Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
blob3f0c612d42e786d44cff5c86b59bb1da27c0fea9
1 /*
2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
34 #include <drm/drmP.h>
35 #include <drm/drm_syncobj.h>
36 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_gem_clflush.h"
40 #include "i915_trace.h"
41 #include "intel_drv.h"
42 #include "intel_frontbuffer.h"
44 enum {
45 FORCE_CPU_RELOC = 1,
46 FORCE_GTT_RELOC,
47 FORCE_GPU_RELOC,
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 #define __EXEC_OBJECT_HAS_REF BIT(31)
52 #define __EXEC_OBJECT_HAS_PIN BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
54 #define __EXEC_OBJECT_NEEDS_MAP BIT(28)
55 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
56 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
57 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59 #define __EXEC_HAS_RELOC BIT(31)
60 #define __EXEC_VALIDATED BIT(30)
61 #define __EXEC_INTERNAL_FLAGS (~0u << 30)
62 #define UPDATE PIN_OFFSET_FIXED
64 #define BATCH_OFFSET_BIAS (256*1024)
66 #define __I915_EXEC_ILLEGAL_FLAGS \
67 (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
69 /* Catch emission of unexpected errors for CI! */
70 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
71 #undef EINVAL
72 #define EINVAL ({ \
73 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
74 22; \
76 #endif
78 /**
79 * DOC: User command execution
81 * Userspace submits commands to be executed on the GPU as an instruction
82 * stream within a GEM object we call a batchbuffer. This instructions may
83 * refer to other GEM objects containing auxiliary state such as kernels,
84 * samplers, render targets and even secondary batchbuffers. Userspace does
85 * not know where in the GPU memory these objects reside and so before the
86 * batchbuffer is passed to the GPU for execution, those addresses in the
87 * batchbuffer and auxiliary objects are updated. This is known as relocation,
88 * or patching. To try and avoid having to relocate each object on the next
89 * execution, userspace is told the location of those objects in this pass,
90 * but this remains just a hint as the kernel may choose a new location for
91 * any object in the future.
93 * At the level of talking to the hardware, submitting a batchbuffer for the
94 * GPU to execute is to add content to a buffer from which the HW
95 * command streamer is reading.
97 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
98 * Execlists, this command is not placed on the same buffer as the
99 * remaining items.
101 * 2. Add a command to invalidate caches to the buffer.
103 * 3. Add a batchbuffer start command to the buffer; the start command is
104 * essentially a token together with the GPU address of the batchbuffer
105 * to be executed.
107 * 4. Add a pipeline flush to the buffer.
109 * 5. Add a memory write command to the buffer to record when the GPU
110 * is done executing the batchbuffer. The memory write writes the
111 * global sequence number of the request, ``i915_request::global_seqno``;
112 * the i915 driver uses the current value in the register to determine
113 * if the GPU has completed the batchbuffer.
115 * 6. Add a user interrupt command to the buffer. This command instructs
116 * the GPU to issue an interrupt when the command, pipeline flush and
117 * memory write are completed.
119 * 7. Inform the hardware of the additional commands added to the buffer
120 * (by updating the tail pointer).
122 * Processing an execbuf ioctl is conceptually split up into a few phases.
124 * 1. Validation - Ensure all the pointers, handles and flags are valid.
125 * 2. Reservation - Assign GPU address space for every object
126 * 3. Relocation - Update any addresses to point to the final locations
127 * 4. Serialisation - Order the request with respect to its dependencies
128 * 5. Construction - Construct a request to execute the batchbuffer
129 * 6. Submission (at some point in the future execution)
131 * Reserving resources for the execbuf is the most complicated phase. We
132 * neither want to have to migrate the object in the address space, nor do
133 * we want to have to update any relocations pointing to this object. Ideally,
134 * we want to leave the object where it is and for all the existing relocations
135 * to match. If the object is given a new address, or if userspace thinks the
136 * object is elsewhere, we have to parse all the relocation entries and update
137 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
138 * all the target addresses in all of its objects match the value in the
139 * relocation entries and that they all match the presumed offsets given by the
140 * list of execbuffer objects. Using this knowledge, we know that if we haven't
141 * moved any buffers, all the relocation entries are valid and we can skip
142 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
143 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
145 * The addresses written in the objects must match the corresponding
146 * reloc.presumed_offset which in turn must match the corresponding
147 * execobject.offset.
149 * Any render targets written to in the batch must be flagged with
150 * EXEC_OBJECT_WRITE.
152 * To avoid stalling, execobject.offset should match the current
153 * address of that object within the active context.
155 * The reservation is done is multiple phases. First we try and keep any
156 * object already bound in its current location - so as long as meets the
157 * constraints imposed by the new execbuffer. Any object left unbound after the
158 * first pass is then fitted into any available idle space. If an object does
159 * not fit, all objects are removed from the reservation and the process rerun
160 * after sorting the objects into a priority order (more difficult to fit
161 * objects are tried first). Failing that, the entire VM is cleared and we try
162 * to fit the execbuf once last time before concluding that it simply will not
163 * fit.
165 * A small complication to all of this is that we allow userspace not only to
166 * specify an alignment and a size for the object in the address space, but
167 * we also allow userspace to specify the exact offset. This objects are
168 * simpler to place (the location is known a priori) all we have to do is make
169 * sure the space is available.
171 * Once all the objects are in place, patching up the buried pointers to point
172 * to the final locations is a fairly simple job of walking over the relocation
173 * entry arrays, looking up the right address and rewriting the value into
174 * the object. Simple! ... The relocation entries are stored in user memory
175 * and so to access them we have to copy them into a local buffer. That copy
176 * has to avoid taking any pagefaults as they may lead back to a GEM object
177 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
178 * the relocation into multiple passes. First we try to do everything within an
179 * atomic context (avoid the pagefaults) which requires that we never wait. If
180 * we detect that we may wait, or if we need to fault, then we have to fallback
181 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
182 * bells yet?) Dropping the mutex means that we lose all the state we have
183 * built up so far for the execbuf and we must reset any global data. However,
184 * we do leave the objects pinned in their final locations - which is a
185 * potential issue for concurrent execbufs. Once we have left the mutex, we can
186 * allocate and copy all the relocation entries into a large array at our
187 * leisure, reacquire the mutex, reclaim all the objects and other state and
188 * then proceed to update any incorrect addresses with the objects.
190 * As we process the relocation entries, we maintain a record of whether the
191 * object is being written to. Using NORELOC, we expect userspace to provide
192 * this information instead. We also check whether we can skip the relocation
193 * by comparing the expected value inside the relocation entry with the target's
194 * final address. If they differ, we have to map the current object and rewrite
195 * the 4 or 8 byte pointer within.
197 * Serialising an execbuf is quite simple according to the rules of the GEM
198 * ABI. Execution within each context is ordered by the order of submission.
199 * Writes to any GEM object are in order of submission and are exclusive. Reads
200 * from a GEM object are unordered with respect to other reads, but ordered by
201 * writes. A write submitted after a read cannot occur before the read, and
202 * similarly any read submitted after a write cannot occur before the write.
203 * Writes are ordered between engines such that only one write occurs at any
204 * time (completing any reads beforehand) - using semaphores where available
205 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
206 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
207 * reads before starting, and any read (either using set-domain or pread) must
208 * flush all GPU writes before starting. (Note we only employ a barrier before,
209 * we currently rely on userspace not concurrently starting a new execution
210 * whilst reading or writing to an object. This may be an advantage or not
211 * depending on how much you trust userspace not to shoot themselves in the
212 * foot.) Serialisation may just result in the request being inserted into
213 * a DAG awaiting its turn, but most simple is to wait on the CPU until
214 * all dependencies are resolved.
216 * After all of that, is just a matter of closing the request and handing it to
217 * the hardware (well, leaving it in a queue to be executed). However, we also
218 * offer the ability for batchbuffers to be run with elevated privileges so
219 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
220 * Before any batch is given extra privileges we first must check that it
221 * contains no nefarious instructions, we check that each instruction is from
222 * our whitelist and all registers are also from an allowed list. We first
223 * copy the user's batchbuffer to a shadow (so that the user doesn't have
224 * access to it, either by the CPU or GPU as we scan it) and then parse each
225 * instruction. If everything is ok, we set a flag telling the hardware to run
226 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
229 struct i915_execbuffer {
230 struct drm_i915_private *i915; /** i915 backpointer */
231 struct drm_file *file; /** per-file lookup tables and limits */
232 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
233 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
234 struct i915_vma **vma;
235 unsigned int *flags;
237 struct intel_engine_cs *engine; /** engine to queue the request to */
238 struct i915_gem_context *ctx; /** context for building the request */
239 struct i915_address_space *vm; /** GTT and vma for the request */
241 struct i915_request *request; /** our request to build */
242 struct i915_vma *batch; /** identity of the batch obj/vma */
244 /** actual size of execobj[] as we may extend it for the cmdparser */
245 unsigned int buffer_count;
247 /** list of vma not yet bound during reservation phase */
248 struct list_head unbound;
250 /** list of vma that have execobj.relocation_count */
251 struct list_head relocs;
254 * Track the most recently used object for relocations, as we
255 * frequently have to perform multiple relocations within the same
256 * obj/page
258 struct reloc_cache {
259 struct drm_mm_node node; /** temporary GTT binding */
260 unsigned long vaddr; /** Current kmap address */
261 unsigned long page; /** Currently mapped page index */
262 unsigned int gen; /** Cached value of INTEL_GEN */
263 bool use_64bit_reloc : 1;
264 bool has_llc : 1;
265 bool has_fence : 1;
266 bool needs_unfenced : 1;
268 struct i915_request *rq;
269 u32 *rq_cmd;
270 unsigned int rq_size;
271 } reloc_cache;
273 u64 invalid_flags; /** Set of execobj.flags that are invalid */
274 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
276 u32 batch_start_offset; /** Location within object of batch */
277 u32 batch_len; /** Length of batch within object */
278 u32 batch_flags; /** Flags composed for emit_bb_start() */
281 * Indicate either the size of the hastable used to resolve
282 * relocation handles, or if negative that we are using a direct
283 * index into the execobj[].
