Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / fs / ubifs / tnc_misc.c
blobd90ee01076a9ea5559dd8afb26cffc4e61a5cb81
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file contains miscelanious TNC-related functions shared betweend
25 * different files. This file does not form any logically separate TNC
26 * sub-system. The file was created because there is a lot of TNC code and
27 * putting it all in one file would make that file too big and unreadable.
30 #include "ubifs.h"
32 /**
33 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
34 * @c: UBIFS file-system description object
35 * @zr: root of the subtree to traverse
36 * @znode: previous znode
38 * This function implements levelorder TNC traversal. The LNC is ignored.
39 * Returns the next element or %NULL if @znode is already the last one.
41 struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c,
42 struct ubifs_znode *zr,
43 struct ubifs_znode *znode)
45 int level, iip, level_search = 0;
46 struct ubifs_znode *zn;
48 ubifs_assert(c, zr);
50 if (unlikely(!znode))
51 return zr;
53 if (unlikely(znode == zr)) {
54 if (znode->level == 0)
55 return NULL;
56 return ubifs_tnc_find_child(zr, 0);
59 level = znode->level;
61 iip = znode->iip;
62 while (1) {
63 ubifs_assert(c, znode->level <= zr->level);
66 * First walk up until there is a znode with next branch to
67 * look at.
69 while (znode->parent != zr && iip >= znode->parent->child_cnt) {
70 znode = znode->parent;
71 iip = znode->iip;
74 if (unlikely(znode->parent == zr &&
75 iip >= znode->parent->child_cnt)) {
76 /* This level is done, switch to the lower one */
77 level -= 1;
78 if (level_search || level < 0)
80 * We were already looking for znode at lower
81 * level ('level_search'). As we are here
82 * again, it just does not exist. Or all levels
83 * were finished ('level < 0').
85 return NULL;
87 level_search = 1;
88 iip = -1;
89 znode = ubifs_tnc_find_child(zr, 0);
90 ubifs_assert(c, znode);
93 /* Switch to the next index */
94 zn = ubifs_tnc_find_child(znode->parent, iip + 1);
95 if (!zn) {
96 /* No more children to look at, we have walk up */
97 iip = znode->parent->child_cnt;
98 continue;
101 /* Walk back down to the level we came from ('level') */
102 while (zn->level != level) {
103 znode = zn;
104 zn = ubifs_tnc_find_child(zn, 0);
105 if (!zn) {
107 * This path is not too deep so it does not
108 * reach 'level'. Try next path.
110 iip = znode->iip;
111 break;
115 if (zn) {
116 ubifs_assert(c, zn->level >= 0);
117 return zn;
123 * ubifs_search_zbranch - search znode branch.
124 * @c: UBIFS file-system description object
125 * @znode: znode to search in
126 * @key: key to search for
127 * @n: znode branch slot number is returned here
129 * This is a helper function which search branch with key @key in @znode using
130 * binary search. The result of the search may be:
131 * o exact match, then %1 is returned, and the slot number of the branch is
132 * stored in @n;
133 * o no exact match, then %0 is returned and the slot number of the left
134 * closest branch is returned in @n; the slot if all keys in this znode are
135 * greater than @key, then %-1 is returned in @n.
137 int ubifs_search_zbranch(const struct ubifs_info *c,
138 const struct ubifs_znode *znode,
139 const union ubifs_key *key, int *n)
141 int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
142 int uninitialized_var(cmp);
143 const struct ubifs_zbranch *zbr = &znode->zbranch[0];
145 ubifs_assert(c, end > beg);
147 while (end > beg) {
148 mid = (beg + end) >> 1;
149 cmp = keys_cmp(c, key, &zbr[mid].key);
150 if (cmp > 0)
151 beg = mid + 1;
152 else if (cmp < 0)
153 end = mid;
154 else {
155 *n = mid;
156 return 1;
160 *n = end - 1;
162 /* The insert point is after *n */
163 ubifs_assert(c, *n >= -1 && *n < znode->child_cnt);
164 if (*n == -1)
165 ubifs_assert(c, keys_cmp(c, key, &zbr[0].key) < 0);
166 else
167 ubifs_assert(c, keys_cmp(c, key, &zbr[*n].key) > 0);
168 if (*n + 1 < znode->child_cnt)
169 ubifs_assert(c, keys_cmp(c, key, &zbr[*n + 1].key) < 0);
171 return 0;
175 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
176 * @znode: znode to start at (root of the sub-tree to traverse)
178 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
179 * ignored.
