leds: triggers: define module_led_trigger helper
[linux-2.6/btrfs-unstable.git] / mm / memory.c
blob7206a634270be3641e2255aa4c9d9eee68daed51
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
81 #include "internal.h"
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
107 * Randomize the address space (stacks, mmaps, brk, etc.).
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
115 #else
117 #endif
119 static int __init disable_randmaps(char *s)
121 randomize_va_space = 0;
122 return 1;
124 __setup("norandmaps", disable_randmaps);
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
129 unsigned long highest_memmap_pfn __read_mostly;
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 static int __init init_zero_pfn(void)
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
139 core_initcall(init_zero_pfn);
142 #if defined(SPLIT_RSS_COUNTING)
144 void sync_mm_rss(struct mm_struct *mm)
146 int i;
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
154 current->rss_stat.events = 0;
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 struct task_struct *task = current;
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct *task)
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
178 #else /* SPLIT_RSS_COUNTING */
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 static void check_sync_rss_stat(struct task_struct *task)
187 #endif /* SPLIT_RSS_COUNTING */
189 #ifdef HAVE_GENERIC_MMU_GATHER
191 static bool tlb_next_batch(struct mmu_gather *tlb)
193 struct mmu_gather_batch *batch;
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
198 return true;
201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 return false;
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
206 return false;
208 tlb->batch_count++;
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
213 tlb->active->next = batch;
214 tlb->active = batch;
216 return true;
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
222 tlb->mm = mm;
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235 #endif
236 tlb->page_size = 0;
238 __tlb_reset_range(tlb);
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 if (!tlb->end)
244 return;
246 tlb_flush(tlb);
247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250 #endif
251 __tlb_reset_range(tlb);
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 struct mmu_gather_batch *batch;
258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
262 tlb->active = &tlb->local;
265 void tlb_flush_mmu(struct mmu_gather *tlb)
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
271 /* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 unsigned long start, unsigned long end, bool force)
278 struct mmu_gather_batch *batch, *next;
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
283 tlb_flush_mmu(tlb);
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
292 tlb->local.next = NULL;
295 /* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
300 *returns true if the caller should flush.
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 struct mmu_gather_batch *batch;
306 VM_BUG_ON(!tlb->end);
307 VM_WARN_ON(tlb->page_size != page_size);
309 batch = tlb->active;
311 * Add the page and check if we are full. If so
312 * force a flush.
314 batch->pages[batch->nr++] = page;
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
317 return true;
318 batch = tlb->active;
320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322 return false;
325 #endif /* HAVE_GENERIC_MMU_GATHER */
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
330 * See the comment near struct mmu_table_batch.
333 static void tlb_remove_table_smp_sync(void *arg)
335 /* Simply deliver the interrupt */
338 static void tlb_remove_table_one(void *table)
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
351 static void tlb_remove_table_rcu(struct rcu_head *head)
353 struct mmu_table_batch *batch;
354 int i;
356 batch = container_of(head, struct mmu_table_batch, rcu);
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
361 free_page((unsigned long)batch);
364 void tlb_table_flush(struct mmu_gather *tlb)
366 struct mmu_table_batch **batch = &tlb->batch;
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
376 struct mmu_table_batch **batch = &tlb->batch;
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
393 (*batch)->nr = 0;
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404 * @tlb: the mmu_gather structure to initialize
405 * @mm: the mm_struct of the target address space
406 * @start: start of the region that will be removed from the page-table
407 * @end: end of the region that will be removed from the page-table
409 * Called to initialize an (on-stack) mmu_gather structure for page-table
410 * tear-down from @mm. The @start and @end are set to 0 and -1
411 * respectively when @mm is without users and we're going to destroy
412 * the full address space (exit/execve).
414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415 unsigned long start, unsigned long end)
417 arch_tlb_gather_mmu(tlb, mm, start, end);
418 inc_tlb_flush_pending(tlb->mm);
421 void tlb_finish_mmu(struct mmu_gather *tlb,
422 unsigned long start, unsigned long end)
425 * If there are parallel threads are doing PTE changes on same range
426 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427 * flush by batching, a thread has stable TLB entry can fail to flush
428 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429 * forcefully if we detect parallel PTE batching threads.
431 bool force = mm_tlb_flush_nested(tlb->mm);
433 arch_tlb_finish_mmu(tlb, start, end, force);
434 dec_tlb_flush_pending(tlb->mm);
438 * Note: this doesn't free the actual pages themselves. That
439 * has been handled earlier when unmapping all the memory regions.
441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442 unsigned long addr)
444 pgtable_t token = pmd_pgtable(*pmd);
445 pmd_clear(pmd);
446 pte_free_tlb(tlb, token, addr);
447 mm_dec_nr_ptes(tlb->mm);
450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451 unsigned long addr, unsigned long end,
452 unsigned long floor, unsigned long ceiling)
454 pmd_t *pmd;
455 unsigned long next;
456 unsigned long start;
458 start = addr;
459 pmd = pmd_offset(pud, addr);
460 do {
461 next = pmd_addr_end(addr, end);
462 if (pmd_none_or_clear_bad(pmd))
463 continue;
464 free_pte_range(tlb, pmd, addr);
465 } while (pmd++, addr = next, addr != end);
467 start &= PUD_MASK;
468 if (start < floor)
469 return;
470 if (ceiling) {
471 ceiling &= PUD_MASK;
472 if (!ceiling)
473 return;
475 if (end - 1 > ceiling - 1)
476 return;
478 pmd = pmd_offset(pud, start);
479 pud_clear(pud);
480 pmd_free_tlb(tlb, pmd, start);
481 mm_dec_nr_pmds(tlb->mm);
484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
488 pud_t *pud;
489 unsigned long next;
490 unsigned long start;
492 start = addr;
493 pud = pud_offset(p4d, addr);
494 do {
495 next = pud_addr_end(addr, end);
496 if (pud_none_or_clear_bad(pud))
497 continue;
498 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
499 } while (pud++, addr = next, addr != end);
501 start &= P4D_MASK;
502 if (start < floor)
503 return;
504 if (ceiling) {
505 ceiling &= P4D_MASK;
506 if (!ceiling)
507 return;
509 if (end - 1 > ceiling - 1)
510 return;
512 pud = pud_offset(p4d, start);
513 p4d_clear(p4d);
514 pud_free_tlb(tlb, pud, start);
515 mm_dec_nr_puds(tlb->mm);
518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519 unsigned long addr, unsigned long end,
520 unsigned long floor, unsigned long ceiling)
522 p4d_t *p4d;
523 unsigned long next;
524 unsigned long start;
526 start = addr;
527 p4d = p4d_offset(pgd, addr);
528 do {
529 next = p4d_addr_end(addr, end);
530 if (p4d_none_or_clear_bad(p4d))
531 continue;
532 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533 } while (p4d++, addr = next, addr != end);
535 start &= PGDIR_MASK;
536 if (start < floor)
537 return;
538 if (ceiling) {
539 ceiling &= PGDIR_MASK;
540 if (!ceiling)
541 return;
543 if (end - 1 > ceiling - 1)
544 return;
546 p4d = p4d_offset(pgd, start);
547 pgd_clear(pgd);
548 p4d_free_tlb(tlb, p4d, start);
552 * This function frees user-level page tables of a process.
554 void free_pgd_range(struct mmu_gather *tlb,
555 unsigned long addr, unsigned long end,
556 unsigned long floor, unsigned long ceiling)
558 pgd_t *pgd;
559 unsigned long next;
562 * The next few lines have given us lots of grief...
564 * Why are we testing PMD* at this top level? Because often
565 * there will be no work to do at all, and we'd prefer not to
566 * go all the way down to the bottom just to discover that.
568 * Why all these "- 1"s? Because 0 represents both the bottom
569 * of the address space and the top of it (using -1 for the
570 * top wouldn't help much: the masks would do the wrong thing).
571 * The rule is that addr 0 and floor 0 refer to the bottom of
572 * the address space, but end 0 and ceiling 0 refer to the top
573 * Comparisons need to use "end - 1" and "ceiling - 1" (though
574 * that end 0 case should be mythical).
576 * Wherever addr is brought up or ceiling brought down, we must
577 * be careful to reject "the opposite 0" before it confuses the
578 * subsequent tests. But what about where end is brought down
579 * by PMD_SIZE below? no, end can't go down to 0 there.
581 * Whereas we round start (addr) and ceiling down, by different
582 * masks at different levels, in order to test whether a table
583 * now has no other vmas using it, so can be freed, we don't
584 * bother to round floor or end up - the tests don't need that.
587 addr &= PMD_MASK;
588 if (addr < floor) {
589 addr += PMD_SIZE;
590 if (!addr)
591 return;
593 if (ceiling) {
594 ceiling &= PMD_MASK;
595 if (!ceiling)
596 return;
598 if (end - 1 > ceiling - 1)
599 end -= PMD_SIZE;
600 if (addr > end - 1)
601 return;
603 * We add page table cache pages with PAGE_SIZE,
604 * (see pte_free_tlb()), flush the tlb if we need
606 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
607 pgd = pgd_offset(tlb->mm, addr);
608 do {
609 next = pgd_addr_end(addr, end);
610 if (pgd_none_or_clear_bad(pgd))
611 continue;
612 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
613 } while (pgd++, addr = next, addr != end);
616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
617 unsigned long floor, unsigned long ceiling)
619 while (vma) {
620 struct vm_area_struct *next = vma->vm_next;
621 unsigned long addr = vma->vm_start;
624 * Hide vma from rmap and truncate_pagecache before freeing
625 * pgtables
627 unlink_anon_vmas(vma);
628 unlink_file_vma(vma);
630 if (is_vm_hugetlb_page(vma)) {
631 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
632 floor, next ? next->vm_start : ceiling);
633 } else {
635 * Optimization: gather nearby vmas into one call down
637 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
638 && !is_vm_hugetlb_page(next)) {
639 vma = next;
640 next = vma->vm_next;
641 unlink_anon_vmas(vma);
642 unlink_file_vma(vma);
644 free_pgd_range(tlb, addr, vma->vm_end,
645 floor, next ? next->vm_start : ceiling);
647 vma = next;
651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
653 spinlock_t *ptl;
654 pgtable_t new = pte_alloc_one(mm, address);
655 if (!new)
656 return -ENOMEM;
659 * Ensure all pte setup (eg. pte page lock and page clearing) are
660 * visible before the pte is made visible to other CPUs by being
661 * put into page tables.
663 * The other side of the story is the pointer chasing in the page
664 * table walking code (when walking the page table without locking;
665 * ie. most of the time). Fortunately, these data accesses consist
666 * of a chain of data-dependent loads, meaning most CPUs (alpha
667 * being the notable exception) will already guarantee loads are
668 * seen in-order. See the alpha page table accessors for the
669 * smp_read_barrier_depends() barriers in page table walking code.
671 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
673 ptl = pmd_lock(mm, pmd);
674 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
675 mm_inc_nr_ptes(mm);
676 pmd_populate(mm, pmd, new);
677 new = NULL;
679 spin_unlock(ptl);
680 if (new)
681 pte_free(mm, new);
682 return 0;
685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
687 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688 if (!new)
689 return -ENOMEM;
691 smp_wmb(); /* See comment in __pte_alloc */
693 spin_lock(&init_mm.page_table_lock);
694 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
695 pmd_populate_kernel(&init_mm, pmd, new);
696 new = NULL;
698 spin_unlock(&init_mm.page_table_lock);
699 if (new)
700 pte_free_kernel(&init_mm, new);
701 return 0;
704 static inline void init_rss_vec(int *rss)
706 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
711 int i;
713 if (current->mm == mm)
714 sync_mm_rss(mm);
715 for (i = 0; i < NR_MM_COUNTERS; i++)
716 if (rss[i])
717 add_mm_counter(mm, i, rss[i]);
721 * This function is called to print an error when a bad pte
722 * is found. For example, we might have a PFN-mapped pte in
723 * a region that doesn't allow it.
725 * The calling function must still handle the error.
727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728 pte_t pte, struct page *page)
730 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
731 p4d_t *p4d = p4d_offset(pgd, addr);
732 pud_t *pud = pud_offset(p4d, addr);
733 pmd_t *pmd = pmd_offset(pud, addr);
734 struct address_space *mapping;
735 pgoff_t index;
736 static unsigned long resume;
737 static unsigned long nr_shown;
738 static unsigned long nr_unshown;
741 * Allow a burst of 60 reports, then keep quiet for that minute;
742 * or allow a steady drip of one report per second.
744 if (nr_shown == 60) {
745 if (time_before(jiffies, resume)) {
746 nr_unshown++;
747 return;
749 if (nr_unshown) {
750 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 nr_unshown);
752 nr_unshown = 0;
754 nr_shown = 0;
756 if (nr_shown++ == 0)
757 resume = jiffies + 60 * HZ;
759 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760 index = linear_page_index(vma, addr);
762 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
763 current->comm,
764 (long long)pte_val(pte), (long long)pmd_val(*pmd));
765 if (page)
766 dump_page(page, "bad pte");
767 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
769 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 vma->vm_file,
771 vma->vm_ops ? vma->vm_ops->fault : NULL,
772 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773 mapping ? mapping->a_ops->readpage : NULL);
774 dump_stack();
775 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
779 * vm_normal_page -- This function gets the "struct page" associated with a pte.
781 * "Special" mappings do not wish to be associated with a "struct page" (either
782 * it doesn't exist, or it exists but they don't want to touch it). In this
783 * case, NULL is returned here. "Normal" mappings do have a struct page.
785 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786 * pte bit, in which case this function is trivial. Secondly, an architecture
787 * may not have a spare pte bit, which requires a more complicated scheme,
788 * described below.
790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791 * special mapping (even if there are underlying and valid "struct pages").
792 * COWed pages of a VM_PFNMAP are always normal.
794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797 * mapping will always honor the rule
799 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
801 * And for normal mappings this is false.
803 * This restricts such mappings to be a linear translation from virtual address
804 * to pfn. To get around this restriction, we allow arbitrary mappings so long
805 * as the vma is not a COW mapping; in that case, we know that all ptes are
806 * special (because none can have been COWed).
809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812 * page" backing, however the difference is that _all_ pages with a struct
813 * page (that is, those where pfn_valid is true) are refcounted and considered
814 * normal pages by the VM. The disadvantage is that pages are refcounted
815 * (which can be slower and simply not an option for some PFNMAP users). The
816 * advantage is that we don't have to follow the strict linearity rule of
817 * PFNMAP mappings in order to support COWable mappings.
820 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 pte_t pte, bool with_public_device)
823 unsigned long pfn = pte_pfn(pte);
825 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
826 if (likely(!pte_special(pte)))
827 goto check_pfn;
828 if (vma->vm_ops && vma->vm_ops->find_special_page)
829 return vma->vm_ops->find_special_page(vma, addr);
830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 return NULL;
832 if (is_zero_pfn(pfn))
833 return NULL;
836 * Device public pages are special pages (they are ZONE_DEVICE
837 * pages but different from persistent memory). They behave
838 * allmost like normal pages. The difference is that they are
839 * not on the lru and thus should never be involve with any-
840 * thing that involve lru manipulation (mlock, numa balancing,
841 * ...).
843 * This is why we still want to return NULL for such page from
844 * vm_normal_page() so that we do not have to special case all
845 * call site of vm_normal_page().
