Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / arch / powerpc / perf / core-book3s.c
blob81f8a0c838ae3899ae832f5bdd8e3527c2c55352
1 /*
2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29 struct cpu_hw_events {
30 int n_events;
31 int n_percpu;
32 int disabled;
33 int n_added;
34 int n_limited;
35 u8 pmcs_enabled;
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
44 unsigned long mmcr[4];
45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
51 unsigned int txn_flags;
52 int n_txn_start;
54 /* BHRB bits */
55 u64 bhrb_filter; /* BHRB HW branch filter */
56 unsigned int bhrb_users;
57 void *bhrb_context;
58 struct perf_branch_stack bhrb_stack;
59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
60 u64 ic_init;
63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65 static struct power_pmu *ppmu;
68 * Normally, to ignore kernel events we set the FCS (freeze counters
69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70 * hypervisor bit set in the MSR, or if we are running on a processor
71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72 * then we need to use the FCHV bit to ignore kernel events.
74 static unsigned int freeze_events_kernel = MMCR0_FCS;
77 * 32-bit doesn't have MMCRA but does have an MMCR2,
78 * and a few other names are different.
80 #ifdef CONFIG_PPC32
82 #define MMCR0_FCHV 0
83 #define MMCR0_PMCjCE MMCR0_PMCnCE
84 #define MMCR0_FC56 0
85 #define MMCR0_PMAO 0
86 #define MMCR0_EBE 0
87 #define MMCR0_BHRBA 0
88 #define MMCR0_PMCC 0
89 #define MMCR0_PMCC_U6 0
91 #define SPRN_MMCRA SPRN_MMCR2
92 #define MMCRA_SAMPLE_ENABLE 0
94 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
96 return 0;
98 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
99 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
101 return 0;
103 static inline void perf_read_regs(struct pt_regs *regs)
105 regs->result = 0;
107 static inline int perf_intr_is_nmi(struct pt_regs *regs)
109 return 0;
112 static inline int siar_valid(struct pt_regs *regs)
114 return 1;
117 static bool is_ebb_event(struct perf_event *event) { return false; }
118 static int ebb_event_check(struct perf_event *event) { return 0; }
119 static void ebb_event_add(struct perf_event *event) { }
120 static void ebb_switch_out(unsigned long mmcr0) { }
121 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
123 return cpuhw->mmcr[0];
126 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
127 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
128 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
129 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
130 static void pmao_restore_workaround(bool ebb) { }
131 #endif /* CONFIG_PPC32 */
133 static bool regs_use_siar(struct pt_regs *regs)
136 * When we take a performance monitor exception the regs are setup
137 * using perf_read_regs() which overloads some fields, in particular
138 * regs->result to tell us whether to use SIAR.
140 * However if the regs are from another exception, eg. a syscall, then
141 * they have not been setup using perf_read_regs() and so regs->result
142 * is something random.
144 return ((TRAP(regs) == 0xf00) && regs->result);
148 * Things that are specific to 64-bit implementations.
150 #ifdef CONFIG_PPC64
152 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
154 unsigned long mmcra = regs->dsisr;
156 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
157 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
158 if (slot > 1)
159 return 4 * (slot - 1);
162 return 0;
166 * The user wants a data address recorded.
167 * If we're not doing instruction sampling, give them the SDAR
168 * (sampled data address). If we are doing instruction sampling, then
169 * only give them the SDAR if it corresponds to the instruction
170 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
171 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
173 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
175 unsigned long mmcra = regs->dsisr;
176 bool sdar_valid;
178 if (ppmu->flags & PPMU_HAS_SIER)
179 sdar_valid = regs->dar & SIER_SDAR_VALID;
180 else {
181 unsigned long sdsync;
183 if (ppmu->flags & PPMU_SIAR_VALID)
184 sdsync = POWER7P_MMCRA_SDAR_VALID;
185 else if (ppmu->flags & PPMU_ALT_SIPR)
186 sdsync = POWER6_MMCRA_SDSYNC;
187 else if (ppmu->flags & PPMU_NO_SIAR)
188 sdsync = MMCRA_SAMPLE_ENABLE;
189 else
190 sdsync = MMCRA_SDSYNC;
192 sdar_valid = mmcra & sdsync;
195 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
196 *addrp = mfspr(SPRN_SDAR);
198 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
199 is_kernel_addr(mfspr(SPRN_SDAR)))
200 *addrp = 0;
203 static bool regs_sihv(struct pt_regs *regs)
205 unsigned long sihv = MMCRA_SIHV;
207 if (ppmu->flags & PPMU_HAS_SIER)
208 return !!(regs->dar & SIER_SIHV);
210 if (ppmu->flags & PPMU_ALT_SIPR)
211 sihv = POWER6_MMCRA_SIHV;
213 return !!(regs->dsisr & sihv);
216 static bool regs_sipr(struct pt_regs *regs)
218 unsigned long sipr = MMCRA_SIPR;
220 if (ppmu->flags & PPMU_HAS_SIER)
221 return !!(regs->dar & SIER_SIPR);
223 if (ppmu->flags & PPMU_ALT_SIPR)
224 sipr = POWER6_MMCRA_SIPR;
226 return !!(regs->dsisr & sipr);
229 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
231 if (regs->msr & MSR_PR)
232 return PERF_RECORD_MISC_USER;
233 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
234 return PERF_RECORD_MISC_HYPERVISOR;
235 return PERF_RECORD_MISC_KERNEL;
238 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
240 bool use_siar = regs_use_siar(regs);
242 if (!use_siar)
243 return perf_flags_from_msr(regs);
246 * If we don't have flags in MMCRA, rather than using
247 * the MSR, we intuit the flags from the address in
248 * SIAR which should give slightly more reliable
249 * results
251 if (ppmu->flags & PPMU_NO_SIPR) {
252 unsigned long siar = mfspr(SPRN_SIAR);
253 if (is_kernel_addr(siar))
254 return PERF_RECORD_MISC_KERNEL;
255 return PERF_RECORD_MISC_USER;
258 /* PR has priority over HV, so order below is important */
259 if (regs_sipr(regs))
260 return PERF_RECORD_MISC_USER;
262 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
263 return PERF_RECORD_MISC_HYPERVISOR;
265 return PERF_RECORD_MISC_KERNEL;
269 * Overload regs->dsisr to store MMCRA so we only need to read it once
270 * on each interrupt.
271 * Overload regs->dar to store SIER if we have it.
272 * Overload regs->result to specify whether we should use the MSR (result
273 * is zero) or the SIAR (result is non zero).
275 static inline void perf_read_regs(struct pt_regs *regs)
277 unsigned long mmcra = mfspr(SPRN_MMCRA);
278 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
279 int use_siar;
281 regs->dsisr = mmcra;
283 if (ppmu->flags & PPMU_HAS_SIER)
284 regs->dar = mfspr(SPRN_SIER);
287 * If this isn't a PMU exception (eg a software event) the SIAR is
288 * not valid. Use pt_regs.
290 * If it is a marked event use the SIAR.
292 * If the PMU doesn't update the SIAR for non marked events use
293 * pt_regs.
295 * If the PMU has HV/PR flags then check to see if they
296 * place the exception in userspace. If so, use pt_regs. In
297 * continuous sampling mode the SIAR and the PMU exception are
298 * not synchronised, so they may be many instructions apart.
299 * This can result in confusing backtraces. We still want
300 * hypervisor samples as well as samples in the kernel with
301 * interrupts off hence the userspace check.
303 if (TRAP(regs) != 0xf00)
304 use_siar = 0;
305 else if ((ppmu->flags & PPMU_NO_SIAR))
306 use_siar = 0;
307 else if (marked)
308 use_siar = 1;
309 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
310 use_siar = 0;
311 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
312 use_siar = 0;
313 else
314 use_siar = 1;
316 regs->result = use_siar;
320 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
321 * it as an NMI.
