2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/stop_machine.h>
31 * Check the RCU kernel configuration parameters and print informative
32 * messages about anything out of the ordinary. If you like #ifdef, you
33 * will love this function.
35 static void __init
rcu_bootup_announce_oddness(void)
37 #ifdef CONFIG_RCU_TRACE
38 printk(KERN_INFO
"\tRCU debugfs-based tracing is enabled.\n");
40 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
41 printk(KERN_INFO
"\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
44 #ifdef CONFIG_RCU_FANOUT_EXACT
45 printk(KERN_INFO
"\tHierarchical RCU autobalancing is disabled.\n");
47 #ifdef CONFIG_RCU_FAST_NO_HZ
49 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
51 #ifdef CONFIG_PROVE_RCU
52 printk(KERN_INFO
"\tRCU lockdep checking is enabled.\n");
54 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
55 printk(KERN_INFO
"\tRCU torture testing starts during boot.\n");
57 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
58 printk(KERN_INFO
"\tVerbose stalled-CPUs detection is disabled.\n");
60 #if NUM_RCU_LVL_4 != 0
61 printk(KERN_INFO
"\tExperimental four-level hierarchy is enabled.\n");
65 #ifdef CONFIG_TREE_PREEMPT_RCU
67 struct rcu_state rcu_preempt_state
= RCU_STATE_INITIALIZER(rcu_preempt_state
);
68 DEFINE_PER_CPU(struct rcu_data
, rcu_preempt_data
);
70 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
);
73 * Tell them what RCU they are running.
75 static void __init
rcu_bootup_announce(void)
77 printk(KERN_INFO
"Preemptable hierarchical RCU implementation.\n");
78 rcu_bootup_announce_oddness();
82 * Return the number of RCU-preempt batches processed thus far
83 * for debug and statistics.
85 long rcu_batches_completed_preempt(void)
87 return rcu_preempt_state
.completed
;
89 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt
);
92 * Return the number of RCU batches processed thus far for debug & stats.
94 long rcu_batches_completed(void)
96 return rcu_batches_completed_preempt();
98 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
101 * Force a quiescent state for preemptible RCU.
103 void rcu_force_quiescent_state(void)
105 force_quiescent_state(&rcu_preempt_state
, 0);
107 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
110 * Record a preemptable-RCU quiescent state for the specified CPU. Note
111 * that this just means that the task currently running on the CPU is
112 * not in a quiescent state. There might be any number of tasks blocked
113 * while in an RCU read-side critical section.
115 * Unlike the other rcu_*_qs() functions, callers to this function
116 * must disable irqs in order to protect the assignment to
117 * ->rcu_read_unlock_special.
119 static void rcu_preempt_qs(int cpu
)
121 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
123 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
125 rdp
->passed_quiesc
= 1;
126 current
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
130 * We have entered the scheduler, and the current task might soon be
131 * context-switched away from. If this task is in an RCU read-side
132 * critical section, we will no longer be able to rely on the CPU to
133 * record that fact, so we enqueue the task on the appropriate entry
134 * of the blocked_tasks[] array. The task will dequeue itself when
135 * it exits the outermost enclosing RCU read-side critical section.
136 * Therefore, the current grace period cannot be permitted to complete
137 * until the blocked_tasks[] entry indexed by the low-order bit of
138 * rnp->gpnum empties.
140 * Caller must disable preemption.
142 static void rcu_preempt_note_context_switch(int cpu
)
144 struct task_struct
*t
= current
;
147 struct rcu_data
*rdp
;
148 struct rcu_node
*rnp
;
150 if (t
->rcu_read_lock_nesting
&&
151 (t
->rcu_read_unlock_special
& RCU_READ_UNLOCK_BLOCKED
) == 0) {
153 /* Possibly blocking in an RCU read-side critical section. */
154 rdp
= per_cpu_ptr(rcu_preempt_state
.rda
, cpu
);
156 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
157 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_BLOCKED
;
158 t
->rcu_blocked_node
= rnp
;
161 * If this CPU has already checked in, then this task
162 * will hold up the next grace period rather than the
163 * current grace period. Queue the task accordingly.
