;
2014 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2015 struct bfq_queue *bfqq,
2016 sector_t sector)
2018 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2019 struct rb_node *parent, *node;
2020 struct bfq_queue *__bfqq;
2022 if (RB_EMPTY_ROOT(root))
2023 return NULL;
2026 * First, if we find a request starting at the end of the last
2027 * request, choose it.
2029 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2030 if (__bfqq)
2031 return __bfqq;
2034 * If the exact sector wasn't found, the parent of the NULL leaf
2035 * will contain the closest sector (rq_pos_tree sorted by
2036 * next_request position).
2038 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2039 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2040 return __bfqq;
2042 if (blk_rq_pos(__bfqq->next_rq) < sector)
2043 node = rb_next(&__bfqq->pos_node);
2044 else
2045 node = rb_prev(&__bfqq->pos_node);
2046 if (!node)
2047 return NULL;
2049 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2050 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2051 return __bfqq;
2053 return NULL;
2056 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2057 struct bfq_queue *cur_bfqq,
2058 sector_t sector)
2060 struct bfq_queue *bfqq;
2063 * We shall notice if some of the queues are cooperating,
2064 * e.g., working closely on the same area of the device. In
2065 * that case, we can group them together and: 1) don't waste
2066 * time idling, and 2) serve the union of their requests in
2067 * the best possible order for throughput.
2069 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2070 if (!bfqq || bfqq == cur_bfqq)
2071 return NULL;
2073 return bfqq;
2076 static struct bfq_queue *
2077 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2079 int process_refs, new_process_refs;
2080 struct bfq_queue *__bfqq;
2083 * If there are no process references on the new_bfqq, then it is
2084 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2085 * may have dropped their last reference (not just their last process
2086 * reference).
2088 if (!bfqq_process_refs(new_bfqq))
2089 return NULL;
2091 /* Avoid a circular list and skip interim queue merges. */
2092 while ((__bfqq = new_bfqq->new_bfqq)) {
2093 if (__bfqq == bfqq)
2094 return NULL;
2095 new_bfqq = __bfqq;
2098 process_refs = bfqq_process_refs(bfqq);
2099 new_process_refs = bfqq_process_refs(new_bfqq);
2101 * If the process for the bfqq has gone away, there is no
2102 * sense in merging the queues.
2104 if (process_refs == 0 || new_process_refs == 0)
2105 return NULL;
2107 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2108 new_bfqq->pid);
2111 * Merging is just a redirection: the requests of the process
2112 * owning one of the two queues are redirected to the other queue.
2113 * The latter queue, in its turn, is set as shared if this is the
2114 * first time that the requests of some process are redirected to
2115 * it.
2117 * We redirect bfqq to new_bfqq and not the opposite, because
2118 * we are in the context of the process owning bfqq, thus we
2119 * have the io_cq of this process. So we can immediately
2120 * configure this io_cq to redirect the requests of the
2121 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2122 * not available any more (new_bfqq->bic == NULL).
2124 * Anyway, even in case new_bfqq coincides with the in-service
2125 * queue, redirecting requests the in-service queue is the
2126 * best option, as we feed the in-service queue with new
2127 * requests close to the last request served and, by doing so,
2128 * are likely to increase the throughput.
2130 bfqq->new_bfqq = new_bfqq;
2131 new_bfqq->ref += process_refs;
2132 return new_bfqq;
2135 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2136 struct bfq_queue *new_bfqq)
2138 if (bfq_too_late_for_merging(new_bfqq))
2139 return false;
2141 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2142 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2143 return false;
2146 * If either of the queues has already been detected as seeky,
2147 * then merging it with the other queue is unlikely to lead to
2148 * sequential I/O.
2150 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2151 return false;
2154 * Interleaved I/O is known to be done by (some) applications
2155 * only for reads, so it does not make sense to merge async
2156 * queues.
2158 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2159 return false;
2161 return true;
2165 * Attempt to schedule a merge of bfqq with the currently in-service
2166 * queue or with a close queue among the scheduled queues. Return
2167 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2168 * structure otherwise.
2170 * The OOM queue is not allowed to participate to cooperation: in fact, since
2171 * the requests temporarily redirected to the OOM queue could be redirected
2172 * again to dedicated queues at any time, the state needed to correctly
2173 * handle merging with the OOM queue would be quite complex and expensive
2174 * to maintain. Besides, in such a critical condition as an out of memory,
2175 * the benefits of queue merging may be little relevant, or even negligible.
2177 * WARNING: queue merging may impair fairness among non-weight raised
2178 * queues, for at least two reasons: 1) the original weight of a
2179 * merged queue may change during the merged state, 2) even being the
2180 * weight the same, a merged queue may be bloated with many more
2181 * requests than the ones produced by its originally-associated
2182 * process.
2184 static struct bfq_queue *
2185 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2186 void *io_struct, bool request)
2188 struct bfq_queue *in_service_bfqq, *new_bfqq;
2191 * Prevent bfqq from being merged if it has been created too
2192 * long ago. The idea is that true cooperating processes, and
2193 * thus their associated bfq_queues, are supposed to be
2194 * created shortly after each other. This is the case, e.g.,
2195 * for KVM/QEMU and dump I/O threads. Basing on this
2196 * assumption, the following filtering greatly reduces the
2197 * probability that two non-cooperating processes, which just
2198 * happen to do close I/O for some short time interval, have
2199 * their queues merged by mistake.
2201 if (bfq_too_late_for_merging(bfqq))
2202 return NULL;
2204 if (bfqq->new_bfqq)
2205 return bfqq->new_bfqq;
2207 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2208 return NULL;
2210 /* If there is only one backlogged queue, don't search. */
2211 if (bfqd->busy_queues == 1)
2212 return NULL;
2214 in_service_bfqq = bfqd->in_service_queue;
2216 if (in_service_bfqq && in_service_bfqq != bfqq &&
2217 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2218 bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2219 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2220 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2221 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2222 if (new_bfqq)
2223 return new_bfqq;
2226 * Check whether there is a cooperator among currently scheduled
2227 * queues. The only thing we need is that the bio/request is not
2228 * NULL, as we need it to establish whether a cooperator exists.
2230 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2231 bfq_io_struct_pos(io_struct, request));
2233 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2234 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2235 return bfq_setup_merge(bfqq, new_bfqq);
2237 return NULL;
2240 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2242 struct bfq_io_cq *bic = bfqq->bic;
2245 * If !bfqq->bic, the queue is already shared or its requests
2246 * have already been redirected to a shared queue; both idle window
2247 * and weight raising state have already been saved. Do nothing.
2249 if (!bic)
2250 return;
2252 bic->saved_ttime = bfqq->ttime;
2253 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2254 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2255 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2256 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2257 if (unlikely(bfq_bfqq_just_created(bfqq) &&
2258 !bfq_bfqq_in_large_burst(bfqq) &&
2259 bfqq->bfqd->low_latency)) {
2261 * bfqq being merged right after being created: bfqq
2262 * would have deserved interactive weight raising, but
2263 * did not make it to be set in a weight-raised state,
2264 * because of this early merge. Store directly the
2265 * weight-raising state that would have been assigned
2266 * to bfqq, so that to avoid that bfqq unjustly fails
2267 * to enjoy weight raising if split soon.
2269 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2270 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2271 bic->saved_last_wr_start_finish = jiffies;
2272 } else {
2273 bic->saved_wr_coeff = bfqq->wr_coeff;
2274 bic->saved_wr_start_at_switch_to_srt =
2275 bfqq->wr_start_at_switch_to_srt;
2276 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2277 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2281 static void
2282 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2283 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2285 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2286 (unsigned long)new_bfqq->pid);
2287 /* Save weight raising and idle window of the merged queues */
2288 bfq_bfqq_save_state(bfqq);
2289 bfq_bfqq_save_state(new_bfqq);
2290 if (bfq_bfqq_IO_bound(bfqq))
2291 bfq_mark_bfqq_IO_bound(new_bfqq);
2292 bfq_clear_bfqq_IO_bound(bfqq);
2295 * If bfqq is weight-raised, then let new_bfqq inherit
2296 * weight-raising. To reduce false positives, neglect the case
2297 * where bfqq has just been created, but has not yet made it
2298 * to be weight-raised (which may happen because EQM may merge
2299 * bfqq even before bfq_add_request is executed for the first
2300 * time for bfqq). Handling this case would however be very
2301 * easy, thanks to the flag just_created.
2303 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2304 new_bfqq->wr_coeff = bfqq->wr_coeff;
2305 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2306 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2307 new_bfqq->wr_start_at_switch_to_srt =
2308 bfqq->wr_start_at_switch_to_srt;
2309 if (bfq_bfqq_busy(new_bfqq))
2310 bfqd->wr_busy_queues++;
2311 new_bfqq->entity.prio_changed = 1;
2314 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2315 bfqq->wr_coeff = 1;
2316 bfqq->entity.prio_changed = 1;
2317 if (bfq_bfqq_busy(bfqq))
2318 bfqd->wr_busy_queues--;
2321 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2322 bfqd->wr_busy_queues);
2325 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2327 bic_set_bfqq(bic, new_bfqq, 1);
2328 bfq_mark_bfqq_coop(new_bfqq);
2330 * new_bfqq now belongs to at least two bics (it is a shared queue):
2331 * set new_bfqq->bic to NULL. bfqq either:
2332 * - does not belong to any bic any more, and hence bfqq->bic must
2333 * be set to NULL, or
2334 * - is a queue whose owning bics have already been redirected to a
2335 * different queue, hence the queue is destined to not belong to
2336 * any bic soon and bfqq->bic is already NULL (therefore the next
2337 * assignment causes no harm).
2339 new_bfqq->bic = NULL;
2340 bfqq->bic = NULL;
2341 /* release process reference to bfqq */
2342 bfq_put_queue(bfqq);
2345 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2346 struct bio *bio)
2348 struct bfq_data *bfqd = q->elevator->elevator_data;
2349 bool is_sync = op_is_sync(bio->bi_opf);
2350 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2353 * Disallow merge of a sync bio into an async request.
2355 if (is_sync && !rq_is_sync(rq))
2356 return false;
2359 * Lookup the bfqq that this bio will be queued with. Allow
2360 * merge only if rq is queued there.
2362 if (!bfqq)
2363 return false;
2366 * We take advantage of this function to perform an early merge
2367 * of the queues of possible cooperating processes.
2369 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2370 if (new_bfqq) {
2372 * bic still points to bfqq, then it has not yet been
2373 * redirected to some other bfq_queue, and a queue
2374 * merge beween bfqq and new_bfqq can be safely
2375 * fulfillled, i.e., bic can be redirected to new_bfqq
2376 * and bfqq can be put.
2378 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2379 new_bfqq);
2381 * If we get here, bio will be queued into new_queue,
2382 * so use new_bfqq to decide whether bio and rq can be
2383 * merged.
2385 bfqq = new_bfqq;
2388 * Change also bqfd->bio_bfqq, as
2389 * bfqd->bio_bic now points to new_bfqq, and
2390 * this function may be invoked again (and then may
2391 * use again bqfd->bio_bfqq).
2393 bfqd->bio_bfqq = bfqq;
2396 return bfqq == RQ_BFQQ(rq);
2400 * Set the maximum time for the in-service queue to consume its
2401 * budget. This prevents seeky processes from lowering the throughput.
2402 * In practice, a time-slice service scheme is used with seeky
2403 * processes.
2405 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2406 struct bfq_queue *bfqq)
2408 unsigned int timeout_coeff;
2410 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2411 timeout_coeff = 1;
2412 else
2413 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2415 bfqd->last_budget_start = ktime_get();
2417 bfqq->budget_timeout = jiffies +
2418 bfqd->bfq_timeout * timeout_coeff;
2421 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2422 struct bfq_queue *bfqq)
2424 if (bfqq) {
2425 bfq_clear_bfqq_fifo_expire(bfqq);
2427 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2429 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2430 bfqq->wr_coeff > 1 &&
2431 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2432 time_is_before_jiffies(bfqq->budget_timeout)) {
2434 * For soft real-time queues, move the start
2435 * of the weight-raising period forward by the
2436 * time the queue has not received any
2437 * service. Otherwise, a relatively long
2438 * service delay is likely to cause the
2439 * weight-raising period of the queue to end,
2440 * because of the short duration of the
2441 * weight-raising period of a soft real-time
2442 * queue. It is worth noting that this move
2443 * is not so dangerous for the other queues,
2444 * because soft real-time queues are not
2445 * greedy.
2447 * To not add a further variable, we use the
2448 * overloaded field budget_timeout to
2449 * determine for how long the queue has not
2450 * received service, i.e., how much time has
2451 * elapsed since the queue expired. However,
2452 * this is a little imprecise, because
2453 * budget_timeout is set to jiffies if bfqq
2454 * not only expires, but also remains with no
2455 * request.
2457 if (time_after(bfqq->budget_timeout,
2458 bfqq->last_wr_start_finish))
2459 bfqq->last_wr_start_finish +=
2460 jiffies - bfqq->budget_timeout;
2461 else
2462 bfqq->last_wr_start_finish = jiffies;
2465 bfq_set_budget_timeout(bfqd, bfqq);
2466 bfq_log_bfqq(bfqd, bfqq,
2467 "set_in_service_queue, cur-budget = %d",
2468 bfqq->entity.budget);
2471 bfqd->in_service_queue = bfqq;
2475 * Get and set a new queue for service.
2477 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2479 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2481 __bfq_set_in_service_queue(bfqd, bfqq);
2482 return bfqq;
2485 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2487 struct bfq_queue *bfqq = bfqd->in_service_queue;
2488 u32 sl;
2490 bfq_mark_bfqq_wait_request(bfqq);
2493 * We don't want to idle for seeks, but we do want to allow
2494 * fair distribution of slice time for a process doing back-to-back
2495 * seeks. So allow a little bit of time for him to submit a new rq.
2497 sl = bfqd->bfq_slice_idle;
2499 * Unless the queue is being weight-raised or the scenario is
2500 * asymmetric, grant only minimum idle time if the queue
2501 * is seeky. A long idling is preserved for a weight-raised
2502 * queue, or, more in general, in an asymmetric scenario,
2503 * because a long idling is needed for guaranteeing to a queue
2504 * its reserved share of the throughput (in particular, it is
2505 * needed if the queue has a higher weight than some other
2506 * queue).