181 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
183 if (unlikely(!znode))
184 return NULL;
186 while (znode->level > 0) {
187 struct ubifs_znode *child;
189 child = ubifs_tnc_find_child(znode, 0);
190 if (!child)
191 return znode;
192 znode = child;
195 return znode;
199 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
200 * @c: UBIFS file-system description object
201 * @znode: previous znode
203 * This function implements postorder TNC traversal. The LNC is ignored.
204 * Returns the next element or %NULL if @znode is already the last one.
206 struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c,
207 struct ubifs_znode *znode)
209 struct ubifs_znode *zn;
211 ubifs_assert(c, znode);
212 if (unlikely(!znode->parent))
213 return NULL;
215 /* Switch to the next index in the parent */
216 zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
217 if (!zn)
218 /* This is in fact the last child, return parent */
219 return znode->parent;
221 /* Go to the first znode in this new subtree */
222 return ubifs_tnc_postorder_first(zn);
226 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
227 * @c: UBIFS file-system description object
228 * @znode: znode defining subtree to destroy
230 * This function destroys subtree of the TNC tree. Returns number of clean
231 * znodes in the subtree.
233 long ubifs_destroy_tnc_subtree(const struct ubifs_info *c,
234 struct ubifs_znode *znode)
236 struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
237 long clean_freed = 0;
238 int n;
240 ubifs_assert(c, zn);
241 while (1) {
242 for (n = 0; n < zn->child_cnt; n++) {
243 if (!zn->zbranch[n].znode)
244 continue;
246 if (zn->level > 0 &&
247 !ubifs_zn_dirty(zn->zbranch[n].znode))
248 clean_freed += 1;
250 cond_resched();
251 kfree(zn->zbranch[n].znode);
254 if (zn == znode) {
255 if (!ubifs_zn_dirty(zn))
256 clean_freed += 1;
257 kfree(zn);
258 return clean_freed;
261 zn = ubifs_tnc_postorder_next(c, zn);
266 * read_znode - read an indexing node from flash and fill znode.
267 * @c: UBIFS file-system description object
268 * @lnum: LEB of the indexing node to read
269 * @offs: node offset
270 * @len: node length
271 * @znode: znode to read to
273 * This function reads an indexing node from the flash media and fills znode
274 * with the read data. Returns zero in case of success and a negative error
275 * code in case of failure. The read indexing node is validated and if anything
276 * is wrong with it, this function prints complaint messages and returns
277 * %-EINVAL.
279 static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
280 struct ubifs_znode *znode)
282 int i, err, type, cmp;
283 struct ubifs_idx_node *idx;
285 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
286 if (!idx)
287 return -ENOMEM;
289 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
290 if (err < 0) {
291 kfree(idx);
292 return err;
295 znode->child_cnt = le16_to_cpu(idx->child_cnt);
296 znode->level = le16_to_cpu(idx->level);
298 dbg_tnc("LEB %d:%d, level %d, %d branch",
299 lnum, offs, znode->level, znode->child_cnt);
301 if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
302 ubifs_err(c, "current fanout %d, branch count %d",
303 c->fanout, znode->child_cnt);
304 ubifs_err(c, "max levels %d, znode level %d",
305 UBIFS_MAX_LEVELS, znode->level);
306 err = 1;
307 goto out_dump;
310 for (i = 0; i < znode->child_cnt; i++) {
311 const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
312 struct ubifs_zbranch *zbr = &znode->zbranch[i];
314 key_read(c, &br->key, &zbr->key);
315 zbr->lnum = le32_to_cpu(br->lnum);
316 zbr->offs = le32_to_cpu(br->offs);
317 zbr->len = le32_to_cpu(br->len);
318 zbr->znode = NULL;
320 /* Validate branch */
322 if (zbr->lnum < c->main_first ||
323 zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
324 zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
325 ubifs_err(c, "bad branch %d", i);
326 err = 2;
327 goto out_dump;
330 switch (key_type(c, &zbr->key)) {
331 case UBIFS_INO_KEY:
332 case UBIFS_DATA_KEY:
333 case UBIFS_DENT_KEY:
334 case UBIFS_XENT_KEY:
335 break;
336 default:
337 ubifs_err(c, "bad key type at slot %d: %d",
338 i, key_type(c, &zbr->key));
339 err = 3;
340 goto out_dump;
343 if (znode->level)
344 continue;
346 type = key_type(c, &zbr->key);
347 if (c->ranges[type].max_len == 0) {
348 if (zbr->len != c->ranges[type].len) {
349 ubifs_err(c, "bad target node (type %d) length (%d)",
350 type, zbr->len);
351 ubifs_err(c, "have to be %d", c->ranges[type].len);
352 err = 4;
353 goto out_dump;
355 } else if (zbr->len < c->ranges[type].min_len ||
356 zbr->len > c->ranges[type].max_len) {
357 ubifs_err(c, "bad target node (type %d) length (%d)",
358 type, zbr->len);
359 ubifs_err(c, "have to be in range of %d-%d",
360 c->ranges[type].min_len,
361 c->ranges[type].max_len);
362 err = 5;
363 goto out_dump;
368 * Ensure that the next key is greater or equivalent to the
369 * previous one.
