[SPARC64]: Handle mostek clock type in mini_rtc driver.
[linux-2.6/btrfs-unstable.git] / arch / sparc64 / kernel / time.c
blob69cad1b653c14f55a57a2ec5ad0a5e2abf5ad801
1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
7 * Based largely on code which is:
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/profile.h>
32 #include <linux/miscdevice.h>
33 #include <linux/rtc.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/clocksource.h>
38 #include <asm/oplib.h>
39 #include <asm/mostek.h>
40 #include <asm/timer.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 #include <asm/prom.h>
44 #include <asm/of_device.h>
45 #include <asm/starfire.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/cpudata.h>
49 #include <asm/uaccess.h>
50 #include <asm/prom.h>
51 #include <asm/irq_regs.h>
53 DEFINE_SPINLOCK(mostek_lock);
54 DEFINE_SPINLOCK(rtc_lock);
55 void __iomem *mstk48t02_regs = NULL;
56 #ifdef CONFIG_PCI
57 unsigned long ds1287_regs = 0UL;
58 static void __iomem *bq4802_regs;
59 #endif
61 static void __iomem *mstk48t08_regs;
62 static void __iomem *mstk48t59_regs;
64 static int set_rtc_mmss(unsigned long);
66 #define TICK_PRIV_BIT (1UL << 63)
67 #define TICKCMP_IRQ_BIT (1UL << 63)
69 #ifdef CONFIG_SMP
70 unsigned long profile_pc(struct pt_regs *regs)
72 unsigned long pc = instruction_pointer(regs);
74 if (in_lock_functions(pc))
75 return regs->u_regs[UREG_RETPC];
76 return pc;
78 EXPORT_SYMBOL(profile_pc);
79 #endif
81 static void tick_disable_protection(void)
83 /* Set things up so user can access tick register for profiling
84 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
85 * read back of %tick after writing it.
87 __asm__ __volatile__(
88 " ba,pt %%xcc, 1f\n"
89 " nop\n"
90 " .align 64\n"
91 "1: rd %%tick, %%g2\n"
92 " add %%g2, 6, %%g2\n"
93 " andn %%g2, %0, %%g2\n"
94 " wrpr %%g2, 0, %%tick\n"
95 " rdpr %%tick, %%g0"
96 : /* no outputs */
97 : "r" (TICK_PRIV_BIT)
98 : "g2");
101 static void tick_disable_irq(void)
103 __asm__ __volatile__(
104 " ba,pt %%xcc, 1f\n"
105 " nop\n"
106 " .align 64\n"
107 "1: wr %0, 0x0, %%tick_cmpr\n"
108 " rd %%tick_cmpr, %%g0"
109 : /* no outputs */
110 : "r" (TICKCMP_IRQ_BIT));
113 static void tick_init_tick(void)
115 tick_disable_protection();
116 tick_disable_irq();
119 static unsigned long tick_get_tick(void)
121 unsigned long ret;
123 __asm__ __volatile__("rd %%tick, %0\n\t"
124 "mov %0, %0"
125 : "=r" (ret));
127 return ret & ~TICK_PRIV_BIT;
130 static int tick_add_compare(unsigned long adj)
132 unsigned long orig_tick, new_tick, new_compare;
134 __asm__ __volatile__("rd %%tick, %0"
135 : "=r" (orig_tick));
137 orig_tick &= ~TICKCMP_IRQ_BIT;
139 /* Workaround for Spitfire Errata (#54 I think??), I discovered
140 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
141 * number 103640.
143 * On Blackbird writes to %tick_cmpr can fail, the
144 * workaround seems to be to execute the wr instruction
145 * at the start of an I-cache line, and perform a dummy
146 * read back from %tick_cmpr right after writing to it. -DaveM
148 __asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
149 " add %1, %2, %0\n\t"
150 ".align 64\n"
151 "1:\n\t"
152 "wr %0, 0, %%tick_cmpr\n\t"
153 "rd %%tick_cmpr, %%g0\n\t"
154 : "=r" (new_compare)
155 : "r" (orig_tick), "r" (adj));
157 __asm__ __volatile__("rd %%tick, %0"
158 : "=r" (new_tick));
159 new_tick &= ~TICKCMP_IRQ_BIT;
161 return ((long)(new_tick - (orig_tick+adj))) > 0L;
164 static unsigned long tick_add_tick(unsigned long adj)
166 unsigned long new_tick;
168 /* Also need to handle Blackbird bug here too. */
169 __asm__ __volatile__("rd %%tick, %0\n\t"
170 "add %0, %1, %0\n\t"
171 "wrpr %0, 0, %%tick\n\t"
172 : "=&r" (new_tick)
173 : "r" (adj));
175 return new_tick;
178 static struct sparc64_tick_ops tick_operations __read_mostly = {
179 .name = "tick",
180 .init_tick = tick_init_tick,
181 .disable_irq = tick_disable_irq,
182 .get_tick = tick_get_tick,
183 .add_tick = tick_add_tick,
184 .add_compare = tick_add_compare,
185 .softint_mask = 1UL << 0,
188 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
190 static void stick_disable_irq(void)
192 __asm__ __volatile__(
193 "wr %0, 0x0, %%asr25"
194 : /* no outputs */
195 : "r" (TICKCMP_IRQ_BIT));
198 static void stick_init_tick(void)
200 /* Writes to the %tick and %stick register are not
201 * allowed on sun4v. The Hypervisor controls that
202 * bit, per-strand.