2508 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2509 bfq_symmetric_scenario(bfqd))
2510 sl = min_t(u64, sl, BFQ_MIN_TT);
2512 bfqd->last_idling_start = ktime_get();
2513 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2514 HRTIMER_MODE_REL);
2515 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2519 * In autotuning mode, max_budget is dynamically recomputed as the
2520 * amount of sectors transferred in timeout at the estimated peak
2521 * rate. This enables BFQ to utilize a full timeslice with a full
2522 * budget, even if the in-service queue is served at peak rate. And
2523 * this maximises throughput with sequential workloads.
2525 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2527 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2528 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2532 * Update parameters related to throughput and responsiveness, as a
2533 * function of the estimated peak rate. See comments on
2534 * bfq_calc_max_budget(), and on the ref_wr_duration array.
2536 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2538 if (bfqd->bfq_user_max_budget == 0) {
2539 bfqd->bfq_max_budget =
2540 bfq_calc_max_budget(bfqd);
2541 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
2545 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2546 struct request *rq)
2548 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2549 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2550 bfqd->peak_rate_samples = 1;
2551 bfqd->sequential_samples = 0;
2552 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2553 blk_rq_sectors(rq);
2554 } else /* no new rq dispatched, just reset the number of samples */
2555 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2557 bfq_log(bfqd,
2558 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2559 bfqd->peak_rate_samples, bfqd->sequential_samples,
2560 bfqd->tot_sectors_dispatched);
2563 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2565 u32 rate, weight, divisor;
2568 * For the convergence property to hold (see comments on
2569 * bfq_update_peak_rate()) and for the assessment to be
2570 * reliable, a minimum number of samples must be present, and
2571 * a minimum amount of time must have elapsed. If not so, do
2572 * not compute new rate. Just reset parameters, to get ready
2573 * for a new evaluation attempt.
2575 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2576 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2577 goto reset_computation;
2580 * If a new request completion has occurred after last
2581 * dispatch, then, to approximate the rate at which requests
2582 * have been served by the device, it is more precise to
2583 * extend the observation interval to the last completion.
2585 bfqd->delta_from_first =
2586 max_t(u64, bfqd->delta_from_first,
2587 bfqd->last_completion - bfqd->first_dispatch);
2590 * Rate computed in sects/usec, and not sects/nsec, for
2591 * precision issues.
2593 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2594 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2597 * Peak rate not updated if:
2598 * - the percentage of sequential dispatches is below 3/4 of the
2599 * total, and rate is below the current estimated peak rate
2600 * - rate is unreasonably high (> 20M sectors/sec)
2602 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2603 rate <= bfqd->peak_rate) ||
2604 rate > 20<<BFQ_RATE_SHIFT)
2605 goto reset_computation;
2608 * We have to update the peak rate, at last! To this purpose,
2609 * we use a low-pass filter. We compute the smoothing constant
2610 * of the filter as a function of the 'weight' of the new
2611 * measured rate.
2613 * As can be seen in next formulas, we define this weight as a
2614 * quantity proportional to how sequential the workload is,
2615 * and to how long the observation time interval is.
2617 * The weight runs from 0 to 8. The maximum value of the
2618 * weight, 8, yields the minimum value for the smoothing
2619 * constant. At this minimum value for the smoothing constant,
2620 * the measured rate contributes for half of the next value of
2621 * the estimated peak rate.
2623 * So, the first step is to compute the weight as a function
2624 * of how sequential the workload is. Note that the weight
2625 * cannot reach 9, because bfqd->sequential_samples cannot
2626 * become equal to bfqd->peak_rate_samples, which, in its
2627 * turn, holds true because bfqd->sequential_samples is not
2628 * incremented for the first sample.
2630 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2633 * Second step: further refine the weight as a function of the
2634 * duration of the observation interval.
2636 weight = min_t(u32, 8,
2637 div_u64(weight * bfqd->delta_from_first,
2638 BFQ_RATE_REF_INTERVAL));
2641 * Divisor ranging from 10, for minimum weight, to 2, for
2642 * maximum weight.
2644 divisor = 10 - weight;
2647 * Finally, update peak rate:
2649 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2651 bfqd->peak_rate *= divisor-1;
2652 bfqd->peak_rate /= divisor;
2653 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2655 bfqd->peak_rate += rate;
2658 * For a very slow device, bfqd->peak_rate can reach 0 (see
2659 * the minimum representable values reported in the comments
2660 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2661 * divisions by zero where bfqd->peak_rate is used as a
2662 * divisor.
2664 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2666 update_thr_responsiveness_params(bfqd);
2668 reset_computation:
2669 bfq_reset_rate_computation(bfqd, rq);
2673 * Update the read/write peak rate (the main quantity used for
2674 * auto-tuning, see update_thr_responsiveness_params()).
2676 * It is not trivial to estimate the peak rate (correctly): because of
2677 * the presence of sw and hw queues between the scheduler and the
2678 * device components that finally serve I/O requests, it is hard to
2679 * say exactly when a given dispatched request is served inside the
2680 * device, and for how long. As a consequence, it is hard to know
2681 * precisely at what rate a given set of requests is actually served
2682 * by the device.
2684 * On the opposite end, the dispatch time of any request is trivially
2685 * available, and, from this piece of information, the "dispatch rate"
2686 * of requests can be immediately computed. So, the idea in the next
2687 * function is to use what is known, namely request dispatch times
2688 * (plus, when useful, request completion times), to estimate what is
2689 * unknown, namely in-device request service rate.
2691 * The main issue is that, because of the above facts, the rate at
2692 * which a certain set of requests is dispatched over a certain time
2693 * interval can vary greatly with respect to the rate at which the
2694 * same requests are then served. But, since the size of any
2695 * intermediate queue is limited, and the service scheme is lossless
2696 * (no request is silently dropped), the following obvious convergence
2697 * property holds: the number of requests dispatched MUST become
2698 * closer and closer to the number of requests completed as the
2699 * observation interval grows. This is the key property used in
2700 * the next function to estimate the peak service rate as a function
2701 * of the observed dispatch rate. The function assumes to be invoked
2702 * on every request dispatch.
2704 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2706 u64 now_ns = ktime_get_ns();
2708 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2709 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2710 bfqd->peak_rate_samples);
2711 bfq_reset_rate_computation(bfqd, rq);
2712 goto update_last_values; /* will add one sample */
2716 * Device idle for very long: the observation interval lasting
2717 * up to this dispatch cannot be a valid observation interval
2718 * for computing a new peak rate (similarly to the late-
2719 * completion event in bfq_completed_request()). Go to
2720 * update_rate_and_reset to have the following three steps
2721 * taken:
2722 * - close the observation interval at the last (previous)
2723 * request dispatch or completion
2724 * - compute rate, if possible, for that observation interval
2725 * - start a new observation interval with this dispatch
2727 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2728 bfqd->rq_in_driver == 0)
2729 goto update_rate_and_reset;
2731 /* Update sampling information */
2732 bfqd->peak_rate_samples++;
2734 if ((bfqd->rq_in_driver > 0 ||
2735 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2736 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2737 bfqd->sequential_samples++;
2739 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2741 /* Reset max observed rq size every 32 dispatches */
2742 if (likely(bfqd->peak_rate_samples % 32))
2743 bfqd->last_rq_max_size =
2744 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2745 else
2746 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2748 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2750 /* Target observation interval not yet reached, go on sampling */
2751 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2752 goto update_last_values;
2754 update_rate_and_reset:
2755 bfq_update_rate_reset(bfqd, rq);
2756 update_last_values:
2757 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2758 bfqd->last_dispatch = now_ns;
2762 * Remove request from internal lists.
2764 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2766 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2769 * For consistency, the next instruction should have been
2770 * executed after removing the request from the queue and
2771 * dispatching it. We execute instead this instruction before
2772 * bfq_remove_request() (and hence introduce a temporary
2773 * inconsistency), for efficiency. In fact, should this
2774 * dispatch occur for a non in-service bfqq, this anticipated
2775 * increment prevents two counters related to bfqq->dispatched
2776 * from risking to be, first, uselessly decremented, and then
2777 * incremented again when the (new) value of bfqq->dispatched
2778 * happens to be taken into account.
2780 bfqq->dispatched++;
2781 bfq_update_peak_rate(q->elevator->elevator_data, rq);
2783 bfq_remove_request(q, rq);
2786 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2789 * If this bfqq is shared between multiple processes, check
2790 * to make sure that those processes are still issuing I/Os
2791 * within the mean seek distance. If not, it may be time to
2792 * break the queues apart again.
2794 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2795 bfq_mark_bfqq_split_coop(bfqq);
2797 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2798 if (bfqq->dispatched == 0)
2800 * Overloading budget_timeout field to store
2801 * the time at which the queue remains with no
2802 * backlog and no outstanding request; used by
2803 * the weight-raising mechanism.
2805 bfqq->budget_timeout = jiffies;
2807 bfq_del_bfqq_busy(bfqd, bfqq, true);
2808 } else {
2809 bfq_requeue_bfqq(bfqd, bfqq, true);
2811 * Resort priority tree of potential close cooperators.
2813 bfq_pos_tree_add_move(bfqd, bfqq);
2817 * All in-service entities must have been properly deactivated
2818 * or requeued before executing the next function, which
2819 * resets all in-service entites as no more in service.
2821 __bfq_bfqd_reset_in_service(bfqd);
2825 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2826 * @bfqd: device data.
2827 * @bfqq: queue to update.
2828 * @reason: reason for expiration.
2830 * Handle the feedback on @bfqq budget at queue expiration.
2831 * See the body for detailed comments.
2833 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2834 struct bfq_queue *bfqq,
2835 enum bfqq_expiration reason)
2837 struct request *next_rq;
2838 int budget, min_budget;
2840 min_budget = bfq_min_budget(bfqd);
2842 if (bfqq->wr_coeff == 1)
2843 budget = bfqq->max_budget;
2844 else /*
2845 * Use a constant, low budget for weight-raised queues,
2846 * to help achieve a low latency. Keep it slightly higher
2847 * than the minimum possible budget, to cause a little
2848 * bit fewer expirations.
2850 budget = 2 * min_budget;
2852 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2853 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2854 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2855 budget, bfq_min_budget(bfqd));
2856 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2857 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2859 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2860 switch (reason) {
2862 * Caveat: in all the following cases we trade latency
2863 * for throughput.
2865 case BFQQE_TOO_IDLE:
2867 * This is the only case where we may reduce
2868 * the budget: if there is no request of the
2869 * process still waiting for completion, then
2870 * we assume (tentatively) that the timer has
2871 * expired because the batch of requests of
2872 * the process could have been served with a
2873 * smaller budget. Hence, betting that
2874 * process will behave in the same way when it
2875 * becomes backlogged again, we reduce its
2876 * next budget. As long as we guess right,
2877 * this budget cut reduces the latency
2878 * experienced by the process.
2880 * However, if there are still outstanding
2881 * requests, then the process may have not yet
2882 * issued its next request just because it is
2883 * still waiting for the completion of some of
2884 * the still outstanding ones. So in this
2885 * subcase we do not reduce its budget, on the
2886 * contrary we increase it to possibly boost
2887 * the throughput, as discussed in the
2888 * comments to the BUDGET_TIMEOUT case.
2890 if (bfqq->dispatched > 0) /* still outstanding reqs */
2891 budget = min(budget * 2, bfqd->bfq_max_budget);
2892 else {
2893 if (budget > 5 * min_budget)
2894 budget -= 4 * min_budget;
2895 else
2896 budget = min_budget;
2898 break;
2899 case BFQQE_BUDGET_TIMEOUT:
2901 * We double the budget here because it gives
2902 * the chance to boost the throughput if this
2903 * is not a seeky process (and has bumped into
2904 * this timeout because of, e.g., ZBR).
2906 budget = min(budget * 2, bfqd->bfq_max_budget);
2907 break;
2908 case BFQQE_BUDGET_EXHAUSTED:
2910 * The process still has backlog, and did not
2911 * let either the budget timeout or the disk
2912 * idling timeout expire. Hence it is not
2913 * seeky, has a short thinktime and may be
2914 * happy with a higher budget too. So
2915 * definitely increase the budget of this good
2916 * candidate to boost the disk throughput.
2918 budget = min(budget * 4, bfqd->bfq_max_budget);
2919 break;
2920 case BFQQE_NO_MORE_REQUESTS:
2922 * For queues that expire for this reason, it
2923 * is particularly important to keep the
2924 * budget close to the actual service they
2925 * need. Doing so reduces the timestamp
2926 * misalignment problem described in the
2927 * comments in the body of
2928 * __bfq_activate_entity. In fact, suppose
2929 * that a queue systematically expires for
2930 * BFQQE_NO_MORE_REQUESTS and presents a
2931 * new request in time to enjoy timestamp
2932 * back-shifting. The larger the budget of the
2933 * queue is with respect to the service the
2934 * queue actually requests in each service
2935 * slot, the more times the queue can be
2936 * reactivated with the same virtual finish
2937 * time. It follows that, even if this finish
2938 * time is pushed to the system virtual time
2939 * to reduce the consequent timestamp
2940 * misalignment, the queue unjustly enjoys for
2941 * many re-activations a lower finish time
2942 * than all newly activated queues.
2944 * The service needed by bfqq is measured
2945 * quite precisely by bfqq->entity.service.
2946 * Since bfqq does not enjoy device idling,
2947 * bfqq->entity.service is equal to the number
2948 * of sectors that the process associated with
2949 * bfqq requested to read/write before waiting
2950 * for request completions, or blocking for
2951 * other reasons.
2953 budget = max_t(int, bfqq->entity.service, min_budget);
2954 break;
2955 default:
2956 return;
2958 } else if (!bfq_bfqq_sync(bfqq)) {
2960 * Async queues get always the maximum possible
2961 * budget, as for them we do not care about latency
2962 * (in addition, their ability to dispatch is limited
2963 * by the charging factor).