323 static inline int perf_intr_is_nmi(struct pt_regs *regs)
325 return (regs->softe & IRQS_DISABLED);
329 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
330 * must be sampled only if the SIAR-valid bit is set.
332 * For unmarked instructions and for processors that don't have the SIAR-Valid
333 * bit, assume that SIAR is valid.
335 static inline int siar_valid(struct pt_regs *regs)
337 unsigned long mmcra = regs->dsisr;
338 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
340 if (marked) {
341 if (ppmu->flags & PPMU_HAS_SIER)
342 return regs->dar & SIER_SIAR_VALID;
344 if (ppmu->flags & PPMU_SIAR_VALID)
345 return mmcra & POWER7P_MMCRA_SIAR_VALID;
348 return 1;
352 /* Reset all possible BHRB entries */
353 static void power_pmu_bhrb_reset(void)
355 asm volatile(PPC_CLRBHRB);
358 static void power_pmu_bhrb_enable(struct perf_event *event)
360 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
362 if (!ppmu->bhrb_nr)
363 return;
365 /* Clear BHRB if we changed task context to avoid data leaks */
366 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
367 power_pmu_bhrb_reset();
368 cpuhw->bhrb_context = event->ctx;
370 cpuhw->bhrb_users++;
371 perf_sched_cb_inc(event->ctx->pmu);
374 static void power_pmu_bhrb_disable(struct perf_event *event)
376 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
378 if (!ppmu->bhrb_nr)
379 return;
381 WARN_ON_ONCE(!cpuhw->bhrb_users);
382 cpuhw->bhrb_users--;
383 perf_sched_cb_dec(event->ctx->pmu);
385 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
386 /* BHRB cannot be turned off when other
387 * events are active on the PMU.
390 /* avoid stale pointer */
391 cpuhw->bhrb_context = NULL;
395 /* Called from ctxsw to prevent one process's branch entries to
396 * mingle with the other process's entries during context switch.
398 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
400 if (!ppmu->bhrb_nr)
401 return;
403 if (sched_in)
404 power_pmu_bhrb_reset();
406 /* Calculate the to address for a branch */
407 static __u64 power_pmu_bhrb_to(u64 addr)
409 unsigned int instr;
410 int ret;
411 __u64 target;
413 if (is_kernel_addr(addr)) {
414 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
415 return 0;
417 return branch_target(&instr);
420 /* Userspace: need copy instruction here then translate it */
421 pagefault_disable();
422 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
423 if (ret) {
424 pagefault_enable();
425 return 0;
427 pagefault_enable();
429 target = branch_target(&instr);
430 if ((!target) || (instr & BRANCH_ABSOLUTE))
431 return target;
433 /* Translate relative branch target from kernel to user address */
434 return target - (unsigned long)&instr + addr;
437 /* Processing BHRB entries */
438 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
440 u64 val;
441 u64 addr;
442 int r_index, u_index, pred;
444 r_index = 0;
445 u_index = 0;
446 while (r_index < ppmu->bhrb_nr) {
447 /* Assembly read function */
448 val = read_bhrb(r_index++);
449 if (!val)
450 /* Terminal marker: End of valid BHRB entries */
451 break;
452 else {
453 addr = val & BHRB_EA;
454 pred = val & BHRB_PREDICTION;
456 if (!addr)
457 /* invalid entry */
458 continue;
461 * BHRB rolling buffer could very much contain the kernel
462 * addresses at this point. Check the privileges before
463 * exporting it to userspace (avoid exposure of regions
464 * where we could have speculative execution)
466 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
467 is_kernel_addr(addr))
468 continue;
470 /* Branches are read most recent first (ie. mfbhrb 0 is
471 * the most recent branch).
472 * There are two types of valid entries:
473 * 1) a target entry which is the to address of a
474 * computed goto like a blr,bctr,btar. The next
475 * entry read from the bhrb will be branch
476 * corresponding to this target (ie. the actual
477 * blr/bctr/btar instruction).
478 * 2) a from address which is an actual branch. If a
479 * target entry proceeds this, then this is the
480 * matching branch for that target. If this is not
481 * following a target entry, then this is a branch
482 * where the target is given as an immediate field
483 * in the instruction (ie. an i or b form branch).
484 * In this case we need to read the instruction from
485 * memory to determine the target/to address.
488 if (val & BHRB_TARGET) {
489 /* Target branches use two entries
490 * (ie. computed gotos/XL form)
492 cpuhw->bhrb_entries[u_index].to = addr;
493 cpuhw->bhrb_entries[u_index].mispred = pred;
494 cpuhw->bhrb_entries[u_index].predicted = ~pred;
496 /* Get from address in next entry */
497 val = read_bhrb(r_index++);
498 addr = val & BHRB_EA;
499 if (val & BHRB_TARGET) {
500 /* Shouldn't have two targets in a
501 row.. Reset index and try again */
502 r_index--;
503 addr = 0;
505 cpuhw->bhrb_entries[u_index].from = addr;
506 } else {
507 /* Branches to immediate field
508 (ie I or B form) */
509 cpuhw->bhrb_entries[u_index].from = addr;
510 cpuhw->bhrb_entries[u_index].to =
511 power_pmu_bhrb_to(addr);
512 cpuhw->bhrb_entries[u_index].mispred = pred;
513 cpuhw->bhrb_entries[u_index].predicted = ~pred;
515 u_index++;
519 cpuhw->bhrb_stack.nr = u_index;
520 return;
523 static bool is_ebb_event(struct perf_event *event)
526 * This could be a per-PMU callback, but we'd rather avoid the cost. We
527 * check that the PMU supports EBB, meaning those that don't can still
528 * use bit 63 of the event code for something else if they wish.
530 return (ppmu->flags & PPMU_ARCH_207S) &&
531 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
534 static int ebb_event_check(struct perf_event *event)
536 struct perf_event *leader = event->group_leader;
538 /* Event and group leader must agree on EBB */
539 if (is_ebb_event(leader) != is_ebb_event(event))
540 return -EINVAL;
542 if (is_ebb_event(event)) {
543 if (!(event->attach_state & PERF_ATTACH_TASK))
544 return -EINVAL;
546 if (!leader->attr.pinned || !leader->attr.exclusive)
547 return -EINVAL;
549 if (event->attr.freq ||
550 event->attr.inherit ||
551 event->attr.sample_type ||
552 event->attr.sample_period ||
553 event->attr.enable_on_exec)
554 return -EINVAL;
557 return 0;
560 static void ebb_event_add(struct perf_event *event)
562 if (!is_ebb_event(event) || current->thread.used_ebb)
563 return;
566 * IFF this is the first time we've added an EBB event, set
567 * PMXE in the user MMCR0 so we can detect when it's cleared by
568 * userspace. We need this so that we can context switch while
569 * userspace is in the EBB handler (where PMXE is 0).
571 current->thread.used_ebb = 1;
572 current->thread.mmcr0 |= MMCR0_PMXE;
575 static void ebb_switch_out(unsigned long mmcr0)
577 if (!(mmcr0 & MMCR0_EBE))
578 return;
580 current->thread.siar = mfspr(SPRN_SIAR);
581 current->thread.sier = mfspr(SPRN_SIER);
582 current->thread.sdar = mfspr(SPRN_SDAR);
583 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
584 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
587 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
589 unsigned long mmcr0 = cpuhw->mmcr[0];
591 if (!ebb)
592 goto out;
594 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
595 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
598 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
599 * with pmao_restore_workaround() because we may add PMAO but we never
600 * clear it here.