285 int lut_size;
286 struct hlist_head *buckets; /** ht for relocation handles */
289 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
292 * Used to convert any address to canonical form.
293 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
294 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
295 * addresses to be in a canonical form:
296 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
297 * canonical form [63:48] == [47]."
299 #define GEN8_HIGH_ADDRESS_BIT 47
300 static inline u64 gen8_canonical_addr(u64 address)
302 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
305 static inline u64 gen8_noncanonical_addr(u64 address)
307 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
310 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
312 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
315 static int eb_create(struct i915_execbuffer *eb)
317 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
318 unsigned int size = 1 + ilog2(eb->buffer_count);
321 * Without a 1:1 association between relocation handles and
322 * the execobject[] index, we instead create a hashtable.
323 * We size it dynamically based on available memory, starting
324 * first with 1:1 assocative hash and scaling back until
325 * the allocation succeeds.
327 * Later on we use a positive lut_size to indicate we are
328 * using this hashtable, and a negative value to indicate a
329 * direct lookup.
331 do {
332 gfp_t flags;
334 /* While we can still reduce the allocation size, don't
335 * raise a warning and allow the allocation to fail.
336 * On the last pass though, we want to try as hard
337 * as possible to perform the allocation and warn
338 * if it fails.
340 flags = GFP_KERNEL;
341 if (size > 1)
342 flags |= __GFP_NORETRY | __GFP_NOWARN;
344 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
345 flags);
346 if (eb->buckets)
347 break;
348 } while (--size);
350 if (unlikely(!size))
351 return -ENOMEM;
353 eb->lut_size = size;
354 } else {
355 eb->lut_size = -eb->buffer_count;
358 return 0;
361 static bool
362 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
363 const struct i915_vma *vma,
364 unsigned int flags)
366 if (vma->node.size < entry->pad_to_size)
367 return true;
369 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
370 return true;
372 if (flags & EXEC_OBJECT_PINNED &&
373 vma->node.start != entry->offset)
374 return true;
376 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
377 vma->node.start < BATCH_OFFSET_BIAS)
378 return true;
380 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
381 (vma->node.start + vma->node.size - 1) >> 32)
382 return true;
384 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
385 !i915_vma_is_map_and_fenceable(vma))
386 return true;
388 return false;
391 static inline bool
392 eb_pin_vma(struct i915_execbuffer *eb,
393 const struct drm_i915_gem_exec_object2 *entry,
394 struct i915_vma *vma)
396 unsigned int exec_flags = *vma->exec_flags;
397 u64 pin_flags;
399 if (vma->node.size)
400 pin_flags = vma->node.start;
401 else
402 pin_flags = entry->offset & PIN_OFFSET_MASK;
404 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
405 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
406 pin_flags |= PIN_GLOBAL;
408 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
409 return false;
411 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
412 if (unlikely(i915_vma_pin_fence(vma))) {
413 i915_vma_unpin(vma);
414 return false;
417 if (vma->fence)
418 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
421 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
422 return !eb_vma_misplaced(entry, vma, exec_flags);
425 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
427 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
429 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
430 __i915_vma_unpin_fence(vma);
432 __i915_vma_unpin(vma);
435 static inline void
436 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
438 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
439 return;
441 __eb_unreserve_vma(vma, *flags);
442 *flags &= ~__EXEC_OBJECT_RESERVED;
445 static int
446 eb_validate_vma(struct i915_execbuffer *eb,
447 struct drm_i915_gem_exec_object2 *entry,
448 struct i915_vma *vma)
450 if (unlikely(entry->flags & eb->invalid_flags))
451 return -EINVAL;
453 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
454 return -EINVAL;
457 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
458 * any non-page-aligned or non-canonical addresses.
460 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
461 entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
462 return -EINVAL;
464 /* pad_to_size was once a reserved field, so sanitize it */
465 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
466 if (unlikely(offset_in_page(entry->pad_to_size)))
467 return -EINVAL;
468 } else {
469 entry->pad_to_size = 0;
472 if (unlikely(vma->exec_flags)) {
473 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
474 entry->handle, (int)(entry - eb->exec));
475 return -EINVAL;
479 * From drm_mm perspective address space is continuous,
480 * so from this point we're always using non-canonical
481 * form internally.
483 entry->offset = gen8_noncanonical_addr(entry->offset);
485 if (!eb->reloc_cache.has_fence) {
486 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
487 } else {
488 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
489 eb->reloc_cache.needs_unfenced) &&
490 i915_gem_object_is_tiled(vma->obj))
491 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
494 if (!(entry->flags & EXEC_OBJECT_PINNED))
495 entry->flags |= eb->context_flags;
497 return 0;
500 static int
501 eb_add_vma(struct i915_execbuffer *eb,
502 unsigned int i, unsigned batch_idx,
503 struct i915_vma *vma)
505 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
506 int err;
508 GEM_BUG_ON(i915_vma_is_closed(vma));
510 if (!(eb->args->flags & __EXEC_VALIDATED)) {
511 err = eb_validate_vma(eb, entry, vma);
512 if (unlikely(err))
513 return err;
516 if (eb->lut_size > 0) {
517 vma->exec_handle = entry->handle;
518 hlist_add_head(&vma->exec_node,
519 &eb->buckets[hash_32(entry->handle,
520 eb->lut_size)]);
523 if (entry->relocation_count)
524 list_add_tail(&vma->reloc_link, &eb->relocs);
527 * Stash a pointer from the vma to execobj, so we can query its flags,
528 * size, alignment etc as provided by the user. Also we stash a pointer
529 * to the vma inside the execobj so that we can use a direct lookup
530 * to find the right target VMA when doing relocations.
532 eb->vma[i] = vma;
533 eb->flags[i] = entry->flags;
534 vma->exec_flags = &eb->flags[i];
537 * SNA is doing fancy tricks with compressing batch buffers, which leads
538 * to negative relocation deltas. Usually that works out ok since the
539 * relocate address is still positive, except when the batch is placed
540 * very low in the GTT. Ensure this doesn't happen.
542 * Note that actual hangs have only been observed on gen7, but for
543 * paranoia do it everywhere.
545 if (i == batch_idx) {
546 if (entry->relocation_count &&
547 !(eb->flags[i] & EXEC_OBJECT_PINNED))
548 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
549 if (eb->reloc_cache.has_fence)
550 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
552 eb->batch = vma;
555 err = 0;
556 if (eb_pin_vma(eb, entry, vma)) {
557 if (entry->offset != vma->node.start) {
558 entry->offset = vma->node.start | UPDATE;
559 eb->args->flags |= __EXEC_HAS_RELOC;
561 } else {
562 eb_unreserve_vma(vma, vma->exec_flags);
564 list_add_tail(&vma->exec_link, &eb->unbound);
565 if (drm_mm_node_allocated(&vma->node))
566 err = i915_vma_unbind(vma);
567 if (unlikely(err))
568 vma->exec_flags = NULL;
570 return err;
573 static inline int use_cpu_reloc(const struct reloc_cache *cache,
574 const struct drm_i915_gem_object *obj)
576 if (!i915_gem_object_has_struct_page(obj))
577 return false;
579 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
580 return true;
582 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
583 return false;
585 return (cache->has_llc ||
586 obj->cache_dirty ||
587 obj->cache_level != I915_CACHE_NONE);
590 static int eb_reserve_vma(const struct i915_execbuffer *eb,
591 struct i915_vma *vma)
593 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
594 unsigned int exec_flags = *vma->exec_flags;
595 u64 pin_flags;
596 int err;
598 pin_flags = PIN_USER | PIN_NONBLOCK;
599 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
600 pin_flags |= PIN_GLOBAL;
603 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
604 * limit address to the first 4GBs for unflagged objects.