204 if (tlb_type != hypervisor) {
205 tick_disable_protection();
206 tick_disable_irq();
208 /* Let the user get at STICK too. */
209 __asm__ __volatile__(
210 " rd %%asr24, %%g2\n"
211 " andn %%g2, %0, %%g2\n"
212 " wr %%g2, 0, %%asr24"
213 : /* no outputs */
214 : "r" (TICK_PRIV_BIT)
215 : "g1", "g2");
218 stick_disable_irq();
221 static unsigned long stick_get_tick(void)
223 unsigned long ret;
225 __asm__ __volatile__("rd %%asr24, %0"
226 : "=r" (ret));
228 return ret & ~TICK_PRIV_BIT;
231 static unsigned long stick_add_tick(unsigned long adj)
233 unsigned long new_tick;
235 __asm__ __volatile__("rd %%asr24, %0\n\t"
236 "add %0, %1, %0\n\t"
237 "wr %0, 0, %%asr24\n\t"
238 : "=&r" (new_tick)
239 : "r" (adj));
241 return new_tick;
244 static int stick_add_compare(unsigned long adj)
246 unsigned long orig_tick, new_tick;
248 __asm__ __volatile__("rd %%asr24, %0"
249 : "=r" (orig_tick));
250 orig_tick &= ~TICKCMP_IRQ_BIT;
252 __asm__ __volatile__("wr %0, 0, %%asr25"
253 : /* no outputs */
254 : "r" (orig_tick + adj));
256 __asm__ __volatile__("rd %%asr24, %0"
257 : "=r" (new_tick));
258 new_tick &= ~TICKCMP_IRQ_BIT;
260 return ((long)(new_tick - (orig_tick+adj))) > 0L;
263 static struct sparc64_tick_ops stick_operations __read_mostly = {
264 .name = "stick",
265 .init_tick = stick_init_tick,
266 .disable_irq = stick_disable_irq,
267 .get_tick = stick_get_tick,
268 .add_tick = stick_add_tick,
269 .add_compare = stick_add_compare,
270 .softint_mask = 1UL << 16,
273 /* On Hummingbird the STICK/STICK_CMPR register is implemented
274 * in I/O space. There are two 64-bit registers each, the
275 * first holds the low 32-bits of the value and the second holds
276 * the high 32-bits.
278 * Since STICK is constantly updating, we have to access it carefully.
280 * The sequence we use to read is:
281 * 1) read high
282 * 2) read low
283 * 3) read high again, if it rolled re-read both low and high again.
285 * Writing STICK safely is also tricky:
286 * 1) write low to zero
287 * 2) write high
288 * 3) write low
290 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
291 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
293 static unsigned long __hbird_read_stick(void)
295 unsigned long ret, tmp1, tmp2, tmp3;
296 unsigned long addr = HBIRD_STICK_ADDR+8;
298 __asm__ __volatile__("ldxa [%1] %5, %2\n"
299 "1:\n\t"
300 "sub %1, 0x8, %1\n\t"
301 "ldxa [%1] %5, %3\n\t"
302 "add %1, 0x8, %1\n\t"
303 "ldxa [%1] %5, %4\n\t"
304 "cmp %4, %2\n\t"
305 "bne,a,pn %%xcc, 1b\n\t"
306 " mov %4, %2\n\t"
307 "sllx %4, 32, %4\n\t"
308 "or %3, %4, %0\n\t"
309 : "=&r" (ret), "=&r" (addr),
310 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
311 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
313 return ret;
316 static void __hbird_write_stick(unsigned long val)
318 unsigned long low = (val & 0xffffffffUL);
319 unsigned long high = (val >> 32UL);
320 unsigned long addr = HBIRD_STICK_ADDR;
322 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
323 "add %0, 0x8, %0\n\t"
324 "stxa %3, [%0] %4\n\t"
325 "sub %0, 0x8, %0\n\t"
326 "stxa %2, [%0] %4"
327 : "=&r" (addr)
328 : "0" (addr), "r" (low), "r" (high),
329 "i" (ASI_PHYS_BYPASS_EC_E));
332 static void __hbird_write_compare(unsigned long val)
334 unsigned long low = (val & 0xffffffffUL);
335 unsigned long high = (val >> 32UL);
336 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
338 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
339 "sub %0, 0x8, %0\n\t"
340 "stxa %2, [%0] %4"
341 : "=&r" (addr)
342 : "0" (addr), "r" (low), "r" (high),
343 "i" (ASI_PHYS_BYPASS_EC_E));
346 static void hbtick_disable_irq(void)
348 __hbird_write_compare(TICKCMP_IRQ_BIT);
351 static void hbtick_init_tick(void)
353 tick_disable_protection();
355 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
356 * XXX into actually sending STICK interrupts. I think because
357 * XXX of how we store %tick_cmpr in head.S this somehow resets the
358 * XXX {TICK + STICK} interrupt mux. -DaveM
360 __hbird_write_stick(__hbird_read_stick());
362 hbtick_disable_irq();
365 static unsigned long hbtick_get_tick(void)
367 return __hbird_read_stick() & ~TICK_PRIV_BIT;
370 static unsigned long hbtick_add_tick(unsigned long adj)
372 unsigned long val;
374 val = __hbird_read_stick() + adj;
375 __hbird_write_stick(val);
377 return val;
380 static int hbtick_add_compare(unsigned long adj)
382 unsigned long val = __hbird_read_stick();
383 unsigned long val2;
385 val &= ~TICKCMP_IRQ_BIT;
386 val += adj;
387 __hbird_write_compare(val);
389 val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
391 return ((long)(val2 - val)) > 0L;
394 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
395 .name = "hbtick",
396 .init_tick = hbtick_init_tick,
397 .disable_irq = hbtick_disable_irq,
398 .get_tick = hbtick_get_tick,
399 .add_tick = hbtick_add_tick,
400 .add_compare = hbtick_add_compare,
401 .softint_mask = 1UL << 0,
404 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
406 int update_persistent_clock(struct timespec now)
408 return set_rtc_mmss(now.tv_sec);
411 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
412 static void __init kick_start_clock(void)
414 void __iomem *regs = mstk48t02_regs;
415 u8 sec, tmp;
416 int i, count;
418 prom_printf("CLOCK: Clock was stopped. Kick start ");
420 spin_lock_irq(&mostek_lock);
422 /* Turn on the kick start bit to start the oscillator. */
423 tmp = mostek_read(regs + MOSTEK_CREG);
424 tmp |= MSTK_CREG_WRITE;