2965 budget = bfqd->bfq_max_budget;
2968 bfqq->max_budget = budget;
2970 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2971 !bfqd->bfq_user_max_budget)
2972 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2975 * If there is still backlog, then assign a new budget, making
2976 * sure that it is large enough for the next request. Since
2977 * the finish time of bfqq must be kept in sync with the
2978 * budget, be sure to call __bfq_bfqq_expire() *after* this
2979 * update.
2981 * If there is no backlog, then no need to update the budget;
2982 * it will be updated on the arrival of a new request.
2984 next_rq = bfqq->next_rq;
2985 if (next_rq)
2986 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2987 bfq_serv_to_charge(next_rq, bfqq));
2989 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2990 next_rq ? blk_rq_sectors(next_rq) : 0,
2991 bfqq->entity.budget);
2995 * Return true if the process associated with bfqq is "slow". The slow
2996 * flag is used, in addition to the budget timeout, to reduce the
2997 * amount of service provided to seeky processes, and thus reduce
2998 * their chances to lower the throughput. More details in the comments
2999 * on the function bfq_bfqq_expire().
3001 * An important observation is in order: as discussed in the comments
3002 * on the function bfq_update_peak_rate(), with devices with internal
3003 * queues, it is hard if ever possible to know when and for how long
3004 * an I/O request is processed by the device (apart from the trivial
3005 * I/O pattern where a new request is dispatched only after the
3006 * previous one has been completed). This makes it hard to evaluate
3007 * the real rate at which the I/O requests of each bfq_queue are
3008 * served. In fact, for an I/O scheduler like BFQ, serving a
3009 * bfq_queue means just dispatching its requests during its service
3010 * slot (i.e., until the budget of the queue is exhausted, or the
3011 * queue remains idle, or, finally, a timeout fires). But, during the
3012 * service slot of a bfq_queue, around 100 ms at most, the device may
3013 * be even still processing requests of bfq_queues served in previous
3014 * service slots. On the opposite end, the requests of the in-service
3015 * bfq_queue may be completed after the service slot of the queue
3016 * finishes.
3018 * Anyway, unless more sophisticated solutions are used
3019 * (where possible), the sum of the sizes of the requests dispatched
3020 * during the service slot of a bfq_queue is probably the only
3021 * approximation available for the service received by the bfq_queue
3022 * during its service slot. And this sum is the quantity used in this
3023 * function to evaluate the I/O speed of a process.
3025 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3026 bool compensate, enum bfqq_expiration reason,
3027 unsigned long *delta_ms)
3029 ktime_t delta_ktime;
3030 u32 delta_usecs;
3031 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3033 if (!bfq_bfqq_sync(bfqq))
3034 return false;
3036 if (compensate)
3037 delta_ktime = bfqd->last_idling_start;
3038 else
3039 delta_ktime = ktime_get();
3040 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3041 delta_usecs = ktime_to_us(delta_ktime);
3043 /* don't use too short time intervals */
3044 if (delta_usecs < 1000) {
3045 if (blk_queue_nonrot(bfqd->queue))
3047 * give same worst-case guarantees as idling
3048 * for seeky
3050 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3051 else /* charge at least one seek */
3052 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3054 return slow;
3057 *delta_ms = delta_usecs / USEC_PER_MSEC;
3060 * Use only long (> 20ms) intervals to filter out excessive
3061 * spikes in service rate estimation.
3063 if (delta_usecs > 20000) {
3065 * Caveat for rotational devices: processes doing I/O
3066 * in the slower disk zones tend to be slow(er) even
3067 * if not seeky. In this respect, the estimated peak
3068 * rate is likely to be an average over the disk
3069 * surface. Accordingly, to not be too harsh with
3070 * unlucky processes, a process is deemed slow only if
3071 * its rate has been lower than half of the estimated
3072 * peak rate.
3074 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3077 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3079 return slow;
3083 * To be deemed as soft real-time, an application must meet two
3084 * requirements. First, the application must not require an average
3085 * bandwidth higher than the approximate bandwidth required to playback or
3086 * record a compressed high-definition video.
3087 * The next function is invoked on the completion of the last request of a
3088 * batch, to compute the next-start time instant, soft_rt_next_start, such
3089 * that, if the next request of the application does not arrive before
3090 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3092 * The second requirement is that the request pattern of the application is
3093 * isochronous, i.e., that, after issuing a request or a batch of requests,
3094 * the application stops issuing new requests until all its pending requests
3095 * have been completed. After that, the application may issue a new batch,
3096 * and so on.
3097 * For this reason the next function is invoked to compute
3098 * soft_rt_next_start only for applications that meet this requirement,
3099 * whereas soft_rt_next_start is set to infinity for applications that do
3100 * not.
3102 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3103 * happen to meet, occasionally or systematically, both the above
3104 * bandwidth and isochrony requirements. This may happen at least in
3105 * the following circumstances. First, if the CPU load is high. The
3106 * application may stop issuing requests while the CPUs are busy
3107 * serving other processes, then restart, then stop again for a while,
3108 * and so on. The other circumstances are related to the storage
3109 * device: the storage device is highly loaded or reaches a low-enough
3110 * throughput with the I/O of the application (e.g., because the I/O
3111 * is random and/or the device is slow). In all these cases, the
3112 * I/O of the application may be simply slowed down enough to meet
3113 * the bandwidth and isochrony requirements. To reduce the probability
3114 * that greedy applications are deemed as soft real-time in these
3115 * corner cases, a further rule is used in the computation of
3116 * soft_rt_next_start: the return value of this function is forced to
3117 * be higher than the maximum between the following two quantities.
3119 * (a) Current time plus: (1) the maximum time for which the arrival
3120 * of a request is waited for when a sync queue becomes idle,
3121 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3122 * postpone for a moment the reason for adding a few extra
3123 * jiffies; we get back to it after next item (b). Lower-bounding
3124 * the return value of this function with the current time plus
3125 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3126 * because the latter issue their next request as soon as possible
3127 * after the last one has been completed. In contrast, a soft
3128 * real-time application spends some time processing data, after a
3129 * batch of its requests has been completed.
3131 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3132 * above, greedy applications may happen to meet both the
3133 * bandwidth and isochrony requirements under heavy CPU or
3134 * storage-device load. In more detail, in these scenarios, these
3135 * applications happen, only for limited time periods, to do I/O
3136 * slowly enough to meet all the requirements described so far,
3137 * including the filtering in above item (a). These slow-speed
3138 * time intervals are usually interspersed between other time
3139 * intervals during which these applications do I/O at a very high
3140 * speed. Fortunately, exactly because of the high speed of the
3141 * I/O in the high-speed intervals, the values returned by this
3142 * function happen to be so high, near the end of any such
3143 * high-speed interval, to be likely to fall *after* the end of
3144 * the low-speed time interval that follows. These high values are
3145 * stored in bfqq->soft_rt_next_start after each invocation of
3146 * this function. As a consequence, if the last value of
3147 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3148 * next value that this function may return, then, from the very
3149 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3150 * likely to be constantly kept so high that any I/O request
3151 * issued during the low-speed interval is considered as arriving
3152 * to soon for the application to be deemed as soft
3153 * real-time. Then, in the high-speed interval that follows, the
3154 * application will not be deemed as soft real-time, just because
3155 * it will do I/O at a high speed. And so on.
3157 * Getting back to the filtering in item (a), in the following two
3158 * cases this filtering might be easily passed by a greedy
3159 * application, if the reference quantity was just
3160 * bfqd->bfq_slice_idle:
3161 * 1) HZ is so low that the duration of a jiffy is comparable to or
3162 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3163 * devices with HZ=100. The time granularity may be so coarse
3164 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3165 * is rather lower than the exact value.
3166 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3167 * for a while, then suddenly 'jump' by several units to recover the lost
3168 * increments. This seems to happen, e.g., inside virtual machines.
3169 * To address this issue, in the filtering in (a) we do not use as a
3170 * reference time interval just bfqd->bfq_slice_idle, but
3171 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3172 * minimum number of jiffies for which the filter seems to be quite
3173 * precise also in embedded systems and KVM/QEMU virtual machines.
3175 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3176 struct bfq_queue *bfqq)
3178 return max3(bfqq->soft_rt_next_start,
3179 bfqq->last_idle_bklogged +
3180 HZ * bfqq->service_from_backlogged /
3181 bfqd->bfq_wr_max_softrt_rate,
3182 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3186 * bfq_bfqq_expire - expire a queue.
3187 * @bfqd: device owning the queue.
3188 * @bfqq: the queue to expire.
3189 * @compensate: if true, compensate for the time spent idling.
3190 * @reason: the reason causing the expiration.
3192 * If the process associated with bfqq does slow I/O (e.g., because it
3193 * issues random requests), we charge bfqq with the time it has been
3194 * in service instead of the service it has received (see
3195 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3196 * a consequence, bfqq will typically get higher timestamps upon
3197 * reactivation, and hence it will be rescheduled as if it had
3198 * received more service than what it has actually received. In the
3199 * end, bfqq receives less service in proportion to how slowly its
3200 * associated process consumes its budgets (and hence how seriously it
3201 * tends to lower the throughput). In addition, this time-charging
3202 * strategy guarantees time fairness among slow processes. In
3203 * contrast, if the process associated with bfqq is not slow, we
3204 * charge bfqq exactly with the service it has received.
3206 * Charging time to the first type of queues and the exact service to
3207 * the other has the effect of using the WF2Q+ policy to schedule the
3208 * former on a timeslice basis, without violating service domain
3209 * guarantees among the latter.
3211 void bfq_bfqq_expire(struct bfq_data *bfqd,
3212 struct bfq_queue *bfqq,
3213 bool compensate,
3214 enum bfqq_expiration reason)
3216 bool slow;
3217 unsigned long delta = 0;
3218 struct bfq_entity *entity = &bfqq->entity;
3219 int ref;
3222 * Check whether the process is slow (see bfq_bfqq_is_slow).
3224 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3227 * As above explained, charge slow (typically seeky) and
3228 * timed-out queues with the time and not the service
3229 * received, to favor sequential workloads.
3231 * Processes doing I/O in the slower disk zones will tend to
3232 * be slow(er) even if not seeky. Therefore, since the
3233 * estimated peak rate is actually an average over the disk
3234 * surface, these processes may timeout just for bad luck. To
3235 * avoid punishing them, do not charge time to processes that
3236 * succeeded in consuming at least 2/3 of their budget. This
3237 * allows BFQ to preserve enough elasticity to still perform
3238 * bandwidth, and not time, distribution with little unlucky
3239 * or quasi-sequential processes.
3241 if (bfqq->wr_coeff == 1 &&
3242 (slow ||
3243 (reason == BFQQE_BUDGET_TIMEOUT &&
3244 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
3245 bfq_bfqq_charge_time(bfqd, bfqq, delta);
3247 if (reason == BFQQE_TOO_IDLE &&
3248 entity->service <= 2 * entity->budget / 10)
3249 bfq_clear_bfqq_IO_bound(bfqq);
3251 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3252 bfqq->last_wr_start_finish = jiffies;
3254 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3255 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3257 * If we get here, and there are no outstanding
3258 * requests, then the request pattern is isochronous
3259 * (see the comments on the function
3260 * bfq_bfqq_softrt_next_start()). Thus we can compute
3261 * soft_rt_next_start. If, instead, the queue still
3262 * has outstanding requests, then we have to wait for
3263 * the completion of all the outstanding requests to
3264 * discover whether the request pattern is actually
3265 * isochronous.
3267 if (bfqq->dispatched == 0)
3268 bfqq->soft_rt_next_start =
3269 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3270 else {
3272 * Schedule an update of soft_rt_next_start to when
3273 * the task may be discovered to be isochronous.
3275 bfq_mark_bfqq_softrt_update(bfqq);
3279 bfq_log_bfqq(bfqd, bfqq,
3280 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3281 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3284 * Increase, decrease or leave budget unchanged according to
3285 * reason.
3287 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3288 ref = bfqq->ref;
3289 __bfq_bfqq_expire(bfqd, bfqq);
3291 if (ref == 1) /* bfqq is gone, no more actions on it */
3292 return;
3294 /* mark bfqq as waiting a request only if a bic still points to it */
3295 if (!bfq_bfqq_busy(bfqq) &&
3296 reason != BFQQE_BUDGET_TIMEOUT &&
3297 reason != BFQQE_BUDGET_EXHAUSTED) {
3298 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3300 * Not setting service to 0, because, if the next rq
3301 * arrives in time, the queue will go on receiving
3302 * service with this same budget (as if it never expired)
3304 } else
3305 entity->service = 0;
3308 * Reset the received-service counter for every parent entity.
3309 * Differently from what happens with bfqq->entity.service,
3310 * the resetting of this counter never needs to be postponed
3311 * for parent entities. In fact, in case bfqq may have a
3312 * chance to go on being served using the last, partially
3313 * consumed budget, bfqq->entity.service needs to be kept,
3314 * because if bfqq then actually goes on being served using
3315 * the same budget, the last value of bfqq->entity.service is
3316 * needed to properly decrement bfqq->entity.budget by the
3317 * portion already consumed. In contrast, it is not necessary
3318 * to keep entity->service for parent entities too, because
3319 * the bubble up of the new value of bfqq->entity.budget will
3320 * make sure that the budgets of parent entities are correct,
3321 * even in case bfqq and thus parent entities go on receiving
3322 * service with the same budget.
3324 entity = entity->parent;
3325 for_each_entity(entity)
3326 entity->service = 0;
3330 * Budget timeout is not implemented through a dedicated timer, but
3331 * just checked on request arrivals and completions, as well as on
3332 * idle timer expirations.
3334 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3336 return time_is_before_eq_jiffies(bfqq->budget_timeout);
3340 * If we expire a queue that is actively waiting (i.e., with the
3341 * device idled) for the arrival of a new request, then we may incur
3342 * the timestamp misalignment problem described in the body of the
3343 * function __bfq_activate_entity. Hence we return true only if this
3344 * condition does not hold, or if the queue is slow enough to deserve
3345 * only to be kicked off for preserving a high throughput.