847 if (likely(pfn <= highest_memmap_pfn)) {
848 struct page *page = pfn_to_page(pfn);
850 if (is_device_public_page(page)) {
851 if (with_public_device)
852 return page;
853 return NULL;
856 print_bad_pte(vma, addr, pte, NULL);
857 return NULL;
860 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
862 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
863 if (vma->vm_flags & VM_MIXEDMAP) {
864 if (!pfn_valid(pfn))
865 return NULL;
866 goto out;
867 } else {
868 unsigned long off;
869 off = (addr - vma->vm_start) >> PAGE_SHIFT;
870 if (pfn == vma->vm_pgoff + off)
871 return NULL;
872 if (!is_cow_mapping(vma->vm_flags))
873 return NULL;
877 if (is_zero_pfn(pfn))
878 return NULL;
880 check_pfn:
881 if (unlikely(pfn > highest_memmap_pfn)) {
882 print_bad_pte(vma, addr, pte, NULL);
883 return NULL;
887 * NOTE! We still have PageReserved() pages in the page tables.
888 * eg. VDSO mappings can cause them to exist.
890 out:
891 return pfn_to_page(pfn);
894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
896 pmd_t pmd)
898 unsigned long pfn = pmd_pfn(pmd);
901 * There is no pmd_special() but there may be special pmds, e.g.
902 * in a direct-access (dax) mapping, so let's just replicate the
903 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
905 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
906 if (vma->vm_flags & VM_MIXEDMAP) {
907 if (!pfn_valid(pfn))
908 return NULL;
909 goto out;
910 } else {
911 unsigned long off;
912 off = (addr - vma->vm_start) >> PAGE_SHIFT;
913 if (pfn == vma->vm_pgoff + off)
914 return NULL;
915 if (!is_cow_mapping(vma->vm_flags))
916 return NULL;
920 if (is_zero_pfn(pfn))
921 return NULL;
922 if (unlikely(pfn > highest_memmap_pfn))
923 return NULL;
926 * NOTE! We still have PageReserved() pages in the page tables.
927 * eg. VDSO mappings can cause them to exist.
929 out:
930 return pfn_to_page(pfn);
932 #endif
935 * copy one vm_area from one task to the other. Assumes the page tables
936 * already present in the new task to be cleared in the whole range
937 * covered by this vma.
940 static inline unsigned long
941 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
942 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
943 unsigned long addr, int *rss)
945 unsigned long vm_flags = vma->vm_flags;
946 pte_t pte = *src_pte;
947 struct page *page;
949 /* pte contains position in swap or file, so copy. */
950 if (unlikely(!pte_present(pte))) {
951 swp_entry_t entry = pte_to_swp_entry(pte);
953 if (likely(!non_swap_entry(entry))) {
954 if (swap_duplicate(entry) < 0)
955 return entry.val;
957 /* make sure dst_mm is on swapoff's mmlist. */
958 if (unlikely(list_empty(&dst_mm->mmlist))) {
959 spin_lock(&mmlist_lock);
960 if (list_empty(&dst_mm->mmlist))
961 list_add(&dst_mm->mmlist,
962 &src_mm->mmlist);
963 spin_unlock(&mmlist_lock);
965 rss[MM_SWAPENTS]++;
966 } else if (is_migration_entry(entry)) {
967 page = migration_entry_to_page(entry);
969 rss[mm_counter(page)]++;
971 if (is_write_migration_entry(entry) &&
972 is_cow_mapping(vm_flags)) {
974 * COW mappings require pages in both
975 * parent and child to be set to read.
977 make_migration_entry_read(&entry);
978 pte = swp_entry_to_pte(entry);
979 if (pte_swp_soft_dirty(*src_pte))
980 pte = pte_swp_mksoft_dirty(pte);
981 set_pte_at(src_mm, addr, src_pte, pte);
983 } else if (is_device_private_entry(entry)) {
984 page = device_private_entry_to_page(entry);
987 * Update rss count even for unaddressable pages, as
988 * they should treated just like normal pages in this
989 * respect.
991 * We will likely want to have some new rss counters
992 * for unaddressable pages, at some point. But for now
993 * keep things as they are.
995 get_page(page);
996 rss[mm_counter(page)]++;
997 page_dup_rmap(page, false);
1000 * We do not preserve soft-dirty information, because so
1001 * far, checkpoint/restore is the only feature that
1002 * requires that. And checkpoint/restore does not work
1003 * when a device driver is involved (you cannot easily
1004 * save and restore device driver state).
1006 if (is_write_device_private_entry(entry) &&
1007 is_cow_mapping(vm_flags)) {
1008 make_device_private_entry_read(&entry);
1009 pte = swp_entry_to_pte(entry);
1010 set_pte_at(src_mm, addr, src_pte, pte);
1013 goto out_set_pte;
1017 * If it's a COW mapping, write protect it both
1018 * in the parent and the child
1020 if (is_cow_mapping(vm_flags)) {
1021 ptep_set_wrprotect(src_mm, addr, src_pte);
1022 pte = pte_wrprotect(pte);
1026 * If it's a shared mapping, mark it clean in
1027 * the child
1029 if (vm_flags & VM_SHARED)
1030 pte = pte_mkclean(pte);
1031 pte = pte_mkold(pte);
1033 page = vm_normal_page(vma, addr, pte);
1034 if (page) {
1035 get_page(page);
1036 page_dup_rmap(page, false);
1037 rss[mm_counter(page)]++;
1038 } else if (pte_devmap(pte)) {
1039 page = pte_page(pte);
1042 * Cache coherent device memory behave like regular page and
1043 * not like persistent memory page. For more informations see
1044 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1046 if (is_device_public_page(page)) {
1047 get_page(page);
1048 page_dup_rmap(page, false);
1049 rss[mm_counter(page)]++;
1053 out_set_pte:
1054 set_pte_at(dst_mm, addr, dst_pte, pte);
1055 return 0;
1058 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1060 unsigned long addr, unsigned long end)
1062 pte_t *orig_src_pte, *orig_dst_pte;
1063 pte_t *src_pte, *dst_pte;
1064 spinlock_t *src_ptl, *dst_ptl;
1065 int progress = 0;
1066 int rss[NR_MM_COUNTERS];
1067 swp_entry_t entry = (swp_entry_t){0};
1069 again:
1070 init_rss_vec(rss);
1072 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1073 if (!dst_pte)
1074 return -ENOMEM;
1075 src_pte = pte_offset_map(src_pmd, addr);
1076 src_ptl = pte_lockptr(src_mm, src_pmd);
1077 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1078 orig_src_pte = src_pte;
1079 orig_dst_pte = dst_pte;
1080 arch_enter_lazy_mmu_mode();
1082 do {
1084 * We are holding two locks at this point - either of them
1085 * could generate latencies in another task on another CPU.
1087 if (progress >= 32) {
1088 progress = 0;
1089 if (need_resched() ||
1090 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1091 break;
1093 if (pte_none(*src_pte)) {
1094 progress++;
1095 continue;
1097 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1098 vma, addr, rss);
1099 if (entry.val)
1100 break;
1101 progress += 8;
1102 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104 arch_leave_lazy_mmu_mode();
1105 spin_unlock(src_ptl);
1106 pte_unmap(orig_src_pte);
1107 add_mm_rss_vec(dst_mm, rss);
1108 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 cond_resched();
1111 if (entry.val) {
1112 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1113 return -ENOMEM;
1114 progress = 0;
1116 if (addr != end)
1117 goto again;
1118 return 0;
1121 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1122 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1123 unsigned long addr, unsigned long end)
1125 pmd_t *src_pmd, *dst_pmd;
1126 unsigned long next;
1128 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1129 if (!dst_pmd)
1130 return -ENOMEM;
1131 src_pmd = pmd_offset(src_pud, addr);
1132 do {
1133 next = pmd_addr_end(addr, end);
1134 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1135 || pmd_devmap(*src_pmd)) {
1136 int err;
1137 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1138 err = copy_huge_pmd(dst_mm, src_mm,
1139 dst_pmd, src_pmd, addr, vma);
1140 if (err == -ENOMEM)
1141 return -ENOMEM;
1142 if (!err)
1143 continue;
1144 /* fall through */
1146 if (pmd_none_or_clear_bad(src_pmd))
1147 continue;
1148 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1149 vma, addr, next))
1150 return -ENOMEM;
1151 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1152 return 0;
1155 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1156 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1157 unsigned long addr, unsigned long end)
1159 pud_t *src_pud, *dst_pud;
1160 unsigned long next;
1162 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1163 if (!dst_pud)
1164 return -ENOMEM;
1165 src_pud = pud_offset(src_p4d, addr);
1166 do {
1167 next = pud_addr_end(addr, end);
1168 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1169 int err;
1171 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1172 err = copy_huge_pud(dst_mm, src_mm,
1173 dst_pud, src_pud, addr, vma);
1174 if (err == -ENOMEM)
1175 return -ENOMEM;
1176 if (!err)
1177 continue;
1178 /* fall through */
1180 if (pud_none_or_clear_bad(src_pud))
1181 continue;
1182 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1183 vma, addr, next))
1184 return -ENOMEM;
1185 } while (dst_pud++, src_pud++, addr = next, addr != end);
1186 return 0;
1189 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1190 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1191 unsigned long addr, unsigned long end)
1193 p4d_t *src_p4d, *dst_p4d;
1194 unsigned long next;
1196 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1197 if (!dst_p4d)
1198 return -ENOMEM;
1199 src_p4d = p4d_offset(src_pgd, addr);
1200 do {
1201 next = p4d_addr_end(addr, end);
1202 if (p4d_none_or_clear_bad(src_p4d))
1203 continue;
1204 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1205 vma, addr, next))
1206 return -ENOMEM;
1207 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1208 return 0;
1211 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1212 struct vm_area_struct *vma)
1214 pgd_t *src_pgd, *dst_pgd;
1215 unsigned long next;
1216 unsigned long addr = vma->vm_start;
1217 unsigned long end = vma->vm_end;
1218 unsigned long mmun_start; /* For mmu_notifiers */
1219 unsigned long mmun_end; /* For mmu_notifiers */
1220 bool is_cow;
1221 int ret;
1224 * Don't copy ptes where a page fault will fill them correctly.
1225 * Fork becomes much lighter when there are big shared or private
1226 * readonly mappings. The tradeoff is that copy_page_range is more
1227 * efficient than faulting.
1229 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1230 !vma->anon_vma)
1231 return 0;
1233 if (is_vm_hugetlb_page(vma))
1234 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1236 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1238 * We do not free on error cases below as remove_vma
1239 * gets called on error from higher level routine
1241 ret = track_pfn_copy(vma);
1242 if (ret)
1243 return ret;
1247 * We need to invalidate the secondary MMU mappings only when
1248 * there could be a permission downgrade on the ptes of the
1249 * parent mm. And a permission downgrade will only happen if
1250 * is_cow_mapping() returns true.
1252 is_cow = is_cow_mapping(vma->vm_flags);
1253 mmun_start = addr;
1254 mmun_end = end;
1255 if (is_cow)
1256 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1257 mmun_end);
1259 ret = 0;
1260 dst_pgd = pgd_offset(dst_mm, addr);
1261 src_pgd = pgd_offset(src_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(src_pgd))
1265 continue;
1266 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1267 vma, addr, next))) {
1268 ret = -ENOMEM;
1269 break;
1271 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1273 if (is_cow)
1274 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1275 return ret;
1278 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1279 struct vm_area_struct *vma, pmd_t *pmd,
1280 unsigned long addr, unsigned long end,
1281 struct zap_details *details)
1283 struct mm_struct *mm = tlb->mm;
1284 int force_flush = 0;
1285 int rss[NR_MM_COUNTERS];
1286 spinlock_t *ptl;
1287 pte_t *start_pte;
1288 pte_t *pte;
1289 swp_entry_t entry;
1291 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1292 again:
1293 init_rss_vec(rss);
1294 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1295 pte = start_pte;
1296 flush_tlb_batched_pending(mm);
1297 arch_enter_lazy_mmu_mode();
1298 do {
1299 pte_t ptent = *pte;
1300 if (pte_none(ptent))
1301 continue;
1303 if (pte_present(ptent)) {
1304 struct page *page;
1306 page = _vm_normal_page(vma, addr, ptent, true);
1307 if (unlikely(details) && page) {
1309 * unmap_shared_mapping_pages() wants to
1310 * invalidate cache without truncating:
1311 * unmap shared but keep private pages.
1313 if (details->check_mapping &&
1314 details->check_mapping != page_rmapping(page))
1315 continue;
1317 ptent = ptep_get_and_clear_full(mm, addr, pte,
1318 tlb->fullmm);
1319 tlb_remove_tlb_entry(tlb, pte, addr);
1320 if (unlikely(!page))
1321 continue;
1323 if (!PageAnon(page)) {
1324 if (pte_dirty(ptent)) {
1325 force_flush = 1;
1326 set_page_dirty(page);
1328 if (pte_young(ptent) &&
1329 likely(!(vma->vm_flags & VM_SEQ_READ)))
1330 mark_page_accessed(page);
1332 rss[mm_counter(page)]--;
1333 page_remove_rmap(page, false);
1334 if (unlikely(page_mapcount(page) < 0))
1335 print_bad_pte(vma, addr, ptent, page);
1336 if (unlikely(__tlb_remove_page(tlb, page))) {
1337 force_flush = 1;
1338 addr += PAGE_SIZE;
1339 break;
1341 continue;
1344 entry = pte_to_swp_entry(ptent);
1345 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1346 struct page *page = device_private_entry_to_page(entry);
1348 if (unlikely(details && details->check_mapping)) {
1350 * unmap_shared_mapping_pages() wants to
1351 * invalidate cache without truncating:
1352 * unmap shared but keep private pages.
1354 if (details->check_mapping !=
1355 page_rmapping(page))
1356 continue;
1359 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1360 rss[mm_counter(page)]--;
1361 page_remove_rmap(page, false);
1362 put_page(page);
1363 continue;
1366 /* If details->check_mapping, we leave swap entries. */
1367 if (unlikely(details))
1368 continue;
1370 entry = pte_to_swp_entry(ptent);
1371 if (!non_swap_entry(entry))
1372 rss[MM_SWAPENTS]--;
1373 else if (is_migration_entry(entry)) {
1374 struct page *page;
1376 page = migration_entry_to_page(entry);
1377 rss[mm_counter(page)]--;
1379 if (unlikely(!free_swap_and_cache(entry)))
1380 print_bad_pte(vma, addr, ptent, NULL);
1381 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1382 } while (pte++, addr += PAGE_SIZE, addr != end);
1384 add_mm_rss_vec(mm, rss);
1385 arch_leave_lazy_mmu_mode();
1387 /* Do the actual TLB flush before dropping ptl */
1388 if (force_flush)
1389 tlb_flush_mmu_tlbonly(tlb);
1390 pte_unmap_unlock(start_pte, ptl);
1393 * If we forced a TLB flush (either due to running out of
1394 * batch buffers or because we needed to flush dirty TLB
1395 * entries before releasing the ptl), free the batched
1396 * memory too. Restart if we didn't do everything.