606 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
607 pin_flags |= PIN_ZONE_4G;
609 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
610 pin_flags |= PIN_MAPPABLE;
612 if (exec_flags & EXEC_OBJECT_PINNED) {
613 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
614 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
615 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
616 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
619 err = i915_vma_pin(vma,
620 entry->pad_to_size, entry->alignment,
621 pin_flags);
622 if (err)
623 return err;
625 if (entry->offset != vma->node.start) {
626 entry->offset = vma->node.start | UPDATE;
627 eb->args->flags |= __EXEC_HAS_RELOC;
630 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
631 err = i915_vma_pin_fence(vma);
632 if (unlikely(err)) {
633 i915_vma_unpin(vma);
634 return err;
637 if (vma->fence)
638 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
641 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
642 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
644 return 0;
647 static int eb_reserve(struct i915_execbuffer *eb)
649 const unsigned int count = eb->buffer_count;
650 struct list_head last;
651 struct i915_vma *vma;
652 unsigned int i, pass;
653 int err;
656 * Attempt to pin all of the buffers into the GTT.
657 * This is done in 3 phases:
659 * 1a. Unbind all objects that do not match the GTT constraints for
660 * the execbuffer (fenceable, mappable, alignment etc).
661 * 1b. Increment pin count for already bound objects.
662 * 2. Bind new objects.
663 * 3. Decrement pin count.
665 * This avoid unnecessary unbinding of later objects in order to make
666 * room for the earlier objects *unless* we need to defragment.
669 pass = 0;
670 err = 0;
671 do {
672 list_for_each_entry(vma, &eb->unbound, exec_link) {
673 err = eb_reserve_vma(eb, vma);
674 if (err)
675 break;
677 if (err != -ENOSPC)
678 return err;
680 /* Resort *all* the objects into priority order */
681 INIT_LIST_HEAD(&eb->unbound);
682 INIT_LIST_HEAD(&last);
683 for (i = 0; i < count; i++) {
684 unsigned int flags = eb->flags[i];
685 struct i915_vma *vma = eb->vma[i];
687 if (flags & EXEC_OBJECT_PINNED &&
688 flags & __EXEC_OBJECT_HAS_PIN)
689 continue;
691 eb_unreserve_vma(vma, &eb->flags[i]);
693 if (flags & EXEC_OBJECT_PINNED)
694 list_add(&vma->exec_link, &eb->unbound);
695 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
696 list_add_tail(&vma->exec_link, &eb->unbound);
697 else
698 list_add_tail(&vma->exec_link, &last);
700 list_splice_tail(&last, &eb->unbound);
702 switch (pass++) {
703 case 0:
704 break;
706 case 1:
707 /* Too fragmented, unbind everything and retry */
708 err = i915_gem_evict_vm(eb->vm);
709 if (err)
710 return err;
711 break;
713 default:
714 return -ENOSPC;
716 } while (1);
719 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
721 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
722 return 0;
723 else
724 return eb->buffer_count - 1;
727 static int eb_select_context(struct i915_execbuffer *eb)
729 struct i915_gem_context *ctx;
731 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
732 if (unlikely(!ctx))
733 return -ENOENT;
735 eb->ctx = ctx;
736 eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
738 eb->context_flags = 0;
739 if (ctx->flags & CONTEXT_NO_ZEROMAP)
740 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
742 return 0;
745 static int eb_lookup_vmas(struct i915_execbuffer *eb)
747 struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
748 struct drm_i915_gem_object *obj;
749 unsigned int i, batch;
750 int err;
752 if (unlikely(i915_gem_context_is_closed(eb->ctx)))
753 return -ENOENT;
755 if (unlikely(i915_gem_context_is_banned(eb->ctx)))
756 return -EIO;
758 INIT_LIST_HEAD(&eb->relocs);
759 INIT_LIST_HEAD(&eb->unbound);
761 batch = eb_batch_index(eb);
763 for (i = 0; i < eb->buffer_count; i++) {
764 u32 handle = eb->exec[i].handle;
765 struct i915_lut_handle *lut;
766 struct i915_vma *vma;
768 vma = radix_tree_lookup(handles_vma, handle);
769 if (likely(vma))
770 goto add_vma;
772 obj = i915_gem_object_lookup(eb->file, handle);
773 if (unlikely(!obj)) {
774 err = -ENOENT;
775 goto err_vma;
778 vma = i915_vma_instance(obj, eb->vm, NULL);
779 if (unlikely(IS_ERR(vma))) {
780 err = PTR_ERR(vma);
781 goto err_obj;
784 lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
785 if (unlikely(!lut)) {
786 err = -ENOMEM;
787 goto err_obj;
790 err = radix_tree_insert(handles_vma, handle, vma);
791 if (unlikely(err)) {
792 kmem_cache_free(eb->i915->luts, lut);
793 goto err_obj;
796 /* transfer ref to ctx */
797 if (!vma->open_count++)
798 i915_vma_reopen(vma);
799 list_add(&lut->obj_link, &obj->lut_list);
800 list_add(&lut->ctx_link, &eb->ctx->handles_list);
801 lut->ctx = eb->ctx;
802 lut->handle = handle;
804 add_vma:
805 err = eb_add_vma(eb, i, batch, vma);
806 if (unlikely(err))
807 goto err_vma;
809 GEM_BUG_ON(vma != eb->vma[i]);
810 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
811 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
812 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
815 eb->args->flags |= __EXEC_VALIDATED;
816 return eb_reserve(eb);
818 err_obj:
819 i915_gem_object_put(obj);
820 err_vma:
821 eb->vma[i] = NULL;
822 return err;
825 static struct i915_vma *
826 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
828 if (eb->lut_size < 0) {
829 if (handle >= -eb->lut_size)
830 return NULL;
831 return eb->vma[handle];
832 } else {
833 struct hlist_head *head;
834 struct i915_vma *vma;
836 head = &eb->buckets[hash_32(handle, eb->lut_size)];
837 hlist_for_each_entry(vma, head, exec_node) {
838 if (vma->exec_handle == handle)
839 return vma;
841 return NULL;
845 static void eb_release_vmas(const struct i915_execbuffer *eb)
847 const unsigned int count = eb->buffer_count;
848 unsigned int i;
850 for (i = 0; i < count; i++) {
851 struct i915_vma *vma = eb->vma[i];
852 unsigned int flags = eb->flags[i];
854 if (!vma)
855 break;
857 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
858 vma->exec_flags = NULL;
859 eb->vma[i] = NULL;
861 if (flags & __EXEC_OBJECT_HAS_PIN)
862 __eb_unreserve_vma(vma, flags);
864 if (flags & __EXEC_OBJECT_HAS_REF)
865 i915_vma_put(vma);
869 static void eb_reset_vmas(const struct i915_execbuffer *eb)
871 eb_release_vmas(eb);
872 if (eb->lut_size > 0)
873 memset(eb->buckets, 0,
874 sizeof(struct hlist_head) << eb->lut_size);
877 static void eb_destroy(const struct i915_execbuffer *eb)
879 GEM_BUG_ON(eb->reloc_cache.rq);
881 if (eb->lut_size > 0)
882 kfree(eb->buckets);
885 static inline u64
886 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
887 const struct i915_vma *target)
889 return gen8_canonical_addr((int)reloc->delta + target->node.start);
892 static void reloc_cache_init(struct reloc_cache *cache,
893 struct drm_i915_private *i915)
895 cache->page = -1;
896 cache->vaddr = 0;
897 /* Must be a variable in the struct to allow GCC to unroll. */
898 cache->gen = INTEL_GEN(i915);
899 cache->has_llc = HAS_LLC(i915);
900 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
901 cache->has_fence = cache->gen < 4;
902 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
903 cache->node.allocated = false;
904 cache->rq = NULL;
905 cache->rq_size = 0;
908 static inline void *unmask_page(unsigned long p)
910 return (void *)(uintptr_t)(p & PAGE_MASK);
913 static inline unsigned int unmask_flags(unsigned long p)
915 return p & ~PAGE_MASK;
918 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
920 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
922 struct drm_i915_private *i915 =
923 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
924 return &i915->ggtt;
927 static void reloc_gpu_flush(struct reloc_cache *cache)
929 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
930 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
931 i915_gem_object_unpin_map(cache->rq->batch->obj);
932 i915_gem_chipset_flush(cache->rq->i915);
934 i915_request_add(cache->rq);
935 cache->rq = NULL;
938 static void reloc_cache_reset(struct reloc_cache *cache)
940 void *vaddr;
942 if (cache->rq)
943 reloc_gpu_flush(cache);
945 if (!cache->vaddr)
946 return;
948 vaddr = unmask_page(cache->vaddr);
949 if (cache->vaddr & KMAP) {
950 if (cache->vaddr & CLFLUSH_AFTER)
951 mb();
953 kunmap_atomic(vaddr);
954 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
955 } else {
956 wmb();
957 io_mapping_unmap_atomic((void __iomem *)vaddr);
958 if (cache->node.allocated) {
959 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
961 ggtt->vm.clear_range(&ggtt->vm,
962 cache->node.start,
963 cache->node.size);
964 drm_mm_remove_node(&cache->node);
965 } else {
966 i915_vma_unpin((struct i915_vma *)cache->node.mm);
970 cache->vaddr = 0;
971 cache->page = -1;
974 static void *reloc_kmap(struct drm_i915_gem_object *obj,
975 struct reloc_cache *cache,
976 unsigned long page)
978 void *vaddr;
980 if (cache->vaddr) {
981 kunmap_atomic(unmask_page(cache->vaddr));
982 } else {
983 unsigned int flushes;
984 int err;
986 err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
987 if (err)
988 return ERR_PTR(err);
990 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
991 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