425 mostek_write(regs + MOSTEK_CREG, tmp);
426 tmp = mostek_read(regs + MOSTEK_SEC);
427 tmp &= ~MSTK_STOP;
428 mostek_write(regs + MOSTEK_SEC, tmp);
429 tmp = mostek_read(regs + MOSTEK_HOUR);
430 tmp |= MSTK_KICK_START;
431 mostek_write(regs + MOSTEK_HOUR, tmp);
432 tmp = mostek_read(regs + MOSTEK_CREG);
433 tmp &= ~MSTK_CREG_WRITE;
434 mostek_write(regs + MOSTEK_CREG, tmp);
436 spin_unlock_irq(&mostek_lock);
438 /* Delay to allow the clock oscillator to start. */
439 sec = MSTK_REG_SEC(regs);
440 for (i = 0; i < 3; i++) {
441 while (sec == MSTK_REG_SEC(regs))
442 for (count = 0; count < 100000; count++)
443 /* nothing */ ;
444 prom_printf(".");
445 sec = MSTK_REG_SEC(regs);
447 prom_printf("\n");
449 spin_lock_irq(&mostek_lock);
451 /* Turn off kick start and set a "valid" time and date. */
452 tmp = mostek_read(regs + MOSTEK_CREG);
453 tmp |= MSTK_CREG_WRITE;
454 mostek_write(regs + MOSTEK_CREG, tmp);
455 tmp = mostek_read(regs + MOSTEK_HOUR);
456 tmp &= ~MSTK_KICK_START;
457 mostek_write(regs + MOSTEK_HOUR, tmp);
458 MSTK_SET_REG_SEC(regs,0);
459 MSTK_SET_REG_MIN(regs,0);
460 MSTK_SET_REG_HOUR(regs,0);
461 MSTK_SET_REG_DOW(regs,5);
462 MSTK_SET_REG_DOM(regs,1);
463 MSTK_SET_REG_MONTH(regs,8);
464 MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
465 tmp = mostek_read(regs + MOSTEK_CREG);
466 tmp &= ~MSTK_CREG_WRITE;
467 mostek_write(regs + MOSTEK_CREG, tmp);
469 spin_unlock_irq(&mostek_lock);
471 /* Ensure the kick start bit is off. If it isn't, turn it off. */
472 while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
473 prom_printf("CLOCK: Kick start still on!\n");
475 spin_lock_irq(&mostek_lock);
477 tmp = mostek_read(regs + MOSTEK_CREG);
478 tmp |= MSTK_CREG_WRITE;
479 mostek_write(regs + MOSTEK_CREG, tmp);
481 tmp = mostek_read(regs + MOSTEK_HOUR);
482 tmp &= ~MSTK_KICK_START;
483 mostek_write(regs + MOSTEK_HOUR, tmp);
485 tmp = mostek_read(regs + MOSTEK_CREG);
486 tmp &= ~MSTK_CREG_WRITE;
487 mostek_write(regs + MOSTEK_CREG, tmp);
489 spin_unlock_irq(&mostek_lock);
492 prom_printf("CLOCK: Kick start procedure successful.\n");
495 /* Return nonzero if the clock chip battery is low. */
496 static int __init has_low_battery(void)
498 void __iomem *regs = mstk48t02_regs;
499 u8 data1, data2;
501 spin_lock_irq(&mostek_lock);
503 data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
504 mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
505 data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
506 mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
508 spin_unlock_irq(&mostek_lock);
510 return (data1 == data2); /* Was the write blocked? */
513 /* Probe for the real time clock chip. */
514 static void __init set_system_time(void)
516 unsigned int year, mon, day, hour, min, sec;
517 void __iomem *mregs = mstk48t02_regs;
518 #ifdef CONFIG_PCI
519 unsigned long dregs = ds1287_regs;
520 void __iomem *bregs = bq4802_regs;
521 #else
522 unsigned long dregs = 0UL;
523 void __iomem *bregs = 0UL;
524 #endif
525 u8 tmp;
527 if (!mregs && !dregs && !bregs) {
528 prom_printf("Something wrong, clock regs not mapped yet.\n");
529 prom_halt();
532 if (mregs) {
533 spin_lock_irq(&mostek_lock);
535 /* Traditional Mostek chip. */
536 tmp = mostek_read(mregs + MOSTEK_CREG);
537 tmp |= MSTK_CREG_READ;
538 mostek_write(mregs + MOSTEK_CREG, tmp);
540 sec = MSTK_REG_SEC(mregs);
541 min = MSTK_REG_MIN(mregs);
542 hour = MSTK_REG_HOUR(mregs);
543 day = MSTK_REG_DOM(mregs);
544 mon = MSTK_REG_MONTH(mregs);
545 year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
546 } else if (bregs) {
547 unsigned char val = readb(bregs + 0x0e);
548 unsigned int century;
550 /* BQ4802 RTC chip. */
552 writeb(val | 0x08, bregs + 0x0e);
554 sec = readb(bregs + 0x00);
555 min = readb(bregs + 0x02);
556 hour = readb(bregs + 0x04);
557 day = readb(bregs + 0x06);
558 mon = readb(bregs + 0x09);
559 year = readb(bregs + 0x0a);
560 century = readb(bregs + 0x0f);
562 writeb(val, bregs + 0x0e);
564 BCD_TO_BIN(sec);
565 BCD_TO_BIN(min);
566 BCD_TO_BIN(hour);
567 BCD_TO_BIN(day);
568 BCD_TO_BIN(mon);
569 BCD_TO_BIN(year);
570 BCD_TO_BIN(century);
572 year += (century * 100);
573 } else {
574 /* Dallas 12887 RTC chip. */
576 do {
577 sec = CMOS_READ(RTC_SECONDS);
578 min = CMOS_READ(RTC_MINUTES);
579 hour = CMOS_READ(RTC_HOURS);
580 day = CMOS_READ(RTC_DAY_OF_MONTH);
581 mon = CMOS_READ(RTC_MONTH);
582 year = CMOS_READ(RTC_YEAR);
583 } while (sec != CMOS_READ(RTC_SECONDS));
585 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
586 BCD_TO_BIN(sec);
587 BCD_TO_BIN(min);
588 BCD_TO_BIN(hour);
589 BCD_TO_BIN(day);
590 BCD_TO_BIN(mon);
591 BCD_TO_BIN(year);
593 if ((year += 1900) < 1970)
594 year += 100;
597 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
598 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
599 set_normalized_timespec(&wall_to_monotonic,
600 -xtime.tv_sec, -xtime.tv_nsec);
602 if (mregs) {
603 tmp = mostek_read(mregs + MOSTEK_CREG);
604 tmp &= ~MSTK_CREG_READ;
605 mostek_write(mregs + MOSTEK_CREG, tmp);
607 spin_unlock_irq(&mostek_lock);
611 /* davem suggests we keep this within the 4M locked kernel image */
612 static u32 starfire_get_time(void)
614 static char obp_gettod[32];
615 static u32 unix_tod;
617 sprintf(obp_gettod, "h# %08x unix-gettod",
618 (unsigned int) (long) &unix_tod);
619 prom_feval(obp_gettod);
621 return unix_tod;
624 static int starfire_set_time(u32 val)
626 /* Do nothing, time is set using the service processor
627 * console on this platform.