371 for (i = 0; i < znode->child_cnt - 1; i++) {
372 const union ubifs_key *key1, *key2;
374 key1 = &znode->zbranch[i].key;
375 key2 = &znode->zbranch[i + 1].key;
377 cmp = keys_cmp(c, key1, key2);
378 if (cmp > 0) {
379 ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1);
380 err = 6;
381 goto out_dump;
382 } else if (cmp == 0 && !is_hash_key(c, key1)) {
383 /* These can only be keys with colliding hash */
384 ubifs_err(c, "keys %d and %d are not hashed but equivalent",
385 i, i + 1);
386 err = 7;
387 goto out_dump;
391 kfree(idx);
392 return 0;
394 out_dump:
395 ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
396 ubifs_dump_node(c, idx);
397 kfree(idx);
398 return -EINVAL;
402 * ubifs_load_znode - load znode to TNC cache.
403 * @c: UBIFS file-system description object
404 * @zbr: znode branch
405 * @parent: znode's parent
406 * @iip: index in parent
408 * This function loads znode pointed to by @zbr into the TNC cache and
409 * returns pointer to it in case of success and a negative error code in case
410 * of failure.
412 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
413 struct ubifs_zbranch *zbr,
414 struct ubifs_znode *parent, int iip)
416 int err;
417 struct ubifs_znode *znode;
419 ubifs_assert(c, !zbr->znode);
421 * A slab cache is not presently used for znodes because the znode size
422 * depends on the fanout which is stored in the superblock.
424 znode = kzalloc(c->max_znode_sz, GFP_NOFS);
425 if (!znode)
426 return ERR_PTR(-ENOMEM);
428 err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
429 if (err)
430 goto out;
432 atomic_long_inc(&c->clean_zn_cnt);
435 * Increment the global clean znode counter as well. It is OK that
436 * global and per-FS clean znode counters may be inconsistent for some
437 * short time (because we might be preempted at this point), the global
438 * one is only used in shrinker.
440 atomic_long_inc(&ubifs_clean_zn_cnt);
442 zbr->znode = znode;
443 znode->parent = parent;
444 znode->time = ktime_get_seconds();
445 znode->iip = iip;
447 return znode;
449 out:
450 kfree(znode);
451 return ERR_PTR(err);
455 * ubifs_tnc_read_node - read a leaf node from the flash media.
456 * @c: UBIFS file-system description object
457 * @zbr: key and position of the node
458 * @node: node is returned here
460 * This function reads a node defined by @zbr from the flash media. Returns
461 * zero in case of success or a negative negative error code in case of
462 * failure.
464 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
465 void *node)
467 union ubifs_key key1, *key = &zbr->key;
468 int err, type = key_type(c, key);
469 struct ubifs_wbuf *wbuf;
472 * 'zbr' has to point to on-flash node. The node may sit in a bud and
473 * may even be in a write buffer, so we have to take care about this.
475 wbuf = ubifs_get_wbuf(c, zbr->lnum);
476 if (wbuf)
477 err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
478 zbr->lnum, zbr->offs);
479 else
480 err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
481 zbr->offs);
483 if (err) {
484 dbg_tnck(key, "key ");
485 return err;
488 /* Make sure the key of the read node is correct */
489 key_read(c, node + UBIFS_KEY_OFFSET, &key1);
490 if (!keys_eq(c, key, &key1)) {
491 ubifs_err(c, "bad key in node at LEB %d:%d",
492 zbr->lnum, zbr->offs);
493 dbg_tnck(key, "looked for key ");
494 dbg_tnck(&key1, "but found node's key ");
495 ubifs_dump_node(c, node);
496 return -EINVAL;
499 return 0;