164 * If the task is queued for the current grace period
165 * (i.e., this CPU has not yet passed through a quiescent
166 * state for the current grace period), then as long
167 * as that task remains queued, the current grace period
170 * But first, note that the current CPU must still be
173 WARN_ON_ONCE((rdp
->grpmask
& rnp
->qsmaskinit
) == 0);
174 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
175 phase
= (rnp
->gpnum
+ !(rnp
->qsmask
& rdp
->grpmask
)) & 0x1;
176 list_add(&t
->rcu_node_entry
, &rnp
->blocked_tasks
[phase
]);
177 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
181 * Either we were not in an RCU read-side critical section to
182 * begin with, or we have now recorded that critical section
183 * globally. Either way, we can now note a quiescent state
184 * for this CPU. Again, if we were in an RCU read-side critical
185 * section, and if that critical section was blocking the current
186 * grace period, then the fact that the task has been enqueued
187 * means that we continue to block the current grace period.
189 local_irq_save(flags
);
191 local_irq_restore(flags
);
195 * Tree-preemptable RCU implementation for rcu_read_lock().
196 * Just increment ->rcu_read_lock_nesting, shared state will be updated
199 void __rcu_read_lock(void)
201 current
->rcu_read_lock_nesting
++;
202 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
204 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
207 * Check for preempted RCU readers blocking the current grace period
208 * for the specified rcu_node structure. If the caller needs a reliable
209 * answer, it must hold the rcu_node's ->lock.
211 static int rcu_preempted_readers(struct rcu_node
*rnp
)
213 int phase
= rnp
->gpnum
& 0x1;
215 return !list_empty(&rnp
->blocked_tasks
[phase
]) ||
216 !list_empty(&rnp
->blocked_tasks
[phase
+ 2]);
220 * Record a quiescent state for all tasks that were previously queued
221 * on the specified rcu_node structure and that were blocking the current
222 * RCU grace period. The caller must hold the specified rnp->lock with
223 * irqs disabled, and this lock is released upon return, but irqs remain
226 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
227 __releases(rnp
->lock
)
230 struct rcu_node
*rnp_p
;
232 if (rnp
->qsmask
!= 0 || rcu_preempted_readers(rnp
)) {
233 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
234 return; /* Still need more quiescent states! */
240 * Either there is only one rcu_node in the tree,
241 * or tasks were kicked up to root rcu_node due to
242 * CPUs going offline.
244 rcu_report_qs_rsp(&rcu_preempt_state
, flags
);
248 /* Report up the rest of the hierarchy. */
250 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
251 raw_spin_lock(&rnp_p
->lock
); /* irqs already disabled. */
252 rcu_report_qs_rnp(mask
, &rcu_preempt_state
, rnp_p
, flags
);
256 * Handle special cases during rcu_read_unlock(), such as needing to
257 * notify RCU core processing or task having blocked during the RCU
258 * read-side critical section.
260 static void rcu_read_unlock_special(struct task_struct
*t
)
265 struct rcu_node
*rnp
;
268 /* NMI handlers cannot block and cannot safely manipulate state. */
272 local_irq_save(flags
);
275 * If RCU core is waiting for this CPU to exit critical section,
276 * let it know that we have done so.
278 special
= t
->rcu_read_unlock_special
;
279 if (special
& RCU_READ_UNLOCK_NEED_QS
) {
280 rcu_preempt_qs(smp_processor_id());
283 /* Hardware IRQ handlers cannot block. */
285 local_irq_restore(flags
);
289 /* Clean up if blocked during RCU read-side critical section. */
290 if (special
& RCU_READ_UNLOCK_BLOCKED
) {
291 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_BLOCKED
;
294 * Remove this task from the list it blocked on. The
295 * task can migrate while we acquire the lock, but at
296 * most one time. So at most two passes through loop.
299 rnp
= t
->rcu_blocked_node
;
300 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
301 if (rnp
== t
->rcu_blocked_node
)
303 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
305 empty
= !rcu_preempted_readers(rnp
);
306 empty_exp
= !rcu_preempted_readers_exp(rnp
);
307 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
308 list_del_init(&t
->rcu_node_entry
);
309 t
->rcu_blocked_node
= NULL
;
312 * If this was the last task on the current list, and if
313 * we aren't waiting on any CPUs, report the quiescent state.
314 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
317 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
319 rcu_report_unblock_qs_rnp(rnp
, flags
);
322 * If this was the last task on the expedited lists,
323 * then we need to report up the rcu_node hierarchy.
325 if (!empty_exp
&& !rcu_preempted_readers_exp(rnp
))
326 rcu_report_exp_rnp(&rcu_preempt_state
, rnp
);
328 local_irq_restore(flags
);
333 * Tree-preemptable RCU implementation for rcu_read_unlock().