629 return 0;
632 static u32 hypervisor_get_time(void)
634 unsigned long ret, time;
635 int retries = 10000;
637 retry:
638 ret = sun4v_tod_get(&time);
639 if (ret == HV_EOK)
640 return time;
641 if (ret == HV_EWOULDBLOCK) {
642 if (--retries > 0) {
643 udelay(100);
644 goto retry;
646 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
647 return 0;
649 printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
650 return 0;
653 static int hypervisor_set_time(u32 secs)
655 unsigned long ret;
656 int retries = 10000;
658 retry:
659 ret = sun4v_tod_set(secs);
660 if (ret == HV_EOK)
661 return 0;
662 if (ret == HV_EWOULDBLOCK) {
663 if (--retries > 0) {
664 udelay(100);
665 goto retry;
667 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
668 return -EAGAIN;
670 printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
671 return -EOPNOTSUPP;
674 static int __init clock_model_matches(const char *model)
676 if (strcmp(model, "mk48t02") &&
677 strcmp(model, "mk48t08") &&
678 strcmp(model, "mk48t59") &&
679 strcmp(model, "m5819") &&
680 strcmp(model, "m5819p") &&
681 strcmp(model, "m5823") &&
682 strcmp(model, "ds1287") &&
683 strcmp(model, "bq4802"))
684 return 0;
686 return 1;
689 static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
691 struct device_node *dp = op->node;
692 const char *model = of_get_property(dp, "model", NULL);
693 const char *compat = of_get_property(dp, "compatible", NULL);
694 unsigned long size, flags;
695 void __iomem *regs;
697 if (!model)
698 model = compat;
700 if (!model || !clock_model_matches(model))
701 return -ENODEV;
703 /* On an Enterprise system there can be multiple mostek clocks.
704 * We should only match the one that is on the central FHC bus.
706 if (!strcmp(dp->parent->name, "fhc") &&
707 strcmp(dp->parent->parent->name, "central") != 0)
708 return -ENODEV;
710 size = (op->resource[0].end - op->resource[0].start) + 1;
711 regs = of_ioremap(&op->resource[0], 0, size, "clock");
712 if (!regs)
713 return -ENOMEM;
715 #ifdef CONFIG_PCI
716 if (!strcmp(model, "ds1287") ||
717 !strcmp(model, "m5819") ||
718 !strcmp(model, "m5819p") ||
719 !strcmp(model, "m5823")) {
720 ds1287_regs = (unsigned long) regs;
721 } else if (!strcmp(model, "bq4802")) {
722 bq4802_regs = regs;
723 } else
724 #endif
725 if (model[5] == '0' && model[6] == '2') {
726 mstk48t02_regs = regs;
727 } else if(model[5] == '0' && model[6] == '8') {
728 mstk48t08_regs = regs;
729 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
730 } else {
731 mstk48t59_regs = regs;
732 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
735 printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
737 local_irq_save(flags);
739 if (mstk48t02_regs != NULL) {
740 /* Report a low battery voltage condition. */
741 if (has_low_battery())
742 prom_printf("NVRAM: Low battery voltage!\n");
744 /* Kick start the clock if it is completely stopped. */
745 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
746 kick_start_clock();
749 set_system_time();
751 local_irq_restore(flags);
753 return 0;
756 static struct of_device_id clock_match[] = {
758 .name = "eeprom",
761 .name = "rtc",
766 static struct of_platform_driver clock_driver = {
767 .name = "clock",
768 .match_table = clock_match,
769 .probe = clock_probe,
772 static int __init clock_init(void)
774 if (this_is_starfire) {
775 xtime.tv_sec = starfire_get_time();
776 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
777 set_normalized_timespec(&wall_to_monotonic,
778 -xtime.tv_sec, -xtime.tv_nsec);
779 return 0;
781 if (tlb_type == hypervisor) {
782 xtime.tv_sec = hypervisor_get_time();
783 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
784 set_normalized_timespec(&wall_to_monotonic,
785 -xtime.tv_sec, -xtime.tv_nsec);
786 return 0;
789 return of_register_driver(&clock_driver, &of_platform_bus_type);
792 /* Must be after subsys_initcall() so that busses are probed. Must
793 * be before device_initcall() because things like the RTC driver
794 * need to see the clock registers.
796 fs_initcall(clock_init);
798 /* This is gets the master TICK_INT timer going. */
799 static unsigned long sparc64_init_timers(void)
801 struct device_node *dp;
802 unsigned long clock;
804 dp = of_find_node_by_path("/");
805 if (tlb_type == spitfire) {
806 unsigned long ver, manuf, impl;
808 __asm__ __volatile__ ("rdpr %%ver, %0"
809 : "=&r" (ver));
810 manuf = ((ver >> 48) & 0xffff);
811 impl = ((ver >> 32) & 0xffff);
812 if (manuf == 0x17 && impl == 0x13) {
813 /* Hummingbird, aka Ultra-IIe */
814 tick_ops = &hbtick_operations;
815 clock = of_getintprop_default(dp, "stick-frequency", 0);
816 } else {
817 tick_ops = &tick_operations;
818 clock = local_cpu_data().clock_tick;
820 } else {
821 tick_ops = &stick_operations;
822 clock = of_getintprop_default(dp, "stick-frequency", 0);
825 return clock;
828 struct freq_table {
829 unsigned long clock_tick_ref;
830 unsigned int ref_freq;
832 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
834 unsigned long sparc64_get_clock_tick(unsigned int cpu)
836 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
838 if (ft->clock_tick_ref)
839 return ft->clock_tick_ref;
840 return cpu_data(cpu).clock_tick;
843 #ifdef CONFIG_CPU_FREQ
845 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
846 void *data)
848 struct cpufreq_freqs *freq = data;
849 unsigned int cpu = freq->cpu;
850 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
852 if (!ft->ref_freq) {
853 ft->ref_freq = freq->old;
854 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
856 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
857 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
858 (val == CPUFREQ_RESUMECHANGE)) {
859 cpu_data(cpu).clock_tick =
860 cpufreq_scale(ft->clock_tick_ref,
861 ft->ref_freq,
862 freq->new);
865 return 0;
868 static struct notifier_block sparc64_cpufreq_notifier_block = {
869 .notifier_call = sparc64_cpufreq_notifier
872 #endif /* CONFIG_CPU_FREQ */
874 static int sparc64_next_event(unsigned long delta,
875 struct clock_event_device *evt)
877 return tick_ops->add_compare(delta) ? -ETIME : 0;
880 static void sparc64_timer_setup(enum clock_event_mode mode,
881 struct clock_event_device *evt)
883 switch (mode) {
884 case CLOCK_EVT_MODE_ONESHOT:
885 case CLOCK_EVT_MODE_RESUME:
886 break;
888 case CLOCK_EVT_MODE_SHUTDOWN:
889 tick_ops->disable_irq();
890 break;
892 case CLOCK_EVT_MODE_PERIODIC:
893 case CLOCK_EVT_MODE_UNUSED:
894 WARN_ON(1);
895 break;
899 static struct clock_event_device sparc64_clockevent = {
900 .features = CLOCK_EVT_FEAT_ONESHOT,
901 .set_mode = sparc64_timer_setup,
902 .set_next_event = sparc64_next_event,
903 .rating = 100,
904 .shift = 30,
905 .irq = -1,
907 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
909 void timer_interrupt(int irq, struct pt_regs *regs)
911 struct pt_regs *old_regs = set_irq_regs(regs);
912 unsigned long tick_mask = tick_ops->softint_mask;
913 int cpu = smp_processor_id();
914 struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
916 clear_softint(tick_mask);
918 irq_enter();
920 kstat_this_cpu.irqs[0]++;
922 if (unlikely(!evt->event_handler)) {
923 printk(KERN_WARNING
924 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
925 } else
926 evt->event_handler(evt);
928 irq_exit();
930 set_irq_regs(old_regs);
933 void __devinit setup_sparc64_timer(void)
935 struct clock_event_device *sevt;
936 unsigned long pstate;
938 /* Guarantee that the following sequences execute
939 * uninterrupted.