3347 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3349 bfq_log_bfqq(bfqq->bfqd, bfqq,
3350 "may_budget_timeout: wait_request %d left %d timeout %d",
3351 bfq_bfqq_wait_request(bfqq),
3352 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3353 bfq_bfqq_budget_timeout(bfqq));
3355 return (!bfq_bfqq_wait_request(bfqq) ||
3356 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3358 bfq_bfqq_budget_timeout(bfqq);
3362 * For a queue that becomes empty, device idling is allowed only if
3363 * this function returns true for the queue. As a consequence, since
3364 * device idling plays a critical role in both throughput boosting and
3365 * service guarantees, the return value of this function plays a
3366 * critical role in both these aspects as well.
3368 * In a nutshell, this function returns true only if idling is
3369 * beneficial for throughput or, even if detrimental for throughput,
3370 * idling is however necessary to preserve service guarantees (low
3371 * latency, desired throughput distribution, ...). In particular, on
3372 * NCQ-capable devices, this function tries to return false, so as to
3373 * help keep the drives' internal queues full, whenever this helps the
3374 * device boost the throughput without causing any service-guarantee
3375 * issue.
3377 * In more detail, the return value of this function is obtained by,
3378 * first, computing a number of boolean variables that take into
3379 * account throughput and service-guarantee issues, and, then,
3380 * combining these variables in a logical expression. Most of the
3381 * issues taken into account are not trivial. We discuss these issues
3382 * individually while introducing the variables.
3384 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
3386 struct bfq_data *bfqd = bfqq->bfqd;
3387 bool rot_without_queueing =
3388 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3389 bfqq_sequential_and_IO_bound,
3390 idling_boosts_thr, idling_boosts_thr_without_issues,
3391 idling_needed_for_service_guarantees,
3392 asymmetric_scenario;
3394 if (bfqd->strict_guarantees)
3395 return true;
3398 * Idling is performed only if slice_idle > 0. In addition, we
3399 * do not idle if
3400 * (a) bfqq is async
3401 * (b) bfqq is in the idle io prio class: in this case we do
3402 * not idle because we want to minimize the bandwidth that
3403 * queues in this class can steal to higher-priority queues
3405 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3406 bfq_class_idle(bfqq))
3407 return false;
3409 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3410 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3413 * The next variable takes into account the cases where idling
3414 * boosts the throughput.
3416 * The value of the variable is computed considering, first, that
3417 * idling is virtually always beneficial for the throughput if:
3418 * (a) the device is not NCQ-capable and rotational, or
3419 * (b) regardless of the presence of NCQ, the device is rotational and
3420 * the request pattern for bfqq is I/O-bound and sequential, or
3421 * (c) regardless of whether it is rotational, the device is
3422 * not NCQ-capable and the request pattern for bfqq is
3423 * I/O-bound and sequential.
3425 * Secondly, and in contrast to the above item (b), idling an
3426 * NCQ-capable flash-based device would not boost the
3427 * throughput even with sequential I/O; rather it would lower
3428 * the throughput in proportion to how fast the device
3429 * is. Accordingly, the next variable is true if any of the
3430 * above conditions (a), (b) or (c) is true, and, in
3431 * particular, happens to be false if bfqd is an NCQ-capable
3432 * flash-based device.
3434 idling_boosts_thr = rot_without_queueing ||
3435 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3436 bfqq_sequential_and_IO_bound);
3439 * The value of the next variable,
3440 * idling_boosts_thr_without_issues, is equal to that of
3441 * idling_boosts_thr, unless a special case holds. In this
3442 * special case, described below, idling may cause problems to
3443 * weight-raised queues.
3445 * When the request pool is saturated (e.g., in the presence
3446 * of write hogs), if the processes associated with
3447 * non-weight-raised queues ask for requests at a lower rate,
3448 * then processes associated with weight-raised queues have a
3449 * higher probability to get a request from the pool
3450 * immediately (or at least soon) when they need one. Thus
3451 * they have a higher probability to actually get a fraction
3452 * of the device throughput proportional to their high
3453 * weight. This is especially true with NCQ-capable drives,
3454 * which enqueue several requests in advance, and further
3455 * reorder internally-queued requests.
3457 * For this reason, we force to false the value of
3458 * idling_boosts_thr_without_issues if there are weight-raised
3459 * busy queues. In this case, and if bfqq is not weight-raised,
3460 * this guarantees that the device is not idled for bfqq (if,
3461 * instead, bfqq is weight-raised, then idling will be
3462 * guaranteed by another variable, see below). Combined with
3463 * the timestamping rules of BFQ (see [1] for details), this
3464 * behavior causes bfqq, and hence any sync non-weight-raised
3465 * queue, to get a lower number of requests served, and thus
3466 * to ask for a lower number of requests from the request
3467 * pool, before the busy weight-raised queues get served
3468 * again. This often mitigates starvation problems in the
3469 * presence of heavy write workloads and NCQ, thereby
3470 * guaranteeing a higher application and system responsiveness
3471 * in these hostile scenarios.
3473 idling_boosts_thr_without_issues = idling_boosts_thr &&
3474 bfqd->wr_busy_queues == 0;
3477 * There is then a case where idling must be performed not
3478 * for throughput concerns, but to preserve service
3479 * guarantees.
3481 * To introduce this case, we can note that allowing the drive
3482 * to enqueue more than one request at a time, and hence
3483 * delegating de facto final scheduling decisions to the
3484 * drive's internal scheduler, entails loss of control on the
3485 * actual request service order. In particular, the critical
3486 * situation is when requests from different processes happen
3487 * to be present, at the same time, in the internal queue(s)
3488 * of the drive. In such a situation, the drive, by deciding
3489 * the service order of the internally-queued requests, does
3490 * determine also the actual throughput distribution among
3491 * these processes. But the drive typically has no notion or
3492 * concern about per-process throughput distribution, and
3493 * makes its decisions only on a per-request basis. Therefore,
3494 * the service distribution enforced by the drive's internal
3495 * scheduler is likely to coincide with the desired
3496 * device-throughput distribution only in a completely
3497 * symmetric scenario where:
3498 * (i) each of these processes must get the same throughput as
3499 * the others;
3500 * (ii) all these processes have the same I/O pattern
3501 (either sequential or random).
3502 * In fact, in such a scenario, the drive will tend to treat
3503 * the requests of each of these processes in about the same
3504 * way as the requests of the others, and thus to provide
3505 * each of these processes with about the same throughput
3506 * (which is exactly the desired throughput distribution). In
3507 * contrast, in any asymmetric scenario, device idling is
3508 * certainly needed to guarantee that bfqq receives its
3509 * assigned fraction of the device throughput (see [1] for
3510 * details).
3512 * We address this issue by controlling, actually, only the
3513 * symmetry sub-condition (i), i.e., provided that
3514 * sub-condition (i) holds, idling is not performed,
3515 * regardless of whether sub-condition (ii) holds. In other
3516 * words, only if sub-condition (i) holds, then idling is
3517 * allowed, and the device tends to be prevented from queueing
3518 * many requests, possibly of several processes. The reason
3519 * for not controlling also sub-condition (ii) is that we
3520 * exploit preemption to preserve guarantees in case of
3521 * symmetric scenarios, even if (ii) does not hold, as
3522 * explained in the next two paragraphs.
3524 * Even if a queue, say Q, is expired when it remains idle, Q
3525 * can still preempt the new in-service queue if the next
3526 * request of Q arrives soon (see the comments on
3527 * bfq_bfqq_update_budg_for_activation). If all queues and
3528 * groups have the same weight, this form of preemption,
3529 * combined with the hole-recovery heuristic described in the
3530 * comments on function bfq_bfqq_update_budg_for_activation,
3531 * are enough to preserve a correct bandwidth distribution in
3532 * the mid term, even without idling. In fact, even if not
3533 * idling allows the internal queues of the device to contain
3534 * many requests, and thus to reorder requests, we can rather
3535 * safely assume that the internal scheduler still preserves a
3536 * minimum of mid-term fairness. The motivation for using
3537 * preemption instead of idling is that, by not idling,
3538 * service guarantees are preserved without minimally
3539 * sacrificing throughput. In other words, both a high
3540 * throughput and its desired distribution are obtained.
3542 * More precisely, this preemption-based, idleless approach
3543 * provides fairness in terms of IOPS, and not sectors per
3544 * second. This can be seen with a simple example. Suppose
3545 * that there are two queues with the same weight, but that
3546 * the first queue receives requests of 8 sectors, while the
3547 * second queue receives requests of 1024 sectors. In
3548 * addition, suppose that each of the two queues contains at
3549 * most one request at a time, which implies that each queue
3550 * always remains idle after it is served. Finally, after
3551 * remaining idle, each queue receives very quickly a new
3552 * request. It follows that the two queues are served
3553 * alternatively, preempting each other if needed. This
3554 * implies that, although both queues have the same weight,
3555 * the queue with large requests receives a service that is
3556 * 1024/8 times as high as the service received by the other
3557 * queue.
3559 * On the other hand, device idling is performed, and thus
3560 * pure sector-domain guarantees are provided, for the
3561 * following queues, which are likely to need stronger
3562 * throughput guarantees: weight-raised queues, and queues
3563 * with a higher weight than other queues. When such queues
3564 * are active, sub-condition (i) is false, which triggers
3565 * device idling.
3567 * According to the above considerations, the next variable is
3568 * true (only) if sub-condition (i) holds. To compute the
3569 * value of this variable, we not only use the return value of
3570 * the function bfq_symmetric_scenario(), but also check
3571 * whether bfqq is being weight-raised, because
3572 * bfq_symmetric_scenario() does not take into account also
3573 * weight-raised queues (see comments on
3574 * bfq_weights_tree_add()).
3576 * As a side note, it is worth considering that the above
3577 * device-idling countermeasures may however fail in the
3578 * following unlucky scenario: if idling is (correctly)
3579 * disabled in a time period during which all symmetry
3580 * sub-conditions hold, and hence the device is allowed to
3581 * enqueue many requests, but at some later point in time some
3582 * sub-condition stops to hold, then it may become impossible
3583 * to let requests be served in the desired order until all
3584 * the requests already queued in the device have been served.
3586 asymmetric_scenario = bfqq->wr_coeff > 1 ||
3587 !bfq_symmetric_scenario(bfqd);
3590 * Finally, there is a case where maximizing throughput is the
3591 * best choice even if it may cause unfairness toward
3592 * bfqq. Such a case is when bfqq became active in a burst of
3593 * queue activations. Queues that became active during a large
3594 * burst benefit only from throughput, as discussed in the
3595 * comments on bfq_handle_burst. Thus, if bfqq became active
3596 * in a burst and not idling the device maximizes throughput,
3597 * then the device must no be idled, because not idling the
3598 * device provides bfqq and all other queues in the burst with
3599 * maximum benefit. Combining this and the above case, we can
3600 * now establish when idling is actually needed to preserve
3601 * service guarantees.
3603 idling_needed_for_service_guarantees =
3604 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3607 * We have now all the components we need to compute the
3608 * return value of the function, which is true only if idling
3609 * either boosts the throughput (without issues), or is
3610 * necessary to preserve service guarantees.
3612 return idling_boosts_thr_without_issues ||
3613 idling_needed_for_service_guarantees;
3617 * If the in-service queue is empty but the function bfq_better_to_idle
3618 * returns true, then:
3619 * 1) the queue must remain in service and cannot be expired, and
3620 * 2) the device must be idled to wait for the possible arrival of a new
3621 * request for the queue.
3622 * See the comments on the function bfq_better_to_idle for the reasons
3623 * why performing device idling is the best choice to boost the throughput
3624 * and preserve service guarantees when bfq_better_to_idle itself
3625 * returns true.
3627 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3629 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
3633 * Select a queue for service. If we have a current queue in service,
3634 * check whether to continue servicing it, or retrieve and set a new one.
3636 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3638 struct bfq_queue *bfqq;
3639 struct request *next_rq;
3640 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3642 bfqq = bfqd->in_service_queue;
3643 if (!bfqq)
3644 goto new_queue;
3646 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3649 * Do not expire bfqq for budget timeout if bfqq may be about
3650 * to enjoy device idling. The reason why, in this case, we
3651 * prevent bfqq from expiring is the same as in the comments
3652 * on the case where bfq_bfqq_must_idle() returns true, in
3653 * bfq_completed_request().
3655 if (bfq_may_expire_for_budg_timeout(bfqq) &&
3656 !bfq_bfqq_must_idle(bfqq))
3657 goto expire;
3659 check_queue:
3661 * This loop is rarely executed more than once. Even when it
3662 * happens, it is much more convenient to re-execute this loop
3663 * than to return NULL and trigger a new dispatch to get a
3664 * request served.
3666 next_rq = bfqq->next_rq;
3668 * If bfqq has requests queued and it has enough budget left to
3669 * serve them, keep the queue, otherwise expire it.
3671 if (next_rq) {
3672 if (bfq_serv_to_charge(next_rq, bfqq) >
3673 bfq_bfqq_budget_left(bfqq)) {
3675 * Expire the queue for budget exhaustion,
3676 * which makes sure that the next budget is
3677 * enough to serve the next request, even if
3678 * it comes from the fifo expired path.
3680 reason = BFQQE_BUDGET_EXHAUSTED;
3681 goto expire;
3682 } else {
3684 * The idle timer may be pending because we may
3685 * not disable disk idling even when a new request
3686 * arrives.
3688 if (bfq_bfqq_wait_request(bfqq)) {
3690 * If we get here: 1) at least a new request
3691 * has arrived but we have not disabled the
3692 * timer because the request was too small,
3693 * 2) then the block layer has unplugged
3694 * the device, causing the dispatch to be
3695 * invoked.
3697 * Since the device is unplugged, now the
3698 * requests are probably large enough to
3699 * provide a reasonable throughput.
3700 * So we disable idling.
3702 bfq_clear_bfqq_wait_request(bfqq);
3703 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3705 goto keep_queue;
3710 * No requests pending. However, if the in-service queue is idling
3711 * for a new request, or has requests waiting for a completion and
3712 * may idle after their completion, then keep it anyway.