334 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
335 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
336 * invoke rcu_read_unlock_special() to clean up after a context switch
337 * in an RCU read-side critical section and other special cases.
339 void __rcu_read_unlock(void)
341 struct task_struct
*t
= current
;
343 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
344 --t
->rcu_read_lock_nesting
;
345 barrier(); /* decrement before load of ->rcu_read_unlock_special */
346 if (t
->rcu_read_lock_nesting
== 0 &&
347 unlikely(ACCESS_ONCE(t
->rcu_read_unlock_special
)))
348 rcu_read_unlock_special(t
);
349 #ifdef CONFIG_PROVE_LOCKING
350 WARN_ON_ONCE(ACCESS_ONCE(t
->rcu_read_lock_nesting
) < 0);
351 #endif /* #ifdef CONFIG_PROVE_LOCKING */
353 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
355 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
358 * Dump detailed information for all tasks blocking the current RCU
359 * grace period on the specified rcu_node structure.
361 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
364 struct list_head
*lp
;
366 struct task_struct
*t
;
368 if (rcu_preempted_readers(rnp
)) {
369 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
370 phase
= rnp
->gpnum
& 0x1;
371 lp
= &rnp
->blocked_tasks
[phase
];
372 list_for_each_entry(t
, lp
, rcu_node_entry
)
374 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
379 * Dump detailed information for all tasks blocking the current RCU
382 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
384 struct rcu_node
*rnp
= rcu_get_root(rsp
);
386 rcu_print_detail_task_stall_rnp(rnp
);
387 rcu_for_each_leaf_node(rsp
, rnp
)
388 rcu_print_detail_task_stall_rnp(rnp
);
391 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
393 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
397 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
400 * Scan the current list of tasks blocked within RCU read-side critical
401 * sections, printing out the tid of each.
403 static void rcu_print_task_stall(struct rcu_node
*rnp
)
405 struct list_head
*lp
;
407 struct task_struct
*t
;
409 if (rcu_preempted_readers(rnp
)) {
410 phase
= rnp
->gpnum
& 0x1;
411 lp
= &rnp
->blocked_tasks
[phase
];
412 list_for_each_entry(t
, lp
, rcu_node_entry
)
413 printk(" P%d", t
->pid
);
418 * Suppress preemptible RCU's CPU stall warnings by pushing the
419 * time of the next stall-warning message comfortably far into the
422 static void rcu_preempt_stall_reset(void)
424 rcu_preempt_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
428 * Check that the list of blocked tasks for the newly completed grace
429 * period is in fact empty. It is a serious bug to complete a grace
430 * period that still has RCU readers blocked! This function must be
431 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
432 * must be held by the caller.
434 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
436 WARN_ON_ONCE(rcu_preempted_readers(rnp
));
437 WARN_ON_ONCE(rnp
->qsmask
);
440 #ifdef CONFIG_HOTPLUG_CPU
443 * Handle tasklist migration for case in which all CPUs covered by the
444 * specified rcu_node have gone offline. Move them up to the root
445 * rcu_node. The reason for not just moving them to the immediate
446 * parent is to remove the need for rcu_read_unlock_special() to
447 * make more than two attempts to acquire the target rcu_node's lock.
448 * Returns true if there were tasks blocking the current RCU grace
451 * Returns 1 if there was previously a task blocking the current grace
452 * period on the specified rcu_node structure.
454 * The caller must hold rnp->lock with irqs disabled.
456 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
457 struct rcu_node
*rnp
,
458 struct rcu_data
*rdp
)
461 struct list_head
*lp
;
462 struct list_head
*lp_root
;
464 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
465 struct task_struct
*tp
;
467 if (rnp
== rnp_root
) {
468 WARN_ONCE(1, "Last CPU thought to be offlined?");
469 return 0; /* Shouldn't happen: at least one CPU online. */
471 WARN_ON_ONCE(rnp
!= rdp
->mynode
&&
472 (!list_empty(&rnp
->blocked_tasks
[0]) ||
473 !list_empty(&rnp
->blocked_tasks
[1]) ||
474 !list_empty(&rnp
->blocked_tasks
[2]) ||
475 !list_empty(&rnp
->blocked_tasks
[3])));
478 * Move tasks up to root rcu_node. Rely on the fact that the
479 * root rcu_node can be at most one ahead of the rest of the
480 * rcu_nodes in terms of gp_num value. This fact allows us to
481 * move the blocked_tasks[] array directly, element by element.