941 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
942 "wrpr %0, %1, %%pstate"
943 : "=r" (pstate)
944 : "i" (PSTATE_IE));
946 tick_ops->init_tick();
948 /* Restore PSTATE_IE. */
949 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
950 : /* no outputs */
951 : "r" (pstate));
953 sevt = &__get_cpu_var(sparc64_events);
955 memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
956 sevt->cpumask = cpumask_of_cpu(smp_processor_id());
958 clockevents_register_device(sevt);
961 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
963 static struct clocksource clocksource_tick = {
964 .rating = 100,
965 .mask = CLOCKSOURCE_MASK(64),
966 .shift = 16,
967 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
970 static void __init setup_clockevent_multiplier(unsigned long hz)
972 unsigned long mult, shift = 32;
974 while (1) {
975 mult = div_sc(hz, NSEC_PER_SEC, shift);
976 if (mult && (mult >> 32UL) == 0UL)
977 break;
979 shift--;
982 sparc64_clockevent.shift = shift;
983 sparc64_clockevent.mult = mult;
986 static unsigned long tb_ticks_per_usec __read_mostly;
988 void __delay(unsigned long loops)
990 unsigned long bclock, now;
992 bclock = tick_ops->get_tick();
993 do {
994 now = tick_ops->get_tick();
995 } while ((now-bclock) < loops);
997 EXPORT_SYMBOL(__delay);
999 void udelay(unsigned long usecs)
1001 __delay(tb_ticks_per_usec * usecs);
1003 EXPORT_SYMBOL(udelay);
1005 void __init time_init(void)
1007 unsigned long clock = sparc64_init_timers();
1009 tb_ticks_per_usec = clock / USEC_PER_SEC;
1011 timer_ticks_per_nsec_quotient =
1012 clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT);
1014 clocksource_tick.name = tick_ops->name;
1015 clocksource_tick.mult =
1016 clocksource_hz2mult(clock,
1017 clocksource_tick.shift);
1018 clocksource_tick.read = tick_ops->get_tick;
1020 printk("clocksource: mult[%x] shift[%d]\n",
1021 clocksource_tick.mult, clocksource_tick.shift);
1023 clocksource_register(&clocksource_tick);
1025 sparc64_clockevent.name = tick_ops->name;
1027 setup_clockevent_multiplier(clock);
1029 sparc64_clockevent.max_delta_ns =
1030 clockevent_delta2ns(0x7fffffffffffffff, &sparc64_clockevent);
1031 sparc64_clockevent.min_delta_ns =
1032 clockevent_delta2ns(0xF, &sparc64_clockevent);
1034 printk("clockevent: mult[%lx] shift[%d]\n",
1035 sparc64_clockevent.mult, sparc64_clockevent.shift);
1037 setup_sparc64_timer();
1039 #ifdef CONFIG_CPU_FREQ
1040 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
1041 CPUFREQ_TRANSITION_NOTIFIER);
1042 #endif
1045 unsigned long long sched_clock(void)
1047 unsigned long ticks = tick_ops->get_tick();
1049 return (ticks * timer_ticks_per_nsec_quotient)
1050 >> SPARC64_NSEC_PER_CYC_SHIFT;
1053 static int set_rtc_mmss(unsigned long nowtime)
1055 int real_seconds, real_minutes, chip_minutes;
1056 void __iomem *mregs = mstk48t02_regs;
1057 #ifdef CONFIG_PCI
1058 unsigned long dregs = ds1287_regs;
1059 void __iomem *bregs = bq4802_regs;
1060 #else
1061 unsigned long dregs = 0UL;
1062 void __iomem *bregs = 0UL;
1063 #endif
1064 unsigned long flags;
1065 u8 tmp;
1068 * Not having a register set can lead to trouble.
1069 * Also starfire doesn't have a tod clock.