3714 if (bfq_bfqq_wait_request(bfqq) ||
3715 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
3716 bfqq = NULL;
3717 goto keep_queue;
3720 reason = BFQQE_NO_MORE_REQUESTS;
3721 expire:
3722 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3723 new_queue:
3724 bfqq = bfq_set_in_service_queue(bfqd);
3725 if (bfqq) {
3726 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3727 goto check_queue;
3729 keep_queue:
3730 if (bfqq)
3731 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3732 else
3733 bfq_log(bfqd, "select_queue: no queue returned");
3735 return bfqq;
3738 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3740 struct bfq_entity *entity = &bfqq->entity;
3742 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3743 bfq_log_bfqq(bfqd, bfqq,
3744 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3745 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3746 jiffies_to_msecs(bfqq->wr_cur_max_time),
3747 bfqq->wr_coeff,
3748 bfqq->entity.weight, bfqq->entity.orig_weight);
3750 if (entity->prio_changed)
3751 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3754 * If the queue was activated in a burst, or too much
3755 * time has elapsed from the beginning of this
3756 * weight-raising period, then end weight raising.
3758 if (bfq_bfqq_in_large_burst(bfqq))
3759 bfq_bfqq_end_wr(bfqq);
3760 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3761 bfqq->wr_cur_max_time)) {
3762 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3763 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3764 bfq_wr_duration(bfqd)))
3765 bfq_bfqq_end_wr(bfqq);
3766 else {
3767 switch_back_to_interactive_wr(bfqq, bfqd);
3768 bfqq->entity.prio_changed = 1;
3771 if (bfqq->wr_coeff > 1 &&
3772 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3773 bfqq->service_from_wr > max_service_from_wr) {
3774 /* see comments on max_service_from_wr */
3775 bfq_bfqq_end_wr(bfqq);
3779 * To improve latency (for this or other queues), immediately
3780 * update weight both if it must be raised and if it must be
3781 * lowered. Since, entity may be on some active tree here, and
3782 * might have a pending change of its ioprio class, invoke
3783 * next function with the last parameter unset (see the
3784 * comments on the function).
3786 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3787 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3788 entity, false);
3792 * Dispatch next request from bfqq.
3794 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3795 struct bfq_queue *bfqq)
3797 struct request *rq = bfqq->next_rq;
3798 unsigned long service_to_charge;
3800 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3802 bfq_bfqq_served(bfqq, service_to_charge);
3804 bfq_dispatch_remove(bfqd->queue, rq);
3807 * If weight raising has to terminate for bfqq, then next
3808 * function causes an immediate update of bfqq's weight,
3809 * without waiting for next activation. As a consequence, on
3810 * expiration, bfqq will be timestamped as if has never been
3811 * weight-raised during this service slot, even if it has
3812 * received part or even most of the service as a
3813 * weight-raised queue. This inflates bfqq's timestamps, which
3814 * is beneficial, as bfqq is then more willing to leave the
3815 * device immediately to possible other weight-raised queues.
3817 bfq_update_wr_data(bfqd, bfqq);
3820 * Expire bfqq, pretending that its budget expired, if bfqq
3821 * belongs to CLASS_IDLE and other queues are waiting for
3822 * service.
3824 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3825 goto expire;
3827 return rq;
3829 expire:
3830 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3831 return rq;
3834 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3836 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3839 * Avoiding lock: a race on bfqd->busy_queues should cause at
3840 * most a call to dispatch for nothing
3842 return !list_empty_careful(&bfqd->dispatch) ||
3843 bfqd->busy_queues > 0;
3846 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3848 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3849 struct request *rq = NULL;
3850 struct bfq_queue *bfqq = NULL;
3852 if (!list_empty(&bfqd->dispatch)) {
3853 rq = list_first_entry(&bfqd->dispatch, struct request,
3854 queuelist);
3855 list_del_init(&rq->queuelist);
3857 bfqq = RQ_BFQQ(rq);
3859 if (bfqq) {
3861 * Increment counters here, because this
3862 * dispatch does not follow the standard
3863 * dispatch flow (where counters are
3864 * incremented)
3866 bfqq->dispatched++;
3868 goto inc_in_driver_start_rq;
3872 * We exploit the bfq_finish_requeue_request hook to
3873 * decrement rq_in_driver, but
3874 * bfq_finish_requeue_request will not be invoked on
3875 * this request. So, to avoid unbalance, just start
3876 * this request, without incrementing rq_in_driver. As
3877 * a negative consequence, rq_in_driver is deceptively
3878 * lower than it should be while this request is in
3879 * service. This may cause bfq_schedule_dispatch to be
3880 * invoked uselessly.
3882 * As for implementing an exact solution, the
3883 * bfq_finish_requeue_request hook, if defined, is
3884 * probably invoked also on this request. So, by
3885 * exploiting this hook, we could 1) increment
3886 * rq_in_driver here, and 2) decrement it in
3887 * bfq_finish_requeue_request. Such a solution would
3888 * let the value of the counter be always accurate,
3889 * but it would entail using an extra interface
3890 * function. This cost seems higher than the benefit,
3891 * being the frequency of non-elevator-private
3892 * requests very low.
3894 goto start_rq;
3897 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3899 if (bfqd->busy_queues == 0)
3900 goto exit;
3903 * Force device to serve one request at a time if
3904 * strict_guarantees is true. Forcing this service scheme is
3905 * currently the ONLY way to guarantee that the request
3906 * service order enforced by the scheduler is respected by a
3907 * queueing device. Otherwise the device is free even to make
3908 * some unlucky request wait for as long as the device
3909 * wishes.
3911 * Of course, serving one request at at time may cause loss of
3912 * throughput.
3914 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3915 goto exit;
3917 bfqq = bfq_select_queue(bfqd);
3918 if (!bfqq)
3919 goto exit;
3921 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3923 if (rq) {
3924 inc_in_driver_start_rq:
3925 bfqd->rq_in_driver++;
3926 start_rq:
3927 rq->rq_flags |= RQF_STARTED;
3929 exit:
3930 return rq;
3933 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
3934 static void bfq_update_dispatch_stats(struct request_queue *q,
3935 struct request *rq,
3936 struct bfq_queue *in_serv_queue,
3937 bool idle_timer_disabled)
3939 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
3941 if (!idle_timer_disabled && !bfqq)
3942 return;
3945 * rq and bfqq are guaranteed to exist until this function
3946 * ends, for the following reasons. First, rq can be
3947 * dispatched to the device, and then can be completed and
3948 * freed, only after this function ends. Second, rq cannot be
3949 * merged (and thus freed because of a merge) any longer,
3950 * because it has already started. Thus rq cannot be freed
3951 * before this function ends, and, since rq has a reference to
3952 * bfqq, the same guarantee holds for bfqq too.
3954 * In addition, the following queue lock guarantees that
3955 * bfqq_group(bfqq) exists as well.
3957 spin_lock_irq(q->queue_lock);
3958 if (idle_timer_disabled)
3960 * Since the idle timer has been disabled,
3961 * in_serv_queue contained some request when
3962 * __bfq_dispatch_request was invoked above, which
3963 * implies that rq was picked exactly from
3964 * in_serv_queue. Thus in_serv_queue == bfqq, and is
3965 * therefore guaranteed to exist because of the above
3966 * arguments.
3968 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
3969 if (bfqq) {
3970 struct bfq_group *bfqg = bfqq_group(bfqq);
3972 bfqg_stats_update_avg_queue_size(bfqg);
3973 bfqg_stats_set_start_empty_time(bfqg);
3974 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
3976 spin_unlock_irq(q->queue_lock);
3978 #else
3979 static inline void bfq_update_dispatch_stats(struct request_queue *q,
3980 struct request *rq,
3981 struct bfq_queue *in_serv_queue,
3982 bool idle_timer_disabled) {}
3983 #endif
3985 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3987 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3988 struct request *rq;
3989 struct bfq_queue *in_serv_queue;
3990 bool waiting_rq, idle_timer_disabled;
3992 spin_lock_irq(&bfqd->lock);
3994 in_serv_queue = bfqd->in_service_queue;
3995 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
3997 rq = __bfq_dispatch_request(hctx);
3999 idle_timer_disabled =
4000 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4002 spin_unlock_irq(&bfqd->lock);
4004 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4005 idle_timer_disabled);
4007 return rq;
4011 * Task holds one reference to the queue, dropped when task exits. Each rq
4012 * in-flight on this queue also holds a reference, dropped when rq is freed.
4014 * Scheduler lock must be held here. Recall not to use bfqq after calling
4015 * this function on it.
4017 void bfq_put_queue(struct bfq_queue *bfqq)
4019 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4020 struct bfq_group *bfqg = bfqq_group(bfqq);
4021 #endif
4023 if (bfqq->bfqd)
4024 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4025 bfqq, bfqq->ref);
4027 bfqq->ref--;
4028 if (bfqq->ref)
4029 return;
4031 if (!hlist_unhashed(&bfqq->burst_list_node)) {
4032 hlist_del_init(&bfqq->burst_list_node);
4034 * Decrement also burst size after the removal, if the
4035 * process associated with bfqq is exiting, and thus
4036 * does not contribute to the burst any longer. This
4037 * decrement helps filter out false positives of large
4038 * bursts, when some short-lived process (often due to
4039 * the execution of commands by some service) happens
4040 * to start and exit while a complex application is
4041 * starting, and thus spawning several processes that
4042 * do I/O (and that *must not* be treated as a large
4043 * burst, see comments on bfq_handle_burst).
4045 * In particular, the decrement is performed only if:
4046 * 1) bfqq is not a merged queue, because, if it is,
4047 * then this free of bfqq is not triggered by the exit
4048 * of the process bfqq is associated with, but exactly
4049 * by the fact that bfqq has just been merged.
4050 * 2) burst_size is greater than 0, to handle
4051 * unbalanced decrements. Unbalanced decrements may
4052 * happen in te following case: bfqq is inserted into
4053 * the current burst list--without incrementing
4054 * bust_size--because of a split, but the current
4055 * burst list is not the burst list bfqq belonged to
4056 * (see comments on the case of a split in
4057 * bfq_set_request).
4059 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4060 bfqq->bfqd->burst_size--;
4063 kmem_cache_free(bfq_pool, bfqq);
4064 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4065 bfqg_and_blkg_put(bfqg);
4066 #endif
4069 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4071 struct bfq_queue *__bfqq, *next;
4074 * If this queue was scheduled to merge with another queue, be
4075 * sure to drop the reference taken on that queue (and others in
4076 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4078 __bfqq = bfqq->new_bfqq;
4079 while (__bfqq) {
4080 if (__bfqq == bfqq)
4081 break;
4082 next = __bfqq->new_bfqq;
4083 bfq_put_queue(__bfqq);
4084 __bfqq = next;
4088 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4090 if (bfqq == bfqd->in_service_queue) {
4091 __bfq_bfqq_expire(bfqd, bfqq);
4092 bfq_schedule_dispatch(bfqd);
4095 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4097 bfq_put_cooperator(bfqq);
4099 bfq_put_queue(bfqq); /* release process reference */
4102 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4104 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4105 struct bfq_data *bfqd;
4107 if (bfqq)
4108 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4110 if (bfqq && bfqd) {
4111 unsigned long flags;
4113 spin_lock_irqsave(&bfqd->lock, flags);
4114 bfq_exit_bfqq(bfqd, bfqq);
4115 bic_set_bfqq(bic, NULL, is_sync);
4116 spin_unlock_irqrestore(&bfqd->lock, flags);
4120 static void bfq_exit_icq(struct io_cq *icq)
4122 struct bfq_io_cq *bic = icq_to_bic(icq);
4124 bfq_exit_icq_bfqq(bic, true);
4125 bfq_exit_icq_bfqq(bic, false);
4129 * Update the entity prio values; note that the new values will not
4130 * be used until the next (re)activation.
4132 static void
4133 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4135 struct task_struct *tsk = current;
4136 int ioprio_class;
4137 struct bfq_data *bfqd = bfqq->bfqd;
4139 if (!bfqd)
4140 return;
4142 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4143 switch (ioprio_class) {
4144 default:
4145 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4146 "bfq: bad prio class %d\n", ioprio_class);
4147 /* fall through */
4148 case IOPRIO_CLASS_NONE:
4150 * No prio set, inherit CPU scheduling settings.
4152 bfqq->new_ioprio = task_nice_ioprio(tsk);
4153 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4154 break;
4155 case IOPRIO_CLASS_RT:
4156 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4157 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4158 break;
4159 case IOPRIO_CLASS_BE:
4160 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4161 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4162 break;
4163 case IOPRIO_CLASS_IDLE:
4164 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4165 bfqq->new_ioprio = 7;
4166 break;
4169 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4170 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4171 bfqq->new_ioprio);
4172 bfqq->new_ioprio = IOPRIO_BE_NR;
4175 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4176 bfqq->entity.prio_changed = 1;
4179 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4180 struct bio *bio, bool is_sync,
4181 struct bfq_io_cq *bic);
4183 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4185 struct bfq_data *bfqd = bic_to_bfqd(bic);
4186 struct bfq_queue *bfqq;
4187 int ioprio = bic->icq.ioc->ioprio;
4190 * This condition may trigger on a newly created bic, be sure to
4191 * drop the lock before returning.