483 if (rcu_preempted_readers(rnp
))
484 retval
|= RCU_OFL_TASKS_NORM_GP
;
485 if (rcu_preempted_readers_exp(rnp
))
486 retval
|= RCU_OFL_TASKS_EXP_GP
;
487 for (i
= 0; i
< 4; i
++) {
488 lp
= &rnp
->blocked_tasks
[i
];
489 lp_root
= &rnp_root
->blocked_tasks
[i
];
490 while (!list_empty(lp
)) {
491 tp
= list_entry(lp
->next
, typeof(*tp
), rcu_node_entry
);
492 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
493 list_del(&tp
->rcu_node_entry
);
494 tp
->rcu_blocked_node
= rnp_root
;
495 list_add(&tp
->rcu_node_entry
, lp_root
);
496 raw_spin_unlock(&rnp_root
->lock
); /* irqs remain disabled */
503 * Do CPU-offline processing for preemptable RCU.
505 static void rcu_preempt_offline_cpu(int cpu
)
507 __rcu_offline_cpu(cpu
, &rcu_preempt_state
);
510 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
513 * Check for a quiescent state from the current CPU. When a task blocks,
514 * the task is recorded in the corresponding CPU's rcu_node structure,
515 * which is checked elsewhere.
517 * Caller must disable hard irqs.
519 static void rcu_preempt_check_callbacks(int cpu
)
521 struct task_struct
*t
= current
;
523 if (t
->rcu_read_lock_nesting
== 0) {
527 if (per_cpu(rcu_preempt_data
, cpu
).qs_pending
)
528 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_NEED_QS
;
532 * Process callbacks for preemptable RCU.
534 static void rcu_preempt_process_callbacks(void)
536 __rcu_process_callbacks(&rcu_preempt_state
,
537 &__get_cpu_var(rcu_preempt_data
));
541 * Queue a preemptable-RCU callback for invocation after a grace period.
543 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
545 __call_rcu(head
, func
, &rcu_preempt_state
);
547 EXPORT_SYMBOL_GPL(call_rcu
);
550 * synchronize_rcu - wait until a grace period has elapsed.
552 * Control will return to the caller some time after a full grace
553 * period has elapsed, in other words after all currently executing RCU
554 * read-side critical sections have completed. Note, however, that
555 * upon return from synchronize_rcu(), the caller might well be executing
556 * concurrently with new RCU read-side critical sections that began while
557 * synchronize_rcu() was waiting. RCU read-side critical sections are
558 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
560 void synchronize_rcu(void)
562 struct rcu_synchronize rcu
;
564 if (!rcu_scheduler_active
)
567 init_rcu_head_on_stack(&rcu
.head
);
568 init_completion(&rcu
.completion
);
569 /* Will wake me after RCU finished. */
570 call_rcu(&rcu
.head
, wakeme_after_rcu
);
572 wait_for_completion(&rcu
.completion
);
573 destroy_rcu_head_on_stack(&rcu
.head
);
575 EXPORT_SYMBOL_GPL(synchronize_rcu
);
577 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq
);
578 static long sync_rcu_preempt_exp_count
;
579 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex
);
582 * Return non-zero if there are any tasks in RCU read-side critical
583 * sections blocking the current preemptible-RCU expedited grace period.
584 * If there is no preemptible-RCU expedited grace period currently in
585 * progress, returns zero unconditionally.
587 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
)
589 return !list_empty(&rnp
->blocked_tasks
[2]) ||
590 !list_empty(&rnp
->blocked_tasks
[3]);
594 * return non-zero if there is no RCU expedited grace period in progress
595 * for the specified rcu_node structure, in other words, if all CPUs and
596 * tasks covered by the specified rcu_node structure have done their bit
597 * for the current expedited grace period. Works only for preemptible
598 * RCU -- other RCU implementation use other means.
600 * Caller must hold sync_rcu_preempt_exp_mutex.
602 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
604 return !rcu_preempted_readers_exp(rnp
) &&
605 ACCESS_ONCE(rnp
->expmask
) == 0;
609 * Report the exit from RCU read-side critical section for the last task
610 * that queued itself during or before the current expedited preemptible-RCU
611 * grace period. This event is reported either to the rcu_node structure on
612 * which the task was queued or to one of that rcu_node structure's ancestors,
613 * recursively up the tree. (Calm down, calm down, we do the recursion
616 * Caller must hold sync_rcu_preempt_exp_mutex.