1398 if (force_flush) {
1399 force_flush = 0;
1400 tlb_flush_mmu_free(tlb);
1401 if (addr != end)
1402 goto again;
1405 return addr;
1408 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1409 struct vm_area_struct *vma, pud_t *pud,
1410 unsigned long addr, unsigned long end,
1411 struct zap_details *details)
1413 pmd_t *pmd;
1414 unsigned long next;
1416 pmd = pmd_offset(pud, addr);
1417 do {
1418 next = pmd_addr_end(addr, end);
1419 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1420 if (next - addr != HPAGE_PMD_SIZE) {
1421 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1422 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1423 __split_huge_pmd(vma, pmd, addr, false, NULL);
1424 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1425 goto next;
1426 /* fall through */
1429 * Here there can be other concurrent MADV_DONTNEED or
1430 * trans huge page faults running, and if the pmd is
1431 * none or trans huge it can change under us. This is
1432 * because MADV_DONTNEED holds the mmap_sem in read
1433 * mode.
1435 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1436 goto next;
1437 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1438 next:
1439 cond_resched();
1440 } while (pmd++, addr = next, addr != end);
1442 return addr;
1445 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1446 struct vm_area_struct *vma, p4d_t *p4d,
1447 unsigned long addr, unsigned long end,
1448 struct zap_details *details)
1450 pud_t *pud;
1451 unsigned long next;
1453 pud = pud_offset(p4d, addr);
1454 do {
1455 next = pud_addr_end(addr, end);
1456 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1457 if (next - addr != HPAGE_PUD_SIZE) {
1458 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1459 split_huge_pud(vma, pud, addr);
1460 } else if (zap_huge_pud(tlb, vma, pud, addr))
1461 goto next;
1462 /* fall through */
1464 if (pud_none_or_clear_bad(pud))
1465 continue;
1466 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1467 next:
1468 cond_resched();
1469 } while (pud++, addr = next, addr != end);
1471 return addr;
1474 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1475 struct vm_area_struct *vma, pgd_t *pgd,
1476 unsigned long addr, unsigned long end,
1477 struct zap_details *details)
1479 p4d_t *p4d;
1480 unsigned long next;
1482 p4d = p4d_offset(pgd, addr);
1483 do {
1484 next = p4d_addr_end(addr, end);
1485 if (p4d_none_or_clear_bad(p4d))
1486 continue;
1487 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1488 } while (p4d++, addr = next, addr != end);
1490 return addr;
1493 void unmap_page_range(struct mmu_gather *tlb,
1494 struct vm_area_struct *vma,
1495 unsigned long addr, unsigned long end,
1496 struct zap_details *details)
1498 pgd_t *pgd;
1499 unsigned long next;
1501 BUG_ON(addr >= end);
1502 tlb_start_vma(tlb, vma);
1503 pgd = pgd_offset(vma->vm_mm, addr);
1504 do {
1505 next = pgd_addr_end(addr, end);
1506 if (pgd_none_or_clear_bad(pgd))
1507 continue;
1508 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1509 } while (pgd++, addr = next, addr != end);
1510 tlb_end_vma(tlb, vma);
1514 static void unmap_single_vma(struct mmu_gather *tlb,
1515 struct vm_area_struct *vma, unsigned long start_addr,
1516 unsigned long end_addr,
1517 struct zap_details *details)
1519 unsigned long start = max(vma->vm_start, start_addr);
1520 unsigned long end;
1522 if (start >= vma->vm_end)
1523 return;
1524 end = min(vma->vm_end, end_addr);
1525 if (end <= vma->vm_start)
1526 return;
1528 if (vma->vm_file)
1529 uprobe_munmap(vma, start, end);
1531 if (unlikely(vma->vm_flags & VM_PFNMAP))
1532 untrack_pfn(vma, 0, 0);
1534 if (start != end) {
1535 if (unlikely(is_vm_hugetlb_page(vma))) {
1537 * It is undesirable to test vma->vm_file as it
1538 * should be non-null for valid hugetlb area.
1539 * However, vm_file will be NULL in the error
1540 * cleanup path of mmap_region. When
1541 * hugetlbfs ->mmap method fails,
1542 * mmap_region() nullifies vma->vm_file
1543 * before calling this function to clean up.
1544 * Since no pte has actually been setup, it is
1545 * safe to do nothing in this case.
1547 if (vma->vm_file) {
1548 i_mmap_lock_write(vma->vm_file->f_mapping);
1549 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1550 i_mmap_unlock_write(vma->vm_file->f_mapping);
1552 } else
1553 unmap_page_range(tlb, vma, start, end, details);
1558 * unmap_vmas - unmap a range of memory covered by a list of vma's
1559 * @tlb: address of the caller's struct mmu_gather
1560 * @vma: the starting vma
1561 * @start_addr: virtual address at which to start unmapping
1562 * @end_addr: virtual address at which to end unmapping
1564 * Unmap all pages in the vma list.
1566 * Only addresses between `start' and `end' will be unmapped.
1568 * The VMA list must be sorted in ascending virtual address order.
1570 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1571 * range after unmap_vmas() returns. So the only responsibility here is to
1572 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1573 * drops the lock and schedules.
1575 void unmap_vmas(struct mmu_gather *tlb,
1576 struct vm_area_struct *vma, unsigned long start_addr,
1577 unsigned long end_addr)
1579 struct mm_struct *mm = vma->vm_mm;
1581 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1582 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1583 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1584 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1588 * zap_page_range - remove user pages in a given range
1589 * @vma: vm_area_struct holding the applicable pages
1590 * @start: starting address of pages to zap
1591 * @size: number of bytes to zap
1593 * Caller must protect the VMA list
1595 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1596 unsigned long size)
1598 struct mm_struct *mm = vma->vm_mm;
1599 struct mmu_gather tlb;
1600 unsigned long end = start + size;
1602 lru_add_drain();
1603 tlb_gather_mmu(&tlb, mm, start, end);
1604 update_hiwater_rss(mm);
1605 mmu_notifier_invalidate_range_start(mm, start, end);
1606 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1607 unmap_single_vma(&tlb, vma, start, end, NULL);
1610 * zap_page_range does not specify whether mmap_sem should be
1611 * held for read or write. That allows parallel zap_page_range
1612 * operations to unmap a PTE and defer a flush meaning that
1613 * this call observes pte_none and fails to flush the TLB.
1614 * Rather than adding a complex API, ensure that no stale
1615 * TLB entries exist when this call returns.
1617 flush_tlb_range(vma, start, end);
1620 mmu_notifier_invalidate_range_end(mm, start, end);
1621 tlb_finish_mmu(&tlb, start, end);
1625 * zap_page_range_single - remove user pages in a given range
1626 * @vma: vm_area_struct holding the applicable pages
1627 * @address: starting address of pages to zap
1628 * @size: number of bytes to zap
1629 * @details: details of shared cache invalidation
1631 * The range must fit into one VMA.
1633 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1634 unsigned long size, struct zap_details *details)
1636 struct mm_struct *mm = vma->vm_mm;
1637 struct mmu_gather tlb;
1638 unsigned long end = address + size;
1640 lru_add_drain();
1641 tlb_gather_mmu(&tlb, mm, address, end);
1642 update_hiwater_rss(mm);
1643 mmu_notifier_invalidate_range_start(mm, address, end);
1644 unmap_single_vma(&tlb, vma, address, end, details);
1645 mmu_notifier_invalidate_range_end(mm, address, end);
1646 tlb_finish_mmu(&tlb, address, end);
1650 * zap_vma_ptes - remove ptes mapping the vma
1651 * @vma: vm_area_struct holding ptes to be zapped
1652 * @address: starting address of pages to zap
1653 * @size: number of bytes to zap
1655 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1657 * The entire address range must be fully contained within the vma.
1660 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1661 unsigned long size)
1663 if (address < vma->vm_start || address + size > vma->vm_end ||
1664 !(vma->vm_flags & VM_PFNMAP))
1665 return;
1667 zap_page_range_single(vma, address, size, NULL);
1669 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1671 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1672 spinlock_t **ptl)
1674 pgd_t *pgd;
1675 p4d_t *p4d;
1676 pud_t *pud;
1677 pmd_t *pmd;
1679 pgd = pgd_offset(mm, addr);
1680 p4d = p4d_alloc(mm, pgd, addr);
1681 if (!p4d)
1682 return NULL;
1683 pud = pud_alloc(mm, p4d, addr);
1684 if (!pud)
1685 return NULL;
1686 pmd = pmd_alloc(mm, pud, addr);
1687 if (!pmd)
1688 return NULL;
1690 VM_BUG_ON(pmd_trans_huge(*pmd));
1691 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1695 * This is the old fallback for page remapping.
1697 * For historical reasons, it only allows reserved pages. Only
1698 * old drivers should use this, and they needed to mark their
1699 * pages reserved for the old functions anyway.
1701 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1702 struct page *page, pgprot_t prot)
1704 struct mm_struct *mm = vma->vm_mm;
1705 int retval;
1706 pte_t *pte;
1707 spinlock_t *ptl;
1709 retval = -EINVAL;
1710 if (PageAnon(page))
1711 goto out;
1712 retval = -ENOMEM;
1713 flush_dcache_page(page);
1714 pte = get_locked_pte(mm, addr, &ptl);
1715 if (!pte)
1716 goto out;
1717 retval = -EBUSY;
1718 if (!pte_none(*pte))
1719 goto out_unlock;
1721 /* Ok, finally just insert the thing.. */
1722 get_page(page);
1723 inc_mm_counter_fast(mm, mm_counter_file(page));
1724 page_add_file_rmap(page, false);
1725 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1727 retval = 0;
1728 pte_unmap_unlock(pte, ptl);
1729 return retval;
1730 out_unlock:
1731 pte_unmap_unlock(pte, ptl);
1732 out:
1733 return retval;
1737 * vm_insert_page - insert single page into user vma
1738 * @vma: user vma to map to
1739 * @addr: target user address of this page
1740 * @page: source kernel page
1742 * This allows drivers to insert individual pages they've allocated
1743 * into a user vma.
1745 * The page has to be a nice clean _individual_ kernel allocation.
1746 * If you allocate a compound page, you need to have marked it as
1747 * such (__GFP_COMP), or manually just split the page up yourself
1748 * (see split_page()).
1750 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1751 * took an arbitrary page protection parameter. This doesn't allow
1752 * that. Your vma protection will have to be set up correctly, which
1753 * means that if you want a shared writable mapping, you'd better
1754 * ask for a shared writable mapping!
1756 * The page does not need to be reserved.
1758 * Usually this function is called from f_op->mmap() handler
1759 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1760 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1761 * function from other places, for example from page-fault handler.
1763 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1764 struct page *page)
1766 if (addr < vma->vm_start || addr >= vma->vm_end)
1767 return -EFAULT;
1768 if (!page_count(page))
1769 return -EINVAL;
1770 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1771 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1772 BUG_ON(vma->vm_flags & VM_PFNMAP);
1773 vma->vm_flags |= VM_MIXEDMAP;
1775 return insert_page(vma, addr, page, vma->vm_page_prot);
1777 EXPORT_SYMBOL(vm_insert_page);
1779 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1780 pfn_t pfn, pgprot_t prot, bool mkwrite)
1782 struct mm_struct *mm = vma->vm_mm;
1783 int retval;
1784 pte_t *pte, entry;
1785 spinlock_t *ptl;
1787 retval = -ENOMEM;
1788 pte = get_locked_pte(mm, addr, &ptl);
1789 if (!pte)
1790 goto out;
1791 retval = -EBUSY;
1792 if (!pte_none(*pte)) {
1793 if (mkwrite) {
1795 * For read faults on private mappings the PFN passed
1796 * in may not match the PFN we have mapped if the
1797 * mapped PFN is a writeable COW page. In the mkwrite
1798 * case we are creating a writable PTE for a shared
1799 * mapping and we expect the PFNs to match.
1801 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1802 goto out_unlock;
1803 entry = *pte;
1804 goto out_mkwrite;
1805 } else
1806 goto out_unlock;
1809 /* Ok, finally just insert the thing.. */
1810 if (pfn_t_devmap(pfn))
1811 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1812 else
1813 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1815 out_mkwrite:
1816 if (mkwrite) {
1817 entry = pte_mkyoung(entry);
1818 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1821 set_pte_at(mm, addr, pte, entry);
1822 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1824 retval = 0;
1825 out_unlock:
1826 pte_unmap_unlock(pte, ptl);
1827 out:
1828 return retval;
1832 * vm_insert_pfn - insert single pfn into user vma
1833 * @vma: user vma to map to
1834 * @addr: target user address of this page
1835 * @pfn: source kernel pfn
1837 * Similar to vm_insert_page, this allows drivers to insert individual pages
1838 * they've allocated into a user vma. Same comments apply.
1840 * This function should only be called from a vm_ops->fault handler, and
1841 * in that case the handler should return NULL.
1843 * vma cannot be a COW mapping.
1845 * As this is called only for pages that do not currently exist, we
1846 * do not need to flush old virtual caches or the TLB.
1848 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1849 unsigned long pfn)
1851 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1853 EXPORT_SYMBOL(vm_insert_pfn);
1856 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1857 * @vma: user vma to map to
1858 * @addr: target user address of this page
1859 * @pfn: source kernel pfn
1860 * @pgprot: pgprot flags for the inserted page
1862 * This is exactly like vm_insert_pfn, except that it allows drivers to
1863 * to override pgprot on a per-page basis.
1865 * This only makes sense for IO mappings, and it makes no sense for
1866 * cow mappings. In general, using multiple vmas is preferable;
1867 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1868 * impractical.
1870 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1871 unsigned long pfn, pgprot_t pgprot)
1873 int ret;
1875 * Technically, architectures with pte_special can avoid all these
1876 * restrictions (same for remap_pfn_range). However we would like
1877 * consistency in testing and feature parity among all, so we should
1878 * try to keep these invariants in place for everybody.
1880 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1881 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1882 (VM_PFNMAP|VM_MIXEDMAP));
1883 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1884 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1886 if (addr < vma->vm_start || addr >= vma->vm_end)
1887 return -EFAULT;
1889 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1891 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1892 false);
1894 return ret;
1896 EXPORT_SYMBOL(vm_insert_pfn_prot);
1898 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1900 /* these checks mirror the abort conditions in vm_normal_page */
1901 if (vma->vm_flags & VM_MIXEDMAP)
1902 return true;
1903 if (pfn_t_devmap(pfn))
1904 return true;
1905 if (pfn_t_special(pfn))
1906 return true;
1907 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1908 return true;
1909 return false;
1912 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1913 pfn_t pfn, bool mkwrite)
1915 pgprot_t pgprot = vma->vm_page_prot;
1917 BUG_ON(!vm_mixed_ok(vma, pfn));
1919 if (addr < vma->vm_start || addr >= vma->vm_end)
1920 return -EFAULT;
1922 track_pfn_insert(vma, &pgprot, pfn);
1925 * If we don't have pte special, then we have to use the pfn_valid()
1926 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1927 * refcount the page if pfn_valid is true (hence insert_page rather
1928 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1929 * without pte special, it would there be refcounted as a normal page.
1931 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1932 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1933 struct page *page;
1936 * At this point we are committed to insert_page()
1937 * regardless of whether the caller specified flags that
1938 * result in pfn_t_has_page() == false.
1940 page = pfn_to_page(pfn_t_to_pfn(pfn));
1941 return insert_page(vma, addr, page, pgprot);
1943 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1946 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1947 pfn_t pfn)
1949 return __vm_insert_mixed(vma, addr, pfn, false);
1952 EXPORT_SYMBOL(vm_insert_mixed);
1955 * If the insertion of PTE failed because someone else already added a
1956 * different entry in the mean time, we treat that as success as we assume
1957 * the same entry was actually inserted.