4193 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4194 return;
4196 bic->ioprio = ioprio;
4198 bfqq = bic_to_bfqq(bic, false);
4199 if (bfqq) {
4200 /* release process reference on this queue */
4201 bfq_put_queue(bfqq);
4202 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4203 bic_set_bfqq(bic, bfqq, false);
4206 bfqq = bic_to_bfqq(bic, true);
4207 if (bfqq)
4208 bfq_set_next_ioprio_data(bfqq, bic);
4211 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4212 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4214 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4215 INIT_LIST_HEAD(&bfqq->fifo);
4216 INIT_HLIST_NODE(&bfqq->burst_list_node);
4218 bfqq->ref = 0;
4219 bfqq->bfqd = bfqd;
4221 if (bic)
4222 bfq_set_next_ioprio_data(bfqq, bic);
4224 if (is_sync) {
4226 * No need to mark as has_short_ttime if in
4227 * idle_class, because no device idling is performed
4228 * for queues in idle class
4230 if (!bfq_class_idle(bfqq))
4231 /* tentatively mark as has_short_ttime */
4232 bfq_mark_bfqq_has_short_ttime(bfqq);
4233 bfq_mark_bfqq_sync(bfqq);
4234 bfq_mark_bfqq_just_created(bfqq);
4235 } else
4236 bfq_clear_bfqq_sync(bfqq);
4238 /* set end request to minus infinity from now */
4239 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4241 bfq_mark_bfqq_IO_bound(bfqq);
4243 bfqq->pid = pid;
4245 /* Tentative initial value to trade off between thr and lat */
4246 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
4247 bfqq->budget_timeout = bfq_smallest_from_now();
4249 bfqq->wr_coeff = 1;
4250 bfqq->last_wr_start_finish = jiffies;
4251 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
4252 bfqq->split_time = bfq_smallest_from_now();
4255 * To not forget the possibly high bandwidth consumed by a
4256 * process/queue in the recent past,
4257 * bfq_bfqq_softrt_next_start() returns a value at least equal
4258 * to the current value of bfqq->soft_rt_next_start (see
4259 * comments on bfq_bfqq_softrt_next_start). Set
4260 * soft_rt_next_start to now, to mean that bfqq has consumed
4261 * no bandwidth so far.
4263 bfqq->soft_rt_next_start = jiffies;
4265 /* first request is almost certainly seeky */
4266 bfqq->seek_history = 1;
4269 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
4270 struct bfq_group *bfqg,
4271 int ioprio_class, int ioprio)
4273 switch (ioprio_class) {
4274 case IOPRIO_CLASS_RT:
4275 return &bfqg->async_bfqq[0][ioprio];
4276 case IOPRIO_CLASS_NONE:
4277 ioprio = IOPRIO_NORM;
4278 /* fall through */
4279 case IOPRIO_CLASS_BE:
4280 return &bfqg->async_bfqq[1][ioprio];
4281 case IOPRIO_CLASS_IDLE:
4282 return &bfqg->async_idle_bfqq;
4283 default:
4284 return NULL;
4288 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4289 struct bio *bio, bool is_sync,
4290 struct bfq_io_cq *bic)
4292 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4293 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4294 struct bfq_queue **async_bfqq = NULL;
4295 struct bfq_queue *bfqq;
4296 struct bfq_group *bfqg;
4298 rcu_read_lock();
4300 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4301 if (!bfqg) {
4302 bfqq = &bfqd->oom_bfqq;
4303 goto out;
4306 if (!is_sync) {
4307 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
4308 ioprio);
4309 bfqq = *async_bfqq;
4310 if (bfqq)
4311 goto out;
4314 bfqq = kmem_cache_alloc_node(bfq_pool,
4315 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4316 bfqd->queue->node);
4318 if (bfqq) {
4319 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4320 is_sync);
4321 bfq_init_entity(&bfqq->entity, bfqg);
4322 bfq_log_bfqq(bfqd, bfqq, "allocated");
4323 } else {
4324 bfqq = &bfqd->oom_bfqq;
4325 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4326 goto out;
4330 * Pin the queue now that it's allocated, scheduler exit will
4331 * prune it.
4333 if (async_bfqq) {
4334 bfqq->ref++; /*
4335 * Extra group reference, w.r.t. sync
4336 * queue. This extra reference is removed
4337 * only if bfqq->bfqg disappears, to
4338 * guarantee that this queue is not freed
4339 * until its group goes away.
4341 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
4342 bfqq, bfqq->ref);
4343 *async_bfqq = bfqq;
4346 out:
4347 bfqq->ref++; /* get a process reference to this queue */
4348 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4349 rcu_read_unlock();
4350 return bfqq;
4353 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4354 struct bfq_queue *bfqq)
4356 struct bfq_ttime *ttime = &bfqq->ttime;
4357 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4359 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4361 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4362 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4363 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4364 ttime->ttime_samples);
4367 static void
4368 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4369 struct request *rq)
4371 bfqq->seek_history <<= 1;
4372 bfqq->seek_history |=
4373 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
4374 (!blk_queue_nonrot(bfqd->queue) ||
4375 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4378 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4379 struct bfq_queue *bfqq,
4380 struct bfq_io_cq *bic)
4382 bool has_short_ttime = true;
4385 * No need to update has_short_ttime if bfqq is async or in
4386 * idle io prio class, or if bfq_slice_idle is zero, because
4387 * no device idling is performed for bfqq in this case.
4389 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4390 bfqd->bfq_slice_idle == 0)
4391 return;
4393 /* Idle window just restored, statistics are meaningless. */
4394 if (time_is_after_eq_jiffies(bfqq->split_time +
4395 bfqd->bfq_wr_min_idle_time))
4396 return;
4398 /* Think time is infinite if no process is linked to
4399 * bfqq. Otherwise check average think time to
4400 * decide whether to mark as has_short_ttime
4402 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4403 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4404 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4405 has_short_ttime = false;
4407 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4408 has_short_ttime);
4410 if (has_short_ttime)
4411 bfq_mark_bfqq_has_short_ttime(bfqq);
4412 else
4413 bfq_clear_bfqq_has_short_ttime(bfqq);
4417 * Called when a new fs request (rq) is added to bfqq. Check if there's
4418 * something we should do about it.
4420 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4421 struct request *rq)
4423 struct bfq_io_cq *bic = RQ_BIC(rq);
4425 if (rq->cmd_flags & REQ_META)
4426 bfqq->meta_pending++;
4428 bfq_update_io_thinktime(bfqd, bfqq);
4429 bfq_update_has_short_ttime(bfqd, bfqq, bic);
4430 bfq_update_io_seektime(bfqd, bfqq, rq);
4432 bfq_log_bfqq(bfqd, bfqq,
4433 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4434 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4436 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4438 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4439 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4440 blk_rq_sectors(rq) < 32;
4441 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4444 * There is just this request queued: if the request
4445 * is small and the queue is not to be expired, then
4446 * just exit.
4448 * In this way, if the device is being idled to wait
4449 * for a new request from the in-service queue, we
4450 * avoid unplugging the device and committing the
4451 * device to serve just a small request. On the
4452 * contrary, we wait for the block layer to decide
4453 * when to unplug the device: hopefully, new requests
4454 * will be merged to this one quickly, then the device
4455 * will be unplugged and larger requests will be
4456 * dispatched.
4458 if (small_req && !budget_timeout)
4459 return;
4462 * A large enough request arrived, or the queue is to
4463 * be expired: in both cases disk idling is to be
4464 * stopped, so clear wait_request flag and reset
4465 * timer.
4467 bfq_clear_bfqq_wait_request(bfqq);
4468 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4471 * The queue is not empty, because a new request just
4472 * arrived. Hence we can safely expire the queue, in
4473 * case of budget timeout, without risking that the
4474 * timestamps of the queue are not updated correctly.
4475 * See [1] for more details.
4477 if (budget_timeout)
4478 bfq_bfqq_expire(bfqd, bfqq, false,
4479 BFQQE_BUDGET_TIMEOUT);
4483 /* returns true if it causes the idle timer to be disabled */
4484 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4486 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4487 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4488 bool waiting, idle_timer_disabled = false;
4490 if (new_bfqq) {
4491 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4492 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4494 * Release the request's reference to the old bfqq
4495 * and make sure one is taken to the shared queue.
4497 new_bfqq->allocated++;
4498 bfqq->allocated--;
4499 new_bfqq->ref++;
4501 * If the bic associated with the process
4502 * issuing this request still points to bfqq
4503 * (and thus has not been already redirected
4504 * to new_bfqq or even some other bfq_queue),
4505 * then complete the merge and redirect it to
4506 * new_bfqq.
4508 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4509 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4510 bfqq, new_bfqq);
4512 bfq_clear_bfqq_just_created(bfqq);
4514 * rq is about to be enqueued into new_bfqq,
4515 * release rq reference on bfqq
4517 bfq_put_queue(bfqq);
4518 rq->elv.priv[1] = new_bfqq;
4519 bfqq = new_bfqq;
4522 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
4523 bfq_add_request(rq);
4524 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
4526 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4527 list_add_tail(&rq->queuelist, &bfqq->fifo);
4529 bfq_rq_enqueued(bfqd, bfqq, rq);
4531 return idle_timer_disabled;
4534 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4535 static void bfq_update_insert_stats(struct request_queue *q,
4536 struct bfq_queue *bfqq,
4537 bool idle_timer_disabled,
4538 unsigned int cmd_flags)
4540 if (!bfqq)
4541 return;
4544 * bfqq still exists, because it can disappear only after
4545 * either it is merged with another queue, or the process it
4546 * is associated with exits. But both actions must be taken by
4547 * the same process currently executing this flow of
4548 * instructions.
4550 * In addition, the following queue lock guarantees that
4551 * bfqq_group(bfqq) exists as well.
4553 spin_lock_irq(q->queue_lock);
4554 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4555 if (idle_timer_disabled)
4556 bfqg_stats_update_idle_time(bfqq_group(bfqq));
4557 spin_unlock_irq(q->queue_lock);
4559 #else
4560 static inline void bfq_update_insert_stats(struct request_queue *q,
4561 struct bfq_queue *bfqq,
4562 bool idle_timer_disabled,
4563 unsigned int cmd_flags) {}
4564 #endif
4566 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4567 bool at_head)
4569 struct request_queue *q = hctx->queue;
4570 struct bfq_data *bfqd = q->elevator->elevator_data;
4571 struct bfq_queue *bfqq;
4572 bool idle_timer_disabled = false;
4573 unsigned int cmd_flags;
4575 spin_lock_irq(&bfqd->lock);
4576 if (blk_mq_sched_try_insert_merge(q, rq)) {
4577 spin_unlock_irq(&bfqd->lock);
4578 return;
4581 spin_unlock_irq(&bfqd->lock);
4583 blk_mq_sched_request_inserted(rq);
4585 spin_lock_irq(&bfqd->lock);
4586 bfqq = bfq_init_rq(rq);
4587 if (at_head || blk_rq_is_passthrough(rq)) {
4588 if (at_head)
4589 list_add(&rq->queuelist, &bfqd->dispatch);
4590 else
4591 list_add_tail(&rq->queuelist, &bfqd->dispatch);
4592 } else { /* bfqq is assumed to be non null here */
4593 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
4595 * Update bfqq, because, if a queue merge has occurred
4596 * in __bfq_insert_request, then rq has been
4597 * redirected into a new queue.
4599 bfqq = RQ_BFQQ(rq);
4601 if (rq_mergeable(rq)) {
4602 elv_rqhash_add(q, rq);
4603 if (!q->last_merge)
4604 q->last_merge = rq;
4609 * Cache cmd_flags before releasing scheduler lock, because rq
4610 * may disappear afterwards (for example, because of a request
4611 * merge).
4613 cmd_flags = rq->cmd_flags;
4615 spin_unlock_irq(&bfqd->lock);
4617 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4618 cmd_flags);
4621 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4622 struct list_head *list, bool at_head)
4624 while (!list_empty(list)) {
4625 struct request *rq;
4627 rq = list_first_entry(list, struct request, queuelist);
4628 list_del_init(&rq->queuelist);
4629 bfq_insert_request(hctx, rq, at_head);
4633 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4635 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4636 bfqd->rq_in_driver);
4638 if (bfqd->hw_tag == 1)
4639 return;
4642 * This sample is valid if the number of outstanding requests
4643 * is large enough to allow a queueing behavior. Note that the
4644 * sum is not exact, as it's not taking into account deactivated
4645 * requests.
4647 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4648 return;
4650 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4651 return;
4653 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4654 bfqd->max_rq_in_driver = 0;
4655 bfqd->hw_tag_samples = 0;
4658 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4660 u64 now_ns;
4661 u32 delta_us;
4663 bfq_update_hw_tag(bfqd);
4665 bfqd->rq_in_driver--;
4666 bfqq->dispatched--;
4668 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4670 * Set budget_timeout (which we overload to store the
4671 * time at which the queue remains with no backlog and
4672 * no outstanding request; used by the weight-raising
4673 * mechanism).
4675 bfqq->budget_timeout = jiffies;
4677 bfq_weights_tree_remove(bfqd, bfqq);
4680 now_ns = ktime_get_ns();
4682 bfqq->ttime.last_end_request = now_ns;
4685 * Using us instead of ns, to get a reasonable precision in
4686 * computing rate in next check.
4688 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4691 * If the request took rather long to complete, and, according
4692 * to the maximum request size recorded, this completion latency
4693 * implies that the request was certainly served at a very low
4694 * rate (less than 1M sectors/sec), then the whole observation
4695 * interval that lasts up to this time instant cannot be a
4696 * valid time interval for computing a new peak rate. Invoke
4697 * bfq_update_rate_reset to have the following three steps
4698 * taken:
4699 * - close the observation interval at the last (previous)
4700 * request dispatch or completion
4701 * - compute rate, if possible, for that observation interval
4702 * - reset to zero samples, which will trigger a proper
4703 * re-initialization of the observation interval on next
4704 * dispatch
4706 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4707 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4708 1UL<<(BFQ_RATE_SHIFT - 10))
4709 bfq_update_rate_reset(bfqd, NULL);
4710 bfqd->last_completion = now_ns;
4713 * If we are waiting to discover whether the request pattern
4714 * of the task associated with the queue is actually
4715 * isochronous, and both requisites for this condition to hold
4716 * are now satisfied, then compute soft_rt_next_start (see the
4717 * comments on the function bfq_bfqq_softrt_next_start()). We
4718 * schedule this delayed check when bfqq expires, if it still
4719 * has in-flight requests.
4721 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4722 RB_EMPTY_ROOT(&bfqq->sort_list))
4723 bfqq->soft_rt_next_start =
4724 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4727 * If this is the in-service queue, check if it needs to be expired,
4728 * or if we want to idle in case it has no pending requests.
4730 if (bfqd->in_service_queue == bfqq) {
4731 if (bfq_bfqq_must_idle(bfqq)) {
4732 if (bfqq->dispatched == 0)
4733 bfq_arm_slice_timer(bfqd);
4735 * If we get here, we do not expire bfqq, even
4736 * if bfqq was in budget timeout or had no
4737 * more requests (as controlled in the next
4738 * conditional instructions). The reason for
4739 * not expiring bfqq is as follows.