618 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
623 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
625 if (!sync_rcu_preempt_exp_done(rnp
))
627 if (rnp
->parent
== NULL
) {
628 wake_up(&sync_rcu_preempt_exp_wq
);
632 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
634 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
635 rnp
->expmask
&= ~mask
;
637 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
641 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
642 * grace period for the specified rcu_node structure. If there are no such
643 * tasks, report it up the rcu_node hierarchy.
645 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
648 sync_rcu_preempt_exp_init(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
652 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
653 list_splice_init(&rnp
->blocked_tasks
[0], &rnp
->blocked_tasks
[2]);
654 list_splice_init(&rnp
->blocked_tasks
[1], &rnp
->blocked_tasks
[3]);
655 must_wait
= rcu_preempted_readers_exp(rnp
);
656 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
658 rcu_report_exp_rnp(rsp
, rnp
);
662 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
663 * is to invoke synchronize_sched_expedited() to push all the tasks to
664 * the ->blocked_tasks[] lists, move all entries from the first set of
665 * ->blocked_tasks[] lists to the second set, and finally wait for this
666 * second set to drain.
668 void synchronize_rcu_expedited(void)
671 struct rcu_node
*rnp
;
672 struct rcu_state
*rsp
= &rcu_preempt_state
;
676 smp_mb(); /* Caller's modifications seen first by other CPUs. */
677 snap
= ACCESS_ONCE(sync_rcu_preempt_exp_count
) + 1;
678 smp_mb(); /* Above access cannot bleed into critical section. */
681 * Acquire lock, falling back to synchronize_rcu() if too many
682 * lock-acquisition failures. Of course, if someone does the
683 * expedited grace period for us, just leave.
685 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex
)) {
687 udelay(trycount
* num_online_cpus());
692 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count
) - snap
) > 0)
693 goto mb_ret
; /* Others did our work for us. */
695 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count
) - snap
) > 0)
696 goto unlock_mb_ret
; /* Others did our work for us. */
698 /* force all RCU readers onto blocked_tasks[]. */
699 synchronize_sched_expedited();
701 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
703 /* Initialize ->expmask for all non-leaf rcu_node structures. */
704 rcu_for_each_nonleaf_node_breadth_first(rsp
, rnp
) {
705 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
706 rnp
->expmask
= rnp
->qsmaskinit
;
707 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
710 /* Snapshot current state of ->blocked_tasks[] lists. */
711 rcu_for_each_leaf_node(rsp
, rnp
)
712 sync_rcu_preempt_exp_init(rsp
, rnp
);
713 if (NUM_RCU_NODES
> 1)
714 sync_rcu_preempt_exp_init(rsp
, rcu_get_root(rsp
));
716 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
718 /* Wait for snapshotted ->blocked_tasks[] lists to drain. */
719 rnp
= rcu_get_root(rsp
);
720 wait_event(sync_rcu_preempt_exp_wq
,
721 sync_rcu_preempt_exp_done(rnp
));
723 /* Clean up and exit. */
724 smp_mb(); /* ensure expedited GP seen before counter increment. */
725 ACCESS_ONCE(sync_rcu_preempt_exp_count
)++;
727 mutex_unlock(&sync_rcu_preempt_exp_mutex
);
729 smp_mb(); /* ensure subsequent action seen after grace period. */
731 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
734 * Check to see if there is any immediate preemptable-RCU-related work
737 static int rcu_preempt_pending(int cpu
)
739 return __rcu_pending(&rcu_preempt_state
,
740 &per_cpu(rcu_preempt_data
, cpu
));
744 * Does preemptable RCU need the CPU to stay out of dynticks mode?
746 static int rcu_preempt_needs_cpu(int cpu
)
748 return !!per_cpu(rcu_preempt_data
, cpu
).nxtlist
;
752 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
754 void rcu_barrier(void)
756 _rcu_barrier(&rcu_preempt_state
, call_rcu
);
758 EXPORT_SYMBOL_GPL(rcu_barrier
);
761 * Initialize preemptable RCU's per-CPU data.
763 static void __cpuinit
rcu_preempt_init_percpu_data(int cpu
)
765 rcu_init_percpu_data(cpu
, &rcu_preempt_state
, 1);
769 * Move preemptable RCU's callbacks from dying CPU to other online CPU.
