Linux 4.19-rc7
[linux-2.6/btrfs-unstable.git] / arch / powerpc / kernel / kprobes.c
blob5c60bb0f927f819fea2d57aa98d7ad0a7eec5ebf
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/extable.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/code-patching.h>
36 #include <asm/cacheflush.h>
37 #include <asm/sstep.h>
38 #include <asm/sections.h>
39 #include <linux/uaccess.h>
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
46 bool arch_within_kprobe_blacklist(unsigned long addr)
48 return (addr >= (unsigned long)__kprobes_text_start &&
49 addr < (unsigned long)__kprobes_text_end) ||
50 (addr >= (unsigned long)_stext &&
51 addr < (unsigned long)__head_end);
54 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
56 kprobe_opcode_t *addr = NULL;
58 #ifdef PPC64_ELF_ABI_v2
59 /* PPC64 ABIv2 needs local entry point */
60 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
61 if (addr && !offset) {
62 #ifdef CONFIG_KPROBES_ON_FTRACE
63 unsigned long faddr;
65 * Per livepatch.h, ftrace location is always within the first
66 * 16 bytes of a function on powerpc with -mprofile-kernel.
68 faddr = ftrace_location_range((unsigned long)addr,
69 (unsigned long)addr + 16);
70 if (faddr)
71 addr = (kprobe_opcode_t *)faddr;
72 else
73 #endif
74 addr = (kprobe_opcode_t *)ppc_function_entry(addr);
76 #elif defined(PPC64_ELF_ABI_v1)
78 * 64bit powerpc ABIv1 uses function descriptors:
79 * - Check for the dot variant of the symbol first.
80 * - If that fails, try looking up the symbol provided.
82 * This ensures we always get to the actual symbol and not
83 * the descriptor.
85 * Also handle <module:symbol> format.
87 char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
88 bool dot_appended = false;
89 const char *c;
90 ssize_t ret = 0;
91 int len = 0;
93 if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
94 c++;
95 len = c - name;
96 memcpy(dot_name, name, len);
97 } else
98 c = name;
100 if (*c != '\0' && *c != '.') {
101 dot_name[len++] = '.';
102 dot_appended = true;
104 ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
105 if (ret > 0)
106 addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
108 /* Fallback to the original non-dot symbol lookup */
109 if (!addr && dot_appended)
110 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
111 #else
112 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
113 #endif
115 return addr;
118 int arch_prepare_kprobe(struct kprobe *p)
120 int ret = 0;
121 kprobe_opcode_t insn = *p->addr;
123 if ((unsigned long)p->addr & 0x03) {
124 printk("Attempt to register kprobe at an unaligned address\n");
125 ret = -EINVAL;
126 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
127 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
128 ret = -EINVAL;
131 /* insn must be on a special executable page on ppc64. This is
132 * not explicitly required on ppc32 (right now), but it doesn't hurt */
133 if (!ret) {
134 p->ainsn.insn = get_insn_slot();
135 if (!p->ainsn.insn)
136 ret = -ENOMEM;
139 if (!ret) {
140 memcpy(p->ainsn.insn, p->addr,
141 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
142 p->opcode = *p->addr;
143 flush_icache_range((unsigned long)p->ainsn.insn,
144 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
147 p->ainsn.boostable = 0;
148 return ret;
150 NOKPROBE_SYMBOL(arch_prepare_kprobe);
152 void arch_arm_kprobe(struct kprobe *p)
154 patch_instruction(p->addr, BREAKPOINT_INSTRUCTION);
156 NOKPROBE_SYMBOL(arch_arm_kprobe);
158 void arch_disarm_kprobe(struct kprobe *p)
160 patch_instruction(p->addr, p->opcode);
162 NOKPROBE_SYMBOL(arch_disarm_kprobe);
164 void arch_remove_kprobe(struct kprobe *p)
166 if (p->ainsn.insn) {
167 free_insn_slot(p->ainsn.insn, 0);
168 p->ainsn.insn = NULL;
171 NOKPROBE_SYMBOL(arch_remove_kprobe);
173 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
175 enable_single_step(regs);
178 * On powerpc we should single step on the original
179 * instruction even if the probed insn is a trap
180 * variant as values in regs could play a part in
181 * if the trap is taken or not
183 regs->nip = (unsigned long)p->ainsn.insn;
186 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
188 kcb->prev_kprobe.kp = kprobe_running();
189 kcb->prev_kprobe.status = kcb->kprobe_status;
190 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
193 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