4741 * Here bfqq->dispatched > 0 holds, but
4742 * bfq_bfqq_must_idle() returned true. This
4743 * implies that, even if no request arrives
4744 * for bfqq before bfqq->dispatched reaches 0,
4745 * bfqq will, however, not be expired on the
4746 * completion event that causes bfqq->dispatch
4747 * to reach zero. In contrast, on this event,
4748 * bfqq will start enjoying device idling
4749 * (I/O-dispatch plugging).
4751 * But, if we expired bfqq here, bfqq would
4752 * not have the chance to enjoy device idling
4753 * when bfqq->dispatched finally reaches
4754 * zero. This would expose bfqq to violation
4755 * of its reserved service guarantees.
4757 return;
4758 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4759 bfq_bfqq_expire(bfqd, bfqq, false,
4760 BFQQE_BUDGET_TIMEOUT);
4761 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4762 (bfqq->dispatched == 0 ||
4763 !bfq_better_to_idle(bfqq)))
4764 bfq_bfqq_expire(bfqd, bfqq, false,
4765 BFQQE_NO_MORE_REQUESTS);
4768 if (!bfqd->rq_in_driver)
4769 bfq_schedule_dispatch(bfqd);
4772 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
4774 bfqq->allocated--;
4776 bfq_put_queue(bfqq);
4780 * Handle either a requeue or a finish for rq. The things to do are
4781 * the same in both cases: all references to rq are to be dropped. In
4782 * particular, rq is considered completed from the point of view of
4783 * the scheduler.
4785 static void bfq_finish_requeue_request(struct request *rq)
4787 struct bfq_queue *bfqq = RQ_BFQQ(rq);
4788 struct bfq_data *bfqd;
4791 * Requeue and finish hooks are invoked in blk-mq without
4792 * checking whether the involved request is actually still
4793 * referenced in the scheduler. To handle this fact, the
4794 * following two checks make this function exit in case of
4795 * spurious invocations, for which there is nothing to do.
4797 * First, check whether rq has nothing to do with an elevator.
4799 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
4800 return;
4803 * rq either is not associated with any icq, or is an already
4804 * requeued request that has not (yet) been re-inserted into
4805 * a bfq_queue.
4807 if (!rq->elv.icq || !bfqq)
4808 return;
4810 bfqd = bfqq->bfqd;
4812 if (rq->rq_flags & RQF_STARTED)
4813 bfqg_stats_update_completion(bfqq_group(bfqq),
4814 rq->start_time_ns,
4815 rq->io_start_time_ns,
4816 rq->cmd_flags);
4818 if (likely(rq->rq_flags & RQF_STARTED)) {
4819 unsigned long flags;
4821 spin_lock_irqsave(&bfqd->lock, flags);
4823 bfq_completed_request(bfqq, bfqd);
4824 bfq_finish_requeue_request_body(bfqq);
4826 spin_unlock_irqrestore(&bfqd->lock, flags);
4827 } else {
4829 * Request rq may be still/already in the scheduler,
4830 * in which case we need to remove it (this should
4831 * never happen in case of requeue). And we cannot
4832 * defer such a check and removal, to avoid
4833 * inconsistencies in the time interval from the end
4834 * of this function to the start of the deferred work.
4835 * This situation seems to occur only in process
4836 * context, as a consequence of a merge. In the
4837 * current version of the code, this implies that the
4838 * lock is held.
4841 if (!RB_EMPTY_NODE(&rq->rb_node)) {
4842 bfq_remove_request(rq->q, rq);
4843 bfqg_stats_update_io_remove(bfqq_group(bfqq),
4844 rq->cmd_flags);
4846 bfq_finish_requeue_request_body(bfqq);
4850 * Reset private fields. In case of a requeue, this allows
4851 * this function to correctly do nothing if it is spuriously
4852 * invoked again on this same request (see the check at the
4853 * beginning of the function). Probably, a better general
4854 * design would be to prevent blk-mq from invoking the requeue
4855 * or finish hooks of an elevator, for a request that is not
4856 * referred by that elevator.
4858 * Resetting the following fields would break the
4859 * request-insertion logic if rq is re-inserted into a bfq
4860 * internal queue, without a re-preparation. Here we assume
4861 * that re-insertions of requeued requests, without
4862 * re-preparation, can happen only for pass_through or at_head
4863 * requests (which are not re-inserted into bfq internal
4864 * queues).
4866 rq->elv.priv[0] = NULL;
4867 rq->elv.priv[1] = NULL;
4871 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4872 * was the last process referring to that bfqq.
4874 static struct bfq_queue *
4875 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4877 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4879 if (bfqq_process_refs(bfqq) == 1) {
4880 bfqq->pid = current->pid;
4881 bfq_clear_bfqq_coop(bfqq);
4882 bfq_clear_bfqq_split_coop(bfqq);
4883 return bfqq;
4886 bic_set_bfqq(bic, NULL, 1);
4888 bfq_put_cooperator(bfqq);
4890 bfq_put_queue(bfqq);
4891 return NULL;
4894 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4895 struct bfq_io_cq *bic,
4896 struct bio *bio,
4897 bool split, bool is_sync,
4898 bool *new_queue)
4900 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4902 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4903 return bfqq;
4905 if (new_queue)
4906 *new_queue = true;
4908 if (bfqq)
4909 bfq_put_queue(bfqq);
4910 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4912 bic_set_bfqq(bic, bfqq, is_sync);
4913 if (split && is_sync) {
4914 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4915 bic->saved_in_large_burst)
4916 bfq_mark_bfqq_in_large_burst(bfqq);
4917 else {
4918 bfq_clear_bfqq_in_large_burst(bfqq);
4919 if (bic->was_in_burst_list)
4921 * If bfqq was in the current
4922 * burst list before being
4923 * merged, then we have to add
4924 * it back. And we do not need
4925 * to increase burst_size, as
4926 * we did not decrement
4927 * burst_size when we removed
4928 * bfqq from the burst list as
4929 * a consequence of a merge
4930 * (see comments in
4931 * bfq_put_queue). In this
4932 * respect, it would be rather
4933 * costly to know whether the
4934 * current burst list is still
4935 * the same burst list from
4936 * which bfqq was removed on
4937 * the merge. To avoid this
4938 * cost, if bfqq was in a
4939 * burst list, then we add
4940 * bfqq to the current burst
4941 * list without any further
4942 * check. This can cause
4943 * inappropriate insertions,
4944 * but rarely enough to not
4945 * harm the detection of large
4946 * bursts significantly.
4948 hlist_add_head(&bfqq->burst_list_node,
4949 &bfqd->burst_list);
4951 bfqq->split_time = jiffies;
4954 return bfqq;
4958 * Only reset private fields. The actual request preparation will be
4959 * performed by bfq_init_rq, when rq is either inserted or merged. See
4960 * comments on bfq_init_rq for the reason behind this delayed
4961 * preparation.
4963 static void bfq_prepare_request(struct request *rq, struct bio *bio)
4966 * Regardless of whether we have an icq attached, we have to
4967 * clear the scheduler pointers, as they might point to
4968 * previously allocated bic/bfqq structs.
4970 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
4974 * If needed, init rq, allocate bfq data structures associated with
4975 * rq, and increment reference counters in the destination bfq_queue
4976 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
4977 * not associated with any bfq_queue.
4979 * This function is invoked by the functions that perform rq insertion
4980 * or merging. One may have expected the above preparation operations
4981 * to be performed in bfq_prepare_request, and not delayed to when rq
4982 * is inserted or merged. The rationale behind this delayed
4983 * preparation is that, after the prepare_request hook is invoked for
4984 * rq, rq may still be transformed into a request with no icq, i.e., a
4985 * request not associated with any queue. No bfq hook is invoked to
4986 * signal this tranformation. As a consequence, should these
4987 * preparation operations be performed when the prepare_request hook
4988 * is invoked, and should rq be transformed one moment later, bfq
4989 * would end up in an inconsistent state, because it would have
4990 * incremented some queue counters for an rq destined to
4991 * transformation, without any chance to correctly lower these
4992 * counters back. In contrast, no transformation can still happen for
4993 * rq after rq has been inserted or merged. So, it is safe to execute
4994 * these preparation operations when rq is finally inserted or merged.
4996 static struct bfq_queue *bfq_init_rq(struct request *rq)
4998 struct request_queue *q = rq->q;
4999 struct bio *bio = rq->bio;
5000 struct bfq_data *bfqd = q->elevator->elevator_data;
5001 struct bfq_io_cq *bic;
5002 const int is_sync = rq_is_sync(rq);
5003 struct bfq_queue *bfqq;
5004 bool new_queue = false;
5005 bool bfqq_already_existing = false, split = false;
5007 if (unlikely(!rq->elv.icq))
5008 return NULL;
5011 * Assuming that elv.priv[1] is set only if everything is set
5012 * for this rq. This holds true, because this function is
5013 * invoked only for insertion or merging, and, after such
5014 * events, a request cannot be manipulated any longer before
5015 * being removed from bfq.
5017 if (rq->elv.priv[1])
5018 return rq->elv.priv[1];
5020 bic = icq_to_bic(rq->elv.icq);
5022 bfq_check_ioprio_change(bic, bio);
5024 bfq_bic_update_cgroup(bic, bio);
5026 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5027 &new_queue);
5029 if (likely(!new_queue)) {
5030 /* If the queue was seeky for too long, break it apart. */
5031 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5032 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
5034 /* Update bic before losing reference to bfqq */
5035 if (bfq_bfqq_in_large_burst(bfqq))
5036 bic->saved_in_large_burst = true;
5038 bfqq = bfq_split_bfqq(bic, bfqq);
5039 split = true;
5041 if (!bfqq)
5042 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5043 true, is_sync,
5044 NULL);
5045 else
5046 bfqq_already_existing = true;
5050 bfqq->allocated++;
5051 bfqq->ref++;
5052 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5053 rq, bfqq, bfqq->ref);
5055 rq->elv.priv[0] = bic;
5056 rq->elv.priv[1] = bfqq;
5059 * If a bfq_queue has only one process reference, it is owned
5060 * by only this bic: we can then set bfqq->bic = bic. in
5061 * addition, if the queue has also just been split, we have to
5062 * resume its state.
5064 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5065 bfqq->bic = bic;
5066 if (split) {
5068 * The queue has just been split from a shared
5069 * queue: restore the idle window and the
5070 * possible weight raising period.
5072 bfq_bfqq_resume_state(bfqq, bfqd, bic,
5073 bfqq_already_existing);
5077 if (unlikely(bfq_bfqq_just_created(bfqq)))
5078 bfq_handle_burst(bfqd, bfqq);
5080 return bfqq;
5083 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5085 struct bfq_data *bfqd = bfqq->bfqd;
5086 enum bfqq_expiration reason;
5087 unsigned long flags;
5089 spin_lock_irqsave(&bfqd->lock, flags);
5090 bfq_clear_bfqq_wait_request(bfqq);
5092 if (bfqq != bfqd->in_service_queue) {
5093 spin_unlock_irqrestore(&bfqd->lock, flags);
5094 return;
5097 if (bfq_bfqq_budget_timeout(bfqq))
5099 * Also here the queue can be safely expired
5100 * for budget timeout without wasting
5101 * guarantees
5103 reason = BFQQE_BUDGET_TIMEOUT;
5104 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5106 * The queue may not be empty upon timer expiration,
5107 * because we may not disable the timer when the
5108 * first request of the in-service queue arrives
5109 * during disk idling.
5111 reason = BFQQE_TOO_IDLE;
5112 else
5113 goto schedule_dispatch;
5115 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5117 schedule_dispatch:
5118 spin_unlock_irqrestore(&bfqd->lock, flags);
5119 bfq_schedule_dispatch(bfqd);
5123 * Handler of the expiration of the timer running if the in-service queue
5124 * is idling inside its time slice.
5126 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5128 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5129 idle_slice_timer);
5130 struct bfq_queue *bfqq = bfqd->in_service_queue;
5133 * Theoretical race here: the in-service queue can be NULL or
5134 * different from the queue that was idling if a new request
5135 * arrives for the current queue and there is a full dispatch
5136 * cycle that changes the in-service queue. This can hardly
5137 * happen, but in the worst case we just expire a queue too
5138 * early.
5140 if (bfqq)
5141 bfq_idle_slice_timer_body(bfqq);
5143 return HRTIMER_NORESTART;
5146 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5147 struct bfq_queue **bfqq_ptr)
5149 struct bfq_queue *bfqq = *bfqq_ptr;
5151 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5152 if (bfqq) {
5153 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5155 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5156 bfqq, bfqq->ref);
5157 bfq_put_queue(bfqq);
5158 *bfqq_ptr = NULL;
5163 * Release all the bfqg references to its async queues. If we are
5164 * deallocating the group these queues may still contain requests, so
5165 * we reparent them to the root cgroup (i.e., the only one that will
5166 * exist for sure until all the requests on a device are gone).
5168 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
5170 int i, j;
5172 for (i = 0; i < 2; i++)
5173 for (j = 0; j < IOPRIO_BE_NR; j++)
5174 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
5176 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
5180 * See the comments on bfq_limit_depth for the purpose of
5181 * the depths set in the function. Return minimum shallow depth we'll use.
5183 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5184 struct sbitmap_queue *bt)
5186 unsigned int i, j, min_shallow = UINT_MAX;
5189 * In-word depths if no bfq_queue is being weight-raised:
5190 * leaving 25% of tags only for sync reads.
5192 * In next formulas, right-shift the value
5193 * (1U<<bt->sb.shift), instead of computing directly
5194 * (1U<<(bt->sb.shift - something)), to be robust against
5195 * any possible value of bt->sb.shift, without having to
5196 * limit 'something'.
5198 /* no more than 50% of tags for async I/O */
5199 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
5201 * no more than 75% of tags for sync writes (25% extra tags
5202 * w.r.t. async I/O, to prevent async I/O from starving sync
5203 * writes)
5205 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
5208 * In-word depths in case some bfq_queue is being weight-
5209 * raised: leaving ~63% of tags for sync reads. This is the
5210 * highest percentage for which, in our tests, application
5211 * start-up times didn't suffer from any regression due to tag
5212 * shortage.