602 mmcr0 |= current->thread.mmcr0;
605 * Be careful not to set PMXE if userspace had it cleared. This is also
606 * compatible with pmao_restore_workaround() because it has already
607 * cleared PMXE and we leave PMAO alone.
609 if (!(current->thread.mmcr0 & MMCR0_PMXE))
610 mmcr0 &= ~MMCR0_PMXE;
612 mtspr(SPRN_SIAR, current->thread.siar);
613 mtspr(SPRN_SIER, current->thread.sier);
614 mtspr(SPRN_SDAR, current->thread.sdar);
617 * Merge the kernel & user values of MMCR2. The semantics we implement
618 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
619 * but not clear bits. If a task wants to be able to clear bits, ie.
620 * unfreeze counters, it should not set exclude_xxx in its events and
621 * instead manage the MMCR2 entirely by itself.
623 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
624 out:
625 return mmcr0;
628 static void pmao_restore_workaround(bool ebb)
630 unsigned pmcs[6];
632 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
633 return;
636 * On POWER8E there is a hardware defect which affects the PMU context
637 * switch logic, ie. power_pmu_disable/enable().
639 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
640 * by the hardware. Sometime later the actual PMU exception is
641 * delivered.
643 * If we context switch, or simply disable/enable, the PMU prior to the
644 * exception arriving, the exception will be lost when we clear PMAO.
646 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
647 * set, and this _should_ generate an exception. However because of the
648 * defect no exception is generated when we write PMAO, and we get
649 * stuck with no counters counting but no exception delivered.
651 * The workaround is to detect this case and tweak the hardware to
652 * create another pending PMU exception.
654 * We do that by setting up PMC6 (cycles) for an imminent overflow and
655 * enabling the PMU. That causes a new exception to be generated in the
656 * chip, but we don't take it yet because we have interrupts hard
657 * disabled. We then write back the PMU state as we want it to be seen
658 * by the exception handler. When we reenable interrupts the exception
659 * handler will be called and see the correct state.
661 * The logic is the same for EBB, except that the exception is gated by
662 * us having interrupts hard disabled as well as the fact that we are
663 * not in userspace. The exception is finally delivered when we return
664 * to userspace.
667 /* Only if PMAO is set and PMAO_SYNC is clear */
668 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
669 return;
671 /* If we're doing EBB, only if BESCR[GE] is set */
672 if (ebb && !(current->thread.bescr & BESCR_GE))
673 return;
676 * We are already soft-disabled in power_pmu_enable(). We need to hard
677 * disable to actually prevent the PMU exception from firing.
679 hard_irq_disable();
682 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
683 * Using read/write_pmc() in a for loop adds 12 function calls and
684 * almost doubles our code size.
686 pmcs[0] = mfspr(SPRN_PMC1);
687 pmcs[1] = mfspr(SPRN_PMC2);
688 pmcs[2] = mfspr(SPRN_PMC3);
689 pmcs[3] = mfspr(SPRN_PMC4);
690 pmcs[4] = mfspr(SPRN_PMC5);
691 pmcs[5] = mfspr(SPRN_PMC6);
693 /* Ensure all freeze bits are unset */
694 mtspr(SPRN_MMCR2, 0);
696 /* Set up PMC6 to overflow in one cycle */
697 mtspr(SPRN_PMC6, 0x7FFFFFFE);
699 /* Enable exceptions and unfreeze PMC6 */
700 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
702 /* Now we need to refreeze and restore the PMCs */
703 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
705 mtspr(SPRN_PMC1, pmcs[0]);
706 mtspr(SPRN_PMC2, pmcs[1]);
707 mtspr(SPRN_PMC3, pmcs[2]);
708 mtspr(SPRN_PMC4, pmcs[3]);
709 mtspr(SPRN_PMC5, pmcs[4]);
710 mtspr(SPRN_PMC6, pmcs[5]);
713 #endif /* CONFIG_PPC64 */
715 static void perf_event_interrupt(struct pt_regs *regs);
718 * Read one performance monitor counter (PMC).
720 static unsigned long read_pmc(int idx)
722 unsigned long val;
724 switch (idx) {
725 case 1:
726 val = mfspr(SPRN_PMC1);
727 break;
728 case 2:
729 val = mfspr(SPRN_PMC2);
730 break;
731 case 3:
732 val = mfspr(SPRN_PMC3);
733 break;
734 case 4:
735 val = mfspr(SPRN_PMC4);
736 break;
737 case 5:
738 val = mfspr(SPRN_PMC5);
739 break;
740 case 6:
741 val = mfspr(SPRN_PMC6);
742 break;
743 #ifdef CONFIG_PPC64
744 case 7:
745 val = mfspr(SPRN_PMC7);
746 break;
747 case 8:
748 val = mfspr(SPRN_PMC8);
749 break;
750 #endif /* CONFIG_PPC64 */
751 default:
752 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
753 val = 0;
755 return val;
759 * Write one PMC.
761 static void write_pmc(int idx, unsigned long val)
763 switch (idx) {
764 case 1:
765 mtspr(SPRN_PMC1, val);
766 break;
767 case 2:
768 mtspr(SPRN_PMC2, val);
769 break;
770 case 3:
771 mtspr(SPRN_PMC3, val);
772 break;
773 case 4:
774 mtspr(SPRN_PMC4, val);
775 break;
776 case 5:
777 mtspr(SPRN_PMC5, val);
778 break;
779 case 6:
780 mtspr(SPRN_PMC6, val);
781 break;
782 #ifdef CONFIG_PPC64
783 case 7:
784 mtspr(SPRN_PMC7, val);
785 break;
786 case 8:
787 mtspr(SPRN_PMC8, val);
788 break;
789 #endif /* CONFIG_PPC64 */
790 default:
791 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
795 /* Called from sysrq_handle_showregs() */
796 void perf_event_print_debug(void)
798 unsigned long sdar, sier, flags;
799 u32 pmcs[MAX_HWEVENTS];
800 int i;
802 if (!ppmu) {
803 pr_info("Performance monitor hardware not registered.\n");
804 return;
807 if (!ppmu->n_counter)
808 return;
810 local_irq_save(flags);
812 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
813 smp_processor_id(), ppmu->name, ppmu->n_counter);
815 for (i = 0; i < ppmu->n_counter; i++)
816 pmcs[i] = read_pmc(i + 1);
818 for (; i < MAX_HWEVENTS; i++)
819 pmcs[i] = 0xdeadbeef;
821 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
822 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
824 if (ppmu->n_counter > 4)
825 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
826 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
828 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
829 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
831 sdar = sier = 0;
832 #ifdef CONFIG_PPC64
833 sdar = mfspr(SPRN_SDAR);
835 if (ppmu->flags & PPMU_HAS_SIER)
836 sier = mfspr(SPRN_SIER);
838 if (ppmu->flags & PPMU_ARCH_207S) {
839 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
840 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
841 pr_info("EBBRR: %016lx BESCR: %016lx\n",
842 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
844 #endif
845 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
846 mfspr(SPRN_SIAR), sdar, sier);
848 local_irq_restore(flags);
852 * Check if a set of events can all go on the PMU at once.
853 * If they can't, this will look at alternative codes for the events
854 * and see if any combination of alternative codes is feasible.
855 * The feasible set is returned in event_id[].