993 cache->vaddr = flushes | KMAP;
994 cache->node.mm = (void *)obj;
995 if (flushes)
996 mb();
999 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1000 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1001 cache->page = page;
1003 return vaddr;
1006 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1007 struct reloc_cache *cache,
1008 unsigned long page)
1010 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1011 unsigned long offset;
1012 void *vaddr;
1014 if (cache->vaddr) {
1015 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1016 } else {
1017 struct i915_vma *vma;
1018 int err;
1020 if (use_cpu_reloc(cache, obj))
1021 return NULL;
1023 err = i915_gem_object_set_to_gtt_domain(obj, true);
1024 if (err)
1025 return ERR_PTR(err);
1027 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1028 PIN_MAPPABLE |
1029 PIN_NONBLOCK |
1030 PIN_NONFAULT);
1031 if (IS_ERR(vma)) {
1032 memset(&cache->node, 0, sizeof(cache->node));
1033 err = drm_mm_insert_node_in_range
1034 (&ggtt->vm.mm, &cache->node,
1035 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1036 0, ggtt->mappable_end,
1037 DRM_MM_INSERT_LOW);
1038 if (err) /* no inactive aperture space, use cpu reloc */
1039 return NULL;
1040 } else {
1041 err = i915_vma_put_fence(vma);
1042 if (err) {
1043 i915_vma_unpin(vma);
1044 return ERR_PTR(err);
1047 cache->node.start = vma->node.start;
1048 cache->node.mm = (void *)vma;
1052 offset = cache->node.start;
1053 if (cache->node.allocated) {
1054 wmb();
1055 ggtt->vm.insert_page(&ggtt->vm,
1056 i915_gem_object_get_dma_address(obj, page),
1057 offset, I915_CACHE_NONE, 0);
1058 } else {
1059 offset += page << PAGE_SHIFT;
1062 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1063 offset);
1064 cache->page = page;
1065 cache->vaddr = (unsigned long)vaddr;
1067 return vaddr;
1070 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1071 struct reloc_cache *cache,
1072 unsigned long page)
1074 void *vaddr;
1076 if (cache->page == page) {
1077 vaddr = unmask_page(cache->vaddr);
1078 } else {
1079 vaddr = NULL;
1080 if ((cache->vaddr & KMAP) == 0)
1081 vaddr = reloc_iomap(obj, cache, page);
1082 if (!vaddr)
1083 vaddr = reloc_kmap(obj, cache, page);
1086 return vaddr;
1089 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1091 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1092 if (flushes & CLFLUSH_BEFORE) {
1093 clflushopt(addr);
1094 mb();
1097 *addr = value;
1100 * Writes to the same cacheline are serialised by the CPU
1101 * (including clflush). On the write path, we only require
1102 * that it hits memory in an orderly fashion and place
1103 * mb barriers at the start and end of the relocation phase
1104 * to ensure ordering of clflush wrt to the system.
1106 if (flushes & CLFLUSH_AFTER)
1107 clflushopt(addr);
1108 } else
1109 *addr = value;
1112 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1113 struct i915_vma *vma,
1114 unsigned int len)
1116 struct reloc_cache *cache = &eb->reloc_cache;
1117 struct drm_i915_gem_object *obj;
1118 struct i915_request *rq;
1119 struct i915_vma *batch;
1120 u32 *cmd;
1121 int err;
1123 GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1125 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1126 if (IS_ERR(obj))
1127 return PTR_ERR(obj);
1129 cmd = i915_gem_object_pin_map(obj,
1130 cache->has_llc ?
1131 I915_MAP_FORCE_WB :
1132 I915_MAP_FORCE_WC);
1133 i915_gem_object_unpin_pages(obj);
1134 if (IS_ERR(cmd))
1135 return PTR_ERR(cmd);
1137 err = i915_gem_object_set_to_wc_domain(obj, false);
1138 if (err)
1139 goto err_unmap;
1141 batch = i915_vma_instance(obj, vma->vm, NULL);
1142 if (IS_ERR(batch)) {
1143 err = PTR_ERR(batch);
1144 goto err_unmap;
1147 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1148 if (err)
1149 goto err_unmap;
1151 rq = i915_request_alloc(eb->engine, eb->ctx);
1152 if (IS_ERR(rq)) {
1153 err = PTR_ERR(rq);
1154 goto err_unpin;
1157 err = i915_request_await_object(rq, vma->obj, true);
1158 if (err)
1159 goto err_request;
1161 err = eb->engine->emit_bb_start(rq,
1162 batch->node.start, PAGE_SIZE,
1163 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1164 if (err)
1165 goto err_request;
1167 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1168 err = i915_vma_move_to_active(batch, rq, 0);
1169 if (err)
1170 goto skip_request;
1172 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1173 if (err)
1174 goto skip_request;
1176 rq->batch = batch;
1177 i915_vma_unpin(batch);
1179 cache->rq = rq;
1180 cache->rq_cmd = cmd;
1181 cache->rq_size = 0;
1183 /* Return with batch mapping (cmd) still pinned */
1184 return 0;
1186 skip_request:
1187 i915_request_skip(rq, err);
1188 err_request:
1189 i915_request_add(rq);
1190 err_unpin:
1191 i915_vma_unpin(batch);
1192 err_unmap:
1193 i915_gem_object_unpin_map(obj);
1194 return err;
1197 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1198 struct i915_vma *vma,
1199 unsigned int len)
1201 struct reloc_cache *cache = &eb->reloc_cache;
1202 u32 *cmd;
1204 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1205 reloc_gpu_flush(cache);
1207 if (unlikely(!cache->rq)) {
1208 int err;
1210 /* If we need to copy for the cmdparser, we will stall anyway */
1211 if (eb_use_cmdparser(eb))
1212 return ERR_PTR(-EWOULDBLOCK);
1214 if (!intel_engine_can_store_dword(eb->engine))
1215 return ERR_PTR(-ENODEV);
1217 err = __reloc_gpu_alloc(eb, vma, len);
1218 if (unlikely(err))
1219 return ERR_PTR(err);
1222 cmd = cache->rq_cmd + cache->rq_size;
1223 cache->rq_size += len;
1225 return cmd;
1228 static u64
1229 relocate_entry(struct i915_vma *vma,
1230 const struct drm_i915_gem_relocation_entry *reloc,
1231 struct i915_execbuffer *eb,
1232 const struct i915_vma *target)
1234 u64 offset = reloc->offset;
1235 u64 target_offset = relocation_target(reloc, target);
1236 bool wide = eb->reloc_cache.use_64bit_reloc;
1237 void *vaddr;
1239 if (!eb->reloc_cache.vaddr &&
1240 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1241 !reservation_object_test_signaled_rcu(vma->resv, true))) {
1242 const unsigned int gen = eb->reloc_cache.gen;
1243 unsigned int len;
1244 u32 *batch;
1245 u64 addr;
1247 if (wide)
1248 len = offset & 7 ? 8 : 5;
1249 else if (gen >= 4)
1250 len = 4;
1251 else
1252 len = 3;
1254 batch = reloc_gpu(eb, vma, len);
1255 if (IS_ERR(batch))
1256 goto repeat;
1258 addr = gen8_canonical_addr(vma->node.start + offset);
1259 if (wide) {
1260 if (offset & 7) {
1261 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1262 *batch++ = lower_32_bits(addr);
1263 *batch++ = upper_32_bits(addr);
1264 *batch++ = lower_32_bits(target_offset);
1266 addr = gen8_canonical_addr(addr + 4);
1268 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1269 *batch++ = lower_32_bits(addr);
1270 *batch++ = upper_32_bits(addr);
1271 *batch++ = upper_32_bits(target_offset);
1272 } else {
1273 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1274 *batch++ = lower_32_bits(addr);
1275 *batch++ = upper_32_bits(addr);
1276 *batch++ = lower_32_bits(target_offset);
1277 *batch++ = upper_32_bits(target_offset);
1279 } else if (gen >= 6) {
1280 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1281 *batch++ = 0;
1282 *batch++ = addr;
1283 *batch++ = target_offset;
1284 } else if (gen >= 4) {
1285 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1286 *batch++ = 0;
1287 *batch++ = addr;
1288 *batch++ = target_offset;
1289 } else {
1290 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1291 *batch++ = addr;
1292 *batch++ = target_offset;
1295 goto out;
1298 repeat:
1299 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1300 if (IS_ERR(vaddr))
1301 return PTR_ERR(vaddr);
1303 clflush_write32(vaddr + offset_in_page(offset),
1304 lower_32_bits(target_offset),
1305 eb->reloc_cache.vaddr);
1307 if (wide) {
1308 offset += sizeof(u32);
1309 target_offset >>= 32;
1310 wide = false;
1311 goto repeat;
1314 out:
1315 return target->node.start | UPDATE;
1318 static u64
1319 eb_relocate_entry(struct i915_execbuffer *eb,
1320 struct i915_vma *vma,
1321 const struct drm_i915_gem_relocation_entry *reloc)
1323 struct i915_vma *target;
1324 int err;
1326 /* we've already hold a reference to all valid objects */
1327 target = eb_get_vma(eb, reloc->target_handle);
1328 if (unlikely(!target))
1329 return -ENOENT;
1331 /* Validate that the target is in a valid r/w GPU domain */
1332 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1333 DRM_DEBUG("reloc with multiple write domains: "
1334 "target %d offset %d "
1335 "read %08x write %08x",
1336 reloc->target_handle,
1337 (int) reloc->offset,
1338 reloc->read_domains,
1339 reloc->write_domain);
1340 return -EINVAL;
1342 if (unlikely((reloc->write_domain | reloc->read_domains)
1343 & ~I915_GEM_GPU_DOMAINS)) {
1344 DRM_DEBUG("reloc with read/write non-GPU domains: "
1345 "target %d offset %d "
1346 "read %08x write %08x",
1347 reloc->target_handle,
1348 (int) reloc->offset,
1349 reloc->read_domains,
1350 reloc->write_domain);
1351 return -EINVAL;
1354 if (reloc->write_domain) {
1355 *target->exec_flags |= EXEC_OBJECT_WRITE;
1358 * Sandybridge PPGTT errata: We need a global gtt mapping
1359 * for MI and pipe_control writes because the gpu doesn't
1360 * properly redirect them through the ppgtt for non_secure
1361 * batchbuffers.