1960 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1961 unsigned long addr, pfn_t pfn)
1963 int err;
1965 err = __vm_insert_mixed(vma, addr, pfn, true);
1966 if (err == -ENOMEM)
1967 return VM_FAULT_OOM;
1968 if (err < 0 && err != -EBUSY)
1969 return VM_FAULT_SIGBUS;
1970 return VM_FAULT_NOPAGE;
1972 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1975 * maps a range of physical memory into the requested pages. the old
1976 * mappings are removed. any references to nonexistent pages results
1977 * in null mappings (currently treated as "copy-on-access")
1979 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1980 unsigned long addr, unsigned long end,
1981 unsigned long pfn, pgprot_t prot)
1983 pte_t *pte;
1984 spinlock_t *ptl;
1986 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1987 if (!pte)
1988 return -ENOMEM;
1989 arch_enter_lazy_mmu_mode();
1990 do {
1991 BUG_ON(!pte_none(*pte));
1992 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1993 pfn++;
1994 } while (pte++, addr += PAGE_SIZE, addr != end);
1995 arch_leave_lazy_mmu_mode();
1996 pte_unmap_unlock(pte - 1, ptl);
1997 return 0;
2000 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2001 unsigned long addr, unsigned long end,
2002 unsigned long pfn, pgprot_t prot)
2004 pmd_t *pmd;
2005 unsigned long next;
2007 pfn -= addr >> PAGE_SHIFT;
2008 pmd = pmd_alloc(mm, pud, addr);
2009 if (!pmd)
2010 return -ENOMEM;
2011 VM_BUG_ON(pmd_trans_huge(*pmd));
2012 do {
2013 next = pmd_addr_end(addr, end);
2014 if (remap_pte_range(mm, pmd, addr, next,
2015 pfn + (addr >> PAGE_SHIFT), prot))
2016 return -ENOMEM;
2017 } while (pmd++, addr = next, addr != end);
2018 return 0;
2021 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2022 unsigned long addr, unsigned long end,
2023 unsigned long pfn, pgprot_t prot)
2025 pud_t *pud;
2026 unsigned long next;
2028 pfn -= addr >> PAGE_SHIFT;
2029 pud = pud_alloc(mm, p4d, addr);
2030 if (!pud)
2031 return -ENOMEM;
2032 do {
2033 next = pud_addr_end(addr, end);
2034 if (remap_pmd_range(mm, pud, addr, next,
2035 pfn + (addr >> PAGE_SHIFT), prot))
2036 return -ENOMEM;
2037 } while (pud++, addr = next, addr != end);
2038 return 0;
2041 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2042 unsigned long addr, unsigned long end,
2043 unsigned long pfn, pgprot_t prot)
2045 p4d_t *p4d;
2046 unsigned long next;
2048 pfn -= addr >> PAGE_SHIFT;
2049 p4d = p4d_alloc(mm, pgd, addr);
2050 if (!p4d)
2051 return -ENOMEM;
2052 do {
2053 next = p4d_addr_end(addr, end);
2054 if (remap_pud_range(mm, p4d, addr, next,
2055 pfn + (addr >> PAGE_SHIFT), prot))
2056 return -ENOMEM;
2057 } while (p4d++, addr = next, addr != end);
2058 return 0;
2062 * remap_pfn_range - remap kernel memory to userspace
2063 * @vma: user vma to map to
2064 * @addr: target user address to start at
2065 * @pfn: physical address of kernel memory
2066 * @size: size of map area
2067 * @prot: page protection flags for this mapping
2069 * Note: this is only safe if the mm semaphore is held when called.
2071 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2072 unsigned long pfn, unsigned long size, pgprot_t prot)
2074 pgd_t *pgd;
2075 unsigned long next;
2076 unsigned long end = addr + PAGE_ALIGN(size);
2077 struct mm_struct *mm = vma->vm_mm;
2078 unsigned long remap_pfn = pfn;
2079 int err;
2082 * Physically remapped pages are special. Tell the
2083 * rest of the world about it:
2084 * VM_IO tells people not to look at these pages
2085 * (accesses can have side effects).
2086 * VM_PFNMAP tells the core MM that the base pages are just
2087 * raw PFN mappings, and do not have a "struct page" associated
2088 * with them.
2089 * VM_DONTEXPAND
2090 * Disable vma merging and expanding with mremap().
2091 * VM_DONTDUMP
2092 * Omit vma from core dump, even when VM_IO turned off.
2094 * There's a horrible special case to handle copy-on-write
2095 * behaviour that some programs depend on. We mark the "original"
2096 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2097 * See vm_normal_page() for details.
2099 if (is_cow_mapping(vma->vm_flags)) {
2100 if (addr != vma->vm_start || end != vma->vm_end)
2101 return -EINVAL;
2102 vma->vm_pgoff = pfn;
2105 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2106 if (err)
2107 return -EINVAL;
2109 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2111 BUG_ON(addr >= end);
2112 pfn -= addr >> PAGE_SHIFT;
2113 pgd = pgd_offset(mm, addr);
2114 flush_cache_range(vma, addr, end);
2115 do {
2116 next = pgd_addr_end(addr, end);
2117 err = remap_p4d_range(mm, pgd, addr, next,
2118 pfn + (addr >> PAGE_SHIFT), prot);
2119 if (err)
2120 break;
2121 } while (pgd++, addr = next, addr != end);
2123 if (err)
2124 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2126 return err;
2128 EXPORT_SYMBOL(remap_pfn_range);
2131 * vm_iomap_memory - remap memory to userspace
2132 * @vma: user vma to map to
2133 * @start: start of area
2134 * @len: size of area
2136 * This is a simplified io_remap_pfn_range() for common driver use. The
2137 * driver just needs to give us the physical memory range to be mapped,
2138 * we'll figure out the rest from the vma information.
2140 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2141 * whatever write-combining details or similar.
2143 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2145 unsigned long vm_len, pfn, pages;
2147 /* Check that the physical memory area passed in looks valid */
2148 if (start + len < start)
2149 return -EINVAL;
2151 * You *really* shouldn't map things that aren't page-aligned,
2152 * but we've historically allowed it because IO memory might
2153 * just have smaller alignment.
2155 len += start & ~PAGE_MASK;
2156 pfn = start >> PAGE_SHIFT;
2157 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2158 if (pfn + pages < pfn)
2159 return -EINVAL;
2161 /* We start the mapping 'vm_pgoff' pages into the area */
2162 if (vma->vm_pgoff > pages)
2163 return -EINVAL;
2164 pfn += vma->vm_pgoff;
2165 pages -= vma->vm_pgoff;
2167 /* Can we fit all of the mapping? */
2168 vm_len = vma->vm_end - vma->vm_start;
2169 if (vm_len >> PAGE_SHIFT > pages)
2170 return -EINVAL;
2172 /* Ok, let it rip */
2173 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2175 EXPORT_SYMBOL(vm_iomap_memory);
2177 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2178 unsigned long addr, unsigned long end,
2179 pte_fn_t fn, void *data)
2181 pte_t *pte;
2182 int err;
2183 pgtable_t token;
2184 spinlock_t *uninitialized_var(ptl);
2186 pte = (mm == &init_mm) ?
2187 pte_alloc_kernel(pmd, addr) :
2188 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2189 if (!pte)
2190 return -ENOMEM;
2192 BUG_ON(pmd_huge(*pmd));
2194 arch_enter_lazy_mmu_mode();
2196 token = pmd_pgtable(*pmd);
2198 do {
2199 err = fn(pte++, token, addr, data);
2200 if (err)
2201 break;
2202 } while (addr += PAGE_SIZE, addr != end);
2204 arch_leave_lazy_mmu_mode();
2206 if (mm != &init_mm)
2207 pte_unmap_unlock(pte-1, ptl);
2208 return err;
2211 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2212 unsigned long addr, unsigned long end,
2213 pte_fn_t fn, void *data)
2215 pmd_t *pmd;
2216 unsigned long next;
2217 int err;
2219 BUG_ON(pud_huge(*pud));
2221 pmd = pmd_alloc(mm, pud, addr);
2222 if (!pmd)
2223 return -ENOMEM;
2224 do {
2225 next = pmd_addr_end(addr, end);
2226 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2227 if (err)
2228 break;
2229 } while (pmd++, addr = next, addr != end);
2230 return err;
2233 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2234 unsigned long addr, unsigned long end,
2235 pte_fn_t fn, void *data)
2237 pud_t *pud;
2238 unsigned long next;
2239 int err;
2241 pud = pud_alloc(mm, p4d, addr);
2242 if (!pud)
2243 return -ENOMEM;
2244 do {
2245 next = pud_addr_end(addr, end);
2246 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2247 if (err)
2248 break;
2249 } while (pud++, addr = next, addr != end);
2250 return err;
2253 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2254 unsigned long addr, unsigned long end,
2255 pte_fn_t fn, void *data)
2257 p4d_t *p4d;
2258 unsigned long next;
2259 int err;
2261 p4d = p4d_alloc(mm, pgd, addr);
2262 if (!p4d)
2263 return -ENOMEM;
2264 do {
2265 next = p4d_addr_end(addr, end);
2266 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2267 if (err)
2268 break;
2269 } while (p4d++, addr = next, addr != end);
2270 return err;
2274 * Scan a region of virtual memory, filling in page tables as necessary
2275 * and calling a provided function on each leaf page table.
2277 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2278 unsigned long size, pte_fn_t fn, void *data)
2280 pgd_t *pgd;
2281 unsigned long next;
2282 unsigned long end = addr + size;
2283 int err;
2285 if (WARN_ON(addr >= end))
2286 return -EINVAL;
2288 pgd = pgd_offset(mm, addr);
2289 do {
2290 next = pgd_addr_end(addr, end);
2291 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2292 if (err)
2293 break;
2294 } while (pgd++, addr = next, addr != end);
2296 return err;
2298 EXPORT_SYMBOL_GPL(apply_to_page_range);
2301 * handle_pte_fault chooses page fault handler according to an entry which was
2302 * read non-atomically. Before making any commitment, on those architectures
2303 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2304 * parts, do_swap_page must check under lock before unmapping the pte and
2305 * proceeding (but do_wp_page is only called after already making such a check;
2306 * and do_anonymous_page can safely check later on).
2308 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2309 pte_t *page_table, pte_t orig_pte)
2311 int same = 1;
2312 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2313 if (sizeof(pte_t) > sizeof(unsigned long)) {
2314 spinlock_t *ptl = pte_lockptr(mm, pmd);
2315 spin_lock(ptl);
2316 same = pte_same(*page_table, orig_pte);
2317 spin_unlock(ptl);
2319 #endif
2320 pte_unmap(page_table);
2321 return same;
2324 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2326 debug_dma_assert_idle(src);
2329 * If the source page was a PFN mapping, we don't have
2330 * a "struct page" for it. We do a best-effort copy by
2331 * just copying from the original user address. If that
2332 * fails, we just zero-fill it. Live with it.
2334 if (unlikely(!src)) {
2335 void *kaddr = kmap_atomic(dst);
2336 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2339 * This really shouldn't fail, because the page is there
2340 * in the page tables. But it might just be unreadable,
2341 * in which case we just give up and fill the result with
2342 * zeroes.
2344 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2345 clear_page(kaddr);
2346 kunmap_atomic(kaddr);
2347 flush_dcache_page(dst);
2348 } else
2349 copy_user_highpage(dst, src, va, vma);
2352 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2354 struct file *vm_file = vma->vm_file;
2356 if (vm_file)
2357 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2360 * Special mappings (e.g. VDSO) do not have any file so fake
2361 * a default GFP_KERNEL for them.
2363 return GFP_KERNEL;
2367 * Notify the address space that the page is about to become writable so that
2368 * it can prohibit this or wait for the page to get into an appropriate state.
2370 * We do this without the lock held, so that it can sleep if it needs to.
2372 static int do_page_mkwrite(struct vm_fault *vmf)
2374 int ret;
2375 struct page *page = vmf->page;
2376 unsigned int old_flags = vmf->flags;
2378 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2380 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2381 /* Restore original flags so that caller is not surprised */
2382 vmf->flags = old_flags;
2383 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2384 return ret;
2385 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2386 lock_page(page);
2387 if (!page->mapping) {
2388 unlock_page(page);
2389 return 0; /* retry */
2391 ret |= VM_FAULT_LOCKED;
2392 } else
2393 VM_BUG_ON_PAGE(!PageLocked(page), page);
2394 return ret;
2398 * Handle dirtying of a page in shared file mapping on a write fault.
2400 * The function expects the page to be locked and unlocks it.
2402 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2403 struct page *page)
2405 struct address_space *mapping;
2406 bool dirtied;
2407 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2409 dirtied = set_page_dirty(page);
2410 VM_BUG_ON_PAGE(PageAnon(page), page);
2412 * Take a local copy of the address_space - page.mapping may be zeroed
2413 * by truncate after unlock_page(). The address_space itself remains
2414 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2415 * release semantics to prevent the compiler from undoing this copying.
2417 mapping = page_rmapping(page);
2418 unlock_page(page);
2420 if ((dirtied || page_mkwrite) && mapping) {
2422 * Some device drivers do not set page.mapping
2423 * but still dirty their pages
2425 balance_dirty_pages_ratelimited(mapping);
2428 if (!page_mkwrite)
2429 file_update_time(vma->vm_file);
2433 * Handle write page faults for pages that can be reused in the current vma
2435 * This can happen either due to the mapping being with the VM_SHARED flag,
2436 * or due to us being the last reference standing to the page. In either
2437 * case, all we need to do here is to mark the page as writable and update
2438 * any related book-keeping.
2440 static inline void wp_page_reuse(struct vm_fault *vmf)
2441 __releases(vmf->ptl)
2443 struct vm_area_struct *vma = vmf->vma;
2444 struct page *page = vmf->page;
2445 pte_t entry;
2447 * Clear the pages cpupid information as the existing
2448 * information potentially belongs to a now completely
2449 * unrelated process.
2451 if (page)
2452 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2454 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2455 entry = pte_mkyoung(vmf->orig_pte);
2456 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2457 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2458 update_mmu_cache(vma, vmf->address, vmf->pte);
2459 pte_unmap_unlock(vmf->pte, vmf->ptl);
2463 * Handle the case of a page which we actually need to copy to a new page.
2465 * Called with mmap_sem locked and the old page referenced, but
2466 * without the ptl held.
2468 * High level logic flow:
2470 * - Allocate a page, copy the content of the old page to the new one.
2471 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2472 * - Take the PTL. If the pte changed, bail out and release the allocated page
2473 * - If the pte is still the way we remember it, update the page table and all
2474 * relevant references. This includes dropping the reference the page-table
2475 * held to the old page, as well as updating the rmap.
2476 * - In any case, unlock the PTL and drop the reference we took to the old page.
2478 static int wp_page_copy(struct vm_fault *vmf)
2480 struct vm_area_struct *vma = vmf->vma;
2481 struct mm_struct *mm = vma->vm_mm;
2482 struct page *old_page = vmf->page;
2483 struct page *new_page = NULL;
2484 pte_t entry;
2485 int page_copied = 0;
2486 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2487 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2488 struct mem_cgroup *memcg;
2490 if (unlikely(anon_vma_prepare(vma)))
2491 goto oom;
2493 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2494 new_page = alloc_zeroed_user_highpage_movable(vma,
2495 vmf->address);
2496 if (!new_page)
2497 goto oom;
2498 } else {
2499 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2500 vmf->address);
2501 if (!new_page)
2502 goto oom;
2503 cow_user_page(new_page, old_page, vmf->address, vma);
2506 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2507 goto oom_free_new;
2509 __SetPageUptodate(new_page);
2511 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2514 * Re-check the pte - we dropped the lock
2516 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2517 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2518 if (old_page) {
2519 if (!PageAnon(old_page)) {
2520 dec_mm_counter_fast(mm,
2521 mm_counter_file(old_page));
2522 inc_mm_counter_fast(mm, MM_ANONPAGES);
2524 } else {
2525 inc_mm_counter_fast(mm, MM_ANONPAGES);
2527 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2528 entry = mk_pte(new_page, vma->vm_page_prot);
2529 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2531 * Clear the pte entry and flush it first, before updating the
2532 * pte with the new entry. This will avoid a race condition
2533 * seen in the presence of one thread doing SMC and another
2534 * thread doing COW.