1071 if (!mregs && !dregs & !bregs)
1072 return -1;
1074 if (mregs) {
1075 spin_lock_irqsave(&mostek_lock, flags);
1077 /* Read the current RTC minutes. */
1078 tmp = mostek_read(mregs + MOSTEK_CREG);
1079 tmp |= MSTK_CREG_READ;
1080 mostek_write(mregs + MOSTEK_CREG, tmp);
1082 chip_minutes = MSTK_REG_MIN(mregs);
1084 tmp = mostek_read(mregs + MOSTEK_CREG);
1085 tmp &= ~MSTK_CREG_READ;
1086 mostek_write(mregs + MOSTEK_CREG, tmp);
1089 * since we're only adjusting minutes and seconds,
1090 * don't interfere with hour overflow. This avoids
1091 * messing with unknown time zones but requires your
1092 * RTC not to be off by more than 15 minutes
1094 real_seconds = nowtime % 60;
1095 real_minutes = nowtime / 60;
1096 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1097 real_minutes += 30; /* correct for half hour time zone */
1098 real_minutes %= 60;
1100 if (abs(real_minutes - chip_minutes) < 30) {
1101 tmp = mostek_read(mregs + MOSTEK_CREG);
1102 tmp |= MSTK_CREG_WRITE;
1103 mostek_write(mregs + MOSTEK_CREG, tmp);
1105 MSTK_SET_REG_SEC(mregs,real_seconds);
1106 MSTK_SET_REG_MIN(mregs,real_minutes);
1108 tmp = mostek_read(mregs + MOSTEK_CREG);
1109 tmp &= ~MSTK_CREG_WRITE;
1110 mostek_write(mregs + MOSTEK_CREG, tmp);
1112 spin_unlock_irqrestore(&mostek_lock, flags);
1114 return 0;
1115 } else {
1116 spin_unlock_irqrestore(&mostek_lock, flags);
1118 return -1;
1120 } else if (bregs) {
1121 int retval = 0;
1122 unsigned char val = readb(bregs + 0x0e);
1124 /* BQ4802 RTC chip. */
1126 writeb(val | 0x08, bregs + 0x0e);
1128 chip_minutes = readb(bregs + 0x02);
1129 BCD_TO_BIN(chip_minutes);
1130 real_seconds = nowtime % 60;
1131 real_minutes = nowtime / 60;
1132 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1133 real_minutes += 30;
1134 real_minutes %= 60;
1136 if (abs(real_minutes - chip_minutes) < 30) {
1137 BIN_TO_BCD(real_seconds);
1138 BIN_TO_BCD(real_minutes);
1139 writeb(real_seconds, bregs + 0x00);
1140 writeb(real_minutes, bregs + 0x02);
1141 } else {
1142 printk(KERN_WARNING
1143 "set_rtc_mmss: can't update from %d to %d\n",
1144 chip_minutes, real_minutes);
1145 retval = -1;
1148 writeb(val, bregs + 0x0e);
1150 return retval;
1151 } else {
1152 int retval = 0;
1153 unsigned char save_control, save_freq_select;
1155 /* Stolen from arch/i386/kernel/time.c, see there for
1156 * credits and descriptive comments.
1158 spin_lock_irqsave(&rtc_lock, flags);
1159 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1160 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1162 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1163 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1165 chip_minutes = CMOS_READ(RTC_MINUTES);
1166 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1167 BCD_TO_BIN(chip_minutes);
1168 real_seconds = nowtime % 60;
1169 real_minutes = nowtime / 60;
1170 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1171 real_minutes += 30;
1172 real_minutes %= 60;
1174 if (abs(real_minutes - chip_minutes) < 30) {
1175 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1176 BIN_TO_BCD(real_seconds);
1177 BIN_TO_BCD(real_minutes);
1179 CMOS_WRITE(real_seconds,RTC_SECONDS);
1180 CMOS_WRITE(real_minutes,RTC_MINUTES);
1181 } else {
1182 printk(KERN_WARNING
1183 "set_rtc_mmss: can't update from %d to %d\n",
1184 chip_minutes, real_minutes);
1185 retval = -1;
1188 CMOS_WRITE(save_control, RTC_CONTROL);
1189 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1190 spin_unlock_irqrestore(&rtc_lock, flags);
1192 return retval;
1196 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1197 static unsigned char mini_rtc_status; /* bitmapped status byte. */
1199 #define FEBRUARY 2
1200 #define STARTOFTIME 1970
1201 #define SECDAY 86400L
1202 #define SECYR (SECDAY * 365)
1203 #define leapyear(year) ((year) % 4 == 0 && \
1204 ((year) % 100 != 0 || (year) % 400 == 0))
1205 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1206 #define days_in_month(a) (month_days[(a) - 1])
1208 static int month_days[12] = {
1209 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1213 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1215 static void GregorianDay(struct rtc_time * tm)
1217 int leapsToDate;
1218 int lastYear;
1219 int day;
1220 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1222 lastYear = tm->tm_year - 1;
1225 * Number of leap corrections to apply up to end of last year
1227 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1230 * This year is a leap year if it is divisible by 4 except when it is
1231 * divisible by 100 unless it is divisible by 400
1233 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1235 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1237 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1238 tm->tm_mday;
1240 tm->tm_wday = day % 7;
1243 static void to_tm(int tim, struct rtc_time *tm)
1245 register int i;
1246 register long hms, day;
1248 day = tim / SECDAY;
1249 hms = tim % SECDAY;
1251 /* Hours, minutes, seconds are easy */
1252 tm->tm_hour = hms / 3600;
1253 tm->tm_min = (hms % 3600) / 60;
1254 tm->tm_sec = (hms % 3600) % 60;
1256 /* Number of years in days */
1257 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1258 day -= days_in_year(i);
1259 tm->tm_year = i;
1261 /* Number of months in days left */
1262 if (leapyear(tm->tm_year))
1263 days_in_month(FEBRUARY) = 29;
1264 for (i = 1; day >= days_in_month(i); i++)
1265 day -= days_in_month(i);
1266 days_in_month(FEBRUARY) = 28;
1267 tm->tm_mon = i;
1269 /* Days are what is left over (+1) from all that. */
1270 tm->tm_mday = day + 1;
1273 * Determine the day of week
1275 GregorianDay(tm);
1278 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1279 * aka Unix time. So we have to convert to/from rtc_time.