857 static int power_check_constraints(struct cpu_hw_events *cpuhw,
858 u64 event_id[], unsigned int cflags[],
859 int n_ev)
861 unsigned long mask, value, nv;
862 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
863 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
864 int i, j;
865 unsigned long addf = ppmu->add_fields;
866 unsigned long tadd = ppmu->test_adder;
868 if (n_ev > ppmu->n_counter)
869 return -1;
871 /* First see if the events will go on as-is */
872 for (i = 0; i < n_ev; ++i) {
873 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
874 && !ppmu->limited_pmc_event(event_id[i])) {
875 ppmu->get_alternatives(event_id[i], cflags[i],
876 cpuhw->alternatives[i]);
877 event_id[i] = cpuhw->alternatives[i][0];
879 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
880 &cpuhw->avalues[i][0]))
881 return -1;
883 value = mask = 0;
884 for (i = 0; i < n_ev; ++i) {
885 nv = (value | cpuhw->avalues[i][0]) +
886 (value & cpuhw->avalues[i][0] & addf);
887 if ((((nv + tadd) ^ value) & mask) != 0 ||
888 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
889 cpuhw->amasks[i][0]) != 0)
890 break;
891 value = nv;
892 mask |= cpuhw->amasks[i][0];
894 if (i == n_ev)
895 return 0; /* all OK */
897 /* doesn't work, gather alternatives... */
898 if (!ppmu->get_alternatives)
899 return -1;
900 for (i = 0; i < n_ev; ++i) {
901 choice[i] = 0;
902 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
903 cpuhw->alternatives[i]);
904 for (j = 1; j < n_alt[i]; ++j)
905 ppmu->get_constraint(cpuhw->alternatives[i][j],
906 &cpuhw->amasks[i][j],
907 &cpuhw->avalues[i][j]);
910 /* enumerate all possibilities and see if any will work */
911 i = 0;
912 j = -1;
913 value = mask = nv = 0;
914 while (i < n_ev) {
915 if (j >= 0) {
916 /* we're backtracking, restore context */
917 value = svalues[i];
918 mask = smasks[i];
919 j = choice[i];
922 * See if any alternative k for event_id i,
923 * where k > j, will satisfy the constraints.
925 while (++j < n_alt[i]) {
926 nv = (value | cpuhw->avalues[i][j]) +
927 (value & cpuhw->avalues[i][j] & addf);
928 if ((((nv + tadd) ^ value) & mask) == 0 &&
929 (((nv + tadd) ^ cpuhw->avalues[i][j])
930 & cpuhw->amasks[i][j]) == 0)
931 break;
933 if (j >= n_alt[i]) {
935 * No feasible alternative, backtrack
936 * to event_id i-1 and continue enumerating its
937 * alternatives from where we got up to.
939 if (--i < 0)
940 return -1;
941 } else {
943 * Found a feasible alternative for event_id i,
944 * remember where we got up to with this event_id,
945 * go on to the next event_id, and start with
946 * the first alternative for it.
948 choice[i] = j;
949 svalues[i] = value;
950 smasks[i] = mask;
951 value = nv;
952 mask |= cpuhw->amasks[i][j];
953 ++i;
954 j = -1;
958 /* OK, we have a feasible combination, tell the caller the solution */
959 for (i = 0; i < n_ev; ++i)
960 event_id[i] = cpuhw->alternatives[i][choice[i]];
961 return 0;
965 * Check if newly-added events have consistent settings for
966 * exclude_{user,kernel,hv} with each other and any previously
967 * added events.
969 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
970 int n_prev, int n_new)
972 int eu = 0, ek = 0, eh = 0;
973 int i, n, first;
974 struct perf_event *event;
977 * If the PMU we're on supports per event exclude settings then we
978 * don't need to do any of this logic. NB. This assumes no PMU has both
979 * per event exclude and limited PMCs.
981 if (ppmu->flags & PPMU_ARCH_207S)
982 return 0;
984 n = n_prev + n_new;
985 if (n <= 1)
986 return 0;
988 first = 1;
989 for (i = 0; i < n; ++i) {
990 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
991 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
992 continue;
994 event = ctrs[i];
995 if (first) {
996 eu = event->attr.exclude_user;
997 ek = event->attr.exclude_kernel;
998 eh = event->attr.exclude_hv;
999 first = 0;
1000 } else if (event->attr.exclude_user != eu ||
1001 event->attr.exclude_kernel != ek ||
1002 event->attr.exclude_hv != eh) {
1003 return -EAGAIN;
1007 if (eu || ek || eh)
1008 for (i = 0; i < n; ++i)
1009 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1010 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1012 return 0;
1015 static u64 check_and_compute_delta(u64 prev, u64 val)
1017 u64 delta = (val - prev) & 0xfffffffful;
1020 * POWER7 can roll back counter values, if the new value is smaller
1021 * than the previous value it will cause the delta and the counter to
1022 * have bogus values unless we rolled a counter over. If a coutner is
1023 * rolled back, it will be smaller, but within 256, which is the maximum
1024 * number of events to rollback at once. If we detect a rollback
1025 * return 0. This can lead to a small lack of precision in the
1026 * counters.
1028 if (prev > val && (prev - val) < 256)
1029 delta = 0;
1031 return delta;
1034 static void power_pmu_read(struct perf_event *event)
1036 s64 val, delta, prev;
1038 if (event->hw.state & PERF_HES_STOPPED)
1039 return;
1041 if (!event->hw.idx)
1042 return;
1044 if (is_ebb_event(event)) {
1045 val = read_pmc(event->hw.idx);
1046 local64_set(&event->hw.prev_count, val);
1047 return;
1051 * Performance monitor interrupts come even when interrupts
1052 * are soft-disabled, as long as interrupts are hard-enabled.
1053 * Therefore we treat them like NMIs.
1055 do {
1056 prev = local64_read(&event->hw.prev_count);
1057 barrier();
1058 val = read_pmc(event->hw.idx);
1059 delta = check_and_compute_delta(prev, val);
1060 if (!delta)
1061 return;
1062 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1064 local64_add(delta, &event->count);
1067 * A number of places program the PMC with (0x80000000 - period_left).
1068 * We never want period_left to be less than 1 because we will program
1069 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1070 * roll around to 0 before taking an exception. We have seen this
1071 * on POWER8.
1073 * To fix this, clamp the minimum value of period_left to 1.
1075 do {
1076 prev = local64_read(&event->hw.period_left);
1077 val = prev - delta;
1078 if (val < 1)
1079 val = 1;
1080 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1084 * On some machines, PMC5 and PMC6 can't be written, don't respect
1085 * the freeze conditions, and don't generate interrupts. This tells
1086 * us if `event' is using such a PMC.
1088 static int is_limited_pmc(int pmcnum)
1090 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1091 && (pmcnum == 5 || pmcnum == 6);
1094 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1095 unsigned long pmc5, unsigned long pmc6)
1097 struct perf_event *event;
1098 u64 val, prev, delta;
1099 int i;
1101 for (i = 0; i < cpuhw->n_limited; ++i) {
1102 event = cpuhw->limited_counter[i];
1103 if (!event->hw.idx)
1104 continue;
1105 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1106 prev = local64_read(&event->hw.prev_count);
1107 event->hw.idx = 0;
1108 delta = check_and_compute_delta(prev, val);
1109 if (delta)
1110 local64_add(delta, &event->count);
1114 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1115 unsigned long pmc5, unsigned long pmc6)
1117 struct perf_event *event;
1118 u64 val, prev;
1119 int i;
1121 for (i = 0; i < cpuhw->n_limited; ++i) {
1122 event = cpuhw->limited_counter[i];
1123 event->hw.idx = cpuhw->limited_hwidx[i];
1124 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1125 prev = local64_read(&event->hw.prev_count);
1126 if (check_and_compute_delta(prev, val))
1127 local64_set(&event->hw.prev_count, val);
1128 perf_event_update_userpage(event);
1133 * Since limited events don't respect the freeze conditions, we
1134 * have to read them immediately after freezing or unfreezing the
1135 * other events. We try to keep the values from the limited
1136 * events as consistent as possible by keeping the delay (in
1137 * cycles and instructions) between freezing/unfreezing and reading
1138 * the limited events as small and consistent as possible.