2536 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2537 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2538 mem_cgroup_commit_charge(new_page, memcg, false, false);
2539 lru_cache_add_active_or_unevictable(new_page, vma);
2541 * We call the notify macro here because, when using secondary
2542 * mmu page tables (such as kvm shadow page tables), we want the
2543 * new page to be mapped directly into the secondary page table.
2545 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2546 update_mmu_cache(vma, vmf->address, vmf->pte);
2547 if (old_page) {
2549 * Only after switching the pte to the new page may
2550 * we remove the mapcount here. Otherwise another
2551 * process may come and find the rmap count decremented
2552 * before the pte is switched to the new page, and
2553 * "reuse" the old page writing into it while our pte
2554 * here still points into it and can be read by other
2555 * threads.
2557 * The critical issue is to order this
2558 * page_remove_rmap with the ptp_clear_flush above.
2559 * Those stores are ordered by (if nothing else,)
2560 * the barrier present in the atomic_add_negative
2561 * in page_remove_rmap.
2563 * Then the TLB flush in ptep_clear_flush ensures that
2564 * no process can access the old page before the
2565 * decremented mapcount is visible. And the old page
2566 * cannot be reused until after the decremented
2567 * mapcount is visible. So transitively, TLBs to
2568 * old page will be flushed before it can be reused.
2570 page_remove_rmap(old_page, false);
2573 /* Free the old page.. */
2574 new_page = old_page;
2575 page_copied = 1;
2576 } else {
2577 mem_cgroup_cancel_charge(new_page, memcg, false);
2580 if (new_page)
2581 put_page(new_page);
2583 pte_unmap_unlock(vmf->pte, vmf->ptl);
2585 * No need to double call mmu_notifier->invalidate_range() callback as
2586 * the above ptep_clear_flush_notify() did already call it.
2588 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2589 if (old_page) {
2591 * Don't let another task, with possibly unlocked vma,
2592 * keep the mlocked page.
2594 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2595 lock_page(old_page); /* LRU manipulation */
2596 if (PageMlocked(old_page))
2597 munlock_vma_page(old_page);
2598 unlock_page(old_page);
2600 put_page(old_page);
2602 return page_copied ? VM_FAULT_WRITE : 0;
2603 oom_free_new:
2604 put_page(new_page);
2605 oom:
2606 if (old_page)
2607 put_page(old_page);
2608 return VM_FAULT_OOM;
2612 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2613 * writeable once the page is prepared
2615 * @vmf: structure describing the fault
2617 * This function handles all that is needed to finish a write page fault in a
2618 * shared mapping due to PTE being read-only once the mapped page is prepared.
2619 * It handles locking of PTE and modifying it. The function returns
2620 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2621 * lock.
2623 * The function expects the page to be locked or other protection against
2624 * concurrent faults / writeback (such as DAX radix tree locks).
2626 int finish_mkwrite_fault(struct vm_fault *vmf)
2628 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2629 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2630 &vmf->ptl);
2632 * We might have raced with another page fault while we released the
2633 * pte_offset_map_lock.
2635 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2636 pte_unmap_unlock(vmf->pte, vmf->ptl);
2637 return VM_FAULT_NOPAGE;
2639 wp_page_reuse(vmf);
2640 return 0;
2644 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2645 * mapping
2647 static int wp_pfn_shared(struct vm_fault *vmf)
2649 struct vm_area_struct *vma = vmf->vma;
2651 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2652 int ret;
2654 pte_unmap_unlock(vmf->pte, vmf->ptl);
2655 vmf->flags |= FAULT_FLAG_MKWRITE;
2656 ret = vma->vm_ops->pfn_mkwrite(vmf);
2657 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2658 return ret;
2659 return finish_mkwrite_fault(vmf);
2661 wp_page_reuse(vmf);
2662 return VM_FAULT_WRITE;
2665 static int wp_page_shared(struct vm_fault *vmf)
2666 __releases(vmf->ptl)
2668 struct vm_area_struct *vma = vmf->vma;
2670 get_page(vmf->page);
2672 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2673 int tmp;
2675 pte_unmap_unlock(vmf->pte, vmf->ptl);
2676 tmp = do_page_mkwrite(vmf);
2677 if (unlikely(!tmp || (tmp &
2678 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2679 put_page(vmf->page);
2680 return tmp;
2682 tmp = finish_mkwrite_fault(vmf);
2683 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2684 unlock_page(vmf->page);
2685 put_page(vmf->page);
2686 return tmp;
2688 } else {
2689 wp_page_reuse(vmf);
2690 lock_page(vmf->page);
2692 fault_dirty_shared_page(vma, vmf->page);
2693 put_page(vmf->page);
2695 return VM_FAULT_WRITE;
2699 * This routine handles present pages, when users try to write
2700 * to a shared page. It is done by copying the page to a new address
2701 * and decrementing the shared-page counter for the old page.
2703 * Note that this routine assumes that the protection checks have been
2704 * done by the caller (the low-level page fault routine in most cases).
2705 * Thus we can safely just mark it writable once we've done any necessary
2706 * COW.
2708 * We also mark the page dirty at this point even though the page will
2709 * change only once the write actually happens. This avoids a few races,
2710 * and potentially makes it more efficient.
2712 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2713 * but allow concurrent faults), with pte both mapped and locked.
2714 * We return with mmap_sem still held, but pte unmapped and unlocked.
2716 static int do_wp_page(struct vm_fault *vmf)
2717 __releases(vmf->ptl)
2719 struct vm_area_struct *vma = vmf->vma;
2721 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2722 if (!vmf->page) {
2724 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2725 * VM_PFNMAP VMA.
2727 * We should not cow pages in a shared writeable mapping.
2728 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2730 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2731 (VM_WRITE|VM_SHARED))
2732 return wp_pfn_shared(vmf);
2734 pte_unmap_unlock(vmf->pte, vmf->ptl);
2735 return wp_page_copy(vmf);
2739 * Take out anonymous pages first, anonymous shared vmas are
2740 * not dirty accountable.
2742 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2743 int total_map_swapcount;
2744 if (!trylock_page(vmf->page)) {
2745 get_page(vmf->page);
2746 pte_unmap_unlock(vmf->pte, vmf->ptl);
2747 lock_page(vmf->page);
2748 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2749 vmf->address, &vmf->ptl);
2750 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2751 unlock_page(vmf->page);
2752 pte_unmap_unlock(vmf->pte, vmf->ptl);
2753 put_page(vmf->page);
2754 return 0;
2756 put_page(vmf->page);
2758 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2759 if (total_map_swapcount == 1) {
2761 * The page is all ours. Move it to
2762 * our anon_vma so the rmap code will
2763 * not search our parent or siblings.
2764 * Protected against the rmap code by
2765 * the page lock.
2767 page_move_anon_rmap(vmf->page, vma);
2769 unlock_page(vmf->page);
2770 wp_page_reuse(vmf);
2771 return VM_FAULT_WRITE;
2773 unlock_page(vmf->page);
2774 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2775 (VM_WRITE|VM_SHARED))) {
2776 return wp_page_shared(vmf);
2780 * Ok, we need to copy. Oh, well..
2782 get_page(vmf->page);
2784 pte_unmap_unlock(vmf->pte, vmf->ptl);
2785 return wp_page_copy(vmf);
2788 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2789 unsigned long start_addr, unsigned long end_addr,
2790 struct zap_details *details)
2792 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2795 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2796 struct zap_details *details)
2798 struct vm_area_struct *vma;
2799 pgoff_t vba, vea, zba, zea;
2801 vma_interval_tree_foreach(vma, root,
2802 details->first_index, details->last_index) {
2804 vba = vma->vm_pgoff;
2805 vea = vba + vma_pages(vma) - 1;
2806 zba = details->first_index;
2807 if (zba < vba)
2808 zba = vba;
2809 zea = details->last_index;
2810 if (zea > vea)
2811 zea = vea;
2813 unmap_mapping_range_vma(vma,
2814 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2815 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2816 details);
2821 * unmap_mapping_pages() - Unmap pages from processes.
2822 * @mapping: The address space containing pages to be unmapped.
2823 * @start: Index of first page to be unmapped.
2824 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2825 * @even_cows: Whether to unmap even private COWed pages.
2827 * Unmap the pages in this address space from any userspace process which
2828 * has them mmaped. Generally, you want to remove COWed pages as well when
2829 * a file is being truncated, but not when invalidating pages from the page
2830 * cache.
2832 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2833 pgoff_t nr, bool even_cows)
2835 struct zap_details details = { };
2837 details.check_mapping = even_cows ? NULL : mapping;
2838 details.first_index = start;
2839 details.last_index = start + nr - 1;
2840 if (details.last_index < details.first_index)
2841 details.last_index = ULONG_MAX;
2843 i_mmap_lock_write(mapping);
2844 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2845 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2846 i_mmap_unlock_write(mapping);
2850 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2851 * address_space corresponding to the specified byte range in the underlying
2852 * file.
2854 * @mapping: the address space containing mmaps to be unmapped.
2855 * @holebegin: byte in first page to unmap, relative to the start of
2856 * the underlying file. This will be rounded down to a PAGE_SIZE
2857 * boundary. Note that this is different from truncate_pagecache(), which
2858 * must keep the partial page. In contrast, we must get rid of
2859 * partial pages.
2860 * @holelen: size of prospective hole in bytes. This will be rounded
2861 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2862 * end of the file.
2863 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2864 * but 0 when invalidating pagecache, don't throw away private data.
2866 void unmap_mapping_range(struct address_space *mapping,
2867 loff_t const holebegin, loff_t const holelen, int even_cows)
2869 pgoff_t hba = holebegin >> PAGE_SHIFT;
2870 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2872 /* Check for overflow. */
2873 if (sizeof(holelen) > sizeof(hlen)) {
2874 long long holeend =
2875 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2876 if (holeend & ~(long long)ULONG_MAX)
2877 hlen = ULONG_MAX - hba + 1;
2880 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2882 EXPORT_SYMBOL(unmap_mapping_range);
2885 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2886 * but allow concurrent faults), and pte mapped but not yet locked.
2887 * We return with pte unmapped and unlocked.
2889 * We return with the mmap_sem locked or unlocked in the same cases
2890 * as does filemap_fault().
2892 int do_swap_page(struct vm_fault *vmf)
2894 struct vm_area_struct *vma = vmf->vma;
2895 struct page *page = NULL, *swapcache;
2896 struct mem_cgroup *memcg;
2897 swp_entry_t entry;
2898 pte_t pte;
2899 int locked;
2900 int exclusive = 0;
2901 int ret = 0;
2903 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2904 goto out;
2906 entry = pte_to_swp_entry(vmf->orig_pte);
2907 if (unlikely(non_swap_entry(entry))) {
2908 if (is_migration_entry(entry)) {
2909 migration_entry_wait(vma->vm_mm, vmf->pmd,
2910 vmf->address);
2911 } else if (is_device_private_entry(entry)) {
2913 * For un-addressable device memory we call the pgmap
2914 * fault handler callback. The callback must migrate
2915 * the page back to some CPU accessible page.
2917 ret = device_private_entry_fault(vma, vmf->address, entry,
2918 vmf->flags, vmf->pmd);
2919 } else if (is_hwpoison_entry(entry)) {
2920 ret = VM_FAULT_HWPOISON;
2921 } else {
2922 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2923 ret = VM_FAULT_SIGBUS;
2925 goto out;
2929 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2930 page = lookup_swap_cache(entry, vma, vmf->address);
2931 swapcache = page;
2933 if (!page) {
2934 struct swap_info_struct *si = swp_swap_info(entry);
2936 if (si->flags & SWP_SYNCHRONOUS_IO &&
2937 __swap_count(si, entry) == 1) {
2938 /* skip swapcache */
2939 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2940 vmf->address);
2941 if (page) {
2942 __SetPageLocked(page);
2943 __SetPageSwapBacked(page);
2944 set_page_private(page, entry.val);
2945 lru_cache_add_anon(page);
2946 swap_readpage(page, true);
2948 } else {
2949 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2950 vmf);
2951 swapcache = page;
2954 if (!page) {
2956 * Back out if somebody else faulted in this pte
2957 * while we released the pte lock.
2959 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2960 vmf->address, &vmf->ptl);
2961 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2962 ret = VM_FAULT_OOM;
2963 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2964 goto unlock;
2967 /* Had to read the page from swap area: Major fault */
2968 ret = VM_FAULT_MAJOR;
2969 count_vm_event(PGMAJFAULT);
2970 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2971 } else if (PageHWPoison(page)) {
2973 * hwpoisoned dirty swapcache pages are kept for killing
2974 * owner processes (which may be unknown at hwpoison time)
2976 ret = VM_FAULT_HWPOISON;
2977 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2978 goto out_release;
2981 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2983 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2984 if (!locked) {
2985 ret |= VM_FAULT_RETRY;
2986 goto out_release;
2990 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2991 * release the swapcache from under us. The page pin, and pte_same
2992 * test below, are not enough to exclude that. Even if it is still
2993 * swapcache, we need to check that the page's swap has not changed.
2995 if (unlikely((!PageSwapCache(page) ||
2996 page_private(page) != entry.val)) && swapcache)
2997 goto out_page;
2999 page = ksm_might_need_to_copy(page, vma, vmf->address);
3000 if (unlikely(!page)) {
3001 ret = VM_FAULT_OOM;
3002 page = swapcache;
3003 goto out_page;
3006 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3007 &memcg, false)) {
3008 ret = VM_FAULT_OOM;
3009 goto out_page;
3013 * Back out if somebody else already faulted in this pte.
3015 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3016 &vmf->ptl);
3017 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3018 goto out_nomap;
3020 if (unlikely(!PageUptodate(page))) {
3021 ret = VM_FAULT_SIGBUS;
3022 goto out_nomap;
3026 * The page isn't present yet, go ahead with the fault.
3028 * Be careful about the sequence of operations here.
3029 * To get its accounting right, reuse_swap_page() must be called
3030 * while the page is counted on swap but not yet in mapcount i.e.
3031 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3032 * must be called after the swap_free(), or it will never succeed.