1281 static void starfire_get_rtc_time(struct rtc_time *time)
1283 u32 seconds = starfire_get_time();
1285 to_tm(seconds, time);
1286 time->tm_year -= 1900;
1287 time->tm_mon -= 1;
1290 static int starfire_set_rtc_time(struct rtc_time *time)
1292 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1293 time->tm_mday, time->tm_hour,
1294 time->tm_min, time->tm_sec);
1296 return starfire_set_time(seconds);
1299 static void hypervisor_get_rtc_time(struct rtc_time *time)
1301 u32 seconds = hypervisor_get_time();
1303 to_tm(seconds, time);
1304 time->tm_year -= 1900;
1305 time->tm_mon -= 1;
1308 static int hypervisor_set_rtc_time(struct rtc_time *time)
1310 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1311 time->tm_mday, time->tm_hour,
1312 time->tm_min, time->tm_sec);
1314 return hypervisor_set_time(seconds);
1317 #ifdef CONFIG_PCI
1318 static void bq4802_get_rtc_time(struct rtc_time *time)
1320 unsigned char val = readb(bq4802_regs + 0x0e);
1321 unsigned int century;
1323 writeb(val | 0x08, bq4802_regs + 0x0e);
1325 time->tm_sec = readb(bq4802_regs + 0x00);
1326 time->tm_min = readb(bq4802_regs + 0x02);
1327 time->tm_hour = readb(bq4802_regs + 0x04);
1328 time->tm_mday = readb(bq4802_regs + 0x06);
1329 time->tm_mon = readb(bq4802_regs + 0x09);
1330 time->tm_year = readb(bq4802_regs + 0x0a);
1331 time->tm_wday = readb(bq4802_regs + 0x08);
1332 century = readb(bq4802_regs + 0x0f);
1334 writeb(val, bq4802_regs + 0x0e);
1336 BCD_TO_BIN(time->tm_sec);
1337 BCD_TO_BIN(time->tm_min);
1338 BCD_TO_BIN(time->tm_hour);
1339 BCD_TO_BIN(time->tm_mday);
1340 BCD_TO_BIN(time->tm_mon);
1341 BCD_TO_BIN(time->tm_year);
1342 BCD_TO_BIN(time->tm_wday);
1343 BCD_TO_BIN(century);
1345 time->tm_year += (century * 100);
1346 time->tm_year -= 1900;
1348 time->tm_mon--;
1351 static int bq4802_set_rtc_time(struct rtc_time *time)
1353 unsigned char val = readb(bq4802_regs + 0x0e);
1354 unsigned char sec, min, hrs, day, mon, yrs, century;
1355 unsigned int year;
1357 year = time->tm_year + 1900;
1358 century = year / 100;
1359 yrs = year % 100;
1361 mon = time->tm_mon + 1; /* tm_mon starts at zero */
1362 day = time->tm_mday;
1363 hrs = time->tm_hour;
1364 min = time->tm_min;
1365 sec = time->tm_sec;
1367 BIN_TO_BCD(sec);
1368 BIN_TO_BCD(min);
1369 BIN_TO_BCD(hrs);
1370 BIN_TO_BCD(day);
1371 BIN_TO_BCD(mon);
1372 BIN_TO_BCD(yrs);
1373 BIN_TO_BCD(century);
1375 writeb(val | 0x08, bq4802_regs + 0x0e);
1377 writeb(sec, bq4802_regs + 0x00);
1378 writeb(min, bq4802_regs + 0x02);
1379 writeb(hrs, bq4802_regs + 0x04);
1380 writeb(day, bq4802_regs + 0x06);
1381 writeb(mon, bq4802_regs + 0x09);
1382 writeb(yrs, bq4802_regs + 0x0a);
1383 writeb(century, bq4802_regs + 0x0f);
1385 writeb(val, bq4802_regs + 0x0e);
1387 return 0;
1390 static void cmos_get_rtc_time(struct rtc_time *rtc_tm)
1392 unsigned char ctrl;
1394 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1395 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1396 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1397 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1398 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1399 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1400 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1402 ctrl = CMOS_READ(RTC_CONTROL);
1403 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1404 BCD_TO_BIN(rtc_tm->tm_sec);
1405 BCD_TO_BIN(rtc_tm->tm_min);
1406 BCD_TO_BIN(rtc_tm->tm_hour);
1407 BCD_TO_BIN(rtc_tm->tm_mday);
1408 BCD_TO_BIN(rtc_tm->tm_mon);
1409 BCD_TO_BIN(rtc_tm->tm_year);
1410 BCD_TO_BIN(rtc_tm->tm_wday);
1413 if (rtc_tm->tm_year <= 69)
1414 rtc_tm->tm_year += 100;
1416 rtc_tm->tm_mon--;
1419 static int cmos_set_rtc_time(struct rtc_time *rtc_tm)
1421 unsigned char mon, day, hrs, min, sec;
1422 unsigned char save_control, save_freq_select;
1423 unsigned int yrs;
1425 yrs = rtc_tm->tm_year;
1426 mon = rtc_tm->tm_mon + 1;
1427 day = rtc_tm->tm_mday;
1428 hrs = rtc_tm->tm_hour;
1429 min = rtc_tm->tm_min;
1430 sec = rtc_tm->tm_sec;
1432 if (yrs >= 100)
1433 yrs -= 100;
1435 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1436 BIN_TO_BCD(sec);
1437 BIN_TO_BCD(min);
1438 BIN_TO_BCD(hrs);
1439 BIN_TO_BCD(day);
1440 BIN_TO_BCD(mon);
1441 BIN_TO_BCD(yrs);
1444 save_control = CMOS_READ(RTC_CONTROL);
1445 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1446 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
1447 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1449 CMOS_WRITE(yrs, RTC_YEAR);
1450 CMOS_WRITE(mon, RTC_MONTH);
1451 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
1452 CMOS_WRITE(hrs, RTC_HOURS);
1453 CMOS_WRITE(min, RTC_MINUTES);
1454 CMOS_WRITE(sec, RTC_SECONDS);
1456 CMOS_WRITE(save_control, RTC_CONTROL);
1457 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1459 return 0;
1461 #endif /* CONFIG_PCI */
1463 static void mostek_get_rtc_time(struct rtc_time *rtc_tm)
1465 void __iomem *regs = mstk48t02_regs;
1466 u8 tmp;
1468 spin_lock_irq(&mostek_lock);
1470 tmp = mostek_read(regs + MOSTEK_CREG);
1471 tmp |= MSTK_CREG_READ;
1472 mostek_write(regs + MOSTEK_CREG, tmp);
1474 rtc_tm->tm_sec = MSTK_REG_SEC(regs);
1475 rtc_tm->tm_min = MSTK_REG_MIN(regs);
1476 rtc_tm->tm_hour = MSTK_REG_HOUR(regs);
1477 rtc_tm->tm_mday = MSTK_REG_DOM(regs);
1478 rtc_tm->tm_mon = MSTK_REG_MONTH(regs);
1479 rtc_tm->tm_year = MSTK_CVT_YEAR( MSTK_REG_YEAR(regs) );
1480 rtc_tm->tm_wday = MSTK_REG_DOW(regs);