5214 /* no more than ~18% of tags for async I/O */
5215 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
5216 /* no more than ~37% of tags for sync writes (~20% extra tags) */
5217 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
5219 for (i = 0; i < 2; i++)
5220 for (j = 0; j < 2; j++)
5221 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5223 return min_shallow;
5226 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5228 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5229 struct blk_mq_tags *tags = hctx->sched_tags;
5230 unsigned int min_shallow;
5232 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5233 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
5234 return 0;
5237 static void bfq_exit_queue(struct elevator_queue *e)
5239 struct bfq_data *bfqd = e->elevator_data;
5240 struct bfq_queue *bfqq, *n;
5242 hrtimer_cancel(&bfqd->idle_slice_timer);
5244 spin_lock_irq(&bfqd->lock);
5245 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
5246 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
5247 spin_unlock_irq(&bfqd->lock);
5249 hrtimer_cancel(&bfqd->idle_slice_timer);
5251 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5252 /* release oom-queue reference to root group */
5253 bfqg_and_blkg_put(bfqd->root_group);
5255 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5256 #else
5257 spin_lock_irq(&bfqd->lock);
5258 bfq_put_async_queues(bfqd, bfqd->root_group);
5259 kfree(bfqd->root_group);
5260 spin_unlock_irq(&bfqd->lock);
5261 #endif
5263 kfree(bfqd);
5266 static void bfq_init_root_group(struct bfq_group *root_group,
5267 struct bfq_data *bfqd)
5269 int i;
5271 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5272 root_group->entity.parent = NULL;
5273 root_group->my_entity = NULL;
5274 root_group->bfqd = bfqd;
5275 #endif
5276 root_group->rq_pos_tree = RB_ROOT;
5277 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5278 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5279 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5282 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5284 struct bfq_data *bfqd;
5285 struct elevator_queue *eq;
5287 eq = elevator_alloc(q, e);
5288 if (!eq)
5289 return -ENOMEM;
5291 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5292 if (!bfqd) {
5293 kobject_put(&eq->kobj);
5294 return -ENOMEM;
5296 eq->elevator_data = bfqd;
5298 spin_lock_irq(q->queue_lock);
5299 q->elevator = eq;
5300 spin_unlock_irq(q->queue_lock);
5303 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5304 * Grab a permanent reference to it, so that the normal code flow
5305 * will not attempt to free it.
5307 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5308 bfqd->oom_bfqq.ref++;
5309 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5310 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5311 bfqd->oom_bfqq.entity.new_weight =
5312 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
5314 /* oom_bfqq does not participate to bursts */
5315 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5318 * Trigger weight initialization, according to ioprio, at the
5319 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5320 * class won't be changed any more.
5322 bfqd->oom_bfqq.entity.prio_changed = 1;
5324 bfqd->queue = q;
5326 INIT_LIST_HEAD(&bfqd->dispatch);
5328 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5329 HRTIMER_MODE_REL);
5330 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5332 bfqd->queue_weights_tree = RB_ROOT;
5333 bfqd->group_weights_tree = RB_ROOT;
5335 INIT_LIST_HEAD(&bfqd->active_list);
5336 INIT_LIST_HEAD(&bfqd->idle_list);
5337 INIT_HLIST_HEAD(&bfqd->burst_list);
5339 bfqd->hw_tag = -1;
5341 bfqd->bfq_max_budget = bfq_default_max_budget;
5343 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5344 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5345 bfqd->bfq_back_max = bfq_back_max;
5346 bfqd->bfq_back_penalty = bfq_back_penalty;
5347 bfqd->bfq_slice_idle = bfq_slice_idle;
5348 bfqd->bfq_timeout = bfq_timeout;
5350 bfqd->bfq_requests_within_timer = 120;
5352 bfqd->bfq_large_burst_thresh = 8;
5353 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5355 bfqd->low_latency = true;
5358 * Trade-off between responsiveness and fairness.
5360 bfqd->bfq_wr_coeff = 30;
5361 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
5362 bfqd->bfq_wr_max_time = 0;
5363 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5364 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
5365 bfqd->bfq_wr_max_softrt_rate = 7000; /*
5366 * Approximate rate required
5367 * to playback or record a
5368 * high-definition compressed
5369 * video.
5371 bfqd->wr_busy_queues = 0;
5374 * Begin by assuming, optimistically, that the device peak
5375 * rate is equal to 2/3 of the highest reference rate.
5377 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5378 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5379 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
5381 spin_lock_init(&bfqd->lock);
5384 * The invocation of the next bfq_create_group_hierarchy
5385 * function is the head of a chain of function calls
5386 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5387 * blk_mq_freeze_queue) that may lead to the invocation of the
5388 * has_work hook function. For this reason,
5389 * bfq_create_group_hierarchy is invoked only after all
5390 * scheduler data has been initialized, apart from the fields
5391 * that can be initialized only after invoking
5392 * bfq_create_group_hierarchy. This, in particular, enables
5393 * has_work to correctly return false. Of course, to avoid
5394 * other inconsistencies, the blk-mq stack must then refrain
5395 * from invoking further scheduler hooks before this init
5396 * function is finished.
5398 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5399 if (!bfqd->root_group)
5400 goto out_free;
5401 bfq_init_root_group(bfqd->root_group, bfqd);
5402 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5404 wbt_disable_default(q);
5405 return 0;
5407 out_free:
5408 kfree(bfqd);
5409 kobject_put(&eq->kobj);
5410 return -ENOMEM;
5413 static void bfq_slab_kill(void)
5415 kmem_cache_destroy(bfq_pool);
5418 static int __init bfq_slab_setup(void)
5420 bfq_pool = KMEM_CACHE(bfq_queue, 0);
5421 if (!bfq_pool)
5422 return -ENOMEM;
5423 return 0;
5426 static ssize_t bfq_var_show(unsigned int var, char *page)
5428 return sprintf(page, "%u\n", var);
5431 static int bfq_var_store(unsigned long *var, const char *page)
5433 unsigned long new_val;
5434 int ret = kstrtoul(page, 10, &new_val);
5436 if (ret)
5437 return ret;
5438 *var = new_val;
5439 return 0;
5442 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
5443 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5445 struct bfq_data *bfqd = e->elevator_data; \
5446 u64 __data = __VAR; \
5447 if (__CONV == 1) \
5448 __data = jiffies_to_msecs(__data); \
5449 else if (__CONV == 2) \
5450 __data = div_u64(__data, NSEC_PER_MSEC); \
5451 return bfq_var_show(__data, (page)); \
5453 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5454 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5455 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5456 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5457 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5458 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5459 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5460 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
5461 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
5462 #undef SHOW_FUNCTION
5464 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
5465 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5467 struct bfq_data *bfqd = e->elevator_data; \
5468 u64 __data = __VAR; \
5469 __data = div_u64(__data, NSEC_PER_USEC); \
5470 return bfq_var_show(__data, (page)); \
5472 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5473 #undef USEC_SHOW_FUNCTION
5475 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
5476 static ssize_t \
5477 __FUNC(struct elevator_queue *e, const char *page, size_t count) \
5479 struct bfq_data *bfqd = e->elevator_data; \
5480 unsigned long __data, __min = (MIN), __max = (MAX); \
5481 int ret; \
5483 ret = bfq_var_store(&__data, (page)); \
5484 if (ret) \
5485 return ret; \
5486 if (__data < __min) \
5487 __data = __min; \
5488 else if (__data > __max) \
5489 __data = __max; \
5490 if (__CONV == 1) \
5491 *(__PTR) = msecs_to_jiffies(__data); \
5492 else if (__CONV == 2) \
5493 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
5494 else \
5495 *(__PTR) = __data; \
5496 return count; \
5498 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5499 INT_MAX, 2);
5500 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5501 INT_MAX, 2);
5502 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5503 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5504 INT_MAX, 0);
5505 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5506 #undef STORE_FUNCTION
5508 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
5509 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5511 struct bfq_data *bfqd = e->elevator_data; \
5512 unsigned long __data, __min = (MIN), __max = (MAX); \
5513 int ret; \
5515 ret = bfq_var_store(&__data, (page)); \
5516 if (ret) \
5517 return ret; \
5518 if (__data < __min) \
5519 __data = __min; \
5520 else if (__data > __max) \
5521 __data = __max; \
5522 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
5523 return count; \
5525 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5526 UINT_MAX);
5527 #undef USEC_STORE_FUNCTION
5529 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5530 const char *page, size_t count)
5532 struct bfq_data *bfqd = e->elevator_data;
5533 unsigned long __data;
5534 int ret;
5536 ret = bfq_var_store(&__data, (page));
5537 if (ret)
5538 return ret;
5540 if (__data == 0)
5541 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5542 else {
5543 if (__data > INT_MAX)
5544 __data = INT_MAX;
5545 bfqd->bfq_max_budget = __data;
5548 bfqd->bfq_user_max_budget = __data;
5550 return count;
5554 * Leaving this name to preserve name compatibility with cfq
5555 * parameters, but this timeout is used for both sync and async.
5557 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5558 const char *page, size_t count)
5560 struct bfq_data *bfqd = e->elevator_data;
5561 unsigned long __data;
5562 int ret;
5564 ret = bfq_var_store(&__data, (page));
5565 if (ret)
5566 return ret;
5568 if (__data < 1)
5569 __data = 1;
5570 else if (__data > INT_MAX)
5571 __data = INT_MAX;
5573 bfqd->bfq_timeout = msecs_to_jiffies(__data);
5574 if (bfqd->bfq_user_max_budget == 0)
5575 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5577 return count;
5580 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5581 const char *page, size_t count)
5583 struct bfq_data *bfqd = e->elevator_data;
5584 unsigned long __data;
5585 int ret;
5587 ret = bfq_var_store(&__data, (page));
5588 if (ret)
5589 return ret;
5591 if (__data > 1)
5592 __data = 1;
5593 if (!bfqd->strict_guarantees && __data == 1
5594 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5595 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5597 bfqd->strict_guarantees = __data;
5599 return count;
5602 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5603 const char *page, size_t count)
5605 struct bfq_data *bfqd = e->elevator_data;
5606 unsigned long __data;
5607 int ret;
5609 ret = bfq_var_store(&__data, (page));
5610 if (ret)
5611 return ret;
5613 if (__data > 1)
5614 __data = 1;
5615 if (__data == 0 && bfqd->low_latency != 0)
5616 bfq_end_wr(bfqd);
5617 bfqd->low_latency = __data;
5619 return count;
5622 #define BFQ_ATTR(name) \
5623 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5625 static struct elv_fs_entry bfq_attrs[] = {
5626 BFQ_ATTR(fifo_expire_sync),
5627 BFQ_ATTR(fifo_expire_async),
5628 BFQ_ATTR(back_seek_max),
5629 BFQ_ATTR(back_seek_penalty),
5630 BFQ_ATTR(slice_idle),
5631 BFQ_ATTR(slice_idle_us),
5632 BFQ_ATTR(max_budget),
5633 BFQ_ATTR(timeout_sync),
5634 BFQ_ATTR(strict_guarantees),
5635 BFQ_ATTR(low_latency),
5636 __ATTR_NULL
5639 static struct elevator_type iosched_bfq_mq = {
5640 .ops.mq = {
5641 .limit_depth = bfq_limit_depth,
5642 .prepare_request = bfq_prepare_request,
5643 .requeue_request = bfq_finish_requeue_request,
5644 .finish_request = bfq_finish_requeue_request,
5645 .exit_icq = bfq_exit_icq,
5646 .insert_requests = bfq_insert_requests,
5647 .dispatch_request = bfq_dispatch_request,
5648 .next_request = elv_rb_latter_request,
5649 .former_request = elv_rb_former_request,
5650 .allow_merge = bfq_allow_bio_merge,
5651 .bio_merge = bfq_bio_merge,
5652 .request_merge = bfq_request_merge,
5653 .requests_merged = bfq_requests_merged,
5654 .request_merged = bfq_request_merged,
5655 .has_work = bfq_has_work,
5656 .init_hctx = bfq_init_hctx,
5657 .init_sched = bfq_init_queue,
5658 .exit_sched = bfq_exit_queue,
5661 .uses_mq = true,
5662 .icq_size = sizeof(struct bfq_io_cq),
5663 .icq_align = __alignof__(struct bfq_io_cq),
5664 .elevator_attrs = bfq_attrs,
5665 .elevator_name = "bfq",
5666 .elevator_owner = THIS_MODULE,
5668 MODULE_ALIAS("bfq-iosched");
5670 static int __init bfq_init(void)
5672 int ret;
5674 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5675 ret = blkcg_policy_register(&blkcg_policy_bfq);
5676 if (ret)
5677 return ret;
5678 #endif
5680 ret = -ENOMEM;
5681 if (bfq_slab_setup())
5682 goto err_pol_unreg;
5685 * Times to load large popular applications for the typical
5686 * systems installed on the reference devices (see the
5687 * comments before the definition of the next
5688 * array). Actually, we use slightly lower values, as the
5689 * estimated peak rate tends to be smaller than the actual
5690 * peak rate. The reason for this last fact is that estimates
5691 * are computed over much shorter time intervals than the long
5692 * intervals typically used for benchmarking. Why? First, to
5693 * adapt more quickly to variations. Second, because an I/O
5694 * scheduler cannot rely on a peak-rate-evaluation workload to
5695 * be run for a long time.
5697 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5698 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5700 ret = elv_register(&iosched_bfq_mq);
5701 if (ret)
5702 goto slab_kill;
5704 return 0;
5706 slab_kill:
5707 bfq_slab_kill();
5708 err_pol_unreg:
5709 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5710 blkcg_policy_unregister(&blkcg_policy_bfq);
5711 #endif
5712 return ret;
5715 static void __exit bfq_exit(void)
5717 elv_unregister(&iosched_bfq_mq);
5718 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5719 blkcg_policy_unregister(&blkcg_policy_bfq);
5720 #endif
5721 bfq_slab_kill();
5724 module_init(bfq_init);
5725 module_exit(bfq_exit);
5727 MODULE_AUTHOR("Paolo Valente");
5728 MODULE_LICENSE("GPL");
5729 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");