3035 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3036 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3037 pte = mk_pte(page, vma->vm_page_prot);
3038 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3039 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3040 vmf->flags &= ~FAULT_FLAG_WRITE;
3041 ret |= VM_FAULT_WRITE;
3042 exclusive = RMAP_EXCLUSIVE;
3044 flush_icache_page(vma, page);
3045 if (pte_swp_soft_dirty(vmf->orig_pte))
3046 pte = pte_mksoft_dirty(pte);
3047 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3048 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3049 vmf->orig_pte = pte;
3051 /* ksm created a completely new copy */
3052 if (unlikely(page != swapcache && swapcache)) {
3053 page_add_new_anon_rmap(page, vma, vmf->address, false);
3054 mem_cgroup_commit_charge(page, memcg, false, false);
3055 lru_cache_add_active_or_unevictable(page, vma);
3056 } else {
3057 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3058 mem_cgroup_commit_charge(page, memcg, true, false);
3059 activate_page(page);
3062 swap_free(entry);
3063 if (mem_cgroup_swap_full(page) ||
3064 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3065 try_to_free_swap(page);
3066 unlock_page(page);
3067 if (page != swapcache && swapcache) {
3069 * Hold the lock to avoid the swap entry to be reused
3070 * until we take the PT lock for the pte_same() check
3071 * (to avoid false positives from pte_same). For
3072 * further safety release the lock after the swap_free
3073 * so that the swap count won't change under a
3074 * parallel locked swapcache.
3076 unlock_page(swapcache);
3077 put_page(swapcache);
3080 if (vmf->flags & FAULT_FLAG_WRITE) {
3081 ret |= do_wp_page(vmf);
3082 if (ret & VM_FAULT_ERROR)
3083 ret &= VM_FAULT_ERROR;
3084 goto out;
3087 /* No need to invalidate - it was non-present before */
3088 update_mmu_cache(vma, vmf->address, vmf->pte);
3089 unlock:
3090 pte_unmap_unlock(vmf->pte, vmf->ptl);
3091 out:
3092 return ret;
3093 out_nomap:
3094 mem_cgroup_cancel_charge(page, memcg, false);
3095 pte_unmap_unlock(vmf->pte, vmf->ptl);
3096 out_page:
3097 unlock_page(page);
3098 out_release:
3099 put_page(page);
3100 if (page != swapcache && swapcache) {
3101 unlock_page(swapcache);
3102 put_page(swapcache);
3104 return ret;
3108 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3109 * but allow concurrent faults), and pte mapped but not yet locked.
3110 * We return with mmap_sem still held, but pte unmapped and unlocked.
3112 static int do_anonymous_page(struct vm_fault *vmf)
3114 struct vm_area_struct *vma = vmf->vma;
3115 struct mem_cgroup *memcg;
3116 struct page *page;
3117 int ret = 0;
3118 pte_t entry;
3120 /* File mapping without ->vm_ops ? */
3121 if (vma->vm_flags & VM_SHARED)
3122 return VM_FAULT_SIGBUS;
3125 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3126 * pte_offset_map() on pmds where a huge pmd might be created
3127 * from a different thread.
3129 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3130 * parallel threads are excluded by other means.
3132 * Here we only have down_read(mmap_sem).
3134 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3135 return VM_FAULT_OOM;
3137 /* See the comment in pte_alloc_one_map() */
3138 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3139 return 0;
3141 /* Use the zero-page for reads */
3142 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3143 !mm_forbids_zeropage(vma->vm_mm)) {
3144 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3145 vma->vm_page_prot));
3146 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3147 vmf->address, &vmf->ptl);
3148 if (!pte_none(*vmf->pte))
3149 goto unlock;
3150 ret = check_stable_address_space(vma->vm_mm);
3151 if (ret)
3152 goto unlock;
3153 /* Deliver the page fault to userland, check inside PT lock */
3154 if (userfaultfd_missing(vma)) {
3155 pte_unmap_unlock(vmf->pte, vmf->ptl);
3156 return handle_userfault(vmf, VM_UFFD_MISSING);
3158 goto setpte;
3161 /* Allocate our own private page. */
3162 if (unlikely(anon_vma_prepare(vma)))
3163 goto oom;
3164 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3165 if (!page)
3166 goto oom;
3168 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3169 goto oom_free_page;
3172 * The memory barrier inside __SetPageUptodate makes sure that
3173 * preceeding stores to the page contents become visible before
3174 * the set_pte_at() write.
3176 __SetPageUptodate(page);
3178 entry = mk_pte(page, vma->vm_page_prot);
3179 if (vma->vm_flags & VM_WRITE)
3180 entry = pte_mkwrite(pte_mkdirty(entry));
3182 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3183 &vmf->ptl);
3184 if (!pte_none(*vmf->pte))
3185 goto release;
3187 ret = check_stable_address_space(vma->vm_mm);
3188 if (ret)
3189 goto release;
3191 /* Deliver the page fault to userland, check inside PT lock */
3192 if (userfaultfd_missing(vma)) {
3193 pte_unmap_unlock(vmf->pte, vmf->ptl);
3194 mem_cgroup_cancel_charge(page, memcg, false);
3195 put_page(page);
3196 return handle_userfault(vmf, VM_UFFD_MISSING);
3199 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3200 page_add_new_anon_rmap(page, vma, vmf->address, false);
3201 mem_cgroup_commit_charge(page, memcg, false, false);
3202 lru_cache_add_active_or_unevictable(page, vma);
3203 setpte:
3204 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3206 /* No need to invalidate - it was non-present before */
3207 update_mmu_cache(vma, vmf->address, vmf->pte);
3208 unlock:
3209 pte_unmap_unlock(vmf->pte, vmf->ptl);
3210 return ret;
3211 release:
3212 mem_cgroup_cancel_charge(page, memcg, false);
3213 put_page(page);
3214 goto unlock;
3215 oom_free_page:
3216 put_page(page);
3217 oom:
3218 return VM_FAULT_OOM;
3222 * The mmap_sem must have been held on entry, and may have been
3223 * released depending on flags and vma->vm_ops->fault() return value.
3224 * See filemap_fault() and __lock_page_retry().
3226 static int __do_fault(struct vm_fault *vmf)
3228 struct vm_area_struct *vma = vmf->vma;
3229 int ret;
3231 ret = vma->vm_ops->fault(vmf);
3232 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3233 VM_FAULT_DONE_COW)))
3234 return ret;
3236 if (unlikely(PageHWPoison(vmf->page))) {
3237 if (ret & VM_FAULT_LOCKED)
3238 unlock_page(vmf->page);
3239 put_page(vmf->page);
3240 vmf->page = NULL;
3241 return VM_FAULT_HWPOISON;
3244 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3245 lock_page(vmf->page);
3246 else
3247 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3249 return ret;
3253 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3254 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3255 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3256 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3258 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3260 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3263 static int pte_alloc_one_map(struct vm_fault *vmf)
3265 struct vm_area_struct *vma = vmf->vma;
3267 if (!pmd_none(*vmf->pmd))
3268 goto map_pte;
3269 if (vmf->prealloc_pte) {
3270 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3271 if (unlikely(!pmd_none(*vmf->pmd))) {
3272 spin_unlock(vmf->ptl);
3273 goto map_pte;
3276 mm_inc_nr_ptes(vma->vm_mm);
3277 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3278 spin_unlock(vmf->ptl);
3279 vmf->prealloc_pte = NULL;
3280 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3281 return VM_FAULT_OOM;
3283 map_pte:
3285 * If a huge pmd materialized under us just retry later. Use
3286 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3287 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3288 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3289 * running immediately after a huge pmd fault in a different thread of
3290 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3291 * All we have to ensure is that it is a regular pmd that we can walk
3292 * with pte_offset_map() and we can do that through an atomic read in
3293 * C, which is what pmd_trans_unstable() provides.
3295 if (pmd_devmap_trans_unstable(vmf->pmd))
3296 return VM_FAULT_NOPAGE;
3299 * At this point we know that our vmf->pmd points to a page of ptes
3300 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3301 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3302 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3303 * be valid and we will re-check to make sure the vmf->pte isn't
3304 * pte_none() under vmf->ptl protection when we return to
3305 * alloc_set_pte().
3307 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3308 &vmf->ptl);
3309 return 0;
3312 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3314 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3315 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3316 unsigned long haddr)
3318 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3319 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3320 return false;
3321 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3322 return false;
3323 return true;
3326 static void deposit_prealloc_pte(struct vm_fault *vmf)
3328 struct vm_area_struct *vma = vmf->vma;
3330 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3332 * We are going to consume the prealloc table,
3333 * count that as nr_ptes.
3335 mm_inc_nr_ptes(vma->vm_mm);
3336 vmf->prealloc_pte = NULL;
3339 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3341 struct vm_area_struct *vma = vmf->vma;
3342 bool write = vmf->flags & FAULT_FLAG_WRITE;
3343 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3344 pmd_t entry;
3345 int i, ret;
3347 if (!transhuge_vma_suitable(vma, haddr))
3348 return VM_FAULT_FALLBACK;
3350 ret = VM_FAULT_FALLBACK;
3351 page = compound_head(page);
3354 * Archs like ppc64 need additonal space to store information
3355 * related to pte entry. Use the preallocated table for that.
3357 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3358 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3359 if (!vmf->prealloc_pte)
3360 return VM_FAULT_OOM;
3361 smp_wmb(); /* See comment in __pte_alloc() */
3364 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3365 if (unlikely(!pmd_none(*vmf->pmd)))
3366 goto out;
3368 for (i = 0; i < HPAGE_PMD_NR; i++)
3369 flush_icache_page(vma, page + i);
3371 entry = mk_huge_pmd(page, vma->vm_page_prot);
3372 if (write)
3373 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3375 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3376 page_add_file_rmap(page, true);
3378 * deposit and withdraw with pmd lock held
3380 if (arch_needs_pgtable_deposit())
3381 deposit_prealloc_pte(vmf);
3383 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3385 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3387 /* fault is handled */
3388 ret = 0;
3389 count_vm_event(THP_FILE_MAPPED);
3390 out:
3391 spin_unlock(vmf->ptl);
3392 return ret;
3394 #else
3395 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3397 BUILD_BUG();
3398 return 0;
3400 #endif
3403 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3404 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3406 * @vmf: fault environment
3407 * @memcg: memcg to charge page (only for private mappings)
3408 * @page: page to map
3410 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3411 * return.
3413 * Target users are page handler itself and implementations of
3414 * vm_ops->map_pages.
3416 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3417 struct page *page)
3419 struct vm_area_struct *vma = vmf->vma;
3420 bool write = vmf->flags & FAULT_FLAG_WRITE;
3421 pte_t entry;
3422 int ret;
3424 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3425 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3426 /* THP on COW? */
3427 VM_BUG_ON_PAGE(memcg, page);
3429 ret = do_set_pmd(vmf, page);
3430 if (ret != VM_FAULT_FALLBACK)
3431 return ret;
3434 if (!vmf->pte) {
3435 ret = pte_alloc_one_map(vmf);
3436 if (ret)
3437 return ret;
3440 /* Re-check under ptl */
3441 if (unlikely(!pte_none(*vmf->pte)))
3442 return VM_FAULT_NOPAGE;
3444 flush_icache_page(vma, page);
3445 entry = mk_pte(page, vma->vm_page_prot);
3446 if (write)
3447 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3448 /* copy-on-write page */
3449 if (write && !(vma->vm_flags & VM_SHARED)) {
3450 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3451 page_add_new_anon_rmap(page, vma, vmf->address, false);
3452 mem_cgroup_commit_charge(page, memcg, false, false);
3453 lru_cache_add_active_or_unevictable(page, vma);
3454 } else {
3455 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3456 page_add_file_rmap(page, false);
3458 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3460 /* no need to invalidate: a not-present page won't be cached */
3461 update_mmu_cache(vma, vmf->address, vmf->pte);
3463 return 0;
3468 * finish_fault - finish page fault once we have prepared the page to fault
3470 * @vmf: structure describing the fault
3472 * This function handles all that is needed to finish a page fault once the
3473 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3474 * given page, adds reverse page mapping, handles memcg charges and LRU
3475 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3476 * error.
3478 * The function expects the page to be locked and on success it consumes a
3479 * reference of a page being mapped (for the PTE which maps it).
3481 int finish_fault(struct vm_fault *vmf)
3483 struct page *page;
3484 int ret = 0;
3486 /* Did we COW the page? */
3487 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3488 !(vmf->vma->vm_flags & VM_SHARED))
3489 page = vmf->cow_page;
3490 else
3491 page = vmf->page;
3494 * check even for read faults because we might have lost our CoWed
3495 * page
3497 if (!(vmf->vma->vm_flags & VM_SHARED))
3498 ret = check_stable_address_space(vmf->vma->vm_mm);
3499 if (!ret)
3500 ret = alloc_set_pte(vmf, vmf->memcg, page);
3501 if (vmf->pte)
3502 pte_unmap_unlock(vmf->pte, vmf->ptl);
3503 return ret;
3506 static unsigned long fault_around_bytes __read_mostly =
3507 rounddown_pow_of_two(65536);
3509 #ifdef CONFIG_DEBUG_FS
3510 static int fault_around_bytes_get(void *data, u64 *val)
3512 *val = fault_around_bytes;
3513 return 0;
3517 * fault_around_bytes must be rounded down to the nearest page order as it's
3518 * what do_fault_around() expects to see.
3520 static int fault_around_bytes_set(void *data, u64 val)
3522 if (val / PAGE_SIZE > PTRS_PER_PTE)
3523 return -EINVAL;
3524 if (val > PAGE_SIZE)
3525 fault_around_bytes = rounddown_pow_of_two(val);
3526 else
3527 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3528 return 0;
3530 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3531 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3533 static int __init fault_around_debugfs(void)
3535 void *ret;
3537 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3538 &fault_around_bytes_fops);
3539 if (!ret)
3540 pr_warn("Failed to create fault_around_bytes in debugfs");
3541 return 0;
3543 late_initcall(fault_around_debugfs);
3544 #endif
3547 * do_fault_around() tries to map few pages around the fault address. The hope
3548 * is that the pages will be needed soon and this will lower the number of
3549 * faults to handle.
3551 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3552 * not ready to be mapped: not up-to-date, locked, etc.
3554 * This function is called with the page table lock taken. In the split ptlock
3555 * case the page table lock only protects only those entries which belong to
3556 * the page table corresponding to the fault address.
3558 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3559 * only once.
3561 * fault_around_bytes defines how many bytes we'll try to map.
3562 * do_fault_around() expects it to be set to a power of two less than or equal
3563 * to PTRS_PER_PTE.
3565 * The virtual address of the area that we map is naturally aligned to
3566 * fault_around_bytes rounded down to the machine page size
3567 * (and therefore to page order). This way it's easier to guarantee
3568 * that we don't cross page table boundaries.
3570 static int do_fault_around(struct vm_fault *vmf)
3572 unsigned long address = vmf->address, nr_pages, mask;
3573 pgoff_t start_pgoff = vmf->pgoff;
3574 pgoff_t end_pgoff;
3575 int off, ret = 0;
3577 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3578 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3580 vmf->address = max(address & mask, vmf->vma->vm_start);
3581 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3582 start_pgoff -= off;
3585 * end_pgoff is either the end of the page table, the end of
3586 * the vma or nr_pages from start_pgoff, depending what is nearest.
3588 end_pgoff = start_pgoff -
3589 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3590 PTRS_PER_PTE - 1;
3591 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3592 start_pgoff + nr_pages - 1);
3594 if (pmd_none(*vmf->pmd)) {
3595 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3596 vmf->address);
3597 if (!vmf->prealloc_pte)
3598 goto out;
3599 smp_wmb(); /* See comment in __pte_alloc() */
3602 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3604 /* Huge page is mapped? Page fault is solved */
3605 if (pmd_trans_huge(*vmf->pmd)) {
3606 ret = VM_FAULT_NOPAGE;
3607 goto out;
3610 /* ->map_pages() haven't done anything useful. Cold page cache? */
3611 if (!vmf->pte)
3612 goto out;
3614 /* check if the page fault is solved */
3615 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3616 if (!pte_none(*vmf->pte))
3617 ret = VM_FAULT_NOPAGE;
3618 pte_unmap_unlock(vmf->pte, vmf->ptl);
3619 out:
3620 vmf->address = address;
3621 vmf->pte = NULL;
3622 return ret;
3625 static int do_read_fault(struct vm_fault *vmf)
3627 struct vm_area_struct *vma = vmf->vma;
3628 int ret = 0;
3631 * Let's call ->map_pages() first and use ->fault() as fallback
3632 * if page by the offset is not ready to be mapped (cold cache or
3633 * something).