1482 tmp = mostek_read(regs + MOSTEK_CREG);
1483 tmp &= ~MSTK_CREG_READ;
1484 mostek_write(regs + MOSTEK_CREG, tmp);
1486 spin_unlock_irq(&mostek_lock);
1488 rtc_tm->tm_mon--;
1489 rtc_tm->tm_wday--;
1490 rtc_tm->tm_year -= 1900;
1493 static int mostek_set_rtc_time(struct rtc_time *rtc_tm)
1495 unsigned char mon, day, hrs, min, sec, wday;
1496 void __iomem *regs = mstk48t02_regs;
1497 unsigned int yrs;
1498 u8 tmp;
1500 yrs = rtc_tm->tm_year + 1900;
1501 mon = rtc_tm->tm_mon + 1;
1502 day = rtc_tm->tm_mday;
1503 wday = rtc_tm->tm_wday + 1;
1504 hrs = rtc_tm->tm_hour;
1505 min = rtc_tm->tm_min;
1506 sec = rtc_tm->tm_sec;
1508 spin_lock_irq(&mostek_lock);
1510 tmp = mostek_read(regs + MOSTEK_CREG);
1511 tmp |= MSTK_CREG_WRITE;
1512 mostek_write(regs + MOSTEK_CREG, tmp);
1514 MSTK_SET_REG_SEC(regs, sec);
1515 MSTK_SET_REG_MIN(regs, min);
1516 MSTK_SET_REG_HOUR(regs, hrs);
1517 MSTK_SET_REG_DOW(regs, wday);
1518 MSTK_SET_REG_DOM(regs, day);
1519 MSTK_SET_REG_MONTH(regs, mon);
1520 MSTK_SET_REG_YEAR(regs, yrs - MSTK_YEAR_ZERO);
1522 tmp = mostek_read(regs + MOSTEK_CREG);
1523 tmp &= ~MSTK_CREG_WRITE;
1524 mostek_write(regs + MOSTEK_CREG, tmp);
1526 spin_unlock_irq(&mostek_lock);
1528 return 0;
1531 struct mini_rtc_ops {
1532 void (*get_rtc_time)(struct rtc_time *);
1533 int (*set_rtc_time)(struct rtc_time *);
1536 static struct mini_rtc_ops starfire_rtc_ops = {
1537 .get_rtc_time = starfire_get_rtc_time,
1538 .set_rtc_time = starfire_set_rtc_time,
1541 static struct mini_rtc_ops hypervisor_rtc_ops = {
1542 .get_rtc_time = hypervisor_get_rtc_time,
1543 .set_rtc_time = hypervisor_set_rtc_time,
1546 #ifdef CONFIG_PCI
1547 static struct mini_rtc_ops bq4802_rtc_ops = {
1548 .get_rtc_time = bq4802_get_rtc_time,
1549 .set_rtc_time = bq4802_set_rtc_time,
1552 static struct mini_rtc_ops cmos_rtc_ops = {
1553 .get_rtc_time = cmos_get_rtc_time,
1554 .set_rtc_time = cmos_set_rtc_time,
1556 #endif /* CONFIG_PCI */
1558 static struct mini_rtc_ops mostek_rtc_ops = {
1559 .get_rtc_time = mostek_get_rtc_time,
1560 .set_rtc_time = mostek_set_rtc_time,
1563 static struct mini_rtc_ops *mini_rtc_ops;
1565 static inline void mini_get_rtc_time(struct rtc_time *time)
1567 unsigned long flags;
1569 spin_lock_irqsave(&rtc_lock, flags);
1570 mini_rtc_ops->get_rtc_time(time);
1571 spin_unlock_irqrestore(&rtc_lock, flags);
1574 static inline int mini_set_rtc_time(struct rtc_time *time)
1576 unsigned long flags;
1577 int err;
1579 spin_lock_irqsave(&rtc_lock, flags);
1580 err = mini_rtc_ops->set_rtc_time(time);
1581 spin_unlock_irqrestore(&rtc_lock, flags);
1583 return err;
1586 static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1587 unsigned int cmd, unsigned long arg)
1589 struct rtc_time wtime;
1590 void __user *argp = (void __user *)arg;
1592 switch (cmd) {
1594 case RTC_PLL_GET:
1595 return -EINVAL;
1597 case RTC_PLL_SET:
1598 return -EINVAL;
1600 case RTC_UIE_OFF: /* disable ints from RTC updates. */
1601 return 0;
1603 case RTC_UIE_ON: /* enable ints for RTC updates. */
1604 return -EINVAL;
1606 case RTC_RD_TIME: /* Read the time/date from RTC */
1607 /* this doesn't get week-day, who cares */
1608 memset(&wtime, 0, sizeof(wtime));
1609 mini_get_rtc_time(&wtime);
1611 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1613 case RTC_SET_TIME: /* Set the RTC */
1615 int year, days;
1617 if (!capable(CAP_SYS_TIME))
1618 return -EACCES;
1620 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1621 return -EFAULT;
1623 year = wtime.tm_year + 1900;
1624 days = month_days[wtime.tm_mon] +
1625 ((wtime.tm_mon == 1) && leapyear(year));
1627 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) ||
1628 (wtime.tm_mday < 1))
1629 return -EINVAL;
1631 if (wtime.tm_mday < 0 || wtime.tm_mday > days)
1632 return -EINVAL;
1634 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1635 wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1636 wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1637 return -EINVAL;
1639 return mini_set_rtc_time(&wtime);
1643 return -EINVAL;
1646 static int mini_rtc_open(struct inode *inode, struct file *file)
1648 if (mini_rtc_status & RTC_IS_OPEN)
1649 return -EBUSY;
1651 mini_rtc_status |= RTC_IS_OPEN;
1653 return 0;
1656 static int mini_rtc_release(struct inode *inode, struct file *file)
1658 mini_rtc_status &= ~RTC_IS_OPEN;
1659 return 0;
1663 static const struct file_operations mini_rtc_fops = {
1664 .owner = THIS_MODULE,
1665 .ioctl = mini_rtc_ioctl,
1666 .open = mini_rtc_open,
1667 .release = mini_rtc_release,
1670 static struct miscdevice rtc_mini_dev =
1672 .minor = RTC_MINOR,
1673 .name = "rtc",
1674 .fops = &mini_rtc_fops,
1677 static int __init rtc_mini_init(void)
1679 int retval;
1681 if (tlb_type == hypervisor)
1682 mini_rtc_ops = &hypervisor_rtc_ops;
1683 else if (this_is_starfire)
1684 mini_rtc_ops = &starfire_rtc_ops;
1685 #ifdef CONFIG_PCI
1686 else if (bq4802_regs)
1687 mini_rtc_ops = &bq4802_rtc_ops;
1688 else if (ds1287_regs)
1689 mini_rtc_ops = &cmos_rtc_ops;
1690 #endif /* CONFIG_PCI */
1691 else if (mstk48t02_regs)
1692 mini_rtc_ops = &mostek_rtc_ops;
1693 else
1694 return -ENODEV;
1696 printk(KERN_INFO "Mini RTC Driver\n");
1698 retval = misc_register(&rtc_mini_dev);
1699 if (retval < 0)
1700 return retval;
1702 return 0;
1705 static void __exit rtc_mini_exit(void)
1707 misc_deregister(&rtc_mini_dev);
1711 module_init(rtc_mini_init);
1712 module_exit(rtc_mini_exit);