771 static void rcu_preempt_send_cbs_to_online(void)
773 rcu_send_cbs_to_online(&rcu_preempt_state
);
777 * Initialize preemptable RCU's state structures.
779 static void __init
__rcu_init_preempt(void)
781 rcu_init_one(&rcu_preempt_state
, &rcu_preempt_data
);
785 * Check for a task exiting while in a preemptable-RCU read-side
786 * critical section, clean up if so. No need to issue warnings,
787 * as debug_check_no_locks_held() already does this if lockdep
792 struct task_struct
*t
= current
;
794 if (t
->rcu_read_lock_nesting
== 0)
796 t
->rcu_read_lock_nesting
= 1;
800 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
803 * Tell them what RCU they are running.
805 static void __init
rcu_bootup_announce(void)
807 printk(KERN_INFO
"Hierarchical RCU implementation.\n");
808 rcu_bootup_announce_oddness();
812 * Return the number of RCU batches processed thus far for debug & stats.
814 long rcu_batches_completed(void)
816 return rcu_batches_completed_sched();
818 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
821 * Force a quiescent state for RCU, which, because there is no preemptible
822 * RCU, becomes the same as rcu-sched.
824 void rcu_force_quiescent_state(void)
826 rcu_sched_force_quiescent_state();
828 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
831 * Because preemptable RCU does not exist, we never have to check for
832 * CPUs being in quiescent states.
834 static void rcu_preempt_note_context_switch(int cpu
)
839 * Because preemptable RCU does not exist, there are never any preempted
842 static int rcu_preempted_readers(struct rcu_node
*rnp
)
847 #ifdef CONFIG_HOTPLUG_CPU
849 /* Because preemptible RCU does not exist, no quieting of tasks. */
850 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
852 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
855 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
858 * Because preemptable RCU does not exist, we never have to check for
859 * tasks blocked within RCU read-side critical sections.
861 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
866 * Because preemptable RCU does not exist, we never have to check for
867 * tasks blocked within RCU read-side critical sections.
869 static void rcu_print_task_stall(struct rcu_node
*rnp
)
874 * Because preemptible RCU does not exist, there is no need to suppress
875 * its CPU stall warnings.
877 static void rcu_preempt_stall_reset(void)
882 * Because there is no preemptable RCU, there can be no readers blocked,
883 * so there is no need to check for blocked tasks. So check only for
884 * bogus qsmask values.
886 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
888 WARN_ON_ONCE(rnp
->qsmask
);
891 #ifdef CONFIG_HOTPLUG_CPU
894 * Because preemptable RCU does not exist, it never needs to migrate
895 * tasks that were blocked within RCU read-side critical sections, and
896 * such non-existent tasks cannot possibly have been blocking the current
899 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
900 struct rcu_node
*rnp
,
901 struct rcu_data
*rdp
)
907 * Because preemptable RCU does not exist, it never needs CPU-offline
910 static void rcu_preempt_offline_cpu(int cpu
)
914 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
917 * Because preemptable RCU does not exist, it never has any callbacks
920 static void rcu_preempt_check_callbacks(int cpu
)
925 * Because preemptable RCU does not exist, it never has any callbacks
928 static void rcu_preempt_process_callbacks(void)
933 * Wait for an rcu-preempt grace period, but make it happen quickly.
934 * But because preemptable RCU does not exist, map to rcu-sched.
936 void synchronize_rcu_expedited(void)
938 synchronize_sched_expedited();
940 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
942 #ifdef CONFIG_HOTPLUG_CPU
945 * Because preemptable RCU does not exist, there is never any need to
946 * report on tasks preempted in RCU read-side critical sections during
947 * expedited RCU grace periods.
949 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
954 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
957 * Because preemptable RCU does not exist, it never has any work to do.
959 static int rcu_preempt_pending(int cpu
)
965 * Because preemptable RCU does not exist, it never needs any CPU.
967 static int rcu_preempt_needs_cpu(int cpu
)
973 * Because preemptable RCU does not exist, rcu_barrier() is just
974 * another name for rcu_barrier_sched().
976 void rcu_barrier(void)
980 EXPORT_SYMBOL_GPL(rcu_barrier
);
983 * Because preemptable RCU does not exist, there is no per-CPU
984 * data to initialize.
986 static void __cpuinit
rcu_preempt_init_percpu_data(int cpu
)
991 * Because there is no preemptable RCU, there are no callbacks to move.