1363 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1364 IS_GEN6(eb->i915)) {
1365 err = i915_vma_bind(target, target->obj->cache_level,
1366 PIN_GLOBAL);
1367 if (WARN_ONCE(err,
1368 "Unexpected failure to bind target VMA!"))
1369 return err;
1374 * If the relocation already has the right value in it, no
1375 * more work needs to be done.
1377 if (!DBG_FORCE_RELOC &&
1378 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1379 return 0;
1381 /* Check that the relocation address is valid... */
1382 if (unlikely(reloc->offset >
1383 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1384 DRM_DEBUG("Relocation beyond object bounds: "
1385 "target %d offset %d size %d.\n",
1386 reloc->target_handle,
1387 (int)reloc->offset,
1388 (int)vma->size);
1389 return -EINVAL;
1391 if (unlikely(reloc->offset & 3)) {
1392 DRM_DEBUG("Relocation not 4-byte aligned: "
1393 "target %d offset %d.\n",
1394 reloc->target_handle,
1395 (int)reloc->offset);
1396 return -EINVAL;
1400 * If we write into the object, we need to force the synchronisation
1401 * barrier, either with an asynchronous clflush or if we executed the
1402 * patching using the GPU (though that should be serialised by the
1403 * timeline). To be completely sure, and since we are required to
1404 * do relocations we are already stalling, disable the user's opt
1405 * out of our synchronisation.
1407 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1409 /* and update the user's relocation entry */
1410 return relocate_entry(vma, reloc, eb, target);
1413 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1415 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1416 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1417 struct drm_i915_gem_relocation_entry __user *urelocs;
1418 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1419 unsigned int remain;
1421 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1422 remain = entry->relocation_count;
1423 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1424 return -EINVAL;
1427 * We must check that the entire relocation array is safe
1428 * to read. However, if the array is not writable the user loses
1429 * the updated relocation values.
1431 if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1432 return -EFAULT;
1434 do {
1435 struct drm_i915_gem_relocation_entry *r = stack;
1436 unsigned int count =
1437 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1438 unsigned int copied;
1441 * This is the fast path and we cannot handle a pagefault
1442 * whilst holding the struct mutex lest the user pass in the
1443 * relocations contained within a mmaped bo. For in such a case
1444 * we, the page fault handler would call i915_gem_fault() and
1445 * we would try to acquire the struct mutex again. Obviously
1446 * this is bad and so lockdep complains vehemently.
1448 pagefault_disable();
1449 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1450 pagefault_enable();
1451 if (unlikely(copied)) {
1452 remain = -EFAULT;
1453 goto out;
1456 remain -= count;
1457 do {
1458 u64 offset = eb_relocate_entry(eb, vma, r);
1460 if (likely(offset == 0)) {
1461 } else if ((s64)offset < 0) {
1462 remain = (int)offset;
1463 goto out;
1464 } else {
1466 * Note that reporting an error now
1467 * leaves everything in an inconsistent
1468 * state as we have *already* changed
1469 * the relocation value inside the
1470 * object. As we have not changed the
1471 * reloc.presumed_offset or will not
1472 * change the execobject.offset, on the
1473 * call we may not rewrite the value
1474 * inside the object, leaving it
1475 * dangling and causing a GPU hang. Unless
1476 * userspace dynamically rebuilds the
1477 * relocations on each execbuf rather than
1478 * presume a static tree.
1480 * We did previously check if the relocations
1481 * were writable (access_ok), an error now
1482 * would be a strange race with mprotect,
1483 * having already demonstrated that we
1484 * can read from this userspace address.
1486 offset = gen8_canonical_addr(offset & ~UPDATE);
1487 __put_user(offset,
1488 &urelocs[r-stack].presumed_offset);
1490 } while (r++, --count);
1491 urelocs += ARRAY_SIZE(stack);
1492 } while (remain);
1493 out:
1494 reloc_cache_reset(&eb->reloc_cache);
1495 return remain;
1498 static int
1499 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1501 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1502 struct drm_i915_gem_relocation_entry *relocs =
1503 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1504 unsigned int i;
1505 int err;
1507 for (i = 0; i < entry->relocation_count; i++) {
1508 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1510 if ((s64)offset < 0) {
1511 err = (int)offset;
1512 goto err;
1515 err = 0;
1516 err:
1517 reloc_cache_reset(&eb->reloc_cache);
1518 return err;
1521 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1523 const char __user *addr, *end;
1524 unsigned long size;
1525 char __maybe_unused c;
1527 size = entry->relocation_count;
1528 if (size == 0)
1529 return 0;
1531 if (size > N_RELOC(ULONG_MAX))
1532 return -EINVAL;
1534 addr = u64_to_user_ptr(entry->relocs_ptr);
1535 size *= sizeof(struct drm_i915_gem_relocation_entry);
1536 if (!access_ok(VERIFY_READ, addr, size))
1537 return -EFAULT;
1539 end = addr + size;
1540 for (; addr < end; addr += PAGE_SIZE) {
1541 int err = __get_user(c, addr);
1542 if (err)
1543 return err;
1545 return __get_user(c, end - 1);
1548 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1550 const unsigned int count = eb->buffer_count;
1551 unsigned int i;
1552 int err;
1554 for (i = 0; i < count; i++) {
1555 const unsigned int nreloc = eb->exec[i].relocation_count;
1556 struct drm_i915_gem_relocation_entry __user *urelocs;
1557 struct drm_i915_gem_relocation_entry *relocs;
1558 unsigned long size;
1559 unsigned long copied;
1561 if (nreloc == 0)
1562 continue;
1564 err = check_relocations(&eb->exec[i]);
1565 if (err)
1566 goto err;
1568 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1569 size = nreloc * sizeof(*relocs);
1571 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1572 if (!relocs) {
1573 kvfree(relocs);
1574 err = -ENOMEM;
1575 goto err;
1578 /* copy_from_user is limited to < 4GiB */
1579 copied = 0;
1580 do {
1581 unsigned int len =
1582 min_t(u64, BIT_ULL(31), size - copied);
1584 if (__copy_from_user((char *)relocs + copied,
1585 (char __user *)urelocs + copied,
1586 len)) {
1587 kvfree(relocs);
1588 err = -EFAULT;
1589 goto err;
1592 copied += len;
1593 } while (copied < size);
1596 * As we do not update the known relocation offsets after
1597 * relocating (due to the complexities in lock handling),
1598 * we need to mark them as invalid now so that we force the
1599 * relocation processing next time. Just in case the target
1600 * object is evicted and then rebound into its old
1601 * presumed_offset before the next execbuffer - if that
1602 * happened we would make the mistake of assuming that the
1603 * relocations were valid.
