Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / security / integrity / ima / ima_crypto.c
blob7e7e7e7c250a3ee7a4c37712d66d3b87327fd3ec
1 /*
2 * Copyright (C) 2005,2006,2007,2008 IBM Corporation
4 * Authors:
5 * Mimi Zohar <zohar@us.ibm.com>
6 * Kylene Hall <kjhall@us.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, version 2 of the License.
12 * File: ima_crypto.c
13 * Calculates md5/sha1 file hash, template hash, boot-aggreate hash
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/kernel.h>
19 #include <linux/moduleparam.h>
20 #include <linux/ratelimit.h>
21 #include <linux/file.h>
22 #include <linux/crypto.h>
23 #include <linux/scatterlist.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <crypto/hash.h>
28 #include "ima.h"
30 /* minimum file size for ahash use */
31 static unsigned long ima_ahash_minsize;
32 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
33 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
35 /* default is 0 - 1 page. */
36 static int ima_maxorder;
37 static unsigned int ima_bufsize = PAGE_SIZE;
39 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
41 unsigned long long size;
42 int order;
44 size = memparse(val, NULL);
45 order = get_order(size);
46 if (order >= MAX_ORDER)
47 return -EINVAL;
48 ima_maxorder = order;
49 ima_bufsize = PAGE_SIZE << order;
50 return 0;
53 static const struct kernel_param_ops param_ops_bufsize = {
54 .set = param_set_bufsize,
55 .get = param_get_uint,
57 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
59 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
60 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
62 static struct crypto_shash *ima_shash_tfm;
63 static struct crypto_ahash *ima_ahash_tfm;
65 int __init ima_init_crypto(void)
67 long rc;
69 ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
70 if (IS_ERR(ima_shash_tfm)) {
71 rc = PTR_ERR(ima_shash_tfm);
72 pr_err("Can not allocate %s (reason: %ld)\n",
73 hash_algo_name[ima_hash_algo], rc);
74 return rc;
76 pr_info("Allocated hash algorithm: %s\n",
77 hash_algo_name[ima_hash_algo]);
78 return 0;
81 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
83 struct crypto_shash *tfm = ima_shash_tfm;
84 int rc;
86 if (algo < 0 || algo >= HASH_ALGO__LAST)
87 algo = ima_hash_algo;
89 if (algo != ima_hash_algo) {
90 tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
91 if (IS_ERR(tfm)) {
92 rc = PTR_ERR(tfm);
93 pr_err("Can not allocate %s (reason: %d)\n",
94 hash_algo_name[algo], rc);
97 return tfm;
100 static void ima_free_tfm(struct crypto_shash *tfm)
102 if (tfm != ima_shash_tfm)
103 crypto_free_shash(tfm);
107 * ima_alloc_pages() - Allocate contiguous pages.
108 * @max_size: Maximum amount of memory to allocate.
109 * @allocated_size: Returned size of actual allocation.
110 * @last_warn: Should the min_size allocation warn or not.
112 * Tries to do opportunistic allocation for memory first trying to allocate
113 * max_size amount of memory and then splitting that until zero order is
114 * reached. Allocation is tried without generating allocation warnings unless
115 * last_warn is set. Last_warn set affects only last allocation of zero order.
117 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
119 * Return pointer to allocated memory, or NULL on failure.
121 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
122 int last_warn)
124 void *ptr;
125 int order = ima_maxorder;
126 gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
128 if (order)
129 order = min(get_order(max_size), order);
131 for (; order; order--) {
132 ptr = (void *)__get_free_pages(gfp_mask, order);
133 if (ptr) {
134 *allocated_size = PAGE_SIZE << order;
135 return ptr;
139 /* order is zero - one page */
141 gfp_mask = GFP_KERNEL;
143 if (!last_warn)
144 gfp_mask |= __GFP_NOWARN;
146 ptr = (void *)__get_free_pages(gfp_mask, 0);
147 if (ptr) {
148 *allocated_size = PAGE_SIZE;
149 return ptr;
152 *allocated_size = 0;
153 return NULL;
157 * ima_free_pages() - Free pages allocated by ima_alloc_pages().
158 * @ptr: Pointer to allocated pages.
159 * @size: Size of allocated buffer.
161 static void ima_free_pages(void *ptr, size_t size)
163 if (!ptr)
164 return;
165 free_pages((unsigned long)ptr, get_order(size));
168 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
170 struct crypto_ahash *tfm = ima_ahash_tfm;
171 int rc;
173 if (algo < 0 || algo >= HASH_ALGO__LAST)
174 algo = ima_hash_algo;
176 if (algo != ima_hash_algo || !tfm) {
177 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
178 if (!IS_ERR(tfm)) {
179 if (algo == ima_hash_algo)
180 ima_ahash_tfm = tfm;
181 } else {
182 rc = PTR_ERR(tfm);
183 pr_err("Can not allocate %s (reason: %d)\n",
184 hash_algo_name[algo], rc);
187 return tfm;
190 static void ima_free_atfm(struct crypto_ahash *tfm)
192 if (tfm != ima_ahash_tfm)
193 crypto_free_ahash(tfm);
196 static inline int ahash_wait(int err, struct crypto_wait *wait)
199 err = crypto_wait_req(err, wait);
201 if (err)
202 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
204 return err;
207 static int ima_calc_file_hash_atfm(struct file *file,
208 struct ima_digest_data *hash,
209 struct crypto_ahash *tfm)
211 loff_t i_size, offset;
212 char *rbuf[2] = { NULL, };
213 int rc, read = 0, rbuf_len, active = 0, ahash_rc = 0;
214 struct ahash_request *req;
215 struct scatterlist sg[1];
216 struct crypto_wait wait;
217 size_t rbuf_size[2];
219 hash->length = crypto_ahash_digestsize(tfm);
221 req = ahash_request_alloc(tfm, GFP_KERNEL);
222 if (!req)
223 return -ENOMEM;
225 crypto_init_wait(&wait);
226 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
227 CRYPTO_TFM_REQ_MAY_SLEEP,
228 crypto_req_done, &wait);
230 rc = ahash_wait(crypto_ahash_init(req), &wait);
231 if (rc)
232 goto out1;
234 i_size = i_size_read(file_inode(file));
236 if (i_size == 0)
237 goto out2;
240 * Try to allocate maximum size of memory.
241 * Fail if even a single page cannot be allocated.
243 rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
244 if (!rbuf[0]) {
245 rc = -ENOMEM;
246 goto out1;
249 /* Only allocate one buffer if that is enough. */
250 if (i_size > rbuf_size[0]) {
252 * Try to allocate secondary buffer. If that fails fallback to
253 * using single buffering. Use previous memory allocation size
254 * as baseline for possible allocation size.
256 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
257 &rbuf_size[1], 0);
260 if (!(file->f_mode & FMODE_READ)) {
261 file->f_mode |= FMODE_READ;
262 read = 1;
265 for (offset = 0; offset < i_size; offset += rbuf_len) {
266 if (!rbuf[1] && offset) {
267 /* Not using two buffers, and it is not the first
268 * read/request, wait for the completion of the
269 * previous ahash_update() request.
271 rc = ahash_wait(ahash_rc, &wait);
272 if (rc)
273 goto out3;
275 /* read buffer */
276 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
277 rc = integrity_kernel_read(file, offset, rbuf[active],
278 rbuf_len);
279 if (rc != rbuf_len)
280 goto out3;
282 if (rbuf[1] && offset) {
283 /* Using two buffers, and it is not the first
284 * read/request, wait for the completion of the
285 * previous ahash_update() request.
287 rc = ahash_wait(ahash_rc, &wait);
288 if (rc)
289 goto out3;
292 sg_init_one(&sg[0], rbuf[active], rbuf_len);
293 ahash_request_set_crypt(req, sg, NULL, rbuf_len);
295 ahash_rc = crypto_ahash_update(req);
297 if (rbuf[1])
298 active = !active; /* swap buffers, if we use two */
300 /* wait for the last update request to complete */
301 rc = ahash_wait(ahash_rc, &wait);
302 out3:
303 if (read)
304 file->f_mode &= ~FMODE_READ;
305 ima_free_pages(rbuf[0], rbuf_size[0]);
306 ima_free_pages(rbuf[1], rbuf_size[1]);
307 out2:
308 if (!rc) {
309 ahash_request_set_crypt(req, NULL, hash->digest, 0);
310 rc = ahash_wait(crypto_ahash_final(req), &wait);
312 out1:
313 ahash_request_free(req);
314 return rc;
317 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
319 struct crypto_ahash *tfm;
320 int rc;
322 tfm = ima_alloc_atfm(hash->algo);
323 if (IS_ERR(tfm))
324 return PTR_ERR(tfm);
326 rc = ima_calc_file_hash_atfm(file, hash, tfm);
328 ima_free_atfm(tfm);
330 return rc;
333 static int ima_calc_file_hash_tfm(struct file *file,
334 struct ima_digest_data *hash,
335 struct crypto_shash *tfm)
337 loff_t i_size, offset = 0;
338 char *rbuf;
339 int rc, read = 0;
340 SHASH_DESC_ON_STACK(shash, tfm);
342 shash->tfm = tfm;
343 shash->flags = 0;
345 hash->length = crypto_shash_digestsize(tfm);
347 rc = crypto_shash_init(shash);
348 if (rc != 0)
349 return rc;
351 i_size = i_size_read(file_inode(file));
353 if (i_size == 0)
354 goto out;
356 rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
357 if (!rbuf)
358 return -ENOMEM;
360 if (!(file->f_mode & FMODE_READ)) {
361 file->f_mode |= FMODE_READ;
362 read = 1;
365 while (offset < i_size) {
366 int rbuf_len;
368 rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
369 if (rbuf_len < 0) {
370 rc = rbuf_len;
371 break;
373 if (rbuf_len == 0)
374 break;
375 offset += rbuf_len;
377 rc = crypto_shash_update(shash, rbuf, rbuf_len);
378 if (rc)
379 break;
381 if (read)
382 file->f_mode &= ~FMODE_READ;
383 kfree(rbuf);
384 out:
385 if (!rc)
386 rc = crypto_shash_final(shash, hash->digest);
387 return rc;
390 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
392 struct crypto_shash *tfm;
393 int rc;
395 tfm = ima_alloc_tfm(hash->algo);
396 if (IS_ERR(tfm))
397 return PTR_ERR(tfm);
399 rc = ima_calc_file_hash_tfm(file, hash, tfm);
401 ima_free_tfm(tfm);
403 return rc;
407 * ima_calc_file_hash - calculate file hash
409 * Asynchronous hash (ahash) allows using HW acceleration for calculating
410 * a hash. ahash performance varies for different data sizes on different
411 * crypto accelerators. shash performance might be better for smaller files.
412 * The 'ima.ahash_minsize' module parameter allows specifying the best
413 * minimum file size for using ahash on the system.
415 * If the ima.ahash_minsize parameter is not specified, this function uses
416 * shash for the hash calculation. If ahash fails, it falls back to using
417 * shash.
419 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
421 loff_t i_size;
422 int rc;
425 * For consistency, fail file's opened with the O_DIRECT flag on
426 * filesystems mounted with/without DAX option.
428 if (file->f_flags & O_DIRECT) {
429 hash->length = hash_digest_size[ima_hash_algo];
430 hash->algo = ima_hash_algo;
431 return -EINVAL;
434 i_size = i_size_read(file_inode(file));
436 if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
437 rc = ima_calc_file_ahash(file, hash);
438 if (!rc)
439 return 0;
442 return ima_calc_file_shash(file, hash);
446 * Calculate the hash of template data
448 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
449 struct ima_template_desc *td,
450 int num_fields,
451 struct ima_digest_data *hash,
452 struct crypto_shash *tfm)
454 SHASH_DESC_ON_STACK(shash, tfm);
455 int rc, i;
457 shash->tfm = tfm;
458 shash->flags = 0;
460 hash->length = crypto_shash_digestsize(tfm);
462 rc = crypto_shash_init(shash);
463 if (rc != 0)
464 return rc;
466 for (i = 0; i < num_fields; i++) {
467 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
468 u8 *data_to_hash = field_data[i].data;
469 u32 datalen = field_data[i].len;
470 u32 datalen_to_hash =
471 !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
473 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
474 rc = crypto_shash_update(shash,
475 (const u8 *) &datalen_to_hash,
476 sizeof(datalen_to_hash));
477 if (rc)
478 break;
479 } else if (strcmp(td->fields[i]->field_id, "n") == 0) {
480 memcpy(buffer, data_to_hash, datalen);
481 data_to_hash = buffer;
482 datalen = IMA_EVENT_NAME_LEN_MAX + 1;
484 rc = crypto_shash_update(shash, data_to_hash, datalen);
485 if (rc)
486 break;
489 if (!rc)
490 rc = crypto_shash_final(shash, hash->digest);
492 return rc;
495 int ima_calc_field_array_hash(struct ima_field_data *field_data,
496 struct ima_template_desc *desc, int num_fields,
497 struct ima_digest_data *hash)
499 struct crypto_shash *tfm;
500 int rc;
502 tfm = ima_alloc_tfm(hash->algo);
503 if (IS_ERR(tfm))
504 return PTR_ERR(tfm);
506 rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
507 hash, tfm);
509 ima_free_tfm(tfm);
511 return rc;
514 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
515 struct ima_digest_data *hash,
516 struct crypto_ahash *tfm)
518 struct ahash_request *req;
519 struct scatterlist sg;
520 struct crypto_wait wait;
521 int rc, ahash_rc = 0;
523 hash->length = crypto_ahash_digestsize(tfm);
525 req = ahash_request_alloc(tfm, GFP_KERNEL);
526 if (!req)
527 return -ENOMEM;
529 crypto_init_wait(&wait);
530 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
531 CRYPTO_TFM_REQ_MAY_SLEEP,
532 crypto_req_done, &wait);
534 rc = ahash_wait(crypto_ahash_init(req), &wait);
535 if (rc)
536 goto out;
538 sg_init_one(&sg, buf, len);
539 ahash_request_set_crypt(req, &sg, NULL, len);
541 ahash_rc = crypto_ahash_update(req);
543 /* wait for the update request to complete */
544 rc = ahash_wait(ahash_rc, &wait);
545 if (!rc) {
546 ahash_request_set_crypt(req, NULL, hash->digest, 0);
547 rc = ahash_wait(crypto_ahash_final(req), &wait);
549 out:
550 ahash_request_free(req);
551 return rc;
554 static int calc_buffer_ahash(const void *buf, loff_t len,
555 struct ima_digest_data *hash)
557 struct crypto_ahash *tfm;
558 int rc;
560 tfm = ima_alloc_atfm(hash->algo);
561 if (IS_ERR(tfm))
562 return PTR_ERR(tfm);
564 rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
566 ima_free_atfm(tfm);
568 return rc;
571 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
572 struct ima_digest_data *hash,
573 struct crypto_shash *tfm)
575 SHASH_DESC_ON_STACK(shash, tfm);
576 unsigned int len;
577 int rc;
579 shash->tfm = tfm;
580 shash->flags = 0;
582 hash->length = crypto_shash_digestsize(tfm);
584 rc = crypto_shash_init(shash);
585 if (rc != 0)
586 return rc;
588 while (size) {
589 len = size < PAGE_SIZE ? size : PAGE_SIZE;
590 rc = crypto_shash_update(shash, buf, len);
591 if (rc)
592 break;
593 buf += len;
594 size -= len;
597 if (!rc)
598 rc = crypto_shash_final(shash, hash->digest);
599 return rc;
602 static int calc_buffer_shash(const void *buf, loff_t len,
603 struct ima_digest_data *hash)
605 struct crypto_shash *tfm;
606 int rc;
608 tfm = ima_alloc_tfm(hash->algo);
609 if (IS_ERR(tfm))
610 return PTR_ERR(tfm);
612 rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
614 ima_free_tfm(tfm);
615 return rc;
618 int ima_calc_buffer_hash(const void *buf, loff_t len,
619 struct ima_digest_data *hash)
621 int rc;
623 if (ima_ahash_minsize && len >= ima_ahash_minsize) {
624 rc = calc_buffer_ahash(buf, len, hash);
625 if (!rc)
626 return 0;
629 return calc_buffer_shash(buf, len, hash);
632 static void __init ima_pcrread(int idx, u8 *pcr)
634 if (!ima_tpm_chip)
635 return;
637 if (tpm_pcr_read(ima_tpm_chip, idx, pcr) != 0)
638 pr_err("Error Communicating to TPM chip\n");
642 * Calculate the boot aggregate hash
644 static int __init ima_calc_boot_aggregate_tfm(char *digest,
645 struct crypto_shash *tfm)
647 u8 pcr_i[TPM_DIGEST_SIZE];
648 int rc, i;
649 SHASH_DESC_ON_STACK(shash, tfm);
651 shash->tfm = tfm;
652 shash->flags = 0;
654 rc = crypto_shash_init(shash);
655 if (rc != 0)
656 return rc;
658 /* cumulative sha1 over tpm registers 0-7 */
659 for (i = TPM_PCR0; i < TPM_PCR8; i++) {
660 ima_pcrread(i, pcr_i);
661 /* now accumulate with current aggregate */
662 rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
664 if (!rc)
665 crypto_shash_final(shash, digest);
666 return rc;
669 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
671 struct crypto_shash *tfm;
672 int rc;
674 tfm = ima_alloc_tfm(hash->algo);
675 if (IS_ERR(tfm))
676 return PTR_ERR(tfm);
678 hash->length = crypto_shash_digestsize(tfm);
679 rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
681 ima_free_tfm(tfm);
683 return rc;