1139 * Therefore, if any limited events are in use, we read them
1140 * both, and always in the same order, to minimize variability,
1141 * and do it inside the same asm that writes MMCR0.
1143 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1145 unsigned long pmc5, pmc6;
1147 if (!cpuhw->n_limited) {
1148 mtspr(SPRN_MMCR0, mmcr0);
1149 return;
1153 * Write MMCR0, then read PMC5 and PMC6 immediately.
1154 * To ensure we don't get a performance monitor interrupt
1155 * between writing MMCR0 and freezing/thawing the limited
1156 * events, we first write MMCR0 with the event overflow
1157 * interrupt enable bits turned off.
1159 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1160 : "=&r" (pmc5), "=&r" (pmc6)
1161 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1162 "i" (SPRN_MMCR0),
1163 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1165 if (mmcr0 & MMCR0_FC)
1166 freeze_limited_counters(cpuhw, pmc5, pmc6);
1167 else
1168 thaw_limited_counters(cpuhw, pmc5, pmc6);
1171 * Write the full MMCR0 including the event overflow interrupt
1172 * enable bits, if necessary.
1174 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1175 mtspr(SPRN_MMCR0, mmcr0);
1179 * Disable all events to prevent PMU interrupts and to allow
1180 * events to be added or removed.
1182 static void power_pmu_disable(struct pmu *pmu)
1184 struct cpu_hw_events *cpuhw;
1185 unsigned long flags, mmcr0, val;
1187 if (!ppmu)
1188 return;
1189 local_irq_save(flags);
1190 cpuhw = this_cpu_ptr(&cpu_hw_events);
1192 if (!cpuhw->disabled) {
1194 * Check if we ever enabled the PMU on this cpu.
1196 if (!cpuhw->pmcs_enabled) {
1197 ppc_enable_pmcs();
1198 cpuhw->pmcs_enabled = 1;
1202 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1204 val = mmcr0 = mfspr(SPRN_MMCR0);
1205 val |= MMCR0_FC;
1206 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1207 MMCR0_FC56);
1210 * The barrier is to make sure the mtspr has been
1211 * executed and the PMU has frozen the events etc.
1212 * before we return.
1214 write_mmcr0(cpuhw, val);
1215 mb();
1216 isync();
1219 * Disable instruction sampling if it was enabled
1221 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1222 mtspr(SPRN_MMCRA,
1223 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1224 mb();
1225 isync();
1228 cpuhw->disabled = 1;
1229 cpuhw->n_added = 0;
1231 ebb_switch_out(mmcr0);
1233 #ifdef CONFIG_PPC64
1235 * These are readable by userspace, may contain kernel
1236 * addresses and are not switched by context switch, so clear
1237 * them now to avoid leaking anything to userspace in general
1238 * including to another process.
1240 if (ppmu->flags & PPMU_ARCH_207S) {
1241 mtspr(SPRN_SDAR, 0);
1242 mtspr(SPRN_SIAR, 0);
1244 #endif
1247 local_irq_restore(flags);
1251 * Re-enable all events if disable == 0.
1252 * If we were previously disabled and events were added, then
1253 * put the new config on the PMU.
1255 static void power_pmu_enable(struct pmu *pmu)
1257 struct perf_event *event;
1258 struct cpu_hw_events *cpuhw;
1259 unsigned long flags;
1260 long i;
1261 unsigned long val, mmcr0;
1262 s64 left;
1263 unsigned int hwc_index[MAX_HWEVENTS];
1264 int n_lim;
1265 int idx;
1266 bool ebb;
1268 if (!ppmu)
1269 return;
1270 local_irq_save(flags);
1272 cpuhw = this_cpu_ptr(&cpu_hw_events);
1273 if (!cpuhw->disabled)
1274 goto out;
1276 if (cpuhw->n_events == 0) {
1277 ppc_set_pmu_inuse(0);
1278 goto out;
1281 cpuhw->disabled = 0;
1284 * EBB requires an exclusive group and all events must have the EBB
1285 * flag set, or not set, so we can just check a single event. Also we
1286 * know we have at least one event.
1288 ebb = is_ebb_event(cpuhw->event[0]);
1291 * If we didn't change anything, or only removed events,
1292 * no need to recalculate MMCR* settings and reset the PMCs.
1293 * Just reenable the PMU with the current MMCR* settings
1294 * (possibly updated for removal of events).
1296 if (!cpuhw->n_added) {
1297 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1298 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1299 goto out_enable;
1303 * Clear all MMCR settings and recompute them for the new set of events.
1305 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1307 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1308 cpuhw->mmcr, cpuhw->event)) {
1309 /* shouldn't ever get here */
1310 printk(KERN_ERR "oops compute_mmcr failed\n");
1311 goto out;
1314 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1316 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1317 * bits for the first event. We have already checked that all
1318 * events have the same value for these bits as the first event.
1320 event = cpuhw->event[0];
1321 if (event->attr.exclude_user)
1322 cpuhw->mmcr[0] |= MMCR0_FCP;
1323 if (event->attr.exclude_kernel)
1324 cpuhw->mmcr[0] |= freeze_events_kernel;
1325 if (event->attr.exclude_hv)
1326 cpuhw->mmcr[0] |= MMCR0_FCHV;
1330 * Write the new configuration to MMCR* with the freeze
1331 * bit set and set the hardware events to their initial values.
1332 * Then unfreeze the events.
1334 ppc_set_pmu_inuse(1);
1335 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1336 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1337 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1338 | MMCR0_FC);
1339 if (ppmu->flags & PPMU_ARCH_207S)
1340 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1343 * Read off any pre-existing events that need to move
1344 * to another PMC.
1346 for (i = 0; i < cpuhw->n_events; ++i) {
1347 event = cpuhw->event[i];
1348 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1349 power_pmu_read(event);
1350 write_pmc(event->hw.idx, 0);
1351 event->hw.idx = 0;
1356 * Initialize the PMCs for all the new and moved events.
1358 cpuhw->n_limited = n_lim = 0;
1359 for (i = 0; i < cpuhw->n_events; ++i) {
1360 event = cpuhw->event[i];
1361 if (event->hw.idx)
1362 continue;
1363 idx = hwc_index[i] + 1;
1364 if (is_limited_pmc(idx)) {
1365 cpuhw->limited_counter[n_lim] = event;
1366 cpuhw->limited_hwidx[n_lim] = idx;
1367 ++n_lim;
1368 continue;
1371 if (ebb)
1372 val = local64_read(&event->hw.prev_count);
1373 else {
1374 val = 0;
1375 if (event->hw.sample_period) {
1376 left = local64_read(&event->hw.period_left);
1377 if (left < 0x80000000L)
1378 val = 0x80000000L - left;
1380 local64_set(&event->hw.prev_count, val);
1383 event->hw.idx = idx;
1384 if (event->hw.state & PERF_HES_STOPPED)
1385 val = 0;
1386 write_pmc(idx, val);
1388 perf_event_update_userpage(event);
1390 cpuhw->n_limited = n_lim;
1391 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1393 out_enable:
1394 pmao_restore_workaround(ebb);
1396 mmcr0 = ebb_switch_in(ebb, cpuhw);
1398 mb();
1399 if (cpuhw->bhrb_users)
1400 ppmu->config_bhrb(cpuhw->bhrb_filter);
1402 write_mmcr0(cpuhw, mmcr0);
1405 * Enable instruction sampling if necessary
1407 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1408 mb();
1409 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1412 out:
1414 local_irq_restore(flags);
1417 static int collect_events(struct perf_event *group, int max_count,
1418 struct perf_event *ctrs[], u64 *events,
1419 unsigned int *flags)
1421 int n = 0;
1422 struct perf_event *event;
1424 if (group->pmu->task_ctx_nr == perf_hw_context) {
1425 if (n >= max_count)
1426 return -1;
1427 ctrs[n] = group;
1428 flags[n] = group->hw.event_base;
1429 events[n++] = group->hw.config;
1431 for_each_sibling_event(event, group) {
1432 if (event->pmu->task_ctx_nr == perf_hw_context &&
1433 event->state != PERF_EVENT_STATE_OFF) {
1434 if (n >= max_count)
1435 return -1;
1436 ctrs[n] = event;
1437 flags[n] = event->hw.event_base;
1438 events[n++] = event->hw.config;
1441 return n;
1445 * Add an event to the PMU.