195 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
196 kcb->kprobe_status = kcb->prev_kprobe.status;
197 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
200 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
201 struct kprobe_ctlblk *kcb)
203 __this_cpu_write(current_kprobe, p);
204 kcb->kprobe_saved_msr = regs->msr;
207 bool arch_kprobe_on_func_entry(unsigned long offset)
209 #ifdef PPC64_ELF_ABI_v2
210 #ifdef CONFIG_KPROBES_ON_FTRACE
211 return offset <= 16;
212 #else
213 return offset <= 8;
214 #endif
215 #else
216 return !offset;
217 #endif
220 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
222 ri->ret_addr = (kprobe_opcode_t *)regs->link;
224 /* Replace the return addr with trampoline addr */
225 regs->link = (unsigned long)kretprobe_trampoline;
227 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
229 static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
231 int ret;
232 unsigned int insn = *p->ainsn.insn;
234 /* regs->nip is also adjusted if emulate_step returns 1 */
235 ret = emulate_step(regs, insn);
236 if (ret > 0) {
238 * Once this instruction has been boosted
239 * successfully, set the boostable flag
241 if (unlikely(p->ainsn.boostable == 0))
242 p->ainsn.boostable = 1;
243 } else if (ret < 0) {
245 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
246 * So, we should never get here... but, its still
247 * good to catch them, just in case...
249 printk("Can't step on instruction %x\n", insn);
250 BUG();
251 } else {
253 * If we haven't previously emulated this instruction, then it
254 * can't be boosted. Note it down so we don't try to do so again.
256 * If, however, we had emulated this instruction in the past,
257 * then this is just an error with the current run (for
258 * instance, exceptions due to a load/store). We return 0 so
259 * that this is now single-stepped, but continue to try
260 * emulating it in subsequent probe hits.
262 if (unlikely(p->ainsn.boostable != 1))
263 p->ainsn.boostable = -1;
266 return ret;
268 NOKPROBE_SYMBOL(try_to_emulate);
270 int kprobe_handler(struct pt_regs *regs)
272 struct kprobe *p;
273 int ret = 0;
274 unsigned int *addr = (unsigned int *)regs->nip;
275 struct kprobe_ctlblk *kcb;
277 if (user_mode(regs))
278 return 0;
281 * We don't want to be preempted for the entire
282 * duration of kprobe processing
284 preempt_disable();
285 kcb = get_kprobe_ctlblk();
287 /* Check we're not actually recursing */
288 if (kprobe_running()) {
289 p = get_kprobe(addr);
290 if (p) {
291 kprobe_opcode_t insn = *p->ainsn.insn;
292 if (kcb->kprobe_status == KPROBE_HIT_SS &&
293 is_trap(insn)) {
294 /* Turn off 'trace' bits */
295 regs->msr &= ~MSR_SINGLESTEP;
296 regs->msr |= kcb->kprobe_saved_msr;
297 goto no_kprobe;
299 /* We have reentered the kprobe_handler(), since
300 * another probe was hit while within the handler.
301 * We here save the original kprobes variables and
302 * just single step on the instruction of the new probe
303 * without calling any user handlers.
305 save_previous_kprobe(kcb);
306 set_current_kprobe(p, regs, kcb);
307 kprobes_inc_nmissed_count(p);
308 kcb->kprobe_status = KPROBE_REENTER;
309 if (p->ainsn.boostable >= 0) {
310 ret = try_to_emulate(p, regs);
312 if (ret > 0) {
313 restore_previous_kprobe(kcb);
314 preempt_enable_no_resched();
315 return 1;
318 prepare_singlestep(p, regs);
319 return 1;
320 } else if (*addr != BREAKPOINT_INSTRUCTION) {
321 /* If trap variant, then it belongs not to us */
322 kprobe_opcode_t cur_insn = *addr;
324 if (is_trap(cur_insn))
325 goto no_kprobe;
326 /* The breakpoint instruction was removed by
327 * another cpu right after we hit, no further
328 * handling of this interrupt is appropriate
330 ret = 1;
332 goto no_kprobe;
335 p = get_kprobe(addr);
336 if (!p) {
337 if (*addr != BREAKPOINT_INSTRUCTION) {
339 * PowerPC has multiple variants of the "trap"
340 * instruction. If the current instruction is a
341 * trap variant, it could belong to someone else
343 kprobe_opcode_t cur_insn = *addr;
344 if (is_trap(cur_insn))
345 goto no_kprobe;
347 * The breakpoint instruction was removed right
348 * after we hit it. Another cpu has removed
349 * either a probepoint or a debugger breakpoint
350 * at this address. In either case, no further
351 * handling of this interrupt is appropriate.