3635 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3636 ret = do_fault_around(vmf);
3637 if (ret)
3638 return ret;
3641 ret = __do_fault(vmf);
3642 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3643 return ret;
3645 ret |= finish_fault(vmf);
3646 unlock_page(vmf->page);
3647 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3648 put_page(vmf->page);
3649 return ret;
3652 static int do_cow_fault(struct vm_fault *vmf)
3654 struct vm_area_struct *vma = vmf->vma;
3655 int ret;
3657 if (unlikely(anon_vma_prepare(vma)))
3658 return VM_FAULT_OOM;
3660 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3661 if (!vmf->cow_page)
3662 return VM_FAULT_OOM;
3664 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3665 &vmf->memcg, false)) {
3666 put_page(vmf->cow_page);
3667 return VM_FAULT_OOM;
3670 ret = __do_fault(vmf);
3671 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3672 goto uncharge_out;
3673 if (ret & VM_FAULT_DONE_COW)
3674 return ret;
3676 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3677 __SetPageUptodate(vmf->cow_page);
3679 ret |= finish_fault(vmf);
3680 unlock_page(vmf->page);
3681 put_page(vmf->page);
3682 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3683 goto uncharge_out;
3684 return ret;
3685 uncharge_out:
3686 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3687 put_page(vmf->cow_page);
3688 return ret;
3691 static int do_shared_fault(struct vm_fault *vmf)
3693 struct vm_area_struct *vma = vmf->vma;
3694 int ret, tmp;
3696 ret = __do_fault(vmf);
3697 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3698 return ret;
3701 * Check if the backing address space wants to know that the page is
3702 * about to become writable
3704 if (vma->vm_ops->page_mkwrite) {
3705 unlock_page(vmf->page);
3706 tmp = do_page_mkwrite(vmf);
3707 if (unlikely(!tmp ||
3708 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3709 put_page(vmf->page);
3710 return tmp;
3714 ret |= finish_fault(vmf);
3715 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3716 VM_FAULT_RETRY))) {
3717 unlock_page(vmf->page);
3718 put_page(vmf->page);
3719 return ret;
3722 fault_dirty_shared_page(vma, vmf->page);
3723 return ret;
3727 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3728 * but allow concurrent faults).
3729 * The mmap_sem may have been released depending on flags and our
3730 * return value. See filemap_fault() and __lock_page_or_retry().
3732 static int do_fault(struct vm_fault *vmf)
3734 struct vm_area_struct *vma = vmf->vma;
3735 int ret;
3737 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3738 if (!vma->vm_ops->fault)
3739 ret = VM_FAULT_SIGBUS;
3740 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3741 ret = do_read_fault(vmf);
3742 else if (!(vma->vm_flags & VM_SHARED))
3743 ret = do_cow_fault(vmf);
3744 else
3745 ret = do_shared_fault(vmf);
3747 /* preallocated pagetable is unused: free it */
3748 if (vmf->prealloc_pte) {
3749 pte_free(vma->vm_mm, vmf->prealloc_pte);
3750 vmf->prealloc_pte = NULL;
3752 return ret;
3755 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3756 unsigned long addr, int page_nid,
3757 int *flags)
3759 get_page(page);
3761 count_vm_numa_event(NUMA_HINT_FAULTS);
3762 if (page_nid == numa_node_id()) {
3763 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3764 *flags |= TNF_FAULT_LOCAL;
3767 return mpol_misplaced(page, vma, addr);
3770 static int do_numa_page(struct vm_fault *vmf)
3772 struct vm_area_struct *vma = vmf->vma;
3773 struct page *page = NULL;
3774 int page_nid = -1;
3775 int last_cpupid;
3776 int target_nid;
3777 bool migrated = false;
3778 pte_t pte;
3779 bool was_writable = pte_savedwrite(vmf->orig_pte);
3780 int flags = 0;
3783 * The "pte" at this point cannot be used safely without
3784 * validation through pte_unmap_same(). It's of NUMA type but
3785 * the pfn may be screwed if the read is non atomic.
3787 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3788 spin_lock(vmf->ptl);
3789 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3790 pte_unmap_unlock(vmf->pte, vmf->ptl);
3791 goto out;
3795 * Make it present again, Depending on how arch implementes non
3796 * accessible ptes, some can allow access by kernel mode.
3798 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3799 pte = pte_modify(pte, vma->vm_page_prot);
3800 pte = pte_mkyoung(pte);
3801 if (was_writable)
3802 pte = pte_mkwrite(pte);
3803 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3804 update_mmu_cache(vma, vmf->address, vmf->pte);
3806 page = vm_normal_page(vma, vmf->address, pte);
3807 if (!page) {
3808 pte_unmap_unlock(vmf->pte, vmf->ptl);
3809 return 0;
3812 /* TODO: handle PTE-mapped THP */
3813 if (PageCompound(page)) {
3814 pte_unmap_unlock(vmf->pte, vmf->ptl);
3815 return 0;
3819 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3820 * much anyway since they can be in shared cache state. This misses
3821 * the case where a mapping is writable but the process never writes
3822 * to it but pte_write gets cleared during protection updates and
3823 * pte_dirty has unpredictable behaviour between PTE scan updates,
3824 * background writeback, dirty balancing and application behaviour.
3826 if (!pte_write(pte))
3827 flags |= TNF_NO_GROUP;
3830 * Flag if the page is shared between multiple address spaces. This
3831 * is later used when determining whether to group tasks together
3833 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3834 flags |= TNF_SHARED;
3836 last_cpupid = page_cpupid_last(page);
3837 page_nid = page_to_nid(page);
3838 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3839 &flags);
3840 pte_unmap_unlock(vmf->pte, vmf->ptl);
3841 if (target_nid == -1) {
3842 put_page(page);
3843 goto out;
3846 /* Migrate to the requested node */
3847 migrated = migrate_misplaced_page(page, vma, target_nid);
3848 if (migrated) {
3849 page_nid = target_nid;
3850 flags |= TNF_MIGRATED;
3851 } else
3852 flags |= TNF_MIGRATE_FAIL;
3854 out:
3855 if (page_nid != -1)
3856 task_numa_fault(last_cpupid, page_nid, 1, flags);
3857 return 0;
3860 static inline int create_huge_pmd(struct vm_fault *vmf)
3862 if (vma_is_anonymous(vmf->vma))
3863 return do_huge_pmd_anonymous_page(vmf);
3864 if (vmf->vma->vm_ops->huge_fault)
3865 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3866 return VM_FAULT_FALLBACK;
3869 /* `inline' is required to avoid gcc 4.1.2 build error */
3870 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3872 if (vma_is_anonymous(vmf->vma))
3873 return do_huge_pmd_wp_page(vmf, orig_pmd);
3874 if (vmf->vma->vm_ops->huge_fault)
3875 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3877 /* COW handled on pte level: split pmd */
3878 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3879 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3881 return VM_FAULT_FALLBACK;
3884 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3886 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3889 static int create_huge_pud(struct vm_fault *vmf)
3891 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3892 /* No support for anonymous transparent PUD pages yet */
3893 if (vma_is_anonymous(vmf->vma))
3894 return VM_FAULT_FALLBACK;
3895 if (vmf->vma->vm_ops->huge_fault)
3896 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3897 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3898 return VM_FAULT_FALLBACK;
3901 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3904 /* No support for anonymous transparent PUD pages yet */
3905 if (vma_is_anonymous(vmf->vma))
3906 return VM_FAULT_FALLBACK;
3907 if (vmf->vma->vm_ops->huge_fault)
3908 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3909 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3910 return VM_FAULT_FALLBACK;
3914 * These routines also need to handle stuff like marking pages dirty
3915 * and/or accessed for architectures that don't do it in hardware (most
3916 * RISC architectures). The early dirtying is also good on the i386.
3918 * There is also a hook called "update_mmu_cache()" that architectures
3919 * with external mmu caches can use to update those (ie the Sparc or
3920 * PowerPC hashed page tables that act as extended TLBs).
3922 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3923 * concurrent faults).
3925 * The mmap_sem may have been released depending on flags and our return value.
3926 * See filemap_fault() and __lock_page_or_retry().
3928 static int handle_pte_fault(struct vm_fault *vmf)
3930 pte_t entry;
3932 if (unlikely(pmd_none(*vmf->pmd))) {
3934 * Leave __pte_alloc() until later: because vm_ops->fault may
3935 * want to allocate huge page, and if we expose page table
3936 * for an instant, it will be difficult to retract from
3937 * concurrent faults and from rmap lookups.
3939 vmf->pte = NULL;
3940 } else {
3941 /* See comment in pte_alloc_one_map() */
3942 if (pmd_devmap_trans_unstable(vmf->pmd))
3943 return 0;
3945 * A regular pmd is established and it can't morph into a huge
3946 * pmd from under us anymore at this point because we hold the
3947 * mmap_sem read mode and khugepaged takes it in write mode.
3948 * So now it's safe to run pte_offset_map().
3950 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3951 vmf->orig_pte = *vmf->pte;
3954 * some architectures can have larger ptes than wordsize,
3955 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3956 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3957 * accesses. The code below just needs a consistent view
3958 * for the ifs and we later double check anyway with the
3959 * ptl lock held. So here a barrier will do.
3961 barrier();
3962 if (pte_none(vmf->orig_pte)) {
3963 pte_unmap(vmf->pte);
3964 vmf->pte = NULL;
3968 if (!vmf->pte) {
3969 if (vma_is_anonymous(vmf->vma))
3970 return do_anonymous_page(vmf);
3971 else
3972 return do_fault(vmf);
3975 if (!pte_present(vmf->orig_pte))
3976 return do_swap_page(vmf);
3978 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3979 return do_numa_page(vmf);
3981 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3982 spin_lock(vmf->ptl);
3983 entry = vmf->orig_pte;
3984 if (unlikely(!pte_same(*vmf->pte, entry)))
3985 goto unlock;
3986 if (vmf->flags & FAULT_FLAG_WRITE) {
3987 if (!pte_write(entry))
3988 return do_wp_page(vmf);
3989 entry = pte_mkdirty(entry);
3991 entry = pte_mkyoung(entry);
3992 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3993 vmf->flags & FAULT_FLAG_WRITE)) {
3994 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3995 } else {
3997 * This is needed only for protection faults but the arch code
3998 * is not yet telling us if this is a protection fault or not.
3999 * This still avoids useless tlb flushes for .text page faults
4000 * with threads.
4002 if (vmf->flags & FAULT_FLAG_WRITE)
4003 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4005 unlock:
4006 pte_unmap_unlock(vmf->pte, vmf->ptl);
4007 return 0;
4011 * By the time we get here, we already hold the mm semaphore
4013 * The mmap_sem may have been released depending on flags and our
4014 * return value. See filemap_fault() and __lock_page_or_retry().
4016 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4017 unsigned int flags)
4019 struct vm_fault vmf = {
4020 .vma = vma,
4021 .address = address & PAGE_MASK,
4022 .flags = flags,
4023 .pgoff = linear_page_index(vma, address),
4024 .gfp_mask = __get_fault_gfp_mask(vma),
4026 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4027 struct mm_struct *mm = vma->vm_mm;
4028 pgd_t *pgd;
4029 p4d_t *p4d;
4030 int ret;
4032 pgd = pgd_offset(mm, address);
4033 p4d = p4d_alloc(mm, pgd, address);
4034 if (!p4d)
4035 return VM_FAULT_OOM;
4037 vmf.pud = pud_alloc(mm, p4d, address);
4038 if (!vmf.pud)
4039 return VM_FAULT_OOM;
4040 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4041 ret = create_huge_pud(&vmf);
4042 if (!(ret & VM_FAULT_FALLBACK))
4043 return ret;
4044 } else {
4045 pud_t orig_pud = *vmf.pud;
4047 barrier();
4048 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4050 /* NUMA case for anonymous PUDs would go here */
4052 if (dirty && !pud_write(orig_pud)) {
4053 ret = wp_huge_pud(&vmf, orig_pud);
4054 if (!(ret & VM_FAULT_FALLBACK))
4055 return ret;
4056 } else {
4057 huge_pud_set_accessed(&vmf, orig_pud);
4058 return 0;
4063 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4064 if (!vmf.pmd)
4065 return VM_FAULT_OOM;
4066 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4067 ret = create_huge_pmd(&vmf);
4068 if (!(ret & VM_FAULT_FALLBACK))
4069 return ret;
4070 } else {
4071 pmd_t orig_pmd = *vmf.pmd;
4073 barrier();
4074 if (unlikely(is_swap_pmd(orig_pmd))) {
4075 VM_BUG_ON(thp_migration_supported() &&
4076 !is_pmd_migration_entry(orig_pmd));
4077 if (is_pmd_migration_entry(orig_pmd))
4078 pmd_migration_entry_wait(mm, vmf.pmd);
4079 return 0;
4081 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4082 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4083 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4085 if (dirty && !pmd_write(orig_pmd)) {
4086 ret = wp_huge_pmd(&vmf, orig_pmd);
4087 if (!(ret & VM_FAULT_FALLBACK))
4088 return ret;
4089 } else {
4090 huge_pmd_set_accessed(&vmf, orig_pmd);
4091 return 0;
4096 return handle_pte_fault(&vmf);
4100 * By the time we get here, we already hold the mm semaphore
4102 * The mmap_sem may have been released depending on flags and our
4103 * return value. See filemap_fault() and __lock_page_or_retry().
4105 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4106 unsigned int flags)
4108 int ret;
4110 __set_current_state(TASK_RUNNING);
4112 count_vm_event(PGFAULT);
4113 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4115 /* do counter updates before entering really critical section. */
4116 check_sync_rss_stat(current);
4118 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4119 flags & FAULT_FLAG_INSTRUCTION,
4120 flags & FAULT_FLAG_REMOTE))
4121 return VM_FAULT_SIGSEGV;
4124 * Enable the memcg OOM handling for faults triggered in user
4125 * space. Kernel faults are handled more gracefully.
4127 if (flags & FAULT_FLAG_USER)
4128 mem_cgroup_oom_enable();
4130 if (unlikely(is_vm_hugetlb_page(vma)))
4131 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4132 else
4133 ret = __handle_mm_fault(vma, address, flags);
4135 if (flags & FAULT_FLAG_USER) {
4136 mem_cgroup_oom_disable();
4138 * The task may have entered a memcg OOM situation but
4139 * if the allocation error was handled gracefully (no
4140 * VM_FAULT_OOM), there is no need to kill anything.
4141 * Just clean up the OOM state peacefully.
4143 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4144 mem_cgroup_oom_synchronize(false);
4147 return ret;
4149 EXPORT_SYMBOL_GPL(handle_mm_fault);
4151 #ifndef __PAGETABLE_P4D_FOLDED
4153 * Allocate p4d page table.
4154 * We've already handled the fast-path in-line.