1446 * If all events are not already frozen, then we disable and
1447 * re-enable the PMU in order to get hw_perf_enable to do the
1448 * actual work of reconfiguring the PMU.
1450 static int power_pmu_add(struct perf_event *event, int ef_flags)
1452 struct cpu_hw_events *cpuhw;
1453 unsigned long flags;
1454 int n0;
1455 int ret = -EAGAIN;
1457 local_irq_save(flags);
1458 perf_pmu_disable(event->pmu);
1461 * Add the event to the list (if there is room)
1462 * and check whether the total set is still feasible.
1464 cpuhw = this_cpu_ptr(&cpu_hw_events);
1465 n0 = cpuhw->n_events;
1466 if (n0 >= ppmu->n_counter)
1467 goto out;
1468 cpuhw->event[n0] = event;
1469 cpuhw->events[n0] = event->hw.config;
1470 cpuhw->flags[n0] = event->hw.event_base;
1473 * This event may have been disabled/stopped in record_and_restart()
1474 * because we exceeded the ->event_limit. If re-starting the event,
1475 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1476 * notification is re-enabled.
1478 if (!(ef_flags & PERF_EF_START))
1479 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1480 else
1481 event->hw.state = 0;
1484 * If group events scheduling transaction was started,
1485 * skip the schedulability test here, it will be performed
1486 * at commit time(->commit_txn) as a whole
1488 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1489 goto nocheck;
1491 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1492 goto out;
1493 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1494 goto out;
1495 event->hw.config = cpuhw->events[n0];
1497 nocheck:
1498 ebb_event_add(event);
1500 ++cpuhw->n_events;
1501 ++cpuhw->n_added;
1503 ret = 0;
1504 out:
1505 if (has_branch_stack(event)) {
1506 power_pmu_bhrb_enable(event);
1507 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1508 event->attr.branch_sample_type);
1511 perf_pmu_enable(event->pmu);
1512 local_irq_restore(flags);
1513 return ret;
1517 * Remove an event from the PMU.
1519 static void power_pmu_del(struct perf_event *event, int ef_flags)
1521 struct cpu_hw_events *cpuhw;
1522 long i;
1523 unsigned long flags;
1525 local_irq_save(flags);
1526 perf_pmu_disable(event->pmu);
1528 power_pmu_read(event);
1530 cpuhw = this_cpu_ptr(&cpu_hw_events);
1531 for (i = 0; i < cpuhw->n_events; ++i) {
1532 if (event == cpuhw->event[i]) {
1533 while (++i < cpuhw->n_events) {
1534 cpuhw->event[i-1] = cpuhw->event[i];
1535 cpuhw->events[i-1] = cpuhw->events[i];
1536 cpuhw->flags[i-1] = cpuhw->flags[i];
1538 --cpuhw->n_events;
1539 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1540 if (event->hw.idx) {
1541 write_pmc(event->hw.idx, 0);
1542 event->hw.idx = 0;
1544 perf_event_update_userpage(event);
1545 break;
1548 for (i = 0; i < cpuhw->n_limited; ++i)
1549 if (event == cpuhw->limited_counter[i])
1550 break;
1551 if (i < cpuhw->n_limited) {
1552 while (++i < cpuhw->n_limited) {
1553 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1554 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1556 --cpuhw->n_limited;
1558 if (cpuhw->n_events == 0) {
1559 /* disable exceptions if no events are running */
1560 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1563 if (has_branch_stack(event))
1564 power_pmu_bhrb_disable(event);
1566 perf_pmu_enable(event->pmu);
1567 local_irq_restore(flags);
1571 * POWER-PMU does not support disabling individual counters, hence
1572 * program their cycle counter to their max value and ignore the interrupts.
1575 static void power_pmu_start(struct perf_event *event, int ef_flags)
1577 unsigned long flags;
1578 s64 left;
1579 unsigned long val;
1581 if (!event->hw.idx || !event->hw.sample_period)
1582 return;
1584 if (!(event->hw.state & PERF_HES_STOPPED))
1585 return;
1587 if (ef_flags & PERF_EF_RELOAD)
1588 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1590 local_irq_save(flags);
1591 perf_pmu_disable(event->pmu);
1593 event->hw.state = 0;
1594 left = local64_read(&event->hw.period_left);
1596 val = 0;
1597 if (left < 0x80000000L)
1598 val = 0x80000000L - left;
1600 write_pmc(event->hw.idx, val);
1602 perf_event_update_userpage(event);
1603 perf_pmu_enable(event->pmu);
1604 local_irq_restore(flags);
1607 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1609 unsigned long flags;
1611 if (!event->hw.idx || !event->hw.sample_period)
1612 return;
1614 if (event->hw.state & PERF_HES_STOPPED)
1615 return;
1617 local_irq_save(flags);
1618 perf_pmu_disable(event->pmu);
1620 power_pmu_read(event);
1621 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1622 write_pmc(event->hw.idx, 0);
1624 perf_event_update_userpage(event);
1625 perf_pmu_enable(event->pmu);
1626 local_irq_restore(flags);
1630 * Start group events scheduling transaction
1631 * Set the flag to make pmu::enable() not perform the
1632 * schedulability test, it will be performed at commit time
1634 * We only support PERF_PMU_TXN_ADD transactions. Save the
1635 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1636 * transactions.
1638 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1640 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1642 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1644 cpuhw->txn_flags = txn_flags;
1645 if (txn_flags & ~PERF_PMU_TXN_ADD)
1646 return;
1648 perf_pmu_disable(pmu);
1649 cpuhw->n_txn_start = cpuhw->n_events;
1653 * Stop group events scheduling transaction
1654 * Clear the flag and pmu::enable() will perform the
1655 * schedulability test.
1657 static void power_pmu_cancel_txn(struct pmu *pmu)
1659 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1660 unsigned int txn_flags;
1662 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1664 txn_flags = cpuhw->txn_flags;
1665 cpuhw->txn_flags = 0;
1666 if (txn_flags & ~PERF_PMU_TXN_ADD)
1667 return;
1669 perf_pmu_enable(pmu);
1673 * Commit group events scheduling transaction
1674 * Perform the group schedulability test as a whole
1675 * Return 0 if success
1677 static int power_pmu_commit_txn(struct pmu *pmu)
1679 struct cpu_hw_events *cpuhw;
1680 long i, n;
1682 if (!ppmu)
1683 return -EAGAIN;
1685 cpuhw = this_cpu_ptr(&cpu_hw_events);
1686 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1688 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1689 cpuhw->txn_flags = 0;
1690 return 0;
1693 n = cpuhw->n_events;
1694 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1695 return -EAGAIN;
1696 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1697 if (i < 0)
1698 return -EAGAIN;
1700 for (i = cpuhw->n_txn_start; i < n; ++i)
1701 cpuhw->event[i]->hw.config = cpuhw->events[i];
1703 cpuhw->txn_flags = 0;
1704 perf_pmu_enable(pmu);
1705 return 0;
1709 * Return 1 if we might be able to put event on a limited PMC,
1710 * or 0 if not.