353 ret = 1;
355 /* Not one of ours: let kernel handle it */
356 goto no_kprobe;
359 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
360 set_current_kprobe(p, regs, kcb);
361 if (p->pre_handler && p->pre_handler(p, regs)) {
362 /* handler changed execution path, so skip ss setup */
363 reset_current_kprobe();
364 preempt_enable_no_resched();
365 return 1;
368 if (p->ainsn.boostable >= 0) {
369 ret = try_to_emulate(p, regs);
371 if (ret > 0) {
372 if (p->post_handler)
373 p->post_handler(p, regs, 0);
375 kcb->kprobe_status = KPROBE_HIT_SSDONE;
376 reset_current_kprobe();
377 preempt_enable_no_resched();
378 return 1;
381 prepare_singlestep(p, regs);
382 kcb->kprobe_status = KPROBE_HIT_SS;
383 return 1;
385 no_kprobe:
386 preempt_enable_no_resched();
387 return ret;
389 NOKPROBE_SYMBOL(kprobe_handler);
392 * Function return probe trampoline:
393 * - init_kprobes() establishes a probepoint here
394 * - When the probed function returns, this probe
395 * causes the handlers to fire
397 asm(".global kretprobe_trampoline\n"
398 ".type kretprobe_trampoline, @function\n"
399 "kretprobe_trampoline:\n"
400 "nop\n"
401 "blr\n"
402 ".size kretprobe_trampoline, .-kretprobe_trampoline\n");
405 * Called when the probe at kretprobe trampoline is hit
407 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
409 struct kretprobe_instance *ri = NULL;
410 struct hlist_head *head, empty_rp;
411 struct hlist_node *tmp;
412 unsigned long flags, orig_ret_address = 0;
413 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
415 INIT_HLIST_HEAD(&empty_rp);
416 kretprobe_hash_lock(current, &head, &flags);
419 * It is possible to have multiple instances associated with a given
420 * task either because an multiple functions in the call path
421 * have a return probe installed on them, and/or more than one return
422 * return probe was registered for a target function.
424 * We can handle this because:
425 * - instances are always inserted at the head of the list
426 * - when multiple return probes are registered for the same
427 * function, the first instance's ret_addr will point to the
428 * real return address, and all the rest will point to
429 * kretprobe_trampoline
431 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
432 if (ri->task != current)
433 /* another task is sharing our hash bucket */
434 continue;
436 if (ri->rp && ri->rp->handler)
437 ri->rp->handler(ri, regs);
439 orig_ret_address = (unsigned long)ri->ret_addr;
440 recycle_rp_inst(ri, &empty_rp);
442 if (orig_ret_address != trampoline_address)
444 * This is the real return address. Any other
445 * instances associated with this task are for
446 * other calls deeper on the call stack
448 break;
451 kretprobe_assert(ri, orig_ret_address, trampoline_address);
454 * We get here through one of two paths:
455 * 1. by taking a trap -> kprobe_handler() -> here
456 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
458 * When going back through (1), we need regs->nip to be setup properly
459 * as it is used to determine the return address from the trap.
460 * For (2), since nip is not honoured with optprobes, we instead setup
461 * the link register properly so that the subsequent 'blr' in
462 * kretprobe_trampoline jumps back to the right instruction.
464 * For nip, we should set the address to the previous instruction since
465 * we end up emulating it in kprobe_handler(), which increments the nip
466 * again.