1605 user_access_begin();
1606 for (copied = 0; copied < nreloc; copied++)
1607 unsafe_put_user(-1,
1608 &urelocs[copied].presumed_offset,
1609 end_user);
1610 end_user:
1611 user_access_end();
1613 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1616 return 0;
1618 err:
1619 while (i--) {
1620 struct drm_i915_gem_relocation_entry *relocs =
1621 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1622 if (eb->exec[i].relocation_count)
1623 kvfree(relocs);
1625 return err;
1628 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1630 const unsigned int count = eb->buffer_count;
1631 unsigned int i;
1633 if (unlikely(i915_modparams.prefault_disable))
1634 return 0;
1636 for (i = 0; i < count; i++) {
1637 int err;
1639 err = check_relocations(&eb->exec[i]);
1640 if (err)
1641 return err;
1644 return 0;
1647 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1649 struct drm_device *dev = &eb->i915->drm;
1650 bool have_copy = false;
1651 struct i915_vma *vma;
1652 int err = 0;
1654 repeat:
1655 if (signal_pending(current)) {
1656 err = -ERESTARTSYS;
1657 goto out;
1660 /* We may process another execbuffer during the unlock... */
1661 eb_reset_vmas(eb);
1662 mutex_unlock(&dev->struct_mutex);
1665 * We take 3 passes through the slowpatch.
1667 * 1 - we try to just prefault all the user relocation entries and
1668 * then attempt to reuse the atomic pagefault disabled fast path again.
1670 * 2 - we copy the user entries to a local buffer here outside of the
1671 * local and allow ourselves to wait upon any rendering before
1672 * relocations
1674 * 3 - we already have a local copy of the relocation entries, but
1675 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1677 if (!err) {
1678 err = eb_prefault_relocations(eb);
1679 } else if (!have_copy) {
1680 err = eb_copy_relocations(eb);
1681 have_copy = err == 0;
1682 } else {
1683 cond_resched();
1684 err = 0;
1686 if (err) {
1687 mutex_lock(&dev->struct_mutex);
1688 goto out;
1691 /* A frequent cause for EAGAIN are currently unavailable client pages */
1692 flush_workqueue(eb->i915->mm.userptr_wq);
1694 err = i915_mutex_lock_interruptible(dev);
1695 if (err) {
1696 mutex_lock(&dev->struct_mutex);
1697 goto out;
1700 /* reacquire the objects */
1701 err = eb_lookup_vmas(eb);
1702 if (err)
1703 goto err;
1705 GEM_BUG_ON(!eb->batch);
1707 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1708 if (!have_copy) {
1709 pagefault_disable();
1710 err = eb_relocate_vma(eb, vma);
1711 pagefault_enable();
1712 if (err)
1713 goto repeat;
1714 } else {
1715 err = eb_relocate_vma_slow(eb, vma);
1716 if (err)
1717 goto err;
1722 * Leave the user relocations as are, this is the painfully slow path,
1723 * and we want to avoid the complication of dropping the lock whilst
1724 * having buffers reserved in the aperture and so causing spurious
1725 * ENOSPC for random operations.
1728 err:
1729 if (err == -EAGAIN)
1730 goto repeat;
1732 out:
1733 if (have_copy) {
1734 const unsigned int count = eb->buffer_count;
1735 unsigned int i;
1737 for (i = 0; i < count; i++) {
1738 const struct drm_i915_gem_exec_object2 *entry =
1739 &eb->exec[i];
1740 struct drm_i915_gem_relocation_entry *relocs;
1742 if (!entry->relocation_count)
1743 continue;
1745 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1746 kvfree(relocs);
1750 return err;
1753 static int eb_relocate(struct i915_execbuffer *eb)
1755 if (eb_lookup_vmas(eb))
1756 goto slow;
1758 /* The objects are in their final locations, apply the relocations. */
1759 if (eb->args->flags & __EXEC_HAS_RELOC) {
1760 struct i915_vma *vma;
1762 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1763 if (eb_relocate_vma(eb, vma))
1764 goto slow;
1768 return 0;
1770 slow:
1771 return eb_relocate_slow(eb);
1774 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1776 const unsigned int count = eb->buffer_count;
1777 unsigned int i;
1778 int err;
1780 for (i = 0; i < count; i++) {
1781 unsigned int flags = eb->flags[i];
1782 struct i915_vma *vma = eb->vma[i];
1783 struct drm_i915_gem_object *obj = vma->obj;
1785 if (flags & EXEC_OBJECT_CAPTURE) {
1786 struct i915_capture_list *capture;
1788 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1789 if (unlikely(!capture))
1790 return -ENOMEM;
1792 capture->next = eb->request->capture_list;
1793 capture->vma = eb->vma[i];
1794 eb->request->capture_list = capture;
1798 * If the GPU is not _reading_ through the CPU cache, we need
1799 * to make sure that any writes (both previous GPU writes from
1800 * before a change in snooping levels and normal CPU writes)
1801 * caught in that cache are flushed to main memory.
1803 * We want to say
1804 * obj->cache_dirty &&
1805 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1806 * but gcc's optimiser doesn't handle that as well and emits
1807 * two jumps instead of one. Maybe one day...
1809 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1810 if (i915_gem_clflush_object(obj, 0))
1811 flags &= ~EXEC_OBJECT_ASYNC;
1814 if (flags & EXEC_OBJECT_ASYNC)
1815 continue;
1817 err = i915_request_await_object
1818 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1819 if (err)
1820 return err;
1823 for (i = 0; i < count; i++) {
1824 unsigned int flags = eb->flags[i];
1825 struct i915_vma *vma = eb->vma[i];
1827 err = i915_vma_move_to_active(vma, eb->request, flags);
1828 if (unlikely(err)) {
1829 i915_request_skip(eb->request, err);
1830 return err;
1833 __eb_unreserve_vma(vma, flags);
1834 vma->exec_flags = NULL;
1836 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1837 i915_vma_put(vma);
1839 eb->exec = NULL;
1841 /* Unconditionally flush any chipset caches (for streaming writes). */
1842 i915_gem_chipset_flush(eb->i915);
1844 return 0;
1847 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1849 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1850 return false;
1852 /* Kernel clipping was a DRI1 misfeature */
1853 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1854 if (exec->num_cliprects || exec->cliprects_ptr)
1855 return false;
1858 if (exec->DR4 == 0xffffffff) {
1859 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1860 exec->DR4 = 0;
1862 if (exec->DR1 || exec->DR4)
1863 return false;
1865 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1866 return false;
1868 return true;
1871 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1873 u32 *cs;
1874 int i;
1876 if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1877 DRM_DEBUG("sol reset is gen7/rcs only\n");
1878 return -EINVAL;
1881 cs = intel_ring_begin(rq, 4 * 2 + 2);
1882 if (IS_ERR(cs))
1883 return PTR_ERR(cs);
1885 *cs++ = MI_LOAD_REGISTER_IMM(4);
1886 for (i = 0; i < 4; i++) {
1887 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1888 *cs++ = 0;
1890 *cs++ = MI_NOOP;
1891 intel_ring_advance(rq, cs);
1893 return 0;
1896 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1898 struct drm_i915_gem_object *shadow_batch_obj;
1899 struct i915_vma *vma;
1900 int err;
1902 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1903 PAGE_ALIGN(eb->batch_len));
1904 if (IS_ERR(shadow_batch_obj))
1905 return ERR_CAST(shadow_batch_obj);
1907 err = intel_engine_cmd_parser(eb->engine,
1908 eb->batch->obj,
1909 shadow_batch_obj,
1910 eb->batch_start_offset,
1911 eb->batch_len,
1912 is_master);
1913 if (err) {
1914 if (err == -EACCES) /* unhandled chained batch */
1915 vma = NULL;
1916 else
1917 vma = ERR_PTR(err);
1918 goto out;
1921 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1922 if (IS_ERR(vma))
1923 goto out;
1925 eb->vma[eb->buffer_count] = i915_vma_get(vma);
1926 eb->flags[eb->buffer_count] =
1927 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1928 vma->exec_flags = &eb->flags[eb->buffer_count];
1929 eb->buffer_count++;
1931 out:
1932 i915_gem_object_unpin_pages(shadow_batch_obj);
1933 return vma;
1936 static void
1937 add_to_client(struct i915_request *rq, struct drm_file *file)
1939 rq->file_priv = file->driver_priv;
1940 list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1943 static int eb_submit(struct i915_execbuffer *eb)
1945 int err;
1947 err = eb_move_to_gpu(eb);
1948 if (err)
1949 return err;
1951 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1952 err = i915_reset_gen7_sol_offsets(eb->request);
1953 if (err)
1954 return err;
1957 err = eb->engine->emit_bb_start(eb->request,
1958 eb->batch->node.start +
1959 eb->batch_start_offset,
1960 eb->batch_len,
1961 eb->batch_flags);
1962 if (err)
1963 return err;
1965 return 0;
1969 * Find one BSD ring to dispatch the corresponding BSD command.
1970 * The engine index is returned.