1711 * An event can only go on a limited PMC if it counts something
1712 * that a limited PMC can count, doesn't require interrupts, and
1713 * doesn't exclude any processor mode.
1715 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1716 unsigned int flags)
1718 int n;
1719 u64 alt[MAX_EVENT_ALTERNATIVES];
1721 if (event->attr.exclude_user
1722 || event->attr.exclude_kernel
1723 || event->attr.exclude_hv
1724 || event->attr.sample_period)
1725 return 0;
1727 if (ppmu->limited_pmc_event(ev))
1728 return 1;
1731 * The requested event_id isn't on a limited PMC already;
1732 * see if any alternative code goes on a limited PMC.
1734 if (!ppmu->get_alternatives)
1735 return 0;
1737 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1738 n = ppmu->get_alternatives(ev, flags, alt);
1740 return n > 0;
1744 * Find an alternative event_id that goes on a normal PMC, if possible,
1745 * and return the event_id code, or 0 if there is no such alternative.
1746 * (Note: event_id code 0 is "don't count" on all machines.)
1748 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1750 u64 alt[MAX_EVENT_ALTERNATIVES];
1751 int n;
1753 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1754 n = ppmu->get_alternatives(ev, flags, alt);
1755 if (!n)
1756 return 0;
1757 return alt[0];
1760 /* Number of perf_events counting hardware events */
1761 static atomic_t num_events;
1762 /* Used to avoid races in calling reserve/release_pmc_hardware */
1763 static DEFINE_MUTEX(pmc_reserve_mutex);
1766 * Release the PMU if this is the last perf_event.
1768 static void hw_perf_event_destroy(struct perf_event *event)
1770 if (!atomic_add_unless(&num_events, -1, 1)) {
1771 mutex_lock(&pmc_reserve_mutex);
1772 if (atomic_dec_return(&num_events) == 0)
1773 release_pmc_hardware();
1774 mutex_unlock(&pmc_reserve_mutex);
1779 * Translate a generic cache event_id config to a raw event_id code.
1781 static int hw_perf_cache_event(u64 config, u64 *eventp)
1783 unsigned long type, op, result;
1784 int ev;
1786 if (!ppmu->cache_events)
1787 return -EINVAL;
1789 /* unpack config */
1790 type = config & 0xff;
1791 op = (config >> 8) & 0xff;
1792 result = (config >> 16) & 0xff;
1794 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1795 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1796 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1797 return -EINVAL;
1799 ev = (*ppmu->cache_events)[type][op][result];
1800 if (ev == 0)
1801 return -EOPNOTSUPP;
1802 if (ev == -1)
1803 return -EINVAL;
1804 *eventp = ev;
1805 return 0;
1808 static bool is_event_blacklisted(u64 ev)
1810 int i;
1812 for (i=0; i < ppmu->n_blacklist_ev; i++) {
1813 if (ppmu->blacklist_ev[i] == ev)
1814 return true;
1817 return false;
1820 static int power_pmu_event_init(struct perf_event *event)
1822 u64 ev;
1823 unsigned long flags;
1824 struct perf_event *ctrs[MAX_HWEVENTS];
1825 u64 events[MAX_HWEVENTS];
1826 unsigned int cflags[MAX_HWEVENTS];
1827 int n;
1828 int err;
1829 struct cpu_hw_events *cpuhw;
1831 if (!ppmu)
1832 return -ENOENT;
1834 if (has_branch_stack(event)) {
1835 /* PMU has BHRB enabled */
1836 if (!(ppmu->flags & PPMU_ARCH_207S))
1837 return -EOPNOTSUPP;
1840 switch (event->attr.type) {
1841 case PERF_TYPE_HARDWARE:
1842 ev = event->attr.config;
1843 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1844 return -EOPNOTSUPP;
1846 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1847 return -EINVAL;
1848 ev = ppmu->generic_events[ev];
1849 break;
1850 case PERF_TYPE_HW_CACHE:
1851 err = hw_perf_cache_event(event->attr.config, &ev);
1852 if (err)
1853 return err;
1855 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1856 return -EINVAL;
1857 break;
1858 case PERF_TYPE_RAW:
1859 ev = event->attr.config;
1861 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1862 return -EINVAL;
1863 break;
1864 default:
1865 return -ENOENT;
1868 event->hw.config_base = ev;
1869 event->hw.idx = 0;
1872 * If we are not running on a hypervisor, force the
1873 * exclude_hv bit to 0 so that we don't care what
1874 * the user set it to.
1876 if (!firmware_has_feature(FW_FEATURE_LPAR))
1877 event->attr.exclude_hv = 0;
1880 * If this is a per-task event, then we can use
1881 * PM_RUN_* events interchangeably with their non RUN_*
1882 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1883 * XXX we should check if the task is an idle task.
1885 flags = 0;
1886 if (event->attach_state & PERF_ATTACH_TASK)
1887 flags |= PPMU_ONLY_COUNT_RUN;
1890 * If this machine has limited events, check whether this
1891 * event_id could go on a limited event.
1893 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1894 if (can_go_on_limited_pmc(event, ev, flags)) {
1895 flags |= PPMU_LIMITED_PMC_OK;
1896 } else if (ppmu->limited_pmc_event(ev)) {
1898 * The requested event_id is on a limited PMC,
1899 * but we can't use a limited PMC; see if any
1900 * alternative goes on a normal PMC.
1902 ev = normal_pmc_alternative(ev, flags);
1903 if (!ev)
1904 return -EINVAL;
1908 /* Extra checks for EBB */
1909 err = ebb_event_check(event);
1910 if (err)
1911 return err;
1914 * If this is in a group, check if it can go on with all the
1915 * other hardware events in the group. We assume the event
1916 * hasn't been linked into its leader's sibling list at this point.
1918 n = 0;
1919 if (event->group_leader != event) {
1920 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1921 ctrs, events, cflags);
1922 if (n < 0)
1923 return -EINVAL;
1925 events[n] = ev;
1926 ctrs[n] = event;
1927 cflags[n] = flags;
1928 if (check_excludes(ctrs, cflags, n, 1))
1929 return -EINVAL;
1931 cpuhw = &get_cpu_var(cpu_hw_events);
1932 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1934 if (has_branch_stack(event)) {
1935 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1936 event->attr.branch_sample_type);
1938 if (cpuhw->bhrb_filter == -1) {
1939 put_cpu_var(cpu_hw_events);
1940 return -EOPNOTSUPP;
1944 put_cpu_var(cpu_hw_events);
1945 if (err)
1946 return -EINVAL;
1948 event->hw.config = events[n];
1949 event->hw.event_base = cflags[n];
1950 event->hw.last_period = event->hw.sample_period;
1951 local64_set(&event->hw.period_left, event->hw.last_period);
1954 * For EBB events we just context switch the PMC value, we don't do any
1955 * of the sample_period logic. We use hw.prev_count for this.
1957 if (is_ebb_event(event))
1958 local64_set(&event->hw.prev_count, 0);
1961 * See if we need to reserve the PMU.
1962 * If no events are currently in use, then we have to take a
1963 * mutex to ensure that we don't race with another task doing
1964 * reserve_pmc_hardware or release_pmc_hardware.