993 static void rcu_preempt_send_cbs_to_online(void)
998 * Because preemptable RCU does not exist, it need not be initialized.
1000 static void __init
__rcu_init_preempt(void)
1004 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1008 void synchronize_sched_expedited(void)
1012 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
1014 #else /* #ifndef CONFIG_SMP */
1016 static atomic_t sync_sched_expedited_started
= ATOMIC_INIT(0);
1017 static atomic_t sync_sched_expedited_done
= ATOMIC_INIT(0);
1019 static int synchronize_sched_expedited_cpu_stop(void *data
)
1022 * There must be a full memory barrier on each affected CPU
1023 * between the time that try_stop_cpus() is called and the
1024 * time that it returns.
1026 * In the current initial implementation of cpu_stop, the
1027 * above condition is already met when the control reaches
1028 * this point and the following smp_mb() is not strictly
1029 * necessary. Do smp_mb() anyway for documentation and
1030 * robustness against future implementation changes.
1032 smp_mb(); /* See above comment block. */
1037 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1038 * approach to force grace period to end quickly. This consumes
1039 * significant time on all CPUs, and is thus not recommended for
1040 * any sort of common-case code.
1042 * Note that it is illegal to call this function while holding any
1043 * lock that is acquired by a CPU-hotplug notifier. Failing to
1044 * observe this restriction will result in deadlock.
1046 * This implementation can be thought of as an application of ticket
1047 * locking to RCU, with sync_sched_expedited_started and
1048 * sync_sched_expedited_done taking on the roles of the halves
1049 * of the ticket-lock word. Each task atomically increments
1050 * sync_sched_expedited_started upon entry, snapshotting the old value,
1051 * then attempts to stop all the CPUs. If this succeeds, then each
1052 * CPU will have executed a context switch, resulting in an RCU-sched
1053 * grace period. We are then done, so we use atomic_cmpxchg() to
1054 * update sync_sched_expedited_done to match our snapshot -- but
1055 * only if someone else has not already advanced past our snapshot.
1057 * On the other hand, if try_stop_cpus() fails, we check the value
1058 * of sync_sched_expedited_done. If it has advanced past our
1059 * initial snapshot, then someone else must have forced a grace period
1060 * some time after we took our snapshot. In this case, our work is
1061 * done for us, and we can simply return. Otherwise, we try again,
1062 * but keep our initial snapshot for purposes of checking for someone
1063 * doing our work for us.
1065 * If we fail too many times in a row, we fall back to synchronize_sched().
1067 void synchronize_sched_expedited(void)
1069 int firstsnap
, s
, snap
, trycount
= 0;
1071 /* Note that atomic_inc_return() implies full memory barrier. */
1072 firstsnap
= snap
= atomic_inc_return(&sync_sched_expedited_started
);
1076 * Each pass through the following loop attempts to force a
1077 * context switch on each CPU.
1079 while (try_stop_cpus(cpu_online_mask
,
1080 synchronize_sched_expedited_cpu_stop
,
1084 /* No joy, try again later. Or just synchronize_sched(). */
1085 if (trycount
++ < 10)
1086 udelay(trycount
* num_online_cpus());
1088 synchronize_sched();
1092 /* Check to see if someone else did our work for us. */
1093 s
= atomic_read(&sync_sched_expedited_done
);
1094 if (UINT_CMP_GE((unsigned)s
, (unsigned)firstsnap
)) {
1095 smp_mb(); /* ensure test happens before caller kfree */
1100 * Refetching sync_sched_expedited_started allows later
1101 * callers to piggyback on our grace period. We subtract
1102 * 1 to get the same token that the last incrementer got.
1103 * We retry after they started, so our grace period works
1104 * for them, and they started after our first try, so their
1105 * grace period works for us.
1108 snap
= atomic_read(&sync_sched_expedited_started
) - 1;
1109 smp_mb(); /* ensure read is before try_stop_cpus(). */
1113 * Everyone up to our most recent fetch is covered by our grace
1114 * period. Update the counter, but only if our work is still
1115 * relevant -- which it won't be if someone who started later
1116 * than we did beat us to the punch.
1119 s
= atomic_read(&sync_sched_expedited_done
);
1120 if (UINT_CMP_GE((unsigned)s
, (unsigned)snap
)) {
1121 smp_mb(); /* ensure test happens before caller kfree */
1124 } while (atomic_cmpxchg(&sync_sched_expedited_done
, s
, snap
) != s
);
1128 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
1130 #endif /* #else #ifndef CONFIG_SMP */
1132 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1135 * Check to see if any future RCU-related work will need to be done
1136 * by the current CPU, even if none need be done immediately, returning
1137 * 1 if so. This function is part of the RCU implementation; it is -not-
1138 * an exported member of the RCU API.