1972 static unsigned int
1973 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1974 struct drm_file *file)
1976 struct drm_i915_file_private *file_priv = file->driver_priv;
1978 /* Check whether the file_priv has already selected one ring. */
1979 if ((int)file_priv->bsd_engine < 0)
1980 file_priv->bsd_engine = atomic_fetch_xor(1,
1981 &dev_priv->mm.bsd_engine_dispatch_index);
1983 return file_priv->bsd_engine;
1986 #define I915_USER_RINGS (4)
1988 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1989 [I915_EXEC_DEFAULT] = RCS,
1990 [I915_EXEC_RENDER] = RCS,
1991 [I915_EXEC_BLT] = BCS,
1992 [I915_EXEC_BSD] = VCS,
1993 [I915_EXEC_VEBOX] = VECS
1996 static struct intel_engine_cs *
1997 eb_select_engine(struct drm_i915_private *dev_priv,
1998 struct drm_file *file,
1999 struct drm_i915_gem_execbuffer2 *args)
2001 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2002 struct intel_engine_cs *engine;
2004 if (user_ring_id > I915_USER_RINGS) {
2005 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2006 return NULL;
2009 if ((user_ring_id != I915_EXEC_BSD) &&
2010 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
2011 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2012 "bsd dispatch flags: %d\n", (int)(args->flags));
2013 return NULL;
2016 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
2017 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2019 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2020 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2021 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2022 bsd_idx <= I915_EXEC_BSD_RING2) {
2023 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2024 bsd_idx--;
2025 } else {
2026 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2027 bsd_idx);
2028 return NULL;
2031 engine = dev_priv->engine[_VCS(bsd_idx)];
2032 } else {
2033 engine = dev_priv->engine[user_ring_map[user_ring_id]];
2036 if (!engine) {
2037 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2038 return NULL;
2041 return engine;
2044 static void
2045 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2047 while (n--)
2048 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2049 kvfree(fences);
2052 static struct drm_syncobj **
2053 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2054 struct drm_file *file)
2056 const unsigned long nfences = args->num_cliprects;
2057 struct drm_i915_gem_exec_fence __user *user;
2058 struct drm_syncobj **fences;
2059 unsigned long n;
2060 int err;
2062 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2063 return NULL;
2065 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2066 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2067 if (nfences > min_t(unsigned long,
2068 ULONG_MAX / sizeof(*user),
2069 SIZE_MAX / sizeof(*fences)))
2070 return ERR_PTR(-EINVAL);
2072 user = u64_to_user_ptr(args->cliprects_ptr);
2073 if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2074 return ERR_PTR(-EFAULT);
2076 fences = kvmalloc_array(nfences, sizeof(*fences),
2077 __GFP_NOWARN | GFP_KERNEL);
2078 if (!fences)
2079 return ERR_PTR(-ENOMEM);
2081 for (n = 0; n < nfences; n++) {
2082 struct drm_i915_gem_exec_fence fence;
2083 struct drm_syncobj *syncobj;
2085 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2086 err = -EFAULT;
2087 goto err;
2090 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2091 err = -EINVAL;
2092 goto err;
2095 syncobj = drm_syncobj_find(file, fence.handle);
2096 if (!syncobj) {
2097 DRM_DEBUG("Invalid syncobj handle provided\n");
2098 err = -ENOENT;
2099 goto err;
2102 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2103 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2105 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2108 return fences;
2110 err:
2111 __free_fence_array(fences, n);
2112 return ERR_PTR(err);
2115 static void
2116 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2117 struct drm_syncobj **fences)
2119 if (fences)
2120 __free_fence_array(fences, args->num_cliprects);
2123 static int
2124 await_fence_array(struct i915_execbuffer *eb,
2125 struct drm_syncobj **fences)
2127 const unsigned int nfences = eb->args->num_cliprects;
2128 unsigned int n;
2129 int err;
2131 for (n = 0; n < nfences; n++) {
2132 struct drm_syncobj *syncobj;
2133 struct dma_fence *fence;
2134 unsigned int flags;
2136 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2137 if (!(flags & I915_EXEC_FENCE_WAIT))
2138 continue;
2140 fence = drm_syncobj_fence_get(syncobj);
2141 if (!fence)
2142 return -EINVAL;
2144 err = i915_request_await_dma_fence(eb->request, fence);
2145 dma_fence_put(fence);
2146 if (err < 0)
2147 return err;
2150 return 0;
2153 static void
2154 signal_fence_array(struct i915_execbuffer *eb,
2155 struct drm_syncobj **fences)
2157 const unsigned int nfences = eb->args->num_cliprects;
2158 struct dma_fence * const fence = &eb->request->fence;
2159 unsigned int n;
2161 for (n = 0; n < nfences; n++) {
2162 struct drm_syncobj *syncobj;
2163 unsigned int flags;
2165 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2166 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2167 continue;
2169 drm_syncobj_replace_fence(syncobj, fence);
2173 static int
2174 i915_gem_do_execbuffer(struct drm_device *dev,
2175 struct drm_file *file,
2176 struct drm_i915_gem_execbuffer2 *args,
2177 struct drm_i915_gem_exec_object2 *exec,
2178 struct drm_syncobj **fences)
2180 struct i915_execbuffer eb;
2181 struct dma_fence *in_fence = NULL;
2182 struct sync_file *out_fence = NULL;
2183 int out_fence_fd = -1;
2184 int err;
2186 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2187 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2188 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2190 eb.i915 = to_i915(dev);
2191 eb.file = file;
2192 eb.args = args;
2193 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2194 args->flags |= __EXEC_HAS_RELOC;
2196 eb.exec = exec;
2197 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2198 eb.vma[0] = NULL;
2199 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2201 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2202 if (USES_FULL_PPGTT(eb.i915))
2203 eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2204 reloc_cache_init(&eb.reloc_cache, eb.i915);
2206 eb.buffer_count = args->buffer_count;
2207 eb.batch_start_offset = args->batch_start_offset;
2208 eb.batch_len = args->batch_len;
2210 eb.batch_flags = 0;
2211 if (args->flags & I915_EXEC_SECURE) {
2212 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2213 return -EPERM;
2215 eb.batch_flags |= I915_DISPATCH_SECURE;
2217 if (args->flags & I915_EXEC_IS_PINNED)
2218 eb.batch_flags |= I915_DISPATCH_PINNED;
2220 eb.engine = eb_select_engine(eb.i915, file, args);
2221 if (!eb.engine)
2222 return -EINVAL;
2224 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2225 if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2226 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
2227 return -EINVAL;
2229 if (eb.engine->id != RCS) {
2230 DRM_DEBUG("RS is not available on %s\n",
2231 eb.engine->name);
2232 return -EINVAL;
2235 eb.batch_flags |= I915_DISPATCH_RS;
2238 if (args->flags & I915_EXEC_FENCE_IN) {
2239 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2240 if (!in_fence)
2241 return -EINVAL;
2244 if (args->flags & I915_EXEC_FENCE_OUT) {
2245 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2246 if (out_fence_fd < 0) {
2247 err = out_fence_fd;
2248 goto err_in_fence;
2252 err = eb_create(&eb);
2253 if (err)
2254 goto err_out_fence;
2256 GEM_BUG_ON(!eb.lut_size);
2258 err = eb_select_context(&eb);
2259 if (unlikely(err))
2260 goto err_destroy;
2263 * Take a local wakeref for preparing to dispatch the execbuf as
2264 * we expect to access the hardware fairly frequently in the
2265 * process. Upon first dispatch, we acquire another prolonged
2266 * wakeref that we hold until the GPU has been idle for at least
2267 * 100ms.
2269 intel_runtime_pm_get(eb.i915);
2271 err = i915_mutex_lock_interruptible(dev);
2272 if (err)
2273 goto err_rpm;
2275 err = eb_relocate(&eb);
2276 if (err) {
2278 * If the user expects the execobject.offset and
2279 * reloc.presumed_offset to be an exact match,
2280 * as for using NO_RELOC, then we cannot update
2281 * the execobject.offset until we have completed
2282 * relocation.
2284 args->flags &= ~__EXEC_HAS_RELOC;
2285 goto err_vma;
2288 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2289 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2290 err = -EINVAL;
2291 goto err_vma;
2293 if (eb.batch_start_offset > eb.batch->size ||
2294 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2295 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2296 err = -EINVAL;
2297 goto err_vma;
2300 if (eb_use_cmdparser(&eb)) {
2301 struct i915_vma *vma;
2303 vma = eb_parse(&eb, drm_is_current_master(file));
2304 if (IS_ERR(vma)) {
2305 err = PTR_ERR(vma);
2306 goto err_vma;
2309 if (vma) {
2311 * Batch parsed and accepted:
2313 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2314 * bit from MI_BATCH_BUFFER_START commands issued in
2315 * the dispatch_execbuffer implementations. We
2316 * specifically don't want that set on batches the
2317 * command parser has accepted.
2319 eb.batch_flags |= I915_DISPATCH_SECURE;
2320 eb.batch_start_offset = 0;
2321 eb.batch = vma;
2325 if (eb.batch_len == 0)
2326 eb.batch_len = eb.batch->size - eb.batch_start_offset;
2329 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2330 * batch" bit. Hence we need to pin secure batches into the global gtt.