4156 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4158 p4d_t *new = p4d_alloc_one(mm, address);
4159 if (!new)
4160 return -ENOMEM;
4162 smp_wmb(); /* See comment in __pte_alloc */
4164 spin_lock(&mm->page_table_lock);
4165 if (pgd_present(*pgd)) /* Another has populated it */
4166 p4d_free(mm, new);
4167 else
4168 pgd_populate(mm, pgd, new);
4169 spin_unlock(&mm->page_table_lock);
4170 return 0;
4172 #endif /* __PAGETABLE_P4D_FOLDED */
4174 #ifndef __PAGETABLE_PUD_FOLDED
4176 * Allocate page upper directory.
4177 * We've already handled the fast-path in-line.
4179 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4181 pud_t *new = pud_alloc_one(mm, address);
4182 if (!new)
4183 return -ENOMEM;
4185 smp_wmb(); /* See comment in __pte_alloc */
4187 spin_lock(&mm->page_table_lock);
4188 #ifndef __ARCH_HAS_5LEVEL_HACK
4189 if (!p4d_present(*p4d)) {
4190 mm_inc_nr_puds(mm);
4191 p4d_populate(mm, p4d, new);
4192 } else /* Another has populated it */
4193 pud_free(mm, new);
4194 #else
4195 if (!pgd_present(*p4d)) {
4196 mm_inc_nr_puds(mm);
4197 pgd_populate(mm, p4d, new);
4198 } else /* Another has populated it */
4199 pud_free(mm, new);
4200 #endif /* __ARCH_HAS_5LEVEL_HACK */
4201 spin_unlock(&mm->page_table_lock);
4202 return 0;
4204 #endif /* __PAGETABLE_PUD_FOLDED */
4206 #ifndef __PAGETABLE_PMD_FOLDED
4208 * Allocate page middle directory.
4209 * We've already handled the fast-path in-line.
4211 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4213 spinlock_t *ptl;
4214 pmd_t *new = pmd_alloc_one(mm, address);
4215 if (!new)
4216 return -ENOMEM;
4218 smp_wmb(); /* See comment in __pte_alloc */
4220 ptl = pud_lock(mm, pud);
4221 #ifndef __ARCH_HAS_4LEVEL_HACK
4222 if (!pud_present(*pud)) {
4223 mm_inc_nr_pmds(mm);
4224 pud_populate(mm, pud, new);
4225 } else /* Another has populated it */
4226 pmd_free(mm, new);
4227 #else
4228 if (!pgd_present(*pud)) {
4229 mm_inc_nr_pmds(mm);
4230 pgd_populate(mm, pud, new);
4231 } else /* Another has populated it */
4232 pmd_free(mm, new);
4233 #endif /* __ARCH_HAS_4LEVEL_HACK */
4234 spin_unlock(ptl);
4235 return 0;
4237 #endif /* __PAGETABLE_PMD_FOLDED */
4239 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4240 unsigned long *start, unsigned long *end,
4241 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4243 pgd_t *pgd;
4244 p4d_t *p4d;
4245 pud_t *pud;
4246 pmd_t *pmd;
4247 pte_t *ptep;
4249 pgd = pgd_offset(mm, address);
4250 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4251 goto out;
4253 p4d = p4d_offset(pgd, address);
4254 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4255 goto out;
4257 pud = pud_offset(p4d, address);
4258 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4259 goto out;
4261 pmd = pmd_offset(pud, address);
4262 VM_BUG_ON(pmd_trans_huge(*pmd));
4264 if (pmd_huge(*pmd)) {
4265 if (!pmdpp)
4266 goto out;
4268 if (start && end) {
4269 *start = address & PMD_MASK;
4270 *end = *start + PMD_SIZE;
4271 mmu_notifier_invalidate_range_start(mm, *start, *end);
4273 *ptlp = pmd_lock(mm, pmd);
4274 if (pmd_huge(*pmd)) {
4275 *pmdpp = pmd;
4276 return 0;
4278 spin_unlock(*ptlp);
4279 if (start && end)
4280 mmu_notifier_invalidate_range_end(mm, *start, *end);
4283 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4284 goto out;
4286 if (start && end) {
4287 *start = address & PAGE_MASK;
4288 *end = *start + PAGE_SIZE;
4289 mmu_notifier_invalidate_range_start(mm, *start, *end);
4291 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4292 if (!pte_present(*ptep))
4293 goto unlock;
4294 *ptepp = ptep;
4295 return 0;
4296 unlock:
4297 pte_unmap_unlock(ptep, *ptlp);
4298 if (start && end)
4299 mmu_notifier_invalidate_range_end(mm, *start, *end);
4300 out:
4301 return -EINVAL;
4304 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4305 pte_t **ptepp, spinlock_t **ptlp)
4307 int res;
4309 /* (void) is needed to make gcc happy */
4310 (void) __cond_lock(*ptlp,
4311 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4312 ptepp, NULL, ptlp)));
4313 return res;
4316 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4317 unsigned long *start, unsigned long *end,
4318 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4320 int res;
4322 /* (void) is needed to make gcc happy */
4323 (void) __cond_lock(*ptlp,
4324 !(res = __follow_pte_pmd(mm, address, start, end,
4325 ptepp, pmdpp, ptlp)));
4326 return res;
4328 EXPORT_SYMBOL(follow_pte_pmd);
4331 * follow_pfn - look up PFN at a user virtual address
4332 * @vma: memory mapping
4333 * @address: user virtual address
4334 * @pfn: location to store found PFN
4336 * Only IO mappings and raw PFN mappings are allowed.
4338 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4340 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4341 unsigned long *pfn)
4343 int ret = -EINVAL;
4344 spinlock_t *ptl;
4345 pte_t *ptep;
4347 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4348 return ret;
4350 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4351 if (ret)
4352 return ret;
4353 *pfn = pte_pfn(*ptep);
4354 pte_unmap_unlock(ptep, ptl);
4355 return 0;
4357 EXPORT_SYMBOL(follow_pfn);
4359 #ifdef CONFIG_HAVE_IOREMAP_PROT
4360 int follow_phys(struct vm_area_struct *vma,
4361 unsigned long address, unsigned int flags,
4362 unsigned long *prot, resource_size_t *phys)
4364 int ret = -EINVAL;
4365 pte_t *ptep, pte;
4366 spinlock_t *ptl;
4368 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4369 goto out;
4371 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4372 goto out;
4373 pte = *ptep;
4375 if ((flags & FOLL_WRITE) && !pte_write(pte))
4376 goto unlock;
4378 *prot = pgprot_val(pte_pgprot(pte));
4379 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4381 ret = 0;
4382 unlock:
4383 pte_unmap_unlock(ptep, ptl);
4384 out:
4385 return ret;
4388 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4389 void *buf, int len, int write)
4391 resource_size_t phys_addr;
4392 unsigned long prot = 0;
4393 void __iomem *maddr;
4394 int offset = addr & (PAGE_SIZE-1);
4396 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4397 return -EINVAL;
4399 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4400 if (write)
4401 memcpy_toio(maddr + offset, buf, len);
4402 else
4403 memcpy_fromio(buf, maddr + offset, len);
4404 iounmap(maddr);
4406 return len;
4408 EXPORT_SYMBOL_GPL(generic_access_phys);
4409 #endif
4412 * Access another process' address space as given in mm. If non-NULL, use the
4413 * given task for page fault accounting.
4415 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4416 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4418 struct vm_area_struct *vma;
4419 void *old_buf = buf;
4420 int write = gup_flags & FOLL_WRITE;
4422 down_read(&mm->mmap_sem);
4423 /* ignore errors, just check how much was successfully transferred */
4424 while (len) {
4425 int bytes, ret, offset;
4426 void *maddr;
4427 struct page *page = NULL;
4429 ret = get_user_pages_remote(tsk, mm, addr, 1,
4430 gup_flags, &page, &vma, NULL);
4431 if (ret <= 0) {
4432 #ifndef CONFIG_HAVE_IOREMAP_PROT
4433 break;
4434 #else
4436 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4437 * we can access using slightly different code.
4439 vma = find_vma(mm, addr);
4440 if (!vma || vma->vm_start > addr)
4441 break;
4442 if (vma->vm_ops && vma->vm_ops->access)
4443 ret = vma->vm_ops->access(vma, addr, buf,
4444 len, write);
4445 if (ret <= 0)
4446 break;
4447 bytes = ret;
4448 #endif
4449 } else {
4450 bytes = len;
4451 offset = addr & (PAGE_SIZE-1);
4452 if (bytes > PAGE_SIZE-offset)
4453 bytes = PAGE_SIZE-offset;
4455 maddr = kmap(page);
4456 if (write) {
4457 copy_to_user_page(vma, page, addr,
4458 maddr + offset, buf, bytes);
4459 set_page_dirty_lock(page);
4460 } else {
4461 copy_from_user_page(vma, page, addr,
4462 buf, maddr + offset, bytes);
4464 kunmap(page);
4465 put_page(page);
4467 len -= bytes;
4468 buf += bytes;
4469 addr += bytes;
4471 up_read(&mm->mmap_sem);
4473 return buf - old_buf;
4477 * access_remote_vm - access another process' address space
4478 * @mm: the mm_struct of the target address space
4479 * @addr: start address to access
4480 * @buf: source or destination buffer
4481 * @len: number of bytes to transfer
4482 * @gup_flags: flags modifying lookup behaviour
4484 * The caller must hold a reference on @mm.
4486 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4487 void *buf, int len, unsigned int gup_flags)
4489 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4493 * Access another process' address space.
4494 * Source/target buffer must be kernel space,
4495 * Do not walk the page table directly, use get_user_pages
4497 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4498 void *buf, int len, unsigned int gup_flags)
4500 struct mm_struct *mm;
4501 int ret;
4503 mm = get_task_mm(tsk);
4504 if (!mm)
4505 return 0;
4507 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4509 mmput(mm);
4511 return ret;
4513 EXPORT_SYMBOL_GPL(access_process_vm);
4516 * Print the name of a VMA.
4518 void print_vma_addr(char *prefix, unsigned long ip)
4520 struct mm_struct *mm = current->mm;
4521 struct vm_area_struct *vma;
4524 * we might be running from an atomic context so we cannot sleep
4526 if (!down_read_trylock(&mm->mmap_sem))
4527 return;
4529 vma = find_vma(mm, ip);
4530 if (vma && vma->vm_file) {
4531 struct file *f = vma->vm_file;
4532 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4533 if (buf) {
4534 char *p;
4536 p = file_path(f, buf, PAGE_SIZE);
4537 if (IS_ERR(p))
4538 p = "?";
4539 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4540 vma->vm_start,
4541 vma->vm_end - vma->vm_start);
4542 free_page((unsigned long)buf);
4545 up_read(&mm->mmap_sem);
4548 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4549 void __might_fault(const char *file, int line)
4552 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4553 * holding the mmap_sem, this is safe because kernel memory doesn't
4554 * get paged out, therefore we'll never actually fault, and the
4555 * below annotations will generate false positives.
4557 if (uaccess_kernel())
4558 return;
4559 if (pagefault_disabled())
4560 return;
4561 __might_sleep(file, line, 0);
4562 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4563 if (current->mm)
4564 might_lock_read(&current->mm->mmap_sem);
4565 #endif
4567 EXPORT_SYMBOL(__might_fault);
4568 #endif
4570 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4571 static void clear_gigantic_page(struct page *page,
4572 unsigned long addr,
4573 unsigned int pages_per_huge_page)
4575 int i;
4576 struct page *p = page;
4578 might_sleep();
4579 for (i = 0; i < pages_per_huge_page;
4580 i++, p = mem_map_next(p, page, i)) {
4581 cond_resched();
4582 clear_user_highpage(p, addr + i * PAGE_SIZE);
4585 void clear_huge_page(struct page *page,
4586 unsigned long addr_hint, unsigned int pages_per_huge_page)
4588 int i, n, base, l;
4589 unsigned long addr = addr_hint &
4590 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4592 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4593 clear_gigantic_page(page, addr, pages_per_huge_page);
4594 return;
4597 /* Clear sub-page to access last to keep its cache lines hot */
4598 might_sleep();
4599 n = (addr_hint - addr) / PAGE_SIZE;
4600 if (2 * n <= pages_per_huge_page) {
4601 /* If sub-page to access in first half of huge page */
4602 base = 0;
4603 l = n;
4604 /* Clear sub-pages at the end of huge page */
4605 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4606 cond_resched();
4607 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4609 } else {
4610 /* If sub-page to access in second half of huge page */
4611 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4612 l = pages_per_huge_page - n;
4613 /* Clear sub-pages at the begin of huge page */
4614 for (i = 0; i < base; i++) {
4615 cond_resched();
4616 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4620 * Clear remaining sub-pages in left-right-left-right pattern
4621 * towards the sub-page to access
4623 for (i = 0; i < l; i++) {
4624 int left_idx = base + i;
4625 int right_idx = base + 2 * l - 1 - i;
4627 cond_resched();
4628 clear_user_highpage(page + left_idx,
4629 addr + left_idx * PAGE_SIZE);
4630 cond_resched();
4631 clear_user_highpage(page + right_idx,
4632 addr + right_idx * PAGE_SIZE);
4636 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4637 unsigned long addr,
4638 struct vm_area_struct *vma,
4639 unsigned int pages_per_huge_page)
4641 int i;
4642 struct page *dst_base = dst;
4643 struct page *src_base = src;
4645 for (i = 0; i < pages_per_huge_page; ) {
4646 cond_resched();
4647 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4649 i++;
4650 dst = mem_map_next(dst, dst_base, i);
4651 src = mem_map_next(src, src_base, i);
4655 void copy_user_huge_page(struct page *dst, struct page *src,
4656 unsigned long addr, struct vm_area_struct *vma,
4657 unsigned int pages_per_huge_page)
4659 int i;
4661 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4662 copy_user_gigantic_page(dst, src, addr, vma,
4663 pages_per_huge_page);
4664 return;
4667 might_sleep();
4668 for (i = 0; i < pages_per_huge_page; i++) {
4669 cond_resched();
4670 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4674 long copy_huge_page_from_user(struct page *dst_page,
4675 const void __user *usr_src,
4676 unsigned int pages_per_huge_page,
4677 bool allow_pagefault)
4679 void *src = (void *)usr_src;
4680 void *page_kaddr;
4681 unsigned long i, rc = 0;
4682 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4684 for (i = 0; i < pages_per_huge_page; i++) {
4685 if (allow_pagefault)
4686 page_kaddr = kmap(dst_page + i);
4687 else
4688 page_kaddr = kmap_atomic(dst_page + i);
4689 rc = copy_from_user(page_kaddr,
4690 (const void __user *)(src + i * PAGE_SIZE),
4691 PAGE_SIZE);
4692 if (allow_pagefault)
4693 kunmap(dst_page + i);
4694 else
4695 kunmap_atomic(page_kaddr);
4697 ret_val -= (PAGE_SIZE - rc);
4698 if (rc)
4699 break;
4701 cond_resched();
4703 return ret_val;
4705 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4707 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4709 static struct kmem_cache *page_ptl_cachep;
4711 void __init ptlock_cache_init(void)
4713 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4714 SLAB_PANIC, NULL);
4717 bool ptlock_alloc(struct page *page)
4719 spinlock_t *ptl;
4721 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4722 if (!ptl)
4723 return false;
4724 page->ptl = ptl;
4725 return true;
4728 void ptlock_free(struct page *page)
4730 kmem_cache_free(page_ptl_cachep, page->ptl);
4732 #endif