468 regs->nip = orig_ret_address - 4;
469 regs->link = orig_ret_address;
471 kretprobe_hash_unlock(current, &flags);
473 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
474 hlist_del(&ri->hlist);
475 kfree(ri);
478 return 0;
480 NOKPROBE_SYMBOL(trampoline_probe_handler);
483 * Called after single-stepping. p->addr is the address of the
484 * instruction whose first byte has been replaced by the "breakpoint"
485 * instruction. To avoid the SMP problems that can occur when we
486 * temporarily put back the original opcode to single-step, we
487 * single-stepped a copy of the instruction. The address of this
488 * copy is p->ainsn.insn.
490 int kprobe_post_handler(struct pt_regs *regs)
492 struct kprobe *cur = kprobe_running();
493 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
495 if (!cur || user_mode(regs))
496 return 0;
498 /* make sure we got here for instruction we have a kprobe on */
499 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
500 return 0;
502 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
503 kcb->kprobe_status = KPROBE_HIT_SSDONE;
504 cur->post_handler(cur, regs, 0);
507 /* Adjust nip to after the single-stepped instruction */
508 regs->nip = (unsigned long)cur->addr + 4;
509 regs->msr |= kcb->kprobe_saved_msr;
511 /*Restore back the original saved kprobes variables and continue. */
512 if (kcb->kprobe_status == KPROBE_REENTER) {
513 restore_previous_kprobe(kcb);
514 goto out;
516 reset_current_kprobe();
517 out:
518 preempt_enable_no_resched();
521 * if somebody else is singlestepping across a probe point, msr
522 * will have DE/SE set, in which case, continue the remaining processing
523 * of do_debug, as if this is not a probe hit.
525 if (regs->msr & MSR_SINGLESTEP)
526 return 0;
528 return 1;
530 NOKPROBE_SYMBOL(kprobe_post_handler);
532 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
534 struct kprobe *cur = kprobe_running();
535 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536 const struct exception_table_entry *entry;
538 switch(kcb->kprobe_status) {
539 case KPROBE_HIT_SS:
540 case KPROBE_REENTER:
542 * We are here because the instruction being single
543 * stepped caused a page fault. We reset the current
544 * kprobe and the nip points back to the probe address
545 * and allow the page fault handler to continue as a
546 * normal page fault.
548 regs->nip = (unsigned long)cur->addr;
549 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
550 regs->msr |= kcb->kprobe_saved_msr;
551 if (kcb->kprobe_status == KPROBE_REENTER)
552 restore_previous_kprobe(kcb);
553 else
554 reset_current_kprobe();
555 preempt_enable_no_resched();
556 break;
557 case KPROBE_HIT_ACTIVE:
558 case KPROBE_HIT_SSDONE:
560 * We increment the nmissed count for accounting,
561 * we can also use npre/npostfault count for accounting
562 * these specific fault cases.
564 kprobes_inc_nmissed_count(cur);
567 * We come here because instructions in the pre/post
568 * handler caused the page_fault, this could happen
569 * if handler tries to access user space by
570 * copy_from_user(), get_user() etc. Let the
571 * user-specified handler try to fix it first.
573 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
574 return 1;
577 * In case the user-specified fault handler returned
578 * zero, try to fix up.
580 if ((entry = search_exception_tables(regs->nip)) != NULL) {
581 regs->nip = extable_fixup(entry);
582 return 1;
586 * fixup_exception() could not handle it,
587 * Let do_page_fault() fix it.
589 break;
590 default:
591 break;
593 return 0;
595 NOKPROBE_SYMBOL(kprobe_fault_handler);
597 unsigned long arch_deref_entry_point(void *entry)
599 #ifdef PPC64_ELF_ABI_v1
600 if (!kernel_text_address((unsigned long)entry))
601 return ppc_global_function_entry(entry);
602 else
603 #endif
604 return (unsigned long)entry;
606 NOKPROBE_SYMBOL(arch_deref_entry_point);
608 static struct kprobe trampoline_p = {
609 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
610 .pre_handler = trampoline_probe_handler
613 int __init arch_init_kprobes(void)
615 return register_kprobe(&trampoline_p);
618 int arch_trampoline_kprobe(struct kprobe *p)
620 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
621 return 1;
623 return 0;
625 NOKPROBE_SYMBOL(arch_trampoline_kprobe);