1140 * Because we have preemptible RCU, just check whether this CPU needs
1141 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1142 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1144 int rcu_needs_cpu(int cpu
)
1146 return rcu_needs_cpu_quick_check(cpu
);
1150 * Check to see if we need to continue a callback-flush operations to
1151 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1152 * entry is not configured, so we never do need to.
1154 static void rcu_needs_cpu_flush(void)
1158 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1160 #define RCU_NEEDS_CPU_FLUSHES 5
1161 static DEFINE_PER_CPU(int, rcu_dyntick_drain
);
1162 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff
);
1165 * Check to see if any future RCU-related work will need to be done
1166 * by the current CPU, even if none need be done immediately, returning
1167 * 1 if so. This function is part of the RCU implementation; it is -not-
1168 * an exported member of the RCU API.
1170 * Because we are not supporting preemptible RCU, attempt to accelerate
1171 * any current grace periods so that RCU no longer needs this CPU, but
1172 * only if all other CPUs are already in dynticks-idle mode. This will
1173 * allow the CPU cores to be powered down immediately, as opposed to after
1174 * waiting many milliseconds for grace periods to elapse.
1176 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1177 * disabled, we do one pass of force_quiescent_state(), then do a
1178 * raise_softirq() to cause rcu_process_callbacks() to be invoked later.
1179 * The per-cpu rcu_dyntick_drain variable controls the sequencing.
1181 int rcu_needs_cpu(int cpu
)
1188 /* Check for being in the holdoff period. */
1189 if (per_cpu(rcu_dyntick_holdoff
, cpu
) == jiffies
)
1190 return rcu_needs_cpu_quick_check(cpu
);
1192 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1193 for_each_online_cpu(thatcpu
) {
1196 snap
= per_cpu(rcu_dynticks
, thatcpu
).dynticks
;
1197 snap_nmi
= per_cpu(rcu_dynticks
, thatcpu
).dynticks_nmi
;
1198 smp_mb(); /* Order sampling of snap with end of grace period. */
1199 if (((snap
& 0x1) != 0) || ((snap_nmi
& 0x1) != 0)) {
1200 per_cpu(rcu_dyntick_drain
, cpu
) = 0;
1201 per_cpu(rcu_dyntick_holdoff
, cpu
) = jiffies
- 1;
1202 return rcu_needs_cpu_quick_check(cpu
);
1206 /* Check and update the rcu_dyntick_drain sequencing. */
1207 if (per_cpu(rcu_dyntick_drain
, cpu
) <= 0) {
1208 /* First time through, initialize the counter. */
1209 per_cpu(rcu_dyntick_drain
, cpu
) = RCU_NEEDS_CPU_FLUSHES
;
1210 } else if (--per_cpu(rcu_dyntick_drain
, cpu
) <= 0) {
1211 /* We have hit the limit, so time to give up. */
1212 per_cpu(rcu_dyntick_holdoff
, cpu
) = jiffies
;
1213 return rcu_needs_cpu_quick_check(cpu
);
1216 /* Do one step pushing remaining RCU callbacks through. */
1217 if (per_cpu(rcu_sched_data
, cpu
).nxtlist
) {
1219 force_quiescent_state(&rcu_sched_state
, 0);
1220 c
= c
|| per_cpu(rcu_sched_data
, cpu
).nxtlist
;
1222 if (per_cpu(rcu_bh_data
, cpu
).nxtlist
) {
1224 force_quiescent_state(&rcu_bh_state
, 0);
1225 c
= c
|| per_cpu(rcu_bh_data
, cpu
).nxtlist
;
1228 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1230 raise_softirq(RCU_SOFTIRQ
);
1235 * Check to see if we need to continue a callback-flush operations to
1236 * allow the last CPU to enter dyntick-idle mode.
1238 static void rcu_needs_cpu_flush(void)
1240 int cpu
= smp_processor_id();
1241 unsigned long flags
;
1243 if (per_cpu(rcu_dyntick_drain
, cpu
) <= 0)
1245 local_irq_save(flags
);
1246 (void)rcu_needs_cpu(cpu
);
1247 local_irq_restore(flags
);
1250 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */