Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / net / tls / tls_main.c
blob523622dc74f8b969113b0435b39f5d0f3d070304
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #include <linux/module.h>
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
43 #include <net/tls.h>
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
50 enum {
51 TLSV4,
52 TLSV6,
53 TLS_NUM_PROTS,
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static LIST_HEAD(device_list);
59 static DEFINE_MUTEX(device_mutex);
60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61 static struct proto_ops tls_sw_proto_ops;
63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
65 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
67 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
70 int wait_on_pending_writer(struct sock *sk, long *timeo)
72 int rc = 0;
73 DEFINE_WAIT_FUNC(wait, woken_wake_function);
75 add_wait_queue(sk_sleep(sk), &wait);
76 while (1) {
77 if (!*timeo) {
78 rc = -EAGAIN;
79 break;
82 if (signal_pending(current)) {
83 rc = sock_intr_errno(*timeo);
84 break;
87 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88 break;
90 remove_wait_queue(sk_sleep(sk), &wait);
91 return rc;
94 int tls_push_sg(struct sock *sk,
95 struct tls_context *ctx,
96 struct scatterlist *sg,
97 u16 first_offset,
98 int flags)
100 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101 int ret = 0;
102 struct page *p;
103 size_t size;
104 int offset = first_offset;
106 size = sg->length - offset;
107 offset += sg->offset;
109 ctx->in_tcp_sendpages = true;
110 while (1) {
111 if (sg_is_last(sg))
112 sendpage_flags = flags;
114 /* is sending application-limited? */
115 tcp_rate_check_app_limited(sk);
116 p = sg_page(sg);
117 retry:
118 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
120 if (ret != size) {
121 if (ret > 0) {
122 offset += ret;
123 size -= ret;
124 goto retry;
127 offset -= sg->offset;
128 ctx->partially_sent_offset = offset;
129 ctx->partially_sent_record = (void *)sg;
130 ctx->in_tcp_sendpages = false;
131 return ret;
134 put_page(p);
135 sk_mem_uncharge(sk, sg->length);
136 sg = sg_next(sg);
137 if (!sg)
138 break;
140 offset = sg->offset;
141 size = sg->length;
144 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145 ctx->in_tcp_sendpages = false;
146 ctx->sk_write_space(sk);
148 return 0;
151 static int tls_handle_open_record(struct sock *sk, int flags)
153 struct tls_context *ctx = tls_get_ctx(sk);
155 if (tls_is_pending_open_record(ctx))
156 return ctx->push_pending_record(sk, flags);
158 return 0;
161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
162 unsigned char *record_type)
164 struct cmsghdr *cmsg;
165 int rc = -EINVAL;
167 for_each_cmsghdr(cmsg, msg) {
168 if (!CMSG_OK(msg, cmsg))
169 return -EINVAL;
170 if (cmsg->cmsg_level != SOL_TLS)
171 continue;
173 switch (cmsg->cmsg_type) {
174 case TLS_SET_RECORD_TYPE:
175 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
176 return -EINVAL;
178 if (msg->msg_flags & MSG_MORE)
179 return -EINVAL;
181 rc = tls_handle_open_record(sk, msg->msg_flags);
182 if (rc)
183 return rc;
185 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
186 rc = 0;
187 break;
188 default:
189 return -EINVAL;
193 return rc;
196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
197 int flags, long *timeo)
199 struct scatterlist *sg;
200 u16 offset;
202 if (!tls_is_partially_sent_record(ctx))
203 return ctx->push_pending_record(sk, flags);
205 sg = ctx->partially_sent_record;
206 offset = ctx->partially_sent_offset;
208 ctx->partially_sent_record = NULL;
209 return tls_push_sg(sk, ctx, sg, offset, flags);
212 static void tls_write_space(struct sock *sk)
214 struct tls_context *ctx = tls_get_ctx(sk);
216 /* If in_tcp_sendpages call lower protocol write space handler
217 * to ensure we wake up any waiting operations there. For example
218 * if do_tcp_sendpages where to call sk_wait_event.
220 if (ctx->in_tcp_sendpages) {
221 ctx->sk_write_space(sk);
222 return;
225 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
226 gfp_t sk_allocation = sk->sk_allocation;
227 int rc;
228 long timeo = 0;
230 sk->sk_allocation = GFP_ATOMIC;
231 rc = tls_push_pending_closed_record(sk, ctx,
232 MSG_DONTWAIT |
233 MSG_NOSIGNAL,
234 &timeo);
235 sk->sk_allocation = sk_allocation;
237 if (rc < 0)
238 return;
241 ctx->sk_write_space(sk);
244 static void tls_ctx_free(struct tls_context *ctx)
246 if (!ctx)
247 return;
249 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
250 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
251 kfree(ctx);
254 static void tls_sk_proto_close(struct sock *sk, long timeout)
256 struct tls_context *ctx = tls_get_ctx(sk);
257 long timeo = sock_sndtimeo(sk, 0);
258 void (*sk_proto_close)(struct sock *sk, long timeout);
259 bool free_ctx = false;
261 lock_sock(sk);
262 sk_proto_close = ctx->sk_proto_close;
264 if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
265 (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
266 free_ctx = true;
267 goto skip_tx_cleanup;
270 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
271 tls_handle_open_record(sk, 0);
273 if (ctx->partially_sent_record) {
274 struct scatterlist *sg = ctx->partially_sent_record;
276 while (1) {
277 put_page(sg_page(sg));
278 sk_mem_uncharge(sk, sg->length);
280 if (sg_is_last(sg))
281 break;
282 sg++;
286 /* We need these for tls_sw_fallback handling of other packets */
287 if (ctx->tx_conf == TLS_SW) {
288 kfree(ctx->tx.rec_seq);
289 kfree(ctx->tx.iv);
290 tls_sw_free_resources_tx(sk);
293 if (ctx->rx_conf == TLS_SW) {
294 kfree(ctx->rx.rec_seq);
295 kfree(ctx->rx.iv);
296 tls_sw_free_resources_rx(sk);
299 #ifdef CONFIG_TLS_DEVICE
300 if (ctx->rx_conf == TLS_HW)
301 tls_device_offload_cleanup_rx(sk);
303 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
304 #else
306 #endif
307 tls_ctx_free(ctx);
308 ctx = NULL;
311 skip_tx_cleanup:
312 release_sock(sk);
313 sk_proto_close(sk, timeout);
314 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
315 * for sk->sk_prot->unhash [tls_hw_unhash]
317 if (free_ctx)
318 tls_ctx_free(ctx);
321 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
322 int __user *optlen)
324 int rc = 0;
325 struct tls_context *ctx = tls_get_ctx(sk);
326 struct tls_crypto_info *crypto_info;
327 int len;
329 if (get_user(len, optlen))
330 return -EFAULT;
332 if (!optval || (len < sizeof(*crypto_info))) {
333 rc = -EINVAL;
334 goto out;
337 if (!ctx) {
338 rc = -EBUSY;
339 goto out;
342 /* get user crypto info */
343 crypto_info = &ctx->crypto_send.info;
345 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
346 rc = -EBUSY;
347 goto out;
350 if (len == sizeof(*crypto_info)) {
351 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
352 rc = -EFAULT;
353 goto out;
356 switch (crypto_info->cipher_type) {
357 case TLS_CIPHER_AES_GCM_128: {
358 struct tls12_crypto_info_aes_gcm_128 *
359 crypto_info_aes_gcm_128 =
360 container_of(crypto_info,
361 struct tls12_crypto_info_aes_gcm_128,
362 info);
364 if (len != sizeof(*crypto_info_aes_gcm_128)) {
365 rc = -EINVAL;
366 goto out;
368 lock_sock(sk);
369 memcpy(crypto_info_aes_gcm_128->iv,
370 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
371 TLS_CIPHER_AES_GCM_128_IV_SIZE);
372 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
373 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
374 release_sock(sk);
375 if (copy_to_user(optval,
376 crypto_info_aes_gcm_128,
377 sizeof(*crypto_info_aes_gcm_128)))
378 rc = -EFAULT;
379 break;
381 default:
382 rc = -EINVAL;
385 out:
386 return rc;
389 static int do_tls_getsockopt(struct sock *sk, int optname,
390 char __user *optval, int __user *optlen)
392 int rc = 0;
394 switch (optname) {
395 case TLS_TX:
396 rc = do_tls_getsockopt_tx(sk, optval, optlen);
397 break;
398 default:
399 rc = -ENOPROTOOPT;
400 break;
402 return rc;
405 static int tls_getsockopt(struct sock *sk, int level, int optname,
406 char __user *optval, int __user *optlen)
408 struct tls_context *ctx = tls_get_ctx(sk);
410 if (level != SOL_TLS)
411 return ctx->getsockopt(sk, level, optname, optval, optlen);
413 return do_tls_getsockopt(sk, optname, optval, optlen);
416 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
417 unsigned int optlen, int tx)
419 struct tls_crypto_info *crypto_info;
420 struct tls_context *ctx = tls_get_ctx(sk);
421 int rc = 0;
422 int conf;
424 if (!optval || (optlen < sizeof(*crypto_info))) {
425 rc = -EINVAL;
426 goto out;
429 if (tx)
430 crypto_info = &ctx->crypto_send.info;
431 else
432 crypto_info = &ctx->crypto_recv.info;
434 /* Currently we don't support set crypto info more than one time */
435 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
436 rc = -EBUSY;
437 goto out;
440 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
441 if (rc) {
442 rc = -EFAULT;
443 goto err_crypto_info;
446 /* check version */
447 if (crypto_info->version != TLS_1_2_VERSION) {
448 rc = -ENOTSUPP;
449 goto err_crypto_info;
452 switch (crypto_info->cipher_type) {
453 case TLS_CIPHER_AES_GCM_128: {
454 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
455 rc = -EINVAL;
456 goto err_crypto_info;
458 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
459 optlen - sizeof(*crypto_info));
460 if (rc) {
461 rc = -EFAULT;
462 goto err_crypto_info;
464 break;
466 default:
467 rc = -EINVAL;
468 goto err_crypto_info;
471 if (tx) {
472 #ifdef CONFIG_TLS_DEVICE
473 rc = tls_set_device_offload(sk, ctx);
474 conf = TLS_HW;
475 if (rc) {
476 #else
478 #endif
479 rc = tls_set_sw_offload(sk, ctx, 1);
480 conf = TLS_SW;
482 } else {
483 #ifdef CONFIG_TLS_DEVICE
484 rc = tls_set_device_offload_rx(sk, ctx);
485 conf = TLS_HW;
486 if (rc) {
487 #else
489 #endif
490 rc = tls_set_sw_offload(sk, ctx, 0);
491 conf = TLS_SW;
495 if (rc)
496 goto err_crypto_info;
498 if (tx)
499 ctx->tx_conf = conf;
500 else
501 ctx->rx_conf = conf;
502 update_sk_prot(sk, ctx);
503 if (tx) {
504 ctx->sk_write_space = sk->sk_write_space;
505 sk->sk_write_space = tls_write_space;
506 } else {
507 sk->sk_socket->ops = &tls_sw_proto_ops;
509 goto out;
511 err_crypto_info:
512 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
513 out:
514 return rc;
517 static int do_tls_setsockopt(struct sock *sk, int optname,
518 char __user *optval, unsigned int optlen)
520 int rc = 0;
522 switch (optname) {
523 case TLS_TX:
524 case TLS_RX:
525 lock_sock(sk);
526 rc = do_tls_setsockopt_conf(sk, optval, optlen,
527 optname == TLS_TX);
528 release_sock(sk);
529 break;
530 default:
531 rc = -ENOPROTOOPT;
532 break;
534 return rc;
537 static int tls_setsockopt(struct sock *sk, int level, int optname,
538 char __user *optval, unsigned int optlen)
540 struct tls_context *ctx = tls_get_ctx(sk);
542 if (level != SOL_TLS)
543 return ctx->setsockopt(sk, level, optname, optval, optlen);
545 return do_tls_setsockopt(sk, optname, optval, optlen);
548 static struct tls_context *create_ctx(struct sock *sk)
550 struct inet_connection_sock *icsk = inet_csk(sk);
551 struct tls_context *ctx;
553 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
554 if (!ctx)
555 return NULL;
557 icsk->icsk_ulp_data = ctx;
558 return ctx;
561 static int tls_hw_prot(struct sock *sk)
563 struct tls_context *ctx;
564 struct tls_device *dev;
565 int rc = 0;
567 mutex_lock(&device_mutex);
568 list_for_each_entry(dev, &device_list, dev_list) {
569 if (dev->feature && dev->feature(dev)) {
570 ctx = create_ctx(sk);
571 if (!ctx)
572 goto out;
574 ctx->hash = sk->sk_prot->hash;
575 ctx->unhash = sk->sk_prot->unhash;
576 ctx->sk_proto_close = sk->sk_prot->close;
577 ctx->rx_conf = TLS_HW_RECORD;
578 ctx->tx_conf = TLS_HW_RECORD;
579 update_sk_prot(sk, ctx);
580 rc = 1;
581 break;
584 out:
585 mutex_unlock(&device_mutex);
586 return rc;
589 static void tls_hw_unhash(struct sock *sk)
591 struct tls_context *ctx = tls_get_ctx(sk);
592 struct tls_device *dev;
594 mutex_lock(&device_mutex);
595 list_for_each_entry(dev, &device_list, dev_list) {
596 if (dev->unhash)
597 dev->unhash(dev, sk);
599 mutex_unlock(&device_mutex);
600 ctx->unhash(sk);
603 static int tls_hw_hash(struct sock *sk)
605 struct tls_context *ctx = tls_get_ctx(sk);
606 struct tls_device *dev;
607 int err;
609 err = ctx->hash(sk);
610 mutex_lock(&device_mutex);
611 list_for_each_entry(dev, &device_list, dev_list) {
612 if (dev->hash)
613 err |= dev->hash(dev, sk);
615 mutex_unlock(&device_mutex);
617 if (err)
618 tls_hw_unhash(sk);
619 return err;
622 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
623 struct proto *base)
625 prot[TLS_BASE][TLS_BASE] = *base;
626 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
627 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
628 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
630 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
631 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
632 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
634 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
635 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
636 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
638 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
639 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
640 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
642 #ifdef CONFIG_TLS_DEVICE
643 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
644 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
645 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
647 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
648 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
649 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
651 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
653 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
655 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
656 #endif
658 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
659 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
660 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
661 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close;
664 static int tls_init(struct sock *sk)
666 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
667 struct tls_context *ctx;
668 int rc = 0;
670 if (tls_hw_prot(sk))
671 goto out;
673 /* The TLS ulp is currently supported only for TCP sockets
674 * in ESTABLISHED state.
675 * Supporting sockets in LISTEN state will require us
676 * to modify the accept implementation to clone rather then
677 * share the ulp context.
679 if (sk->sk_state != TCP_ESTABLISHED)
680 return -ENOTSUPP;
682 /* allocate tls context */
683 ctx = create_ctx(sk);
684 if (!ctx) {
685 rc = -ENOMEM;
686 goto out;
688 ctx->setsockopt = sk->sk_prot->setsockopt;
689 ctx->getsockopt = sk->sk_prot->getsockopt;
690 ctx->sk_proto_close = sk->sk_prot->close;
692 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
693 if (ip_ver == TLSV6 &&
694 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
695 mutex_lock(&tcpv6_prot_mutex);
696 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
697 build_protos(tls_prots[TLSV6], sk->sk_prot);
698 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
700 mutex_unlock(&tcpv6_prot_mutex);
703 ctx->tx_conf = TLS_BASE;
704 ctx->rx_conf = TLS_BASE;
705 update_sk_prot(sk, ctx);
706 out:
707 return rc;
710 void tls_register_device(struct tls_device *device)
712 mutex_lock(&device_mutex);
713 list_add_tail(&device->dev_list, &device_list);
714 mutex_unlock(&device_mutex);
716 EXPORT_SYMBOL(tls_register_device);
718 void tls_unregister_device(struct tls_device *device)
720 mutex_lock(&device_mutex);
721 list_del(&device->dev_list);
722 mutex_unlock(&device_mutex);
724 EXPORT_SYMBOL(tls_unregister_device);
726 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
727 .name = "tls",
728 .uid = TCP_ULP_TLS,
729 .user_visible = true,
730 .owner = THIS_MODULE,
731 .init = tls_init,
734 static int __init tls_register(void)
736 build_protos(tls_prots[TLSV4], &tcp_prot);
738 tls_sw_proto_ops = inet_stream_ops;
739 tls_sw_proto_ops.poll = tls_sw_poll;
740 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
742 #ifdef CONFIG_TLS_DEVICE
743 tls_device_init();
744 #endif
745 tcp_register_ulp(&tcp_tls_ulp_ops);
747 return 0;
750 static void __exit tls_unregister(void)
752 tcp_unregister_ulp(&tcp_tls_ulp_ops);
753 #ifdef CONFIG_TLS_DEVICE
754 tls_device_cleanup();
755 #endif
758 module_init(tls_register);
759 module_exit(tls_unregister);