2331 * hsw should have this fixed, but bdw mucks it up again. */
2332 if (eb.batch_flags & I915_DISPATCH_SECURE) {
2333 struct i915_vma *vma;
2336 * So on first glance it looks freaky that we pin the batch here
2337 * outside of the reservation loop. But:
2338 * - The batch is already pinned into the relevant ppgtt, so we
2339 * already have the backing storage fully allocated.
2340 * - No other BO uses the global gtt (well contexts, but meh),
2341 * so we don't really have issues with multiple objects not
2342 * fitting due to fragmentation.
2343 * So this is actually safe.
2345 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2346 if (IS_ERR(vma)) {
2347 err = PTR_ERR(vma);
2348 goto err_vma;
2351 eb.batch = vma;
2354 /* All GPU relocation batches must be submitted prior to the user rq */
2355 GEM_BUG_ON(eb.reloc_cache.rq);
2357 /* Allocate a request for this batch buffer nice and early. */
2358 eb.request = i915_request_alloc(eb.engine, eb.ctx);
2359 if (IS_ERR(eb.request)) {
2360 err = PTR_ERR(eb.request);
2361 goto err_batch_unpin;
2364 if (in_fence) {
2365 err = i915_request_await_dma_fence(eb.request, in_fence);
2366 if (err < 0)
2367 goto err_request;
2370 if (fences) {
2371 err = await_fence_array(&eb, fences);
2372 if (err)
2373 goto err_request;
2376 if (out_fence_fd != -1) {
2377 out_fence = sync_file_create(&eb.request->fence);
2378 if (!out_fence) {
2379 err = -ENOMEM;
2380 goto err_request;
2385 * Whilst this request exists, batch_obj will be on the
2386 * active_list, and so will hold the active reference. Only when this
2387 * request is retired will the the batch_obj be moved onto the
2388 * inactive_list and lose its active reference. Hence we do not need
2389 * to explicitly hold another reference here.
2391 eb.request->batch = eb.batch;
2393 trace_i915_request_queue(eb.request, eb.batch_flags);
2394 err = eb_submit(&eb);
2395 err_request:
2396 i915_request_add(eb.request);
2397 add_to_client(eb.request, file);
2399 if (fences)
2400 signal_fence_array(&eb, fences);
2402 if (out_fence) {
2403 if (err == 0) {
2404 fd_install(out_fence_fd, out_fence->file);
2405 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2406 args->rsvd2 |= (u64)out_fence_fd << 32;
2407 out_fence_fd = -1;
2408 } else {
2409 fput(out_fence->file);
2413 err_batch_unpin:
2414 if (eb.batch_flags & I915_DISPATCH_SECURE)
2415 i915_vma_unpin(eb.batch);
2416 err_vma:
2417 if (eb.exec)
2418 eb_release_vmas(&eb);
2419 mutex_unlock(&dev->struct_mutex);
2420 err_rpm:
2421 intel_runtime_pm_put(eb.i915);
2422 i915_gem_context_put(eb.ctx);
2423 err_destroy:
2424 eb_destroy(&eb);
2425 err_out_fence:
2426 if (out_fence_fd != -1)
2427 put_unused_fd(out_fence_fd);
2428 err_in_fence:
2429 dma_fence_put(in_fence);
2430 return err;
2433 static size_t eb_element_size(void)
2435 return (sizeof(struct drm_i915_gem_exec_object2) +
2436 sizeof(struct i915_vma *) +
2437 sizeof(unsigned int));
2440 static bool check_buffer_count(size_t count)
2442 const size_t sz = eb_element_size();
2445 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2446 * array size (see eb_create()). Otherwise, we can accept an array as
2447 * large as can be addressed (though use large arrays at your peril)!
2450 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2454 * Legacy execbuffer just creates an exec2 list from the original exec object
2455 * list array and passes it to the real function.
2458 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2459 struct drm_file *file)
2461 struct drm_i915_gem_execbuffer *args = data;
2462 struct drm_i915_gem_execbuffer2 exec2;
2463 struct drm_i915_gem_exec_object *exec_list = NULL;
2464 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2465 const size_t count = args->buffer_count;
2466 unsigned int i;
2467 int err;
2469 if (!check_buffer_count(count)) {
2470 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2471 return -EINVAL;
2474 exec2.buffers_ptr = args->buffers_ptr;
2475 exec2.buffer_count = args->buffer_count;
2476 exec2.batch_start_offset = args->batch_start_offset;
2477 exec2.batch_len = args->batch_len;
2478 exec2.DR1 = args->DR1;
2479 exec2.DR4 = args->DR4;
2480 exec2.num_cliprects = args->num_cliprects;
2481 exec2.cliprects_ptr = args->cliprects_ptr;
2482 exec2.flags = I915_EXEC_RENDER;
2483 i915_execbuffer2_set_context_id(exec2, 0);
2485 if (!i915_gem_check_execbuffer(&exec2))
2486 return -EINVAL;
2488 /* Copy in the exec list from userland */
2489 exec_list = kvmalloc_array(count, sizeof(*exec_list),
2490 __GFP_NOWARN | GFP_KERNEL);
2491 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2492 __GFP_NOWARN | GFP_KERNEL);
2493 if (exec_list == NULL || exec2_list == NULL) {
2494 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2495 args->buffer_count);
2496 kvfree(exec_list);
2497 kvfree(exec2_list);
2498 return -ENOMEM;
2500 err = copy_from_user(exec_list,
2501 u64_to_user_ptr(args->buffers_ptr),
2502 sizeof(*exec_list) * count);
2503 if (err) {
2504 DRM_DEBUG("copy %d exec entries failed %d\n",
2505 args->buffer_count, err);
2506 kvfree(exec_list);
2507 kvfree(exec2_list);
2508 return -EFAULT;
2511 for (i = 0; i < args->buffer_count; i++) {
2512 exec2_list[i].handle = exec_list[i].handle;
2513 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2514 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2515 exec2_list[i].alignment = exec_list[i].alignment;
2516 exec2_list[i].offset = exec_list[i].offset;
2517 if (INTEL_GEN(to_i915(dev)) < 4)
2518 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2519 else
2520 exec2_list[i].flags = 0;
2523 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2524 if (exec2.flags & __EXEC_HAS_RELOC) {
2525 struct drm_i915_gem_exec_object __user *user_exec_list =
2526 u64_to_user_ptr(args->buffers_ptr);
2528 /* Copy the new buffer offsets back to the user's exec list. */
2529 for (i = 0; i < args->buffer_count; i++) {
2530 if (!(exec2_list[i].offset & UPDATE))
2531 continue;
2533 exec2_list[i].offset =
2534 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2535 exec2_list[i].offset &= PIN_OFFSET_MASK;
2536 if (__copy_to_user(&user_exec_list[i].offset,
2537 &exec2_list[i].offset,
2538 sizeof(user_exec_list[i].offset)))
2539 break;
2543 kvfree(exec_list);
2544 kvfree(exec2_list);
2545 return err;
2549 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2550 struct drm_file *file)
2552 struct drm_i915_gem_execbuffer2 *args = data;
2553 struct drm_i915_gem_exec_object2 *exec2_list;
2554 struct drm_syncobj **fences = NULL;
2555 const size_t count = args->buffer_count;
2556 int err;
2558 if (!check_buffer_count(count)) {
2559 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2560 return -EINVAL;
2563 if (!i915_gem_check_execbuffer(args))
2564 return -EINVAL;
2566 /* Allocate an extra slot for use by the command parser */
2567 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2568 __GFP_NOWARN | GFP_KERNEL);
2569 if (exec2_list == NULL) {
2570 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2571 count);
2572 return -ENOMEM;
2574 if (copy_from_user(exec2_list,
2575 u64_to_user_ptr(args->buffers_ptr),
2576 sizeof(*exec2_list) * count)) {
2577 DRM_DEBUG("copy %zd exec entries failed\n", count);
2578 kvfree(exec2_list);
2579 return -EFAULT;
2582 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2583 fences = get_fence_array(args, file);
2584 if (IS_ERR(fences)) {
2585 kvfree(exec2_list);
2586 return PTR_ERR(fences);
2590 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2593 * Now that we have begun execution of the batchbuffer, we ignore
2594 * any new error after this point. Also given that we have already
2595 * updated the associated relocations, we try to write out the current
2596 * object locations irrespective of any error.
2598 if (args->flags & __EXEC_HAS_RELOC) {
2599 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2600 u64_to_user_ptr(args->buffers_ptr);
2601 unsigned int i;
2603 /* Copy the new buffer offsets back to the user's exec list. */
2604 user_access_begin();
2605 for (i = 0; i < args->buffer_count; i++) {
2606 if (!(exec2_list[i].offset & UPDATE))
2607 continue;
2609 exec2_list[i].offset =
2610 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2611 unsafe_put_user(exec2_list[i].offset,
2612 &user_exec_list[i].offset,
2613 end_user);
2615 end_user:
2616 user_access_end();
2619 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2620 put_fence_array(args, fences);
2621 kvfree(exec2_list);
2622 return err;