1966 err = 0;
1967 if (!atomic_inc_not_zero(&num_events)) {
1968 mutex_lock(&pmc_reserve_mutex);
1969 if (atomic_read(&num_events) == 0 &&
1970 reserve_pmc_hardware(perf_event_interrupt))
1971 err = -EBUSY;
1972 else
1973 atomic_inc(&num_events);
1974 mutex_unlock(&pmc_reserve_mutex);
1976 event->destroy = hw_perf_event_destroy;
1978 return err;
1981 static int power_pmu_event_idx(struct perf_event *event)
1983 return event->hw.idx;
1986 ssize_t power_events_sysfs_show(struct device *dev,
1987 struct device_attribute *attr, char *page)
1989 struct perf_pmu_events_attr *pmu_attr;
1991 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1993 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1996 static struct pmu power_pmu = {
1997 .pmu_enable = power_pmu_enable,
1998 .pmu_disable = power_pmu_disable,
1999 .event_init = power_pmu_event_init,
2000 .add = power_pmu_add,
2001 .del = power_pmu_del,
2002 .start = power_pmu_start,
2003 .stop = power_pmu_stop,
2004 .read = power_pmu_read,
2005 .start_txn = power_pmu_start_txn,
2006 .cancel_txn = power_pmu_cancel_txn,
2007 .commit_txn = power_pmu_commit_txn,
2008 .event_idx = power_pmu_event_idx,
2009 .sched_task = power_pmu_sched_task,
2013 * A counter has overflowed; update its count and record
2014 * things if requested. Note that interrupts are hard-disabled
2015 * here so there is no possibility of being interrupted.
2017 static void record_and_restart(struct perf_event *event, unsigned long val,
2018 struct pt_regs *regs)
2020 u64 period = event->hw.sample_period;
2021 s64 prev, delta, left;
2022 int record = 0;
2024 if (event->hw.state & PERF_HES_STOPPED) {
2025 write_pmc(event->hw.idx, 0);
2026 return;
2029 /* we don't have to worry about interrupts here */
2030 prev = local64_read(&event->hw.prev_count);
2031 delta = check_and_compute_delta(prev, val);
2032 local64_add(delta, &event->count);
2035 * See if the total period for this event has expired,
2036 * and update for the next period.
2038 val = 0;
2039 left = local64_read(&event->hw.period_left) - delta;
2040 if (delta == 0)
2041 left++;
2042 if (period) {
2043 if (left <= 0) {
2044 left += period;
2045 if (left <= 0)
2046 left = period;
2047 record = siar_valid(regs);
2048 event->hw.last_period = event->hw.sample_period;
2050 if (left < 0x80000000LL)
2051 val = 0x80000000LL - left;
2054 write_pmc(event->hw.idx, val);
2055 local64_set(&event->hw.prev_count, val);
2056 local64_set(&event->hw.period_left, left);
2057 perf_event_update_userpage(event);
2060 * Finally record data if requested.
2062 if (record) {
2063 struct perf_sample_data data;
2065 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2067 if (event->attr.sample_type &
2068 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2069 perf_get_data_addr(regs, &data.addr);
2071 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2072 struct cpu_hw_events *cpuhw;
2073 cpuhw = this_cpu_ptr(&cpu_hw_events);
2074 power_pmu_bhrb_read(cpuhw);
2075 data.br_stack = &cpuhw->bhrb_stack;
2078 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2079 ppmu->get_mem_data_src)
2080 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2082 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2083 ppmu->get_mem_weight)
2084 ppmu->get_mem_weight(&data.weight);
2086 if (perf_event_overflow(event, &data, regs))
2087 power_pmu_stop(event, 0);
2092 * Called from generic code to get the misc flags (i.e. processor mode)
2093 * for an event_id.
2095 unsigned long perf_misc_flags(struct pt_regs *regs)
2097 u32 flags = perf_get_misc_flags(regs);
2099 if (flags)
2100 return flags;
2101 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2102 PERF_RECORD_MISC_KERNEL;
2106 * Called from generic code to get the instruction pointer
2107 * for an event_id.
2109 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2111 bool use_siar = regs_use_siar(regs);
2113 if (use_siar && siar_valid(regs))
2114 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2115 else if (use_siar)
2116 return 0; // no valid instruction pointer
2117 else
2118 return regs->nip;
2121 static bool pmc_overflow_power7(unsigned long val)
2124 * Events on POWER7 can roll back if a speculative event doesn't
2125 * eventually complete. Unfortunately in some rare cases they will
2126 * raise a performance monitor exception. We need to catch this to
2127 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2128 * cycles from overflow.
2130 * We only do this if the first pass fails to find any overflowing
2131 * PMCs because a user might set a period of less than 256 and we
2132 * don't want to mistakenly reset them.
2134 if ((0x80000000 - val) <= 256)
2135 return true;
2137 return false;
2140 static bool pmc_overflow(unsigned long val)
2142 if ((int)val < 0)
2143 return true;
2145 return false;
2149 * Performance monitor interrupt stuff
2151 static void perf_event_interrupt(struct pt_regs *regs)
2153 int i, j;
2154 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2155 struct perf_event *event;
2156 unsigned long val[8];
2157 int found, active;
2158 int nmi;
2160 if (cpuhw->n_limited)
2161 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2162 mfspr(SPRN_PMC6));
2164 perf_read_regs(regs);
2166 nmi = perf_intr_is_nmi(regs);
2167 if (nmi)
2168 nmi_enter();
2169 else
2170 irq_enter();
2172 /* Read all the PMCs since we'll need them a bunch of times */
2173 for (i = 0; i < ppmu->n_counter; ++i)
2174 val[i] = read_pmc(i + 1);
2176 /* Try to find what caused the IRQ */
2177 found = 0;
2178 for (i = 0; i < ppmu->n_counter; ++i) {
2179 if (!pmc_overflow(val[i]))
2180 continue;
2181 if (is_limited_pmc(i + 1))
2182 continue; /* these won't generate IRQs */
2184 * We've found one that's overflowed. For active
2185 * counters we need to log this. For inactive
2186 * counters, we need to reset it anyway
2188 found = 1;
2189 active = 0;
2190 for (j = 0; j < cpuhw->n_events; ++j) {
2191 event = cpuhw->event[j];
2192 if (event->hw.idx == (i + 1)) {
2193 active = 1;
2194 record_and_restart(event, val[i], regs);
2195 break;
2198 if (!active)
2199 /* reset non active counters that have overflowed */
2200 write_pmc(i + 1, 0);
2202 if (!found && pvr_version_is(PVR_POWER7)) {
2203 /* check active counters for special buggy p7 overflow */
2204 for (i = 0; i < cpuhw->n_events; ++i) {
2205 event = cpuhw->event[i];
2206 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2207 continue;
2208 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2209 /* event has overflowed in a buggy way*/
2210 found = 1;
2211 record_and_restart(event,
2212 val[event->hw.idx - 1],
2213 regs);
2217 if (!found && !nmi && printk_ratelimit())
2218 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2221 * Reset MMCR0 to its normal value. This will set PMXE and
2222 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2223 * and thus allow interrupts to occur again.
2224 * XXX might want to use MSR.PM to keep the events frozen until
2225 * we get back out of this interrupt.
2227 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2229 if (nmi)
2230 nmi_exit();
2231 else
2232 irq_exit();
2235 static int power_pmu_prepare_cpu(unsigned int cpu)
2237 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2239 if (ppmu) {
2240 memset(cpuhw, 0, sizeof(*cpuhw));
2241 cpuhw->mmcr[0] = MMCR0_FC;
2243 return 0;
2246 int register_power_pmu(struct power_pmu *pmu)
2248 if (ppmu)
2249 return -EBUSY; /* something's already registered */
2251 ppmu = pmu;
2252 pr_info("%s performance monitor hardware support registered\n",
2253 pmu->name);
2255 power_pmu.attr_groups = ppmu->attr_groups;
2257 #ifdef MSR_HV
2259 * Use FCHV to ignore kernel events if MSR.HV is set.
2261 if (mfmsr() & MSR_HV)
2262 freeze_events_kernel = MMCR0_FCHV;
2263 #endif /* CONFIG_PPC64 */
2265 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2266 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2267 power_pmu_prepare_cpu, NULL);